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Abstract: In this paper we study the performance of different classes of M-level line codes under the
Viterbi decoding algorithm. Some of the presented M-level line codes inherited the state machine
structure by using the technique of distance mappings which preserve the properties of binary
convolutional codes. Other M-level line codes were enforced to have the state machine structure to
make use of the Viterbi decoding algorithm. The technique of spectral shaping was combined with
distance mappings to generate spectral null distance mappings (SNDM) M-level line codes.
The 2-dB gain between soft and hard decisions decoding for the different classes of M-level line codes
is investigated. The standard technique for assessing the stability and the accuracy of any decoding
algorithm, which is the error propagation is used to analyze the stability and the accuracy of the Viterbi
decoding algorithm of the M-level line codes.
The obtained results have shown advantages and outperformance of SNDM codes compared to the rest
of line codes presented in this paper.

Key words: Viterbi decoder, Soft/Hard decision, Error propagation, Line codes

1. INTRODUCTION

In literature, many authors’ works contributed towards the
development of the design of multi-level line codes and
the improvements of their error-correction capabilities [1–
4]. For certain applications, researchers have shown that
M-level line codes may be preferable to binary codes
for high speed digital transmission as in the case of the
optical fiber channel [5–8]. The additional signal levels or
symbols in a pulse amplitude modulated signal sequence
can be used to reduce the symbol rate and hence the
bandwidth of the coded signal [9]. The lower switching
rate required can also be used to obtain higher data-transfer
rates in an optical local area network (LAN) system where
the transmission rate is limited by complementary metal
oxide semiconductor (CMOS) technology [10].

It is still common practice to use combinational logic
decoders for M-level line codes. As these codes are
considered to be non-linear codes, we make use of
the technique of distance mappings [12–14] to map
permutation sequences to the outputs of convolutional
codes that can give our new M-level line codes the trellis
structure and thus make use of the Viterbi decoding
algorithm.

The spectral shaping technique used in this paper is
to create nulls at certain specific frequencies including
the lowest ones, which can give our new designed
M-level line codes another advantage to overcome some
communications problems like channels not transmitting
zero frequency components.

This paper is organized as follows. Section 2 introduces
briefly the techniques of spectral shaping and distance
mappings and presents a few examples of algorithms for
the design of the related class of M-level line codes.

Section 3 investigates the implementation of the Viterbi
decoding to our designed codes and to a range of different
published M-level line codes. Simulation results for the
bit error rate (BER) performance of these M-level line
codes in soft and hard decision to verify the 2-dB gain
are also presented. The Viterbi decoding error propagation
for M-level line codes for the assessment of the stability
and the accuracy of our Viterbi decoding algorithm is
investigated in Section 4. Finally a conclusion is presented
in Section 5 to compare between the obtained results
and present the advantages and disadvantages of codes
inheriting the convolutional codes structures.

2. DESIGN OF M-LEVEL LINE CODES

The techniques of spectral shaping and distance mappings
are combined and implemented to permutation sequences
to generate our new designed M-level line codes [15]. As
line codes are usually DC-free codes, we make use of the
spectral shaping technique to shape the spectrum of our
M-level line codes to suit certain applications. The use
of distance mappings technique is actually for the purpose
of having codes with better error correction capability
inheriting the trellis structure from the base codes which
are the convolutional codes. This makes the use of the
Viterbi decoding algorithm possible.

2.1 Spectral Shaping M-level Line Codes

Shaping the spectrum of any sequence whether it is binary
or non-binary to create nulls at certain frequencies is the
same as forcing the power spectral density (PSD) function
to zero at those corresponding frequencies [16]. The
spectral shaping technique is usually applied to baseband
data stream, which is represented by the vector y =
(y1,y2, . . . ,yM). We make use in this paper of spectral
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null equations to create nulls at rational submultiples of the
symbol frequency. The reason of the use of non binary or
permutation sequences is to be able to generate multilevel
pulse amplitude modulated signals. The design of DC-free
M-level line codes is also considered in our work.

For a codeword of length, M, there exists an integer
multiple of k, where

M = ks.

The frequency of value f = r/k represents the spectral
nulls at rational sub multiples r/k, with r as an integer. To
generate nulls at those frequencies, we have to satisfy [17]

A1 = A2 = · · ·= Ak, (1)

If all the codewords in a codebook satisfy these equations,
the codebook will exhibit nulls at the required frequencies.
This is true for binary and non binary sequences despite
shaping non-binary sequences is much complicated than
the binary ones since more constraints should be taken
into considerations. Hence, we have to choose a suitable
permutation sequences with suitable pulse amplitude
channel symbols to satisfy the spectral shaping equation
in (1).

Each permutation symbol (PS) is mapped to a channel
symbol (CS), which represents the level of the signal. In
general, for odd values of M, the symbol mapping is

PS: 0 1 · · · M−1
2 · · · M−2 M−1

↓ ↓ ↓ ↓ ↓
CS:−M−1

2 −M−3
2 · · · 0 · · · +M−3

2 +M−1
2

and for even values of M, the symbol mapping is

PS: 0 1 · · · M−2
2

M
2 · · · M−2 M−1

↓ ↓ ↓ ↓ ↓ ↓
CS:−M

2 −M−2
2 · · · −1 +1 · · · +M−2

2 +M
2

As an example, if we allocate the channel symbols of−3 −
1 +3 +1 to the permutation sequence 0132, then we will
guaranty nulls at frequencies 0, 1/2 and 1 since M = 4 and
therefore k = 2.

2.2 Decoding Algorithm for M-level Line Codes

As was mentioned in the introduction, M-level line codes
usually use combinational logic decoders. To get benefit
of the Viterbi decoder, we make use of the distance
mappings technique to present our new designed M-level
line codes in a state machine [18] form. The technique
is simply mapping the outputs of a convolutional code to
other codewords from a code with lesser error-correction
capabilities. In our case we use the spectrally shaped
permutation sequences. This mapping will allow us to
obtain suitably well shaped output code sequences and
better decoded by using the Viterbi algorithm [13, 19, 20].

Our new codes are also called as M-level line trellis codes
in view of their trellis structure that is inherited from the
base codes, the convolutional codes.

The technique of mapping was introduced by Ferreira et al
in their papers [12] and [13], where they have shown how
the output binary n-tuple code symbols from an R = m/n
convolutional code can be mapped to non-binary M-tuple
permutation code symbols, thereby creating a permutation
trellis code.

Ferreira et al have introduced two types of matrices D =
[dij] and E = [eij], which are respectively related to the
Hamming distances between the codewords of the base
code, the convolutional code and the mapped code, the
M-level line code.

As an example, we take the mapping of the set of binary
2-tuple code symbols, {00,01,10,11} to a set of 4-tuples
spectral null codewords, {0123,0231,3102,3201}.
For this mapping we have

D =

⎡
⎢⎣

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

⎤
⎥⎦ and E =

⎡
⎢⎣

0 2 2 4
2 0 4 2
2 4 0 2
4 2 2 0

⎤
⎥⎦ .

It is clear that ei j ≥ di j + 1, ∀i �= j, and this guarantees an
increase in the distance of the resulting code.

In general, if ei j ≥ di j + δ, δ ∈ {1,2, . . .}, ∀i �= j we call
such mappings distance-increasing mappings (DIMs). In
the case where ei j ≥ di j, ∀i �= j and equality achieved
at least once, we have distance-conserving mappings
(DCMs). Finally, if ei j ≥ di j +δ, δ∈ {−1,−2, . . .}, ∀i �= j,
we have distance-reducing mappings (DRMs).

Since we make use of spectral null technique combined
with distance mapping technique, we denote our new
designed M-level line codes as SNDM-line codes.

2.3 Examples of Designed Codes

To design our M-level line codes with well shaped
spectrum, we need to start with a permutation sequence
that will lead to the construction of our multilevel
codebook. By using the property of commutativity
for addition between the variables in (1) to permute
the channel symbols of these variables and to keep the
spectral null property satisfied, we can generate our
spectrally shaped M-level line codewords or sequences.
The swapping of our permutation symbols needs a
special construction algorithm that will help in avoiding
repetitive sequences which cause loss on the calculation
of distances between the generated codewords of our code
and therefore the error correction capability will be less.
Here we make use of the cube graph construction [21],
which has proven to be optimum.

As was explained before, in the spectral null equation and
for sequences of length M = ks, we have k groupings with
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Figure 1: PSD for M = 8 and k = 4

s symbols in each grouping. Hence, our mappings will
consist of several smaller mappings. For each Ai we have
a mapping of length s that is used to permute the yi in the
grouping. For all the Ai as a grouping we have another
mapping of length k that is used to permute the Ai. The
following example illustrates this.

Example 1 For M = 8, with k = 4 and s = 2, we have the
following spectral null equation:

s=2︷ ︸︸ ︷
y1 + y5 =

s=2︷ ︸︸ ︷
y2 + y6 =

s=2︷ ︸︸ ︷
y3 + y7 =

s=2︷ ︸︸ ︷
y4 + y8︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

A1 = A2 = A3 = A4︸ ︷︷ ︸
k=4

(2)

Let swap(ya,yb) denote the swapping of symbols in the
variables ya and yb. The following sequences can then be
obtained from the original SN sequence. All swaps are
presented in (3).

The swaps in (3), can be written in an algorithm form
to show in details all steps in the generation of our new
designed M-level line codes. The inputs xi represent the
outputs of the convolutional codes.

Input: (x1,x2,x3,x4,x5,x6,x7,x8)
Output: (y1,y2,y3,y4,y5,y6,y7,y8)
(y1,y2,y3,y4,y5,y6,y7,y8)← (0,1,2,3,7,6,5,4)
begin
if x1 = 1 then swap(y1,y5)
if x2 = 1 then swap(y2,y6)
if x3 = 1 then swap(y3,y7)
if x4 = 1 then swap(y4,y8)
if x5 = 1 then swap(y1,y2)(y5,y6)
if x6 = 1 then swap(y3,y4)(y7,y8)
if x7 = 1 then swap(y1,y3)(y5,y7)
if x8 = 1 then swap(y2,y4)(y6,y8)

end.

�

We can see from the algorithm that the permutation
sequence that we start our swapping with is 01237654 and
this to make sure that the corresponding channel symbols
for this sequence satisfies the spectral null equation (2).
The designed M-level line code will generate spectral nulls
at frequencies 0, 1/4, 1/2, 3/4 and 1 as depicted in Fig. 1.
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Figure 2: PSD for M = 8 and k = 2

Example 2 For the case of M = 8, with k = 2 and s = 4,
we have the following spectral null equation:

s=4︷ ︸︸ ︷
y1 + y3 + y5 + y7 =

s=4︷ ︸︸ ︷
y2 + y4 + y6 + y8︸ ︷︷ ︸ ︸ ︷︷ ︸

A1 = A2︸ ︷︷ ︸
k=2

(4)

The corresponding algorithm to generate our M-level line
code is as follows:

Input: (x1,x2,x3,x4,x5,x6,x7,x8,x9)
Output: (y1,y2,y3,y4,y5,y6,y7,y8)
(y1,y2,y3,y4,y5,y6,y7,y8)← (0,1,3,2,4,5,7,5)
begin
if x1 = 1 then swap(y1,y3)
if x2 = 1 then swap(y5,y7)
if x3 = 1 then swap(y1,y5)
if x4 = 1 then swap(y3,y7)
if x5 = 1 then swap(y2,y4)
if x6 = 1 then swap(y6,y8)
if x7 = 1 then swap(y2,y6)
if x8 = 1 then swap(y4,y8)
if x9 = 1 then swap(y1,y2)(y3,y4) · · ·

· · ·(y5,y6)(y7,y8)
end.

When the corresponding channel symbols for this
sequence satisfies the spectral null equation (4), the
designed M-level line code will generate spectral nulls at
frequencies 0, 1/2, and 1 as depicted in Fig. 2. �

In general, we have to conduct the swaps based on the
k-cube construction algorithm [21] to respect the distance
between the indices of the permutation sequences yi.
And the general algorithm for our codes mapping is
summarized as follows:

1. Comparison between n ( convolutional outputs
codewords length) and M (permutation sequence
length).

(a) n > M: Reducing mappings

(b) n < M: Increasing mappings

(c) n = M: Conserving mappings
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A1︷ ︸︸ ︷
y1 + y5 =

A2︷ ︸︸ ︷
y2 + y6 =

A3︷ ︸︸ ︷
y3 + y6 =

A4︷ ︸︸ ︷
y4 + y8

SN sequence −7 + +7 =−5 + +5 =−5 + +5 =−5 + +5

swap(y1,y5) +7 + −7 =−5 + +5 =−5 + +5 =−5 + +5

swap(y2,y6) −7 + +7 = +5 + −5 =−5 + +5 =−5 + +5

swap(y1,y5) +7 + −7 =−5 + +5 =−5 + +5 =−5 + +5

swap(y2,y6) −7 + +7 = +5 + −5 =−5 + +5 =−5 + +5

swap(y1,y2)(y5,y6) −5 + +5 =−7 + +7 =−5 + +5 =−5 + +5

swap(y1,y2)(y5,y6) −5 + +5 =−7 + +7 =−5 + +5 =−5 + +5

swap(y1,y2)(y5,y6) −5 + +5 =−7 + +7 =−5 + +5 =−5 + +5

swap(y1,y2)(y5,y6) −5 + +5 =−7 + +7 =−5 + +5 =−5 + +5

(3)

2. Mappings

• xi, 1≤ n

• y j, 1≤ j ≤ 2�log2M�

• for i = 1 : n if xi = 1 then swap (y j,y j+1) end.

3. VITERBI DECODING M-LEVEL LINE CODES

In the literature, it was shown that with soft decisions
Viterbi decoding, we have an improvement of 2 dB gain
over hard decisions [22].

Following are a few examples of published M-level line
codes including our designed codes. We run our simulation
for soft and hard decisions for each of these M-level line
codes and see if all of them have achieved the 2 dB gain
difference between soft and hard decisions.

All M-level line codes investigated in this section are
represented in a state machine form and this for the sake
of using the Viterbi decoding algorithm.

The values of bit error rate (BER) corresponding to
different values of signal to noise ration (SNR) for the
mapped code are less than those of the base code. Besides
that we have to emphasize the fact that mapped code
using the Euclidean distance is slightly outperforming the
mapped code using the Hamming distance. This is almost
related to the fact that the Euclidean distance is used to
refine the distance metrics and thus a soft decision could
be used.

3.1 Three-Level Line Codes: Ternary Line Codes

Ternary line codes [24, 25] are often used on channels
such as PCM metallic cable systems with transformer
decoupling and repeaters. As the first world countries
have started moving to high speed DSL technologies, using
other modulation techniques, the developing countries
however, the already installed digital subscriber loops,
utilizing line codes such as AMI or HDB3, will still have
to function for many years to come.

High Density Bipolar n (HDBn): This class of ternary line
codes, used in European countries, has a maximum number
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xx/- xx/0

xx/+xx/001/0 00/0
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Figure 3: State Machine of HDBn.

of consecutive zeros to be limited to n. HDBn codes are
considered to be good codes for better synchronization of
receiver and transmitter and with low frequency cut-off
point provided in power spectral density function. Fig. 3
shows the general form of the state machine of this class
of codes.

If we take the case of n = 3, the digital data in HDB3
encoding is represented in almost identical fashion to
AMI except for allowances made to accommodate certain
violation as will be explained later.

The patterns of HDB3 codes are described as there is
no changes in voltage for a sequence of 0s is solved by
changing any incidence of four consecutive ‘0’ bits into
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Figure 4: HDB3: Viterbi decoding soft and hard decisions.
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Figure 5: State Machine of BnZS.

a stream containing 000V, where the polarity of the V
bit is the same as the previous non-0 voltage (opposite
to a ‘1’ bit, which causes a V signal with an alternate
voltage according to the previous one). But a new problem
arises - because the polarity of the non-zero bits is the
same, a non-zero DC level is formed. This is overcome
by changing the polarity of the V bit to the opposite of
the previous V bit. This changes the bit stream to B00V,
where the polarity of the B bit is the same as the polarity
of the V bit. The change “fools” the receiver into thinking
a received B bit is a ‘1’ bit, but when it receives the V bit
(with the same polarity), it understands the B and the V bits
as a ‘0’. In HDB3, the maximum number of consecutive
zeros allowed in the substituted string is 3.

Using the same simulation setup as previously done with
AMI, we found that the difference between Soft and Hard
decisions decoding is near the 2 dB gain at the BER = 10−6

as depicted in Fig. 4.

Binary n Zeros Substitution (BnZS): The encoder for
BnZS codes uses the 0VB0VB filling pattern. In Fig. 5,
the convention of using a bold transition arrow labeled
XX/output has been introduced to indicate that transitions
and outputs for all four input combinations are the same.
Otherwise, the input of the encoder is arranged in the same
way as the output of detection, where the most significant
bit represents the delayed data and the least significant bit
represents the all-zeros flag.

A simple modification to the output code converts the
filling sequence to B0VB0V, or indeed any desired filling
pattern. Care must be taken only to ensure that the first
signed pulse of the filling sequence is indeed a B or V pulse
as required.

Using the VBVB filling pattern, the B4ZS line code
consists of 18 states arranged symmetrically around a
horizontal center line.

Every transition from a state in the upper-half, following
a data ‘1’, has its destination in the lower half, and vice
versa. This feature corresponds to adherence to the bipolar
alternation rule. The pair of states at the left-hand side of
the state diagram is occupied whenever the data contains a
long string of consecutive data 1s. They can be considered
to be the remnants of the parent bipolar encoder, with its
data ‘0’ self-loops replaced by the remaining 16 states.

0 2 4 6 8 10 12 14 16 18 20
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

SNR (dB)

B
ER

Hard decision
Soft decision

Figure 6: B4ZS: Viterbi decoding soft and hard decisions.

One of the pair of states at the right-hand side of the
diagram is occupied whenever a data ‘1’ is followed
by 3 consecutive data 0s. Exiting from them on a
data ‘0’ corresponds to commencing the filling sequence.
Considering just the upper state of the pair, it is entered
only by an arc associated with the previous output +,
and on data ‘0’, it begins producing the output sequence
+−−+, that is VBVB.

Using the same simulation setup, Fig. 6 shows the 2 dB
gain between hard and soft decisions Viterbi decoding.

SNDM-3Binary 6Ternary Line Code: (SNDM-3B6T): As
was explained earlier, this class of codes is actually
the combination of two techniques, which are the
spectral shaping and distance mappings techniques. The
SNDM-3B6T code is a ternary line code where we map
3 binaries to six ternaries. Our base code which is the
convolutional code has a code rate of R = 3/4 and a
constraint length of K = 3. The four bit outputs will be
mapped onto six permutation symbols which are in fact
repetitive symbols for the sake to drop the pulse amplitude
modulated levels to three as it will be depicted in the
following algorithm.

We consider the case of M = 6 with k = 2 and s = 3. The
channel symbols must satisfy

s=3︷ ︸︸ ︷
y1 + y3 + y5 =

s=3︷ ︸︸ ︷
y2 + y4 + y6.︸ ︷︷ ︸ ︸ ︷︷ ︸

A1 = A2︸ ︷︷ ︸
k=2

(5)

We can see from (5) that we can assign two input bits to
swap yi in each equation, which means that we need four
input bits in total to swap all symbols. Since we have
chosen by purpose that all symbols are the same in each
equation, then we do not need to swap A1 and A2 and
therefore no need for extra input bits for swapping. Thus
the convolutional base code may have a rate of R = 3/4.
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Figure 7: State machine of SNDM-3B6T.
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Figure 8: SNDM-3B6T: Viterbi decoding soft and hard

decisions.

The mapping algorithm for the SNDM-3B6T code is
described below.

Input: (x1,x2,x3,x4)
Output: (y1,y2,y3,y4,y5,y6)
(y1,y2,y3,y4,y5,y6)← (0,1,2,0,1,2)
begin
if x1 = 1 then swap(y1,y3)
if x2 = 1 then swap(y1,y5)
if x3 = 1 then swap(y2,y4)
if x4 = 1 then swap(y2,y6)

end.

The state machine of the resultant SNDM-3B6T code, is
presented in Fig. 7.

The BER performance of this code is depicted in Fig. 8.
We can see clearly the 2 dB gain between soft and hard
decisions at BER = 10−6.
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Figure 9: SNDM-7B8Q: Viterbi decoding soft and hard

decisions.

3.2 Four-Level Line Codes: Quaternary Line Codes

Quaternary line codes, as the 2B1Q line code, have been
used in transmission and also been used in modem ISDN
circuits. Following are a few examples of quaternary line
codes.

SNDM-7Binary 8Quaternary (SNDM-7B8Q): We consider
the example of permutation sequences of length M = 8 for
the case of k = 2 and s = 4. The symbols in each grouping
Ai are equal or repeating and the resultant permutation
sequence is an eight symbol sequence with four channel
symbols, which will be used to generate a 4-Level line
code. As explained previously, we need 8 bits from the
convolutional code’s output to be able to swap all the yi
symbols. Since the two groupings A1 and A2 are equal,
then there is no need for input bits to swap them. Therefore
the convolutional base code may have a rate of 7/8. The
mapping algorithm for the SNDM-7B8Q code is described
below.

Input: (x1,x2,x3,x4,x5,x6,x7,x8)
Output: (y1,y2,y3,y4,y5,y6,y7,y8)
(y1,y2,y3,y4,y5,y6,y7,y8)← (0,0,1,1,2,2,3,3)
begin
if x1 = 1 then swap(y1,y3)
if x2 = 1 then swap(y3,y7)
if x3 = 1 then swap(y1,y5)
if x4 = 1 then swap(y3,y7)
if x5 = 1 then swap(y2,y4)
if x6 = 1 then swap(y6,y8)
if x7 = 1 then swap(y2,y6)
if x8 = 1 then swap(y4,y8)

end.

The BER performance of this code is depicted in Fig. 9.
We can see clearly the 2 dB gain between the soft and hard
decisions.
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Table 1: Encoder for 2B1QI line code

Inputs

00 01 10 11

State Outputs Next State Outputs Next State Outputs Next State Outputs Next State

A 0 B -1 C +1 D +2 E

B -2 A -1 C +1 D +2 E

C -2 A 0 B +1 D +2 E

D -2 A -1 C 0 B +2 E

E -2 A -1 C +1 D 0 B
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Figure 10: 2B1QI: Viterbi decoding soft and hard decisions.

3.3 Five-Level Line Codes

2 Binary 1 Quaternary Inverse Line Code: (2B1QI): This
code, as its encoder is presented in Table 1, is considered
to be similar to the well known 2B1Q quaternary line
code [9], except that this line code is with 5-levels and
which give him a favorably built-in properties for clock
extraction.

The BER performance of this code is depicted in Fig. 10.
We can see clearly the 2 dB gain between the soft and hard
decisions.

SNDM-4Binary 6Quaternary Inverse (SNDM-4B6QI): We
take the case of M = 6 with k = 2 and s = 3. The channel
symbols must satisfy (5). By repeating only one symbol in
both A1 and A2, we can make the number of symbols equal
to five. The corresponding five channel-level symbols can
generate a 5-Level line code. To chose the convolutional
base code rate, we can see that we need 4 bits to swap
all the symbols yi and just 1 bit to swap A1 and A2 since
k = 2. In total, we need 5 bits from the outputs of the
corresponding convolutional base code, which means that
we need a convolutional code with a rate of R = 4/5.

The new designed code belongs to the quaternary line
codes. This code is called a 4Binary 6Quaternary Inverse
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Figure 11: SNDM-4B6QI: Viterbi decoding soft and hard

decisions.

and denoted by SNDM-4B6QI. The mapping algorithm for
the SNDM-4B6QI code is described below.

Input: (x1,x2,x3,x4,x5)
Output: (y1,y2,y3,y4,y5,y6)
(y1,y2,y3,y4,y5,y6)← (4,0,2,4,1,3)
begin
if x1 = 1 then swap(y1,y3)
if x2 = 1 then swap(y1,y5)
if x3 = 1 then swap(y2,y4)
if x4 = 1 then swap(y2,y6)
if x5 = 1 then swap(y1,y2)(y3,y4)(y5,y6)

end.

The BER performance of this code is depicted in Fig. 11.
We can see clearly the 2 dB gain between the soft and hard
decisions.

3.4 Six Level Line Codes

4B2H Line Code: This new line code [9] with encoder
presented in Table 2, generates 6-level from permutation
sequences. Different to the published results, we make
use of the Viterbi decoding algorithm since a state machine
presentation was given to this code. The BER performance
of this code is depicted in Fig. 12. We can see clearly the
2 dB gain between the soft and hard decisions.
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Table 2: Encoder for 4B2H Line Code

State

A B C D E

Input Outputs Next State Outputs Next State Outputs Next State Outputs Next State Outputs Next State

0000 -1+1 A -1+1 B -1+1 C -1+1 D -1+1 E

0001 +1-1 A +1-1 B +1-1 C +1-1 D +1-1 E

0010 +3-3 A +3-3 B +3-3 C +3-3 D -5-3 A

0011 +3+5 E -3+3 B -3+3 C -3+3 D -3+3 E

0100 +5+3 E -3+1 A -3+1 B -3+1 C -3+1 D

0101 +3+3 D +3+3 E -1-3 A -1-3 B -1-3 C

0110 +1+5 D +1+5 E +1-5 A +1-5 B +1-5 C

0111 +5+1 D +5+1 E -3+5 D -3+5 E -3-5 A

1000 +1+3 C +1+3 D +1+3 E -5+3 C -5+3 D

1001 +3+1 C +3+1 D +3+1 E +3-5 C -5-1 B

1010 -1+5 C -1+5 D -1+5 E -3-1 B -3-1 C

1011 +5-1 C +5-1 D +5-1 E -5+1 B -5+1 C

1100 +1+1 B +1-3 A +1-3 B +1-3 C +1-3 D

1101 +3-1 B +3-1 C +3-1 D +3-1 E -3-3 B

1110 -1+3 B -1+3 C -1+3 D -1+3 E -1-1 D

1111 +5-3 B +5-3 C +5-3 D -1-5 A -1-5 B
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Figure 12: 4B2H: Viterbi decoding soft and hard decisions.

3.5 High-Multilevel Line Codes

For the generation of higher levels codes, we make use of
our previous techniques the spectral shaping and distance
mappings in order to generate pulse amplitude modulated
line codes with m binary inputs and M symbol outputs or
M channel levels, we denote them by SNDM-mBML. We
study the case of M = 12 to explain our technique.

Example 3 For M = 12, with k = 3 and s = 4, we have

A1 =
A2 =
A3 =

s=4︷ ︸︸ ︷
y1 + y4 + y7 + y10

y2 + y5 + y8 + y11

y3 + y3 + y6 + y12

(6)

In this case where all symbols are not repeated, we need 4
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Figure 13: PSD of SNDM-13B12L Line code

bits to swap all symbols in each grouping. This will lead
to 12 bits since we have three groupings. On the other side
we need 2 bits to swap the three groupings as it is based
on the cube construction. Therefore we need in total 14
bits to swap all the channel symbols. The corresponding
convolutional base code rate should be convolutional code
with a rate of R = 13/14. The corresponding mapping
algorithm for this high level line codes is presented below.
The designed code has nulls at the frequencies 0, 1/3, 2/3
and 1 as depicted in Fig. 13.

Input: (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,
x13,x14)
Output: (y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12)
(y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12)
← (0,1,2,5,4,3,6,7,8,11,10,9)
begin
if x1 = 1 then swap(y1,y4)
if x2 = 1 then swap(y7,y10)
if x3 = 1 then swap(y1,y7)
if x4 = 1 then swap(y4,y10)
if x5 = 1 then swap(y2,y5)
if x6 = 1 then swap(y8,y11)
if x7 = 1 then swap(y2,y8)
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Table 3: Some high-level line codes

M k s Frequency Nulls Base Code Rate Multilevel line code

8 4 2 0,1/4,1/2,3/4,1 7/8 SNDM-7B8L

8 2 4 0,1/2,1 8/9 SNDM-8B8L

12 4 3 0,1/4,1/2,3/4,1 11/12 SNDM-11B12L

12 3 4 0,1/3,2/3, 1 13/14 SNDM-13B12L

12 2 6 0,1/2,1 14/15 SNDM-14B12L

15 5 3 0,1/5,2/5,3/5,4/5,1 14/15 SNDM-14B15L

15 3 5 0,1/3,2/3, 1 16/17 SNDM-16B15L

16 4 4 0,1/4,1/2,3/4,1 19/20 SNDM-19B16L

16 8 2 0,1/8,1/4,3/8,1/2,5/8,3/4,7/8,1 19/20 SNDM-19B16L

16 2 8 0,1/2,1 24/25 SNDM-24B16L

18 2 9 0,1/2,1 26/27 SNDM-26B18L

18 9 2 0,1/9,2/9,1/3,4/9,5/9,2/3,7/9,8/9,1 20/21 SNDM-20B18L

18 3 6 0,1/3,2/3, 1 22/23 SNDM-22B18L

18 6 3 0,1/6,1/3,1/2,2/3,5/6,1 18/19 SNDM-18B18L

20 2 10 0,1/2,1 30/31 SNDM-30B20L

20 10 2 0,1/10,1/5,3/10,2/5, 1/2, 3/5,7/10,4/5,9/10,1 22/23 SNDM-22B20L

20 4 5 0,1/4,1/2,3/4,1 23/24 SNDM-23B20L

20 5 4 0,1/5,2/5,3/5,4/5,1 24/25 SNDM-24B20L

if x8 = 1 then swap(y5,y11)
if x9 = 1 then swap(y3,y6)
if x10 = 1 then swap(y9,y12)
if x11 = 1 then swap(y3,y9)
if x12 = 1 then swap(y6,y12)
if x13 = 1 then swap(y1,y2)(y4,y5) · · ·

· · ·(y7,y8)(y10,y11)
if x14 = 1 then swap(y1,y3)(y4,y6) · · ·

· · ·(y7,y9)(y10,y12)
end.

In view of the large number of states for the base codes,
we will not be able to present their state machines in view
of the space restriction in this paper. �

Table 3 presents a few examples of high-level line codes
that we are able to design, taking into consideration the
rates of the corresponding base codes.

4. VITERBI DECODING ERROR PROPAGATION

Viterbi algorithm is based on the calculation of
the distances between the received and the expected
transmitted information data in each branch of the
trellis diagram designed from the state machine of the
convolutional base code. Previous published work [18] has
shown the modeling of line codes for the sake of having
the state machine presentation, which will be used for the
Viterbi algorithm.

A simulation experiment was conducted to analyze and
prove that the coding gain is predominantly determined by
the error propagation when Viterbi decoding fails. The
experiment [28] is simply based on the generation of
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Figure 14: Error propagation of certain ternary line codes, due to

a random single isolated channel error.
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Table 4: Probability of i errors

Multilevel Number of propagation errors i
Line Codes

0 1 2 3 4 5 6 7

AMI 0.29 0.02 0.69 0 0 0 0 0

HDB1 0.54 0.03 0.25 0.14 0.04 0 0 0

HDB2 0.49 0.01 0.28 0.08 0.09 0.05 0 0

HDB3 0.22 0.06 0.49 0.09 0.08 0.03 0.02 0.01

CHDB3 0.38 0.01 0.48 0.06 0.02 0.05 0 0

B4ZS 0.34 0 0.66 0 0 0 0 0

2B2T 0.17 0.11 0.02 0.16 0.54 0 0 0

2B2TA 0.16 0.07 0.58 0.19 0 0 0 0

SNDM-3B6T 1 0 0 0 0 0 0 0

SNDM-5B9T 1 0 0 0 0 0 0 0

1B1Q 0.62 0 0.38 0 0 0 0 0

3B2Q 0.05 0.2 0.16 0.16 0.25 0.08 0.1 0

4B2H 0.02 0.2 0.13 0.06 0.15 0.16 0.2 0.08

SNDM-1B4Q 1 0 0 0 0 0 0 0

SNDM-2B4Q 1 0 0 0 0 0 0 0

SNDM-4B6QI 1 0 0 0 0 0 0 0

SNDM-7B8Q 1 0 0 0 0 0 0 0

Table 5: Number of levels vs error propagation

Number of Codes Multilevel Gain using 3-bit Expected number of Maximum number of

Levels Line Codes quantization propagated errors propagated errors

AMI 1.90 1.40 3

Three B4ZS 2.05 1.32 2

B6ZS 2.00 1.34 2

HDB1 1.85 1.40 5

HDB2 1.55 1.42 6

HDB3 1.45 1.48 6

CHDB3 1.35 1.66 7

2B2T 1.70 1.8 3

2B2TA 1.50 2.79 4

SNDM-3B6T 2.10 0 0

SNDM-5B9T 2.00 0 0

1B1Q 2.00 0.76 2

2B1Q 1.40 3.17 6

Four 3B2Q 1.50 3.06 6

SNDM-2B4Q 2.00 0 0

SNDM-4B6Q 2.00 0 0

SNDM-7B8Q 2.00 0 0

Five 2B1QI 1.30 3.2 6

SNDM-4B6QI 2.1 0 0

Six 4B2H 1.1 3.8 7
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widely separated single random errors between the levels
of the code’s symbols, and the observation of the number
of errors propagated.

Table 4 shows that our designed codes have zero
error propagation and this is expected in view of the
convolutional codes properties that our codes are generated
from. We can see also these results from another angle
from Fig. 14 and 15.

Table 5 shows the variation of the number of error
propagation and the values of the expected number of
propagated error in terms of the number of the code’s level.

So from Tables 4 and 5, we can summarize that the increase
of the number of levels in line codes and the increase of
the complexity of the pattern within the same class of line
codes are the major factors in the increase of the error
propagation of the Viterbi decoding. This is always not
true if the codes are designed from the convolutional codes
as in the case of our new designed M-level line codes.

It is clear from the previous results that the expected
number of error propagation increases for the following
reasons:

• When the complexity of the pattern increases, which
is true even within the same class of line codes, the
value of the expected error propagation increases.
As an example, the error propagation for HDBn line
codes, the expected number of error propagation is
higher than the one for BnZS line codes. Similar case
when we compare 2B2T line codes and 2B2TA line
codes.

• When the number of levels increases, even within the
same number of states, the expected number of error
propagation increases. As an example, if we take the
case of 2B1QI line code, which has five levels, we can
see that the expected number of error propagation is
higher than the one for 4B2H line codes since it has
six levels. Both line codes have similar number of
states which is five.

It is important to notice that the number of states is not an
important criteria in the increase of the expected number
of error propagation. This is clear with the following two
examples. In the 2B1QI and 4B2H line codes which have
similar number of states, we can see that they differ with
the number of expected number of error propagation. In
the case of 1B1Q and 3B2Q line codes, we can see that
1B1Q code has less expected number of error propagation
than 3B2Q code despite it has more number of states.

5. CONCLUSION

We have combined two techniques, spectral shaping and
distance mappings to design M-level line codes. This class
of codes inherited the same state structure and distance

properties as convolutional codes. Thus the use of the
Viterbi algorithm as a decoding solution is possible.

The possible 2-dB gain is investigate and the results
verified some theoretical assumption that made SNDM
code outperforming other M-level line codes.

The obtained results have shown that the error propagation
Viterbi decoding increases with the complexity of the
pattern of the code as the case between the HDBn codes
and BnZS line codes even both classes belong to the same
class of M-level line codes which is the ternary line codes.
As the number of levels, M, increase the complexity of
coding increase as well and therefore the error propagation
of the decoding algorithm increase. This problem is
reduced and simplified with the design SNDM line codes.

High rate M-level line codes were also achieved with well
shaped spectrum. Table 3 presents their corresponding
spectral nulls frequencies. It is clear from Table 3 and from
all previously presented PSD figures, that all our designed
M-level line codes are also DC-free codes [29], which will
help to overcome some communications problem like zero
frequency components.
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