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Abstract: The probability of accelerated degradation or reduced time to failure of metal oxide arresters
(MOA), when continuously exposed to distorted ac conduction, is analysed in this study. Metal
oxide-based surge arresters of similar size and electrical characteristics are tested using accelerated
degradation at elevated temperature and distorted ac voltage stress. The three-parameter Weibull
probability method is applied to analyse the obtained time to failure distribution. The Fourier series’
expansion is also relied upon in order to evaluate the content of the harmonic resistive components of
the measured leakage current. The results obtained indicate that for 6.24% and 5.58% content of the 3rd

and the 5th harmonic component, respectively embedded in the applied voltage stress, the probability of
reduced time to failure or accelerated degradation is found to be 58.93 %, and the mean life reduction
obtained is just above 40%. These results correlate with the pronounced shift of the U − I curve as well
as the increase in the magnitude of the respective harmonic resistive current components of the arrester
samples.
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1. INTRODUCTION

Metal Oxide arresters (MOA) experience electrical
degradation or ageing as a result of continuous ac or
dc conduction [1-3]. The degradation phenomenon
refers to irreversible change in electrical and physical
properties of the MOA components [4, 5], and consists
of one of the most encountered failure modes that affect
metal oxide-based arrester components [6, 7]. With
the prevalence of harmonic-producing loads in modern
electrical networks, MOA devices are likely to be
continuously exposed to voltage and current harmonic
frequencies. Previous studies described in [8-11], have
indicated the impact of voltage harmonics on the leakage
current-based condition assessment of metal oxide-based
surge arresters. The major shortcoming in these studies is
the probable aggravated degradation or failure process of
these surge protection devices as a result of voltage and
current harmonics in the power system. In the present
work, two commercially-sourced sets of MOA are tested
and analysed. Each set consisted of 60 units of similar
physical and electrical characteristics. These arrester
components are subjected to accelerated degradation test at
135oC for a time period of 96 hours. The applied voltage
stress consisted of distorted waveform whose fundamental
component amounted to 85 % of the ac rated breakdown
voltage (0.85U1mAac) of the MOA. The 3rd and 5th

harmonic voltage components are found to be prominent
in the applied voltage stress, and their percentage content
is considerably changed when the harmonic source used
in this study is removed from the circuit. The results
obtained show that arrester samples subjected to voltage
stress, containing higher harmonic content, exhibit higher
probability of failure or degradation, and significant

rise in the magnitude of the resistive harmonic current
components.

2. EXPERIMENTAL WORK

For the metal oxide-based arresters used in this study, two
separate types of test set up are applied: the accelerated
degradation test at elevated voltage and temperature, which
emulates real life arrester deterioration process [12], and
the dc voltage-current (U − I) test for the purpose of
reference voltage (Un) measurement, which enables the
degradation or failure status of arresters to be verified.

2.1 The accelerated degradation test

This test regime essentially consisted of the following
components: a heat chamber or mini-furnace, a 50 Hz
ac supply voltage, the triac - based voltage controller
(harmonic source), a resistive load, high-temperature
conductors, data logger units and FN 2090 single-phase
multi-purpose filter. The heat chamber consisted of the
Nabertherm P330 with 9 settable heating programs or
courses (P1-P9), and 40 time-segments grouped in blocks
of 10 (A-J)[13]. Each block is made up of 4 time-segments
(2 ramp and 2 holding times). A heating program could be
formed of one or more blocks. In this study, the desired
temperature is reached at the first holding time-segment
(t2B) of block B, which is assigned a time value of
96 hours and a temperature of 135oC. The subsequent
time-segments are therefore assigned a zero value. At
the end of the degradation time thus set, the unit will
automatically switch off and enter the waiting time or
cooling mode. The heating program used in this study is
shown in figure 1.
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Figure 1: Heating Program

When the triac-based voltage controller is removed from
the circuit, and the multi-purpose filter is connected: the
non-linear leakage current resulting from high conduction
through MOA devices induced 1.89 % of the 3rd and
2.5% of the 5th, which fall within the permissible level
of harmonic [14]. Upon the connection of the triac-based
voltage controller, these harmonic components increased
to values beyond permissible level: 6.24 % and 5.58 %,
respectively. The set up of the accelerated degradation test
is provided in figure 2.

Figure 2: Accelerated Degradation Test Set up

Each test run accommodates five MOA samples connected
across terminals, mounted in parallel on a concrete
platform inside the heat chamber. These terminals are
supplied through 1.5 mm2 high-temperature single-core
silicon cables (Silflex), capable to withstand 180oC [15].
The supply voltage is controlled from an external timer
unit set to trigger when the chamber reaches 135oC
of temperature. To prevent any event of short circuit,
protective fuses rated 250 V; 0.125 A are connected in
series with each test sample. A three channel K5020
and 2 x MT250 data logger units are connected in such
a way that voltage events across each sample are recorded.
The TDS 1001B two-channel Tektronix and the 4-channel
Rigol digital scopes are used to monitor the supply voltage
and to record the leakage currents, with the aid of 5/1
A current transformers and a current probe. The failure

or breakdown times measured in both test conditions are
extrapolated, using the Arrhenius model, to time values (ti)
corresponding to long-term operation of these devices at
service condition: 40oC at maximum condition operating
voltage (MCOV). Prior to the estimation of the shape
and scale parameters of the obtained time to failure
distributions, such as described in the IEEE guide for
statistical analysis of insulation breakdown [16]. The
applied voltage and leakage currents are measured during
the test, in comma separated values (CSV) format using
the Rigol DS1204B digital scope. The Fourier series
expansion technique is applied to determine the magnitude
of the harmonic resistive current components in measured
leakage current waveforms. The U − I characteristic
curves of the tested samples are also plotted. The voltage
stress applied to arresters (without external harmonics) was
provided through FN 2090 single-phase and multi-purpose
filter, in a bid to reduce harmonics from the mains. A
83.3 kΩ resistive load was connected across the filter
and outside the heat chamber. The time-domain of the
continuous voltage stress applied under this condition is
indicated in figure 3.

Figure 3: Applied Voltage Stress (no external harmonic source)

The harmonic components in the voltage stress resulting
from non-linear current conduction through arrester
components are shown in figure 4. To introduce
harmonic distortion from an external harmonic source, the
triac-based voltage controller is brought in to effect the
switching of the resistive load, the applied voltage stress
therefore experiences much higher harmonic distortion.
This is shown in figure 5. The resulting voltage harmonic
components in the applied stress, when an external source
of harmonic is depicted in figure 6.

2.2 Description of Arrester Samples

The overvoltage protection samples used in this work
consisted of low-voltage MOA units with 20 mm of
diameter size. The mean resistance (Rmean), inductance
(Lmean) and capacitance (Cmean) of the varistor arresters
are measured at room temperature, using an ELC-131D
LCR meter. The breakdown voltage (U1mAac) as well
as the MCOV (Uac) of the MOA devices are obtained
from the manufacturer [17]. The electrical properties or
characteristics of the tested arresters, such as specified in
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Figure 4: Frequency Components of the applied voltage stress
(No external harmonic source)

Figure 5: Applied Voltage Stress (with external harmonic
source)

the manufacturer’s data book, are provided in table 1.

2.3 U − I Measurement of MOA Samples

The U − I characteristic curve of MOA samples is
measured at room temperature using a variable dc source.
The arrester is therefore connected across the output. A
volt and current meter are respectively connected across
and in series with the device under test. The measurement
points obtained are subsequently used to plot the U − I
characteristic curve. This test is conducted before and
after accelerated degradation test at room temperature. The
reference voltage (Un) and the standby leakage current
(ILo ), which is defined as the current measured at 85% of
the reference voltage [18, 19], could therefore be obtained.
The mean U − I curve of the samples before and after
degradation test are provided in figure 7.

Figure 6: Frequency Components of the applied voltage stress
(With external harmonic source)

Table 1: Electrical Characteristics of Arrester Samples
Characteristics Values Units
Rmean 5.6 MΩ
Lmean 18.04 H
Cmean 1225 pF
U1mAac 205 V
Uac 130 V

3. WEIBULL PLOTS

3.1 Time data obtained:

The procedure followed to obtain the time to failure
distribution and the resulting probability functions is
summarised in figure 8. The failure times (ti) measured
during accelerated degradation tests and the change in the
dc reference voltage (�Un), are used to isolate the survived
and spoiled components from the failed arrester samples,
on the basis of the following conditions:

1. Failed samples: ti ≤ t2B and �Un ≥ 5%

2. Survived samples: ti = t2B and �Un < 5%

3. Spoiled samples: ti < t2B and �Un < 5%

The classification of arrester samples as result of the above
conditions is shown in table 2. Using the Arrhenius
accelerating factor [20], the time-points measured for
the failed samples are extrapolated to unit values
corresponding to equivalent operation of arresters at
standard temperature of 40oC.

[teq.40oC]i [hours] = ti ×2.5
T2B−40

10 (1)

Where:
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Figure 7: Mean U-I curve of Arrester Samples

Figure 8: Block Diagram of Failure Probability Analysis

[teq.40oC]i = time equivalent to arrester operation at 40oC or
service condition
T2B = the test temperature.

Each failure time is assigned a ranking number (i) which
counts the number of failures in a given time, and
ultimately the number of failed arresters at any indicated
time. This helps to determine the percentage cumulative
failure probability using White’s approximation [21, 22].

F(i,n)≈
(

i−0.44
n+0.25

)
×100 (2)

Where:

F(i;n) = the percentage cumulative failure probability
i = the number of failures in a given time
n = the number of tested samples.

The Weibull cumulative distribution function (CDF) of
both sample groups, can therefore be plotted on the basis
of [teq.40oC]i and F(i,n). The CDF of arresters exposed to

Table 2: Classification of degraded Samples
Samples No harmonic

source
With harmonic source

Failed 27 37
Survived 30 18
Spoiled 3 5

no external harmonic source and that of those subjected to
an external harmonic source are shown in figures 9 and 10,
respectively.

Figure 9: CDF (Sample without external harmonics)

Figure 10: CDF (Sample with external harmonics)

3.2 Adequacy of the Distribution:

To test the adequacy or the goodness of fit of the
distributions obtained, both the F(i;n) and [teq.40oC]i are
assigned respective logarithmic expressions xi and yi as
indicated in [23, 24]. These values are determined from
the following equations:

xi = ln
[
− ln

(
1− F(i,n)

100

)]
(3)

Where:

xi = the logarithmic expression of the percentage
cumulative failure probability

And:

yi = ln(teq.40oC)i (4)

Where:

yi = the logarithmic expression of the time equivalent to
arrester operation at 40oC or service condition.
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The xi and yi values are used to determine the correlation
factor, which should be equal or higher than the Weibull
critical coefficient value (γ) for a curve to be deemed
fit or adequate [23]. The correlation factor is calculated
using the correlation function equation [25], expressed as
follows:

γ(xi,yi) =
∑(xi − x) · (yi − y)√

∑(xi − x)2 ·∑(yi − y)2
(5)

Where:

γ(xi,yi) = the correlation function
x = the mean logarithmic value of the percentage
cumulative failure probability ( ∑xi

r )
y = the mean value of the time equivalent to arrester
operation at 40oC or service condition ( ∑yi

r )
r = the number of failed arresters.

The correlation factors of the distributions obtained, using
equation 5 are: γ1 = 0.955857 and γ2 = 0.958317. Based
on the Weibull critical coefficient values provided in [23],
both curves show good adequacy or fit to the Weibull
distribution.

3.3 Estimation of the Weibull Parameters:

The least-squares regression method is used to determine
the slope m(xi,yi) and the c-intercept functions of the
plotted curves [23, 24]. These functions are in turn used
to estimate the shape and the scale parameters. The slope
function is determined in equation (6), as follows:

m(xi,yi) =
∑(xi − x) · (yi − y)

∑(xi − x)2 (6)

Where:

m(xi,yi) = the slope function of the Weibull distribution.

Therefore, the shape parameter β is expressed as:

β =
1

m(xi,yi)
=

∑(xi − x)2

∑(xi − x) · (yi − y)
(7)

Where:

β = the shape parameter of the Weibull distribution.

The c-intercept function is calculated using equation 8,
given below:

c = y−m(xi,yi) · x (8)

Where:

c = the c-intercept function.

The scale parameter is therefore obtained using the
exponential of the c-intercept function. This yields the
following expression:

α = expc = exp [y−m(xi,yi) · x] (9)

Where:

α = the scale parameter of the Weibull distribution.

Applying equations 6,7,8 and 9 yield the scale and shape
parameters of the time to failure distribution with and
without harmonics to be determined: β1 = 0.98 and α1
= 4167.6 hours, and β2 = 1.093 and α2 = 2746.5 hours.
For both distributions, the minimum time to failure or the
location parameter γ = 100.6 hours, has the same value.

4. FAILURE ANALYSIS

Based on the three-parameter Weibull distributions
obtained respectively for each set of degraded arresters
(with and without harmonics), the probability density
function (PDF) can be determined and subsequently
analysed. Equation 10 is therefore applied:

f (t,β,α,γ) =
β
α
·
(

t − γ
α

)β−1

exp
(
− t − γ

α

)β
(10)

Where:

f (t,β,α,γ) = the probability density fucnction
β
α ·

( t−γ
α
)β−1

= the hasard or failure rate function

exp
(
− t−γ

α
)β

= the reliability function.

The PDF, the failure rate and the reliability functions
of MOA samples degraded with and without harmonics
are noted as follows: f1 (t), h1 (t), R1 (t), f2 (t), h2 (t)
and R2 (t), respectively. To determine whether or not
electrical failure of arrester units is indeed accelerated,
as a result of external harmonic content in the applied
voltage stress, the reliability, the failure rate and the PDF
of these components under the testing conditions could be
analysed. Therefore, the following statements apply:

1. The probability of one population of tested arresters
to experience longer time to failure over the other
is verified on the basis of the following probability
condition [25]:

Pr [t2 ≥ t1] =
∞∫

0

f1 (t) ·R2 (t)dt > 0.50. (11)

Where:
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Pr [t2 ≥ t1] = the probability that the population of
arresters degraded with harmonics may experience
longer time to failure.

2. The mean time to failure (MTTF) of the two
populations of degraded arresters could also be
analysed in a bid to determine the probability of
higher survival rate or reliability of one population
over the other [26].

∞∫

0

exp
(
− t − γ

α2

)β2

dt >
∞∫

0

exp
(
− t − γ

α1

)β1

dt (12)

3. The plots of the failure rate functions as applied to
the degraded arrester populations must therefore be
such that: h2 (t) < h1 (t). This could be graphically
demonstrated.

The above statements are therefore analysed to assess any
probability of accelerated failure as a result of harmonics
in the applied voltage stress.

5. LEAKAGE CURRENT ANALYSIS

Long-term exposure of varistor arresters to continuous
voltage stress generally lead to failure of these devices.
This is usually diagnosed in terms of increased magnitude
of harmonic resistive component, and most particularly
the third harmonic resistive current (THRC) component
of the leakage current [27-30]. In order to assess the
contributions of each voltage harmonic frequency, the
leakage current of the degraded arrester populations is
measured and captured in CSV format of the Rigol
DS1204B digital scope. The time-domain waveform of the
leakage current for arresters degraded without harmonics is
shown in figure 11.

Figure 11: Leakage current waveform (Arresters degraded
without harmonics)

Similarly, the time-domain waveform of the leakage
current for arresters degraded with harmonics is indicated
in figure 12.

Figure 12: Leakage current (Arresters degraded with harmonics)

The current waveforms measured could be expressed
in terms of frequency components using Fourier series’
expansion, given the periodical behaviour of these current
functions. This implies that:

i(t) =
ao

2
+

∞

∑
k=1

(ak cosωkt +bk sinωkt) (13)

Where:

i(t) = the leakage current function

ao = 2
T

T∫
0

i(t)dt

ak = 2
T

T∫
0

i(t) · (coskt)dt

bk = 2
T

T∫
0

i(t) · (sinkt)dt

T = the period of the function.

In order to evaluate the terms of equation (13), the
time-domain curve of the leakage current is divided up
into 20 equal time-intervals between 0 and T . The
current values corresponding to the time points are sourced
from the CSV measurement of the leakage current. The
Fourier expansion of the leakage current function defined
in equation 13 could be rewritten as follows:

i(t) =
Io

2
+

∞

∑
k=1

√
2Iksin(ωkt +φk) (14)

Where:

Ik =
√

a2
k +b2

k = the RMS value of i(t)

ωk =
2kΠ

T = the angular frequency
φk = arctan ak

bk
= the respective phase angle for the kth

current harmonic frequency component.

The Fourier expansion such as defined above is also
extended to the applied voltages measured across MOA



Vol.107 (3) September 2016 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 173

samples during degradation test. This yields the following
voltage expression:

v(t) =
Vo

2
+

∞

∑
k=1

√
2Vksin(ωkt +θk) (15)

Where:

Vk =
√

a2
k +b2

k = the RMS value of v(t)

ωk =
2kΠ

T = the angular frequency
θk = arctan ak

bk
= the respective phase angle for the kth

voltage harmonic frequency component.

Since the power losses resulting from distorted voltage
across MOA units could be estimated by the sum power
losses of each components [31]. The instantaneous
power p(t) could therefore be expressed as the product of
equations (14) and (15). Disregarding the dc components
in both (14) and (15), the following equation is obtained:

p(t) =
∞

∑
k=1

√
2Iksin(ωkt +φk) ·

√
2Vksin(ωkt +θk) (16)

Where:

p(t) = the instantanous power.

Developing further equation (16) yields the active or
resistive component (PR) of the total power absorbed by
the arrester:

PR =
∞

∑
k=1

VkIkcos(θk −φk) (17)

Where:

PR = the average power.

The magnitude of the fundamental and harmonic resistive
components constituting the leakage currents could be
effectively determined using the expression Ikcos(θk −φk).
The fundamental, the third and fifth harmonic resistive
current components are shown in figure 13.

6. RESULTS AND DISCUSSION

Based on the mean U − I characteristic curve obtained,
arrester population degraded with harmonics proved to
have the lowest decrease (100V ) in the reference voltage
(�Un) measured at 1 mA dc and at room temperature.
Whereas arresters degraded without external source of
harmonics have experienced a decrease of about 150 V
in the reference voltage. This implies that the electrical
stability of arresters degraded with harmonics is severely
compromised as shown in figure 7. Based on the

Figure 13: Resistive Current Components before and after
harmonics

conditions of failure stated above, it could be observed that
61.67 % of the MOA population degraded with external
harmonics in the voltage stress experienced breakdown,
as compared to 45% when the voltage stress contains no
external harmonic. This could further be observed in
terms of the hasard or failure rate functions obtained. The
failure rate function of arresters degraded without external
harmonics h1 (t) is observed to be sharply increasing from
0 to 2.46 × 10−4 failures per hour in the time interval
t ∈ [100.6;500], before decreasing from 2.46 × 10−4 to
2.35× 10−4 failures per hour across the time interval t ∈
[500;4500]. For arrester samples degraded with external
harmonics, the failure rate function h2 (t) is observed to
be sharply increasing from 0 to 3.33× 10−4 failures per
hour across the time interval t ∈ [100.6;500]. Across the
time interval t ∈ [500;4500], the failure rate h2 (t) indicated
a lower rate increase from 3.33 × 10−4 to 4.16 × 10−4

failures per hour. The decreasing failure rate implies
early failure of arrester components in the life cycle
of these components under standard service condition,
while the increasing failure rate suggests a wear out of
these protective devices. This therefore indicates that for
the time-interval [100.6,4500], the failure rate arresters
degraded without external harmonics is consistently lower
than that of samples subjected to harmonics. This implies
that the statement: h2 (t) < h1 (t), for t = [100.6;4500] is
not true and the opposite statement: h1 (t) < h2 (t), for t
= [100.6;4500] is therefore true. The failure rate graphs
h1(t) and h2(t) are shown in figure 14.

Figure 14: Failure rate function before and after harmonics

An analysis of the reliability function or the survival prob-
ability graphs obtained across [100.6;4500] time-interval,
for both observed populations shows that R1 (t) decays
from 100 % to 36 %, while R2 (t) changes from 100 %
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to 17 %. Moreover, for each point in time belonging
to interval [100.6;4500], it is observed that R1 (t) is
consistently less than R2 (t). Therefore, the lower
reliability or probability of survival for arresters degraded
with external harmonics, as compared to those degraded
with no external harmonics can be associated to the content
of harmonic distortion in the voltage stress. This implies
the relationship: R1 (t) > R2 (t), for t = [100.6;4500].
The reliability functions of both populations are plotted in
figure 15.

Figure 15: Reliability functions

The probability of one population of tested arresters to
experience longer time to failure over the other, such as
determined in equation 11, yields the probability value
(Pr = 0.4107 or 41.07%), which is obviously less than
0.50 or 50%. This suggests that the time to failure or the
probability of arresters, subjected to external harmonics,
experiencing longer time to failure than those degraded
with harmonics is 41.07%. Since the probability sum:
Pr [t2 ≥ t1] + Pr [t1 ≥ t2] = 1. This therefore implies
Pr [t1 ≥ t2] = 1 - Pr [t2 ≥ t1] = 0.5893 or 58.93%. This
suggests that the stated relationship: P [t2 ≥ t1] > 0.50
cannot be true, and consequently the probability of
arresters, degraded without external harmonics, to survive
longer is actually 58.93% higher.
The MTTF obtained for arresters degraded without
harmonics is found to be 4252.65 hours as opposed to
2512.81 hours for those degraded with external harmonics.
This demonstrates that metal oxide arresters degraded with
external harmonics experienced 40.91% reduction of their
lifetime, and therefore demonstrated lower reliability.
The PDF curves obtained in figure 16 show higher density
of failure for the arrester components subjected to external
harmonics. The magnitude of the fundamental, the 3rd and
5th harmonic resistive current components obtained are:
0.013 mA, 0.005 mA, 0.003 mA for arresters degraded
without harmonics and 0.137 mA, 0.104 mA, 0.082 mA
for those degraded with external harmonics, respectively.
The resistive current component before harmonic injection
is therefore 0.0143 mA and 0.191 mA after injection
of external harmonics. An increase of 92.51% in the
resistive current of the arrester samples degraded in the
presence of external harmonics was therefore observed.

Figure 16: PDF of degraded arrester populations

It could also be noted that the fundamental and the
THRC make up at least 90% of the total resistive current
measured before and after harmonics injection at the
same operating temperature. This shows correlation
between the increase in the resistive current and the
higher probability of failure, the reduced MTTF, the
higher failure rate and lower reliability as well as the
severe shift in the U − I characteristic curve, in arrester
populations subjected to external harmonics. The increase
in the resistive current directly translates into increased
power losses being absorbed by arrester components,
which will therefore quicken the thermal runway process.
Since the test temperature which represents the device’s
operating environment was kept constant, the rise in the
resistive current and the subsequent high power losses
experienced, when external harmonics are injected, could
therefore be attributed to the influence of harmonic voltage
frequencies on the overall continuous biasing effect of
the applied voltage stress. Furthermore, the study on
the degradation mechanism of metal oxide-based arresters
described in [4], revealed that the degradation of these
arresters consists of the resultant effect of the breakdown
of several millions of individual grain boundaries at
the following voltage levels: 3.02 V and 3.11 V per
grain boundary, for monotonous and non-monotonous
ageing process respectively. This therefore suggests that
the reduced time to failure and the increased resistive
current, observed in MOA samples subjected to external
harmonics injection, results from the contributing effect of
voltage harmonic components on the breakdown voltage
between individual grain boundaries. This demonstrates
that voltage harmonics could be regarded as aggravating
factors of the long-term degradation phenomenon of these
overvoltage protective devices. The third harmonic voltage
will, by virtue of its magnitude, be the second voltage
contributor to the MOA microstructure disintegration,
hence to the accelerated degradation.

7. CONCLUSION

For the purpose of this work, similar arrester units are
subjected to accelerated degradation test, at elevated
temperature and voltage. The voltage applied is embedded
with harmonics. The observed time to failure or life
expectancy represents the behaviour pattern of these
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overvoltage units, when operating at normal service
condition with distorted voltage for a long period of time.
The resistive current components as well as the U − I
characteristic curve confirm the the degradation status of
arrester units. The following findings are obtained:

1. Continuous exposure of metal oxide-arresters to
distorted ac voltage is prone to aggravate the
degradation or failure process of these surge
protection units.

2. The reduced time to failure or lifetime of MOA units,
continuously operated under distorted ac voltage,
could be attributed to additional watt loss experienced
in these devices which result from increased harmonic
resistive current conduction.

3. Harmonic components embedded in the voltage stress
contribute to the biasing effect of MOA units.

These findings imply that the presence of harmonic
components in the voltage across arrester units will
fast track the disintegration process of the intergranular
boundaries of MOA arresters. This therefore explains
the higher probability of electrical failure or reduced life
expectancy of metal oxide-based arresters under harmonic
distortion conditions. The develpment of new oxide
additives, capable to decelerate intergranular disintegration
under the effect of voltage stress, could be recommended
as one of the directions for future designs of MOAs.
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