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Abstract: The spectral shaping technique and the design of codes providing nulls at rational
sub-multiples of the symbol frequency, as the case with spectral null (SN) codes, have enhanced digital
signaling over communication channels as digital mass recorders and metallic cables. The study of the
special structure of these codes helps in investigating and analyzing certain of their properties which
have been proved and emphasized from a mathematical perspective using graph theory. The cardinality
of spectral null codebooks reflects the rate of spectral null codes and therefore the amount of transmitted
information data. The rate of these codes can also play a role in their error correction capability. The
paper presents in different ways the special structure of spectral null codebooks and analyze better their
properties. A possible link between these codes and other error correcting codes as the case of Low
Density Parity Check (LDPC) is presented and discussed in this paper.
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1. INTRODUCTION

The design of a code having power spectral density
(PSD) zero at its DC-component, called DC-free
codes [1, 2], becomes a necessity for AC coupling of
the signal to the medium. DC-balanced codes have
found widespread applications in digital transmission
and recording systems [3]– [5]. DC balance can be
achieved by using an appropriate transmission code or
by balancing each transmitted symbol. Any drift in the
transmitted signal from the center baseline level, due to
an uncontrolled running digital sum (RDS) or the effects
of an AC coupling, will create a DC component, which is
known as baseline wander [6], or create an intersymbol
interference, which is caused by the AC coupling at
various points in the communication channel [4]. In
some applications low-frequency channel noise, such as
a fingerprint on an optical disk [7] or impulse noise due
to dial pulses in a subscriber loop plant, can be filtered
out by sending the encoded data through a high pass filter.
To minimize the effect of this filtering on the symbol
shape of the coded sequence, the encoded data stream must
have very little or no DC or low-frequency component.
Also magnetic recording systems often require that the
channel sequences have a spectral null at zero frequency.
This technique is called the spectral shaping technique
or the design of nulls at certain specific frequencies in a
spectrum.

Spectral null codes are codes with simultaneous nulls at
the rational submultiples of the symbol frequency and
have great importance in certain applications like in the
case of transmission systems employing pilot tones for
synchronization and that of track-following servos in
digital recording [8, 9].

The paper is organized as follows. In Section 2 we
present two different design techniques of spectral null

codebooks. Section 3 emphasizes better the relationship
in the calculation of the cardinality of the codebook and its
corresponding spectral null equation. Section 4 derives and
presents proofs of certain properties of spectral null codes.
A link and approach between spectral null codebooks and
LDPC codes is presented in Section 5. We conclude with
an analysis of these properties in Section 6.

2. SPECTRAL NULL CODES DESIGN

In this section we present two different techniques for
designing spectral null codes based on the calculation
of the power spectral density function and the binary
representation of permutation sequences.

2.1 Using Gorog Construction

Gorog [10] was first to simplify and formulate the way
of calculating the values of the frequencies for spectral
null codes. To calculate the value of the frequencies at
the corresponding nulls at the rational submultiples of the
symbol frequency fc for block codes, he considered the
vector y = (y1, . . . ,yM), yi ∈ {−1,+1}, to be an element of
a set S, which is called the codebook of codewords with
elements in {−1,+1}. For the sake of simplification and
good presentation, we represent−1 with a 0. Applying the
Fourier transform to those codewords we get [10]:

Y =
M

∑
i=1

yie− jiw,−π≤ w≤ π. (1)

The power spectral density function denoted by H(w) of
the concatenated sequence when transmitted serially [11]
is defined as:

H(w) =
1

CSM

M−1

∑
i=0

∣∣Y i (w)
∣∣2

, (2)
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where Y i (w) is the Fourier transform of the i-th element
of S and CS is the cardinality of S. Having nulls at
certain frequencies is the same as having the power
spectral density function H(w) equal to zero at those
frequencies [7].

A sequence of length M having a null at the frequency f =
ω/2π = 1/N, with N an integer, means that it is sufficient
to satisfy |Y (2π/N)| = 0. For purposes of simplification
we choose the codeword length M as an integer multiple of
N, where f = r/N represents the spectral nulls at rational
submultiple r/N. The parameter N could be chosen either
prime or not prime and divides M [7], i.e.

M = Nz. (3)

We denote the vector amplitudes by the summation:

Ai =
z−1

∑
r=0

yi+rN , i = 1,2,3, . . . ,N. (4)

In the case where N is a prime number [12], we have to
satisfy [13],

A1 = A2 = · · ·= AN , (5)

where Ai is the same as in (4). As an example, if N = 3 and
M = 6, the following relationship must hold,

A1 = A2 = A3,
y1 + y4 = y2 + y5 = y3 + y6.

Definition 1 A spectral null binary block code of length

M is any subset Cb(M,N)⊆ {0,1}M of all binary M-tuples
of length M and have spectral nulls at the rational
submultiples of the symbol frequency 1/N.

For codewords of length M consisting of N interleaved
subwords of length z, the cardinality of the codebook
Cb(M,N) for the case of N considered as a prime number
is presented by the following formula [14],

|Cb(M,N)|=
M/N

∑
i=0

(
M/N

i

)N

, (6)

where

(
M/N

i

)
denotes the combinatorial coefficient

(M/N)!
i!(M/N−i)! .

Example 1 The spectral null codebook for N = 2 and z =
2 is:

Cb(4,2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 0 0 0
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0
1 1 1 1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

The cardinality of this codebook Cb(4,2) is clearly equal
to 6, which could be verified from (6). The spectrum is
shown in Fig. 1, where we can see the null appearing at the
frequency 1/2 since N = 2.
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Figure 1: Power spectral density of codebook N = 2; M = 4.

In the case where N is not prime we have to suppose that
N = cd, where c and d are integer factors of N. The
equation, which leads to nulls, is

Au = Au+vc,

u = 0,1,2, . . . ,c−1,

v = 1,2, . . . ,d−1,

N = cd,

(7)

where Au is the same as in (4). The complete spectral null
codebook for a given N is the union of the solutions to (7)
for each possible pair of factors. For example, if N = 12, it
can be written as the following products: 2×6, 6×2, 3×4
and 4×3 [15].

Example 2 If we take N = 4 and M = 8, we have the
following relationships:

A1 = A3, y1 + y4 = y3 + y5,

A2 = A4, y2 + y6 = y4 + y8.
(8)

We expect that the null will appear at the frequencies 1/4
and 3/4 of the normalized frequency since N = 4. The
spectrum is shown in Fig. 2.

The corresponding spectral null codebook is:

Cb(8,4)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

00000000,00000101,00001010,00001111,
00010100,00011110,00101000,00101101,
00111100,01000001,01001011,01010000,
01010101,01011010,01011111,01101001,
01111000,01111101,10000010,10000111,
10010110,10100000,10100101,10101010,
10101111,10110100,10111110,11000011,
11010010,11010111,11100001,11101011,
11110000,11110101,11111010,11111111

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

2.2 Using Permutation Sequences

We consider permutation sequences written in the passive
form, such as 12 . . .M, where each of the symbols are
written as a binary sequence of length M, with the
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Figure 2: Power spectral density of codebook N = 4; M = 8.
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symbol value indicating where a 1 is to appear and zeros
everywhere else (similar to pulse position modulation).
For example, if we take M = 3, we have

1 → 1 0 0,
2 → 0 1 0,
3 → 0 0 1.

(9)

The permutation sequences for M = 3 are thus changed to
the binary form as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Therefore, each of the M! permutation sequences can be
converted to binary sequences of length M2.

An alternative representation is that of (0,1)-matrices,
where only a single 1 is allowed in every column and every
row. For example, the permutation sequence 231 will be⎡

⎣0 0 1
1 0 0
0 1 0

⎤
⎦ . (10)

The binary sequence representation of the permutation
sequence 231 is then constructed by concatenating the
columns to form 010001100. The matrix in (10) has only
one single 1 in each row and each column.

We denote by Pω(M2) the binary permutation code that
contains all the binary sequences of length M2 as a result
of the conversion of the permutation sequences of length M
to binary sequences. The value of ω represents the weight
of the binary sequences in each row and each column. For
the case of ω = 1, as in the matrix presented in (10), the
cardinality of the code P1(M2) is |P1(M2)|= M!.

For the case of ω = 2, the (0,1)-matrix can be constructed
from two ω = 1 (0,1)-matrices by XOR-ing them, as shown
below⎡

⎣1 0 0
0 1 0
0 0 1

⎤
⎦⊕

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ =

⎡
⎣1 1 0

0 1 1
1 0 1

⎤
⎦ , (11)

or equivalently 100010001⊕001100010 = 101110011 for
the binary sequences.

In general, we will use Pω(M2) to denote the code
containing all the possible binary sequences that are
obtained from (0,1)-matrices with ω 1s in each row and
each column.

It is clear that for P1(3) and P1(4), we have spectral null
codes with nulls at frequency multiples of 1/3 and 1/4
respectively, as depicted in Fig. 3 and 4, in addition to it
not being DC-free.
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Figure 3: Power spectral density of P1(3)
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Figure 4: Power spectral density of P1(4)

3. COMPUTATION OF THE SPECTRUM

We present in this section a few examples of designed spec-
tral null codebooks where we compute their cardinalities
based on their spectral null equations defined in (5) and (7).

The value of N, can be prime or non prime. In the
following section we limit our work only on the case of
N prime since the other one case be derived similarly.

In the case of N prime, we substitute (4) into (5), and we
get:

M/N︷ ︸︸ ︷
y1 + · · ·+ y1+(M−N) =y2 + · · ·+ y2+(M−N)

= · · ·
=yN + · · ·+ yM

(12)

It is clear from (12) that the codeword of length M consists
of N groupings of subwords of length z = M/N. We can
rewrite (4) as follow:

Ai = ∑
m

ym, i = 1,2, . . . ,N, (13)

where m∈{i, i+N, i+2N, . . . , i+(M/N−1)N}, with 1≤
i≤ N.

It is also clear from (12) that the value Ai is the sum of
“M/N” binary elements, which could be presented in a
limited form as follow:

Ai ∈ {−M/N,−M/N +2, . . . ,M/N−2,M/N} (14)

A Matlab c© program, based on an exhaustive search,
was used to calculate all possible binary codewords
corresponding to different combinations of Ai as presented
in (14). A few results of our Matlab exhaustive search will
be presented later in Table 1.
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Figure 5: Power spectral density of codebook N = 2,M = 6.

To satisfy (12), we need to have the same sum value of the
addition of the M/N elements in all different groupings
Ai. Thus the number of the binary sequences or binary
codewords, which satisfy (12) is the number of codewords
in the codebook Cb(M,N) of the spectral null code.

Following are few examples of Cb(M,N) codebooks with
their power spectral densities graphs for different values of
M and N.

Example 3 For M = 6 and N = 2, we have

3︷ ︸︸ ︷
y1 + y3 + y5 = y2 + y4 + y6︸ ︷︷ ︸

2

. (15)

The cardinality of the codebook Cb(6,2) is the result of
a number of combinations that satisfy (15). The value of
each grouping Ai could be −3, +3, −1 or +1 since we
are dealing with binary sequences. We can see from (15)
that there is one combination of six bits, A1 = A2 = −3,
when all the elements in the groupings are equal to −1
and another combination, A1 = A2 = +3 when all the
elements in the groupings are equal to +1. There is another
combination which yields A1 = A2 = −1 and another one
which is A1 = A2 = +1. The last two combinations are
in fact a result of a permutation of the three elements
in each grouping, Thus the number of combinations is
equal to 32 = 9. Finally the total number of combinations
is 1 + 1 + 32 + 32 = 20, which is in fact equal to the
cardinality of the codebook Cb(6,2).

The spectral shaping codebook for N = 2 and z = 3 is:

Cb(6,2) =

⎧⎪⎨
⎪⎩

000000,000011,000110,001001,001100,
001111,010010,011000,011011,011110,
100001,100100,100111,101101,110000,
110011,110110,111001,111100,111111

⎫⎪⎬
⎪⎭ .

We can see that the total number of codewords in the
codebook Cb(6,2) found by our computer search is the
same found by our combinatorial analysis. The spectrum
is shown in Fig. 5. Since N = 2, we expect that the null will
appear at the frequency 1/2 of the normalized frequency.
This is confirmed in Fig. 5.

Example 4 For M = 6 and N = 3, we have

2︷ ︸︸ ︷
y1 + y4 = y2 + y5 = y3 + y6︸ ︷︷ ︸

3

. (16)
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Figure 6: Power spectral density of codebook N = 3, M = 6.

Using a similar approach for the codebook Cb(6,3), we
note from (16) that the value of each grouping Ai could
be −2, +2 or 0 since the elements in each grouping
are binary bits. We can see from (15) that there is one
combination of six bits, A1 = A2 = A3 = −2, when all
the elements in the groupings are equal to −1 and another
combination such that A1 = A2 = A3 = +2, when all the
elements in the groupings are equal to +1. There is another
combination which yields A1 = A2 = A3 = 0. The last
combination is in fact a result of a permutation of the
two elements in each groupings, so the total number of
combinations is 2 + 2 + 2 = 6. Taking into consideration
the permutation of the three groupings A1, A2 and A3,
which still satisfy the relationship A1 = A2 = A3 = 0, we
find that the number of combinations is 2. Finally, the
total number of combinations is 1+1+2+2+2+2 = 10,
which is the cardinality of the codebook Cb(6,3). The
spectral shaping codebook for N = 3 and z = 2 is:

Cb(6,3) =
{

000000,000111,001110,010101,011100,
100011,101010,110001,111000,111111

}
.

The total number of codewords in the codebook Cb(6,2)
found by our computer search is the same found by our
combinatorial analysis. The spectrum is shown in Fig. 6.
Since N = 3, we expect that the nulls will appear at the
frequencies 1/3, 2/3 of the normalized frequency. This is
confirmed in Fig. 6.

Table 1 summarizes few results of the values of
cardinalities and their corresponding values of N and
z. It is important to mention that the cardinality plays
a role in leading to have an idea about the code rate
which might be helpful in the improvement of the error
correction capability of the code. The cardinality also can
be increased by satisfying the spectral null equation and
having more codewords in the spectral null codebook.

4. PROPERTIES OF SPECTRAL NULL CODES

4.1 Complementary Symmetry of Codewords

From a simple observation from the design of spectral
null codes, we can see that their codebooks are usually
half-complement symmetrically. We discuss this property
for N prime only. The case of N not prime is similar.

Proposition 1 For any spectral null codebook Cb =
{∀yi ∈ {−1,+1}/A1 = · · ·= AN}, there exists a subset
C′b, where C′b is a subset of Cb.
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Table 1: Cardinalities for Codeword length M = Nz and

spectral null at f = 1/N with N prime

M N z Cardinality Spectral Null

Frequencies

4 2 2 6 1/2

6 2 3 20 1/2

8 2 4 70 1/2

10 2 5 252 1/2

12 2 6 924 1/2

14 2 7 3432 1/2

16 2 8 12870 1/2

18 2 9 48620 1/2

20 2 10 184756 1/2

6 3 2 10 1/3, 2/3

9 3 3 56 1/3, 2/3

12 3 4 346 1/3, 2/3

15 3 5 2252 1/3, 2/3

18 3 6 15184 1/3, 2/3

10 5 2 34 1/5, 2/5, 3/5, 4/5

15 5 3 488 1/5, 2/5, 3/5, 4/5

20 5 4 9826 1/5, 2/5, 3/5, 4/5

25 5 5 206252 1/5, 2/5, 3/5, 4/5

PROOF For all y = (y1,y2, . . . ,yM) ∈ C′b we have:

A1 = · · ·= AN ⇔ y1 + · · ·+ y1+zN =
· · ·=yn + · · ·+ yn+zN

⇔ y1 + · · ·+ y1+zN =
· · ·=yn + · · ·+ yn+zN

⇔ y1 + · · ·+ y1+zN =
· · ·=yn + · · ·+ yn+zN

⇔ A1 = · · ·= AN ,wa

therefore for all y ∈C′b we have all y ∈C′b and thus C′b is a
subset of Cb.

4.2 Repetition of Codewords

As defined previously, N represents the number of
groupings and z represents the number of elements in
each grouping. Satisfying (5), in the case of N prime as
example, means having the same value of the sum in each
grouping. The value of z can be reduced or increased by
either eliminating or adding certain number of elements
equally in each grouping. The power spectral density is
not effected by the variations of the value of z, since the
nulls are always a multiple of 1/N, where N stays the
same. In this section we show that for any value of N we
have codebooks, that are included in other codebooks with
longer codewords.

From previous sections it is clear that the variables of any
codeword y element of the set Cb, satisfies the spectral
null equation of the corresponding codebook Cb. Similarly
with sub-sets, if any codebook C′b ⊂Cb, the codewords of
the codebook C′b satisfy the spectral null equation of the

codebook Cb. We can prove this in a detailed way in the
following proposition.

Proposition 2 For two different spectral null codebooks
Cb and Cα

b , with the same value of N and different values
of z, where zα = z+α, α≥ 1, we have y ∈ Cb ⇒ y ∈ Cα

b .

As we know

Ai =
z−1

∑
λ=0

yi+λN , i = 1,2, . . . ,N,

we consider M = Nz the length of the codewords of the
codebook Cb and Mα = Nzα the length of the codewords
of the codebook Cα

b .

PROOF In this case we have:

A1 = A2 = · · ·= AN

In the case where Mα = Nzα, with zα = z + α, α ≥ 1,
which means we have more elements in each grouping, the
codeword length can be written as follows:

Mα = Nzα

Mα = N(z+α)
= Nz+Nα
= M +Nα.

(17)

For all yα ∈ Cα
b and all y ∈ Cb, we have length (yα) =

length (y) + Nα as shown below,

∀yα ∈ Cα
b ⇒ yα = (y1,y2, . . . ,yM,yM+1, . . . ,yM+N,

wwwwww . . . ,yM+αN) ,
∀y ∈ Cb ⇒ y = (y1,y2, . . . ,yM) .

It is clear from (17), that any spectral null codebook
with codewords of length Mα is different to any other
spectral null codebook with codewords of length M, only
with an extra number of bits which is equal to αN. As
is known for any codebook with longer codewords, we
have higher cardinality. This will let us predict that the
spectral null codebook for the codewords of length M can
be found in the codebook with codewords of length Mα.
The addition or the reduction of the number of elements
within a grouping could be achieved whether we use zeros
or ones.

Taking into consideration (4), for ∀y ∈ Cb, (5) could be
written as:

y1 + y1+N + · · ·+ y1+(z−1)N = y2 + y2+N+

wa · · ·+ y2+(z−1)N

=
...

= yN + y2N+
wa · · ·+ yzN

(18)

We can extend (18), by adding αN elements from the
codeword y, which can be 0 or 1. We can then show the
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idea in (19) by using the canceled variables, such that

y1 + · · ·+������y1+(z−1)N+N +a

· · ·+������y1+(z−1)N+αN = y2 + · · ·+ y2+(z−1)N+
������y2+(z−1)N+N + · · ·+
������y2+(z−1)N+αN

=
...

= yN + · · ·+ yN+(z−1)N+
������yN+(z−1)N+N + · · ·+
������yN+(z−1)N+αN

(19)

The addition of yi, of the same value as shown before
regarding the elements in each grouping, to all the
equations will not change the sum of the equations. We
have then the following relation,{ ∀y ∈ Cb

A1 = A2 = · · ·= AN
⇒

{ ∀yα ∈ Cα
b

Aα
1 = Aα

2 = · · ·= Aα
N

(20)

The equations in (20) show that all the elements of the
codebook Cb are also elements of the codebook Cα

b . We
denote by Aα

i , the same value of the grouping Ai but for the
values of zα. The equations in (20) can be proven from the
opposite direction, which means from the elements of Aα

i
to the elements of Ai and this just by deducting elements.

Example 5 The following example shows the codebook
Cb is within the codebook Cα

b .

Consider N = 2 and z = 2 for Cb = Cb(4,2) and z1 = 3
for C1

b =Cb(6,2). This means that in this example we have

α = 1, so M1 = M+2 as shown in the following codebook:

Cb

N bits

0 0 0 0 0 0
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

C1
b

0 0 0 0 1 1
0 0 0 1 1 0
0 0 1 0 0 1
0 0 1 1 0 0
0 0 1 1 1 1

0 1 0 0 1 0
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

C
′
b

0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 1 0 1

1 1 0 0 0 0
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

C1
b

1 1 0 0 1 1
1 1 0 1 1 0
1 1 1 0 0 1
1 1 1 1 0 0
1 1 1 1 1 1

(21)
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Figure 7: Equation representation for Graph M = 4

This shows clearly the difference between the codewords
of length 6 for C1

b and 4 for Cb as it has been explained

previously. It also shows that Cb ⊂ C1
b as it was defined

previously and thus the codewords from Cb appear as
elements of the codebook C1

b .

4.3 Concept of Graph Theory

In this section we present and emphasize certain properties
of spectral null codebooks from graph theoretical
perspective. The concept of subsets and subgraphs [16]–
[17] are studied. We link between the indices of the
variables in a spectral null equation and the permutation
sequences formed from these indices.

As an example if we take the case of M = 4 with N = 2,
we have the spectral null equation:

A1 = A2 → y1 + y3 = y2 + y4 (22)

The corresponding permutation sequences to the variables
in (22) is (1)(3)(2)(4). These permutation symbols can
be presented graphically by just being lying on a circle,
which it is called a state. The state design follows the
order of appearance of the indices in (22). The symbols
are connected in respect of the addition property of their
corresponding variables in (22) as depicted in Fig. 7.

The elimination of states from any graph corresponding
to the index-permutation symbols is in fact the same
as the elimination of the corresponding variables from
the spectral null equation (5). The elimination of the
variables is performed in such a way that the spectral null
equation is always satisfied. This leads to the basic idea of
eliminating an equivalent number of variables equal to N as
a total number from different groupings in the spectral null
equation. This is true when we eliminate only one variable
from each grouping. In the case when we eliminate t
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Figure 8: Subgraph design from M = 6 to M = 4 with N = 2

variables with 1 < t < z from each grouping, we have a
total number of eliminated variables of t×N.

Example 6 We construct a spectral null code for the case
of M = 6, with N = 2 and z = 3, which is represented by
the codebook Cb(6,2) in (21) and which is designed from
the spectral null equation (23). The corresponding graph is
G6 in Fig. 8.

From the spectral null equation (23), we can eliminate the
variables y5 and y6 using the addition property and this
will lead to the equation (24), which is the spectral null
equation for the case of M = 4 with N = 2.

N=2︷ ︸︸ ︷
z=3︷ ︸︸ ︷

y1 + y3 + y5 =
z=3︷ ︸︸ ︷

y2 + y4 + y6
(23)

The obtained codebook is denoted by Cb(4,2). Fig. 8
depicts the elimination of the states from a graph theory
perspective. The elimination of the states “5” and “6”
results in the elimination of the links between them and
the other states.

N=2︷ ︸︸ ︷
z=2︷ ︸︸ ︷

y1 + y3 =
z=2︷ ︸︸ ︷

y2 + y4
(24)

It is clear that in the codebook presented in (21), we
have Cb(4,2) ⊂ Cb(6,2), in terms of the existence of
the elements from the codebook Cb(4,2) in the codebook
Cb(6,2), which is the same as for the subgraphs where we
have G4 ⊂ G6.

4.4 Frequency Spectra of Spectral Null Codes

From the designed spectral null codes Cb, we can observe
that each codebook has balanced codewords within it.
These balanced codewords form DC-free subsets of the
designed spectral null codes denoted by CB

b . Another
property that can be observed from the designed spectral
null codebook is that they have codewords with a sequence
where half of it, is a complement of the other half or
with another word like a mirror of the other half. We call
this class of codes the complementary symmetrical codes,
which are subsets of the spectral null codes and denoted by
CS

b .

Definition 2 A balanced code, denoted by CB
b has all its

codewords with an even length where the number of ones
and zeros are equal.

Definition 3 A complementary symmetrical code, de-
noted by CS

b has all its codewords with an even length in
such a way that its first half is the conjugate of its second
half.

From Table 2, we can see that for the same length of the
codeword and certain specific values of N and z, we always
have CB

b ⊂Cb and CS
b ⊆CB

b .

Taking into consideration the definitions, we have
summarized our results in Table 2 where it can be seen
that we have a few important properties to be derived from
these results:

1. For any prime value of z, we cannot design a
symmetric codebook except for the special case of
z = 2.

2. For any not prime value of z, we can design a balanced
code and we can produce a symmetric codebook with
a predictable cardinality equal to

∣∣CS
b

∣∣ = 2n/2.

3. For the values of z, which are not prime, we can
have nulls at the Nyquist frequency for the following
conditions:

(a) if z = 2 and N not prime with N ≥ 2 we can get
nulls at the Nyquist frequency,

(b) if z≥ 4 and ∀N we can always have nulls at the
Nyquist frequency.

4. In the case of symmetric codes, we can always
predict the values of the nulls and their corresponding
frequencies as shown in the following equation:

fM = 2(i−1)/M, i = 1, . . . ,M/2.

5. SPECTRAL NULL CODES APPROACH:
LOW-DENSITY PARITY-CHECK CODES

Ouahada et al [18] have shown that for any permutation
sequences of length N, the binary representation of
these permutation symbols, where the bit 1 represents
the symbols at its corresponding position, e.g. 123 →
100010001, is a subset of spectral null codes with N = z
and codewords length of M = N2 and cardinality of N!.
The obtained codebook is a N!×N2 matrix, denoted by M
and the number of 1s in each row is equal to N.

The LDPC matrices, denoted by H, were first introduced
by Gallagar [19], who defined them as (n, j,k) matrices
with n columns that have j ones in each, and k ones in
each row, and zeros elsewhere.

The number of 1s in each row in the obtained codebook
is equal to N with a rate of pr = N/N2 and the number of
1s in each column is equal to (N−1)!, which represents a
rate of pc = (N−1)!/N!. We can see that pr = pc = 1/N,
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Table 2: Frequency Spectra and Cardinalities of Spectral Null Codes

M N z |Cb| Nulls |CB
b | Nulls |CS

b | Nulls

4 2 2 6 1/2 4 0, 1/2, 1 4 = 22 0, 1/2, 1

6 2 3 20 1/2 — — — —

8 2 4 70 1/2 36 0, 1/2, 1 16 = 24 0, 1/4, 1/2, 3/4, 1

10 2 5 252 1/2 — — — —

12 2 6 924 1/2 400 0, 1/2, 1 64 = 26 0, 1/6, 1/3,1/2, 2/3, 5/6, 1

14 2 7 3432 1/2 — — — —

8 4 2 36 1/4, 3/4 18 0, 1/4, 3/4, 1 16 = 24 0, 1/4, 1/2, 3/4, 1

12 4 3 400 1/4, 3/4 164 0, 1/4, 3/4, 1 — —

16 4 4 4900 1/4, 3/4 1810 0, 1/4, 3/4, 1 256 = 28 0, 1/8, 1/4, 3/8,5/8, 3/4,

7/8, 1

12 6 2 250 1/6, 5/6 90 0, 1/6, 5/6, 1 64 = 26 0, 1/6, 1/3,1/2, 2/3, 5/6, 1

which means that the rates are very low at very large values
of N.

We can define two numbers that describe a low-density
parity-check matrix with a dimension of n×m; wr for the
number of 1s in each row and wc for the columns. To have
a low-density parity-check matrix we need to satisfy two
conditions wc � n and wr � m.

Proposition 3 The matrix H = M T , is a regular LDPC
matrix, for N ≥ 4.

PROOF The matrix M is a N!×N2 matrix. So H is a N2×
N! matrix, with n = N!, k = (N − 1)! and j = N, which
means that H is regular [20].

It is clear that the Gallagar condition is satisfied, where
the number of rows is N2 = n j/k. We can also see that
each submatrix of N×N!, has a single 1 in each one of its
columns.

For example for N = 4, with

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

111111000000000000000000
000000111111000000000000
000000000000111111000000
000000000000000000111111
000000110000110000110000
110000000000001100001100
001100001100000000000011
000011000011000011000000
000000001010001010001010
001010000000100001100001
100001100001000000010100
010100010100010100000000
000000000101000101000101
000101000000010010010010
010010010010000000101000
101000101000101000000000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we can see that

n = N! = 24
k = (N−1)! = 6
j = N = 4

⎫⎬
⎭⇒ 24×4

6
= 42 = N2.

It is important to notice that for N = 3, we have H = M .
For example, we obtain for N = 3 the following,

H =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

where H is our low-density parity-check matrix with the
dimension of N!×N2.

The example N = 3 is just used to show how our
binary representation of permutation codes is a low-density
parity-check matrix. In reality we should have N very
large.

Our low-density parity-check matrix is regular. As can be
seen in the case of N = 3, where wr and wc are constant.

The regularity is also clear when we form the Tanner graph
depicted in Fig. 9, where we have the same number of
incoming edges for every v nodes and also for all the c
nodes.

For all codewords v, we have

v ·HT = 0.

Any LDPC code is encoded via generator matrix G. For a
given information vector u, the corresponding codeword v
is encoded via

v = u ·G,

H = [H1|H2], where H1 and H2 have dimensions (n−
k)× k and (n− k)× (n− k), respectively. H2 should be
non-singular. In the case where H2 is singular, we have
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Figure 9: Tanner graph

to eliminate some rows and columns to get a non-singular
matrix

G = [I|HT
1 H−T

2 ].

As example N = 3, we have

H =

⎡
⎢⎢⎢⎢⎢⎣

100010001
100001010
010100001
010001100
001100010
001010100

⎤
⎥⎥⎥⎥⎥⎦⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v1 + v5 + v9 = 0
v1 + v6 + v8 = 0
v2 + v4 + v9 = 0
v2 + v6 + v7 = 0
v3 + v4 + v8 = 0
v3 + v5 + v7 = 0

with

H1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , H2 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1
0 0 1 0 1 0
1 0 0 0 0 1
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

In the case where N is very large we have N!�N2 and this
will cause some problems to get the previous conditions of
H satisfied.

We denote by Hμ, where μ is the number of concatenated
LDPC matrices, the generalized form of the construction
of our low-density parity check matrix from our binary
representation,

Hμ =

μ︷ ︸︸ ︷
[H|H| . . . |H] . (25)

Putting H in serial concatenation μ times can increase the
weight wr. We can see that H is always a regular matrix
with a dimension equal to N!× (μN2).

For example if N = 4, we have H with wc = 6 and wr = 4.
We choose μ = 4, and we get a H4 with wc = 6 and wr = 16.

It is important to notice that the concatenated construction
might causes the dependency in the columns of the matrix
Hμ. Thus some columns could be eliminated and the
matrix might become a singular matrix. To solve this
problem we can permute randomly the columns of each
H. We denote by Hpϕ the matrix H when we permute its

columns ϕ times. Thus (25) will be presented as follows:

Hμ =

μ︷ ︸︸ ︷
[Hpϕ |Hpϕ | . . . |Hpϕ ], 1≤ ϕ≤ N2.

It is important to mention that the values of wr and wc
can be further increased by satisfying the spectral null
equation, which leads to the increase of ones in the LDPC
matrix. Therefore the code rate will be increased. From
Fig. 9 we can also see that the girth of the code is higher
than four, which means that we have good error correction
codes.

6. CONCLUSION

In this paper, with certain observations of the structure
of spectral null codes, we could have derived important
properties that can be useful in the field of digital
communications. The paper does not present constructions
of any type of codes but just analysis of existent properties
of spectral null codes.

The relationship between the spectral null equations, the
generated nulls and the cardinalities of spectral null codes
were investigated. The importance of the cardinality of
the codebook and the corresponding rate of the code and
also the error correction capability are emphasized and
clarified.

The properties and the approaches that we have presented
using the binary structure of the codebooks and the
graph theory approach could help in similar research in
discovering more properties that can be used in important
applications telecommunications and data recording to
help improve the quality of the transmitted date
information.

Certain spectral null codes properties can lead to certain
error correcting codes for certain channels as the example
in [21, 22] or the improvement in the structures of certain
spectral null codebooks for better design of Low Density
Parity Check codes.
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