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Abstract: Four versions of cultural algorithm have been proposed to find an optimal solution of the
combined environmental economic dispatch problem. The main objective of combined environmental
economic dispatch is to simultaneously minimise two competitive objectives of fuel cost and emission,
while satisfying various power system constraints such as the valve-point effect, emission costs, the
prohibited operation zone, the ramp-rate limit, and the transmission losses. In order to solve this
non-convex and non-continuous multi-objective optimisation problem with the cultural algorithm, the
objective function has been converted to a single objective function using a technique called price
penalty factor. Four different types of penalty factors have been examined in this paper. Three different
test case systems with 5, 20, and 50 generating units have been implemented to investigate the perfor-
mance and effectiveness of proposed algorithms. The cultural algorithm shows a superior performance
in handling the combined environmental economic dispatch problem in comparison to other methods.
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NOMENCLATURE

Index

CA Cultural algorithm
CEED Combined environmental economic

dispatch
CF Cost function
PF Penalisation factor
PPFs Price penalty factors
POZ Prohibited operating zone

Variables

ai,bi,ci Fuel cost coefficients of unit i
αi,βi,γi,ηi,δi Emission cost coefficients of unit i
di,ei Fuel cost coefficients of unit i regarding

valve-point effects
Bi j i jth element of the loss coefficient

square matrix
B0i ith element of the loss coefficient

vector
B00 Loss coefficient constant
B(t) Belief space at cultural algorithm
Fct(P) Total CEED generation cost
femc(P) Emission cost function
fgc(P) Generation cost function

hi Coefficient of price penalty factor
hmax−max

i Max-Max price penalty factor
hmax−min

i Max-Min price penalty factor
hmin−max

i Min-Max price penalty factor
hmin−min

i Min-Min price penalty factor
I j(t) Closed interval at N(t)
l,u The lower and upper bound which are

initialised by the domain values
L j(t) Score of the lower bound at N(t)
NG Number of generating units
N(t) Normative knowledge component of

the cultural algorithm
Ni j A normalised number for individual i

and component j
ns Number of variables of situational

component
nx Number of variables of normative

component
nzi Number of prohibited zones for unit i
Ω Sets of units having POZ
Pi Power output of unit i
PD Load demand
PL Power transmission loss
P0

i Previous output power
Pu

i,nzi
Upper bound of unit i at prohibited
zone i
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Pmin
i ,Pmax

i Minimum and maximum generation
limits of the ith generating unit

Pl
i,l ,P

U
i,l Lower and upper bound of the lth

prohibited zones of unit i
Pl

i,k,P
U
i,k Lower and upper bound of the kth

prohibited zones of unit i
Pl

i,nzi
,PU

i,nzi
Lower and upper bound of the nzth
prohibited zones of unit i

S(t) Situational knowledge component of
the cultural algorithm

Si Spinning reserve from unit i
SR Total system spinning reserve require-

ment
Smax

i Maximum spinning reserve contribu-
tion of unit i

δ j Step size of belief interval
δ2

j(t) The variance of normalised number Ni j
Uj(t) Score of the upper bound at N(t)
URi,DRi Up and down ramp rate limits of unit i
Xj(t) Dimension of belief space at compo-

nent j
Xl(t) An accepted response
xi j(t) The mean of normalised number Ni j
xl j(t) An accepted response of the compo-

nent j
x́i j(t) Influence function
xmin

j (t),xmax
j (t) Minimum and maximum boundary of

the closed interval at generation t
ŷ(t) Best individual of the solution vector

1. INTRODUCTION

Economic dispatch (ED) is an optimisation task in the
power system that attempts to determine the optimal
distribution of power demand among the committed
generating units for the purpose of minimising total
operating cost while satisfying a set of equality and in-
equality system constraints. With increased environmental
concerns and given that thermal power plants release a
significant amount of pollutants such as sulphur oxides
(SOx), nitrogen oxides (NOx), carbon monoxide (CO), and
carbon dioxide (CO2) into the atmosphere, it has become
essential to not only minimise the fuel cost but also the
emission level of these harmful gases. In [1], several
scenarios of emission reduction such as the installation
of pollution control devices, burning low-emission fuels,
replacement of aged fuel burners and the use of renewable
energy resources have been considered for a combined
environmental economic dispatch (CEED) problem. The
latter solution has become an attractive short term strategy
due to its economic advantages and ease of implementation
[2, 3]. CEED is a multi-objective optimisation problem
that attempts to simultaneously minimise two competitive
objectives of fuel cost and emission of gaseous pollutants
which are both related to system constraints.

Various techniques have been proposed for the CEED
problem. The majority of the algorithms can be
categorised as either mathematical or evolutionary
optimisation techniques. Mathematical techniques have

fast computational time and are able to find near exact
solutions for convex problems through a convex objective
function and their respective domains, while sometimes
they would fall into local minima or maxima. Some
researchers have tried to develop mathematical methods to
handle the CEED problem. Nanda et al. aimed to solve the
CEED problem concerning the line power flow constraint
by developing a classical technique based on coordination
equations [4]. A single objective function using a linear
combination of different objectives as a weighted sum was
developed in [5]. Unfortunately, multiple runs are required
for this method and it also fails to solve non-convex
functions [6]. A nonlinear unconstrained/constrained
multi-objective mathematical formulation based on a fast
ε-constraint approach was introduced in [7] where fuel
cost and environmental impact were treated as competing
objectives.

The CEED problem becomes a nonlinear, non-convex and
non-continuous optimisation problem when the real-world
power system constraints such as valve point effect,
prohibited zone, ramp rate limits, and transmission losses
are considered [8–10]. It is impractical to find a
unique optimal solution using mathematical techniques
with respect to all these constraints. To tackle this issue,
researchers have applied heuristic optimisation algorithms
to solve the CEED problem. These methods usually
deal with non-smooth non-convex functions but, as a
drawback, the computational time is long since they carry
out a population of potential solutions simultaneously.
Applications of different heuristic techniques pertaining to
the CEED problem have been reported in literature. In
[8], the price penalty approach has been presented, where
the bi-objective CEED problem was converted to a single
objective through to the max-max price penalty factor,
after which various heuristic techniques such as genetic
algorithm (GA), evolutionary programming (EP), particle
swarm optimisation (PSO), and differential evolution (DE)
were applied to obtain and compare the solutions for the
IEEE 30-bus system and 15-unit system. The valve-point
effect and transmission losses were not considered in
[8]. In [11], the applicability of biogeography-based
optimisation technique to find the solution of CEED
problem has been presented. The proposed algorithm
was implemented in three, six and fourteen generator test
systems and results were compared to the solutions based
on Newton-Raphson, Tabu search, GA, non-dominated
sorting genetic algorithm (NSGA), fuzzy logic controlled
genetic algorithm, PSO and DE. A game theory based
model was developed in [3] to address the multi-objective
dynamic economic emission dispatch problem taking into
account transmission losses. Senthil proposed a lambda
based approach using EP to solve the CEED problem
considering powering limits [12]. The algorithm was
tested on a power system consisting of three and six
generators. A gravitational search algorithm has been
suggested for the solution of the CEED problem in [13–16]
and various test cases with and without the valve-point
effect and transmission losses were considered in these
studies. Many other heuristic algorithms such as NSGA-II
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[17, 18], bacterial foraging [19–21], enhanced firefly
algorithm [22], advanced parallelised PSO [23], fuzzified
multi-objective PSO [24], multi-objective chaotic PSO
[25], opposition-based harmony search algorithm [26], bee
colony [2] and several others have been reported in the
literature to obtain a solution to the CEED problem.

Cultural algorithm (CA) is an evolutionary optimisation
method which was first introduced by Reynolds in 1994
[27]. Cultural algorithm consists of an evolutionary
population space (genetic component) and a belief space
(cultural principals). CA was initially designed to handle
single objective optimisation problems. To cope with
multi-objective problems, either a hybrid optimisation
algorithm should be developed or the multi-objective
function should be converted to a single function. Few
studies have successfully implemented CA for the solution
to the CEED problem. In [28], evolutionary programming
was embedded into CA for this purpose and constraints
such as ramp rate limits, prohibited zone of operation,
valve point loading effects and transmission losses were
considered. The method was tested on three, six
and fourteen generator systems. Rui Zhang et al. [6]
developed a hybrid PSO-CA technique to address the
CEED problem when considering prohibited operating
zones and generator limits. Two test systems were
implemented to verify efficiencies of the proposed method.
A hybrid multi-objective cultural algorithm method was
presented in [29] to carry out the optimal short-term
environmental/economic hydrothermal scheduling. The
proposed hybrid method combined a differential evolution
(DE) algorithm into the framework of CA.

In this study, an approach based on the price penalty
factor, i.e. ratio of fuel cost to emission value, has been
used to convert the multi-objective combined emission
and economic dispatch problem into a single objective
function. To replicate a real-world power system,
the following constraints of generating units such as
ramp-rate limits, prohibited operating zones, valve-point
effect, and transmission losses have been considered.
The effectiveness of CA in handling complex CEED
problems has been verified on three test systems with
5, 20 and 50 generating units and non-smooth fuel cost
functions. Simulation results have been compared with
other heuristic optimisation techniques such as biography
based optimiser (BBO), restricted ant colony optimiser
(ACOR), artificial bee colony (ABC), PSO, GA, hybrid
GA and PSO (GAPSO), and firefly algorithm (FA). The
main contributions of this paper are as follows: i)
four different versions of cultural algorithm have been
employed to solve CEED problem. To the best of authors’
knowledge, a similar study has never been reported; ii)
the impact of four different types of penalty factor on
the final price has been examined. No other study has
investigated the effect of different penalty factors for
the same power system; iii) the test system with 50
generators, when considering all the constraints of the
generating units, imposes significant non-linearity to the
system. The convergence to the optimal solution will
become cumbersome as it is the largest reported test case

for solving the CEED problem.

The organisation of this study is as follows. Section 2
demonstrates the problem formulation and mathematical
methods. Section 3 provides simulation results, where
the effectiveness and superiority of the proposed method
to solve the CEED problem has been discussed.
Subsequently, the conclusion is given in Section 4.

2. PROBLEM FORMULATION

2.1 Combined Environmental Economic Dispatch
(CEED)

The main objective of classical economic load dispatch
(ELD) is to minimise the total cost of generation
by determining the optimum scheduling of generating
units and ensuring the satisfaction of system constraints.
This study has divided the operation constraints into
two different categories. The first category is related
to the particular characteristics of the generating units
such as generation capacity, the valve-point effect and
environmental emission levels, while the second one is
associated with physical constraints such as ramp rate
limits, prohibited operating zones and spinning reserve
levels.

The cost objective function of CEED can be represented
by a quadratic cost function [30]:

fgc(Pi) =
NG

∑
i=1

(ai +biPi + ciP2
i ) [$/h] (1)

The effect of valve-point loading can be modelled by
adding a recurring rectified term to the main cost function
as given in [30], where the cost function curve with the
effect of valve-point loading is shown in Fig. 1:

fgc(Pi) =
NG

∑
i=1

[(ai +biPi + ciP2
i )

+|di sin(ei × (Pmin
i −Pi))|] [$/h] (2)

Figure 1: Fuel cost function curve for CEED with
valve-point loading effect
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Most thermal and fossil-based generating units are major
sources of NOx, and have been strictly advised by the
environmental protection agency (EPA) to reduce their
emissions. In this study, the emission of NOx is considered
to be optimally moderated from the environmental
preservation point of view. The emission cost function,
including the valve-point effect, can be expressed as
follows [31]:

femc(Pi) =
NG

∑
i=1

[(αi +βiPi + γiP2
i )+ηi exp(δiPi)] [lb/h]

(3)

The total generation cost of CEED as a multi-objective
optimisation can be converted into a single objective
function through the combination of generation cost and
emission cost as well as the consideration of the price
penalty factor hi [32]:

Fct(Pi) = fgc +hi × femc(Pi) (4)

Fct(Pi) =
NG

∑
i=1

[(ai +biPi + ciP2
i )+ |di sin(ei × (Pmin

i −Pi))|]

+hi ×
NG

∑
i=1

[(αi +βiPi + γiP2
i )+ηi exp(δiPi)] [$/h]

(5)

The proposed CEED objective function is subject to the
following constraints:

Equality constraint: The total power output of the system
should be capable of meeting the total load demand and
power losses (I), and in the case of a lossless systems it
should be able to satisfy the total load demand (II).

(I)
NG

∑
i=1

Pi = PD +PL (6)

(II)
NG

∑
i=1

Pi = PD (7)

The power loss of the system can be determined by Korn’s
loss formula [33]:

PL =
N

∑
i=1

N

∑
j=1

PiBi jPj +
N

∑
i=1

B0iPi +B00 (8)

Or re-written in matrix notation as:

PL = PT [B]P+B0P+B00 (9)

Inequality constraint: For stable operation, all generating
units are strictly constrained to operate at their minimum
and maximum generation limits; consequently the

inequality constraint is:

Pmin
i ≤ Pi ≤ Pmax

i for i = 1,2,3 . . .NG (10)

Ramp rate limit: conforming to [34], the inequality
constraints due to ramp rate constraints for changes in
generation levels are modified; (I) as generation increases
and (II) as generation decreases.

(I) Pi −P0
i ≤URi (11)

(II) P0
i −Pi ≤ DRi (12)

By considering the inequality constraints, equations (11)
and (12) can be rewritten:

max(Pmin
i ,P0

i −DRi)≤ Pi ≤ min(Pmax
i ,P0

i +URi) (13)

Fig. 2 shows the mechanism of the generating units when
considering the ramp rate limits.

Figure 2: Operation of generating units when considering
the ramp rate limits

Prohibited operating zone (POZ): the POZ is an interval
in which generating units are not able to operate due to the
inherent nature of thermal units that may have steam valve
operation or vibrations in the shaft bearings. The principle
of POZ has been depicted in Fig. 3. The feasible operating
zones of unit i are described as [35]:



Pmin
i ≤ Pi ≤ Pl

i,l
Pu

i,l ≤ Pi ≤ Pl
i,k

Pu
i,k ≤ Pi ≤ Pl

i,nzi
Pu

i,nzi
≤ Pi ≤ Pmax

i

for k = 1,2,3 . . .nzi ∀i /∈ Ω

(14)

Spinning reserve: to have a reliable operation a minimum
spinning reserve should be considered to meet the load
fluctuation and unforeseen outages of the generating units
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and grid components [35]:

NG

∑
i=1

Si ≥ SR (15)

Where:

Si = min(Pmax
i −Pi,Smax

i ); Si = 0;∀i ∈ Ω (16)

Where Ω is related to sets of units having POZs. It is
significant to mention that spinning reserve will be carried
out from units without POZs. Those units having no
POZs are responsible for maintaining the system spinning
reserve requirements which can be set as a fraction of the
load demand or equal to the capacity of the largest unit
[36].

Figure 3: Fuel cost function curve with prohibited operating
zones

Price penalty factors: Four different types of price
penalty factors (PPFs) are proposed. PPFs describe the
proportion between fuel cost and emission cost curves
without considering the valve point effect. The PPFs are
as follows:

Max-Max:

hmax−max
i =

ai +biPmax
i + ci(Pmax

i )2

αi +βiPmax
i + γi(Pmax

i )2 [$/lb] (17)

Max-Min:

hmax−min
i =

ai +biPmax
i + ci(Pmax

i )2

αi +βiPmin
i + γi(Pmin

i )2 [$/lb] (18)

Min-Max:

hmin−max
i =

ai +biPmin
i + ci(Pmin

i )2

αi +βiPmax
i + γi(Pmax

i )2 [$/lb] (19)

Max-Max:

hmin−min
i =

ai +biPmin
i + ci(Pmin

i )2

αi +βiPmin
i + γi(Pmin

i )2 [$/lb] (20)

The main purpose of PPFs is to convert the physical
implication of the emission standard from the emission
weight to the fuel cost of the emission.

2.2 Evaluation of generation levels

To ensure that the equality constraint of the system is
always maintained, this study proposes a power balance
violation (PBV) formulation to continuously satisfy the
equality constraint. Equation (6) is rewritten as:

NG

∑
i=1

Pi ≥ PD +PL (21)

by modification of equation (21), the PBV is formulated
as:

PBV = max

(
1− ∑NG

i=1 Pi −PL

PD
,0

)
(22)

As long as equation (21) is satisfied then the PBV is equal
to zero. To maintain the equality constraint and find the
most optimal solutions in the search space, the algorithm
accepts the solutions which are able to hold the following
relation:

PD +PL −
NG

∑
i=1

Pi = 0 (23)

To accelerate the process of convergence to achieve
optimal solutions, this study has used an evaluation
function to push the answers of the optimisation algorithm
towards the most optimum solution possible by means of
a penalisation factor. The proposed method evaluation
function which would be evaluated for each iteration is
formulated as:

Feval = Fct(Pi)× (1+PF ×PBV ) (24)

In this study PF has been considered to be equal to 1000,
in many practical problems, the selection of the parameters
is subject to the characteristics of the problem.

2.3 Cultural Algorithms

The principles behind the cultural algorithm were proposed
by Reynolds in 1994 [27]. CA is a type of computational
intelligence algorithm which is inspired by the cultural
inheritance process of several generations. The idea of this
innovative optimisation technique is that culture has the
potential to be emblematically encoded and shared among
populations of a society [37].
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The mechanism of CA is based on the discovery of an
elite individual in a population, and setting the aim of the
population to reach the same level as the elite’s knowledge.
The culture evolution of the population would improve the
adaptability of the individuals towards the targeted aims
and the speed of this process would be increased through
guidance by the elite’s knowledge.

The basic concepts of cultural algorithm: Culture is the
accumulated experience and learned behaviour of a group
of people which can be called the tradition of that group of
people and which is maintained through generations.

CA is composed of two basic spaces: population space
(to illustrate a genetic component according to Darwinian
Theory) and belief space (to illustrate cultural principles)
which differentiate the CAs from other evolutionary
algorithms [37]. The population space represents and
categorises the individuals based on their specifications
in each set, while the belief space collects the knowledge
obtained by individuals.

At each iteration of CA, individuals in their population
space can be substituted and updated by some of their
generations via a communication protocol. This process
can be handled by implementing any population-based
operators or any other evolutionary algorithms such as
ABC, BBO, or FA [6]. The framework of CA is depicted
in Fig. 4.

Figure 4: Illustration of conceptual framework of cultural
algorithm based on the two spaces

In each generation, individuals would be evaluated by
the fitness function that is determined by the evolutionary
algorithm in the population space. Thereafter, an
acceptance function is utilised to specify which individuals
in the current population have a major influence on current
beliefs.

The experience that has been acquired by accepted
individuals would be applied to adjust the beliefs. Once

the beliefs have been adjusted then they will be used to
influence the improvement of the population. In order
to vary the population space, the variation operators are
responsible for using the beliefs to regulate the changes
in individuals, where it is possible to use a crossover and
mutation function or a self-adapting control parameter as
the variation operator [38].

Belief space: comprises a set of experience and knowledge
structure of the individuals. Based on Engelbrecht [38],
CA is composed of four sections, such as: knowledge
components, acceptance functions, belief space adjustment
and influence functions.

The sections of belief space are introduced as follows:

(1) Knowledge component: The belief space stores a
set of knowledge components in order to demonstrate
the behavioural patterns of accepted individuals from the
population space. The forms of knowledge components
and representation of data structure depends on the
characteristics of the problem. This study has used the
vector representations to describe this component [39].
The belief space can be categorised in two knowledge
components [39]:

(1.1) situational knowledge component: this component
is responsible for finding the best solution in a particular
period of time or a generation.

(1.2) normative knowledge component: this component
provides a criterion for each individual behaviour which
would be considered as a guideline for the mutational
adjustment of individuals. In the process of optimisation
these norms or intervals specify the suitable range that can
be searched in each dimension.

The belief space can be mathematically expressed based
on the definition of its components [38-39]:

B(t) = (S(t),N(t)) (25)

Where:

S(t) = {ŷ1(t) : l = 1,2,3, . . . ,ns} (26)

N(t) = (X1(t),X2(t),X3(t), . . . ,Xnx(t)) (27)

For each dimension of belief space the following
information is required to be saved:

Xj(t) = (I j(t),L j(t),Uj(t)) (28)

Subject to:

I j(t) = [xmin
j ,xmax

j ] = [l,u] (29)

(2) Acceptance functions: To shape the beliefs in
a particular population, this function decides which
individuals of population will be utilised for this purpose.
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Acceptance functions can be arithmetically designed in
two ways [38]:

(2.1) static: n% individuals of a population will be
selected.

(2.2) dynamic: by using any selection methods of
evolutionary algorithms such as elitism or roulette-wheel
selection.

In this study, the number of the selected individuals is
determined by the following method according to [38]:

nB(t) =
[ntotγ

t

]
,γ ∈ [0,1] (30)

Where:

nB is the number of selected individuals
for forming the beliefs in a population

t is the number of iterations (generation)
npop is the number of population

(3) Belief space adjustment: after selecting the number
of individuals to form the beliefs, the interval of
knowledge components can be updated through the
following formulation [38-39]:

(3.1) Situational knowledge:

S(t +1) = {ŷ(t +1)} (31)

Where:

ŷ(t +1) =




minl=1,...,nB(t) {Xl(t)} i f f (minl=1,...,nB(t) {Xl(t)})
< f (ŷ(t)

ŷ(t) otherwise
(32)

(3.2) Normative knowledge:

xmin
j (t +1) =




xl j(t) i f xl j(t)≤ xmin
j (t)

or f (Xl(t))< L j(t)
xmin

j (t) otherwise
(33)

For updating L j(t):

L j(t +1) =





f (X)l(t)) i f xl j(t)≤ xmin
j (t)

or f (Xl(t))< L j(t)
L j(t) otherwise

(34)

xmax
j (t +1) =





xl j(t) i f xl j(t)≤ xmax
j (t)

or f (Xl(t))<Uj(t)
xmax

j (t) otherwise
(35)

For updating Uj(t):

Uj(t +1) =





f (X)l(t)) i f xl j(t)≤ xmin
j (t)

or f (Xl(t))<Uj(t)
Uj(t) otherwise

(36)

Where:

Xl(t), l = 1,2,3 . . . ,nB(t) (37)

(4) Influence functions: the responsibility of these
functions is to influence the population space based on
the adjusted beliefs in order to define the mutational step
size, and the direction of change. All the CAs have
the same procedure until this point, the study proposes
different versions of CAs according to their influence
function specifications. As mentioned in [38-39], the CAs
are categorised in four different versions:

(4.1) Cultural algorithm version 1 (CA1): only the
normative knowledge component is used to specify step
sizes.

xi j(t) = xi j(t)+δ j ×Ni j(0,1) (38)

Equation (37) can be rewritten as:

xi j(t) = xi j(t)+δ j ×Ni j(0,1) (39)

Where:

δ j(t) = [xmax
j (t)+ xmin

j (t)] (40)

(4.2) Cultural algorithm version 2 (CA2): only the
situational knowledge component is used to specify the
direction changes. In this version of CA, we assume the
strategy parameter is greater than zero (σi j > 0).

x́i j(t) =




xi j(t)+ |σi jNi j(0,1)| i f xi j(t)< ŷ j(t)
xi j(t)−|σi jNi j(0,1)| i f xi j(t)> ŷ j(t)
xi j(t)+σi jNi j(0,1) otherwise

(41)

(4.3) Cultural algorithm version 3 (CA3): this version
is the combination of both knowledge components. The
situational knowledge component is used to specify the
step sizes, while the normative knowledge component is
used for direction changes. The definition of x́i j(t) will
remain the same as CA2, but the strategy parameter would
be redefined as:

σi j(t) = α[xmax
j (t)+ xmin

j (t)],0 < α < 1 (42)

Where α denotes the ratio of the strategy parameter.

(4.4) Cultural algorithm version 4 (CA4): in the fourth
version of CA, the normative knowledge component is
assigned to handle the step sizes and direction changes.

xi j(t) =




xi j(t)+ |σi jNi j(0,1)| i f xi j(t)< xmin
j (t)

xi j(t)−|σi jNi j(0,1)| i f xi j(t)> xmax
j (t)

xi j(t)+βσi jNi j(0,1) otherwise
(43)

In CA4, the scaling factor is applicable for all positive
values (β > 0), and the strategy parameter can be defined
as is described in CA3. In all versions of CA influence
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functions, subscript i denotes the individual and subscript
j describes the type of the knowledge component.

3. RESULTS AND DISCUSSION

The proposed algorithms were tested on different scenarios
of CEED that consider several physical constraints of
generating units and system, including:

• with and without transmission loss
• with and without maintaining spinning reserve

constraint
• with and without prohibited operating zones
• valve-point effect
• ramp rate limits
• fuel emission constraint
• price penalty factors

To investigate and verify the robustness of the proposed
methods, they were tested on three different systems of
5, 20 and 50 generating units respectively. All methods
were implemented and compared in this study to show the
capability of the methodology. The codes and algorithms
were developed on MATLAB 2013a to perform the case
studies and executed on a personal computer with the
following specifications, Intel� CoreT M i7-3770 (3.40
GHz), 8.00 GB RAM (DDR5) and windows 8.1 operating
system.

As all the evolutionary algorithms are highly sensitive
to the tuning of their decision parameters and variables,
the study selected the suitable settings for all versions of
CA. These parameters are population size npop, acceptance
ratio Paccept , ratio of strategy parameter α, scaling
coefficient β set to 50, 0.15, 0.25, and 0.5 respectively.
To have a uniform comparison among all compared
evolutionary algorithms, the spinning reserve requirement
was set to 5% of total load demand as in [1]. The maximum
iterations for all the trials were fixed to 300.

To validate the effectiveness of the proposed method of the
study, the following case studies have been analysed and
compared:

Case 1: 5 generating units; without considering POZ

Case 2: 20 generating units (four times replication of
the test system of case 1); without considering power
transmission losses and maintaining spinning reserve

Case 3: 50 generating units (ten times replication of
the test system of case 1); without considering power
transmission losses and maintaining spinning reserve

3.1 Case 1

A small test system comprising of 5 generating units was
considered based on [40–42] with a minor modification
of the test system. The system specifications are given in
Table (1), (2) and (3). The loss coefficients (B-coefficients)
of the transmission network are given in Table (4), where
the values are expressed in p.u. on a 100 MVA base. Table
1 lists the physical operating limits and cost coefficients
of generating units such as quadratic cost, proportional
cost and fixed cost. Table 2 lists the ramping limits
as well as the quantitative information of the prohibited
zones for the generating units. Table 3 lists a detailed
associated emission cost for the NOx through its respective
coefficients costs. The valve-point effect, ramp rate limits,
spinning reserve requirement, emission constraints and
the effect of price penalty factors (PPFs) on the total
generation cost were considered for the study. The total
load demand of the test system was 730 MW. In this
case, 100 trials have been carried out for the purpose of
producing the results.

The convergence processes of the proposed algorithm with
different PPFs are shown in Fig 6 (a, b, c and d) where the
total cost is plotted against the number of iterations. The
obtained results are compared with BBO, ACOR, ABC,
PSO, GA, the combination of GA and PSO (GAPSO), FA.
Fig. 6.a shows the convergence process with Max-Max
PPF. As shown, CA3 has the second highest initial guess,
however it reaches its optimum level in less than 50
iterations with the last step of reduction occurring at
the 50th iteration with a best minimum cost of 2039.46
($/h). In terms of the convergence process, most of the
algorithms have reached their optimum level after the 50th
iteration, with BBO only succeeding in reach to the final
iteration at close to the 250th iteration.

By analysing Fig. 6(a, b, c and d), it can be seen that the
proposed method is the most capable technique to find the
best solution where its best obtained cost is at Min-Max
PPF at 2039.17 ($/h). It is noticeable for all PPFs cases, the
proposed method has achieved the final optimisation stage
in less than 70 iterations, which indicates the convergence
speed of the proposed method. The maximum cost,
average cost, minimum cost and average elapsed time
for the proposed method and other methods are shown
in Table (5). For ease of comparison, the elapsed time
of each method is evaluated as an average. From Table
(5), it is evident that the proposed method has achieved
the lowest average time and minimum total generation
cost with respect to all PPFs cases among all the other
methods. The most optimum average cost was achieved
by CA3 through Min-Max PPF at 2042.5414 ($/h), where
the average elapsed time was 2.4571 seconds.

The breakdown of generator schedules is given in Table
(6). The best solution in the solution space is shown in
Figure (5), where the best solution is the solution that
has the lowest total cost and lowest emission cost without
violating any physical constraint.
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Figure 5: Best obtained solution in the solution space for case 1

Table 1: Cost coefficients and physical operating limits of generating units

Unit ai ($/h) bi ($/MWh) ci $/(MW )2h di ($/h) ei (1/MW ) Pmin
i (MW ) Pmax

i (MW )

1 25 2 0.008 100 0.042 10 75
2 60 1.8 0.003 140 0.04 20 125
3 100 2.1 0.0012 160 0.038 30 175
4 120 2 0.001 180 0.037 40 250
5 40 1.8 0.0015 200 0.035 50 300

Table 2: Ramp rate limits and POZ information of generating units

Unit P0
i (MW ) URi (MW ) DRi (MW ) POZi (MW )

1 70 30 30 [60 65]
2 100 30 30 [70 75]
3 150 40 40 [120 125]
4 110 50 50 [80 90]
5 270 50 50 [230 240]

Table 3: Emission curve coefficients of generating units

Unit αi (lb/h) βi (lb/MWh) γi lb/(MWh)2h ηi (lb/h) δi (1/MW )

1 80 -0.805 0.018 0.655 0.02846
2 50 -0.555 0.015 0.5773 0.02446
3 60 -1.355 0.0105 0.4968 0.0227
4 45 -0.6 0.008 0.486 0.01948
5 30 -0.555 0.012 0.5053 0.02075

Table 4: The transmission loss coefficients

0.000049 0.000014 0.000015 0.000015 0.000020
0.000014 0.000045 0.000016 0.00002 0.000018

B 0.000015 0.000016 0.000039 0.000010 0.000012
0.000015 0.000020 0.000010 0.000040 0.000014
0.000020 0.000018 0.000012 0.000014 0.000035
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(a) Max-Max PPF

(b) Max-Min PPF

(c) Min-Max PPF

(d) Min-Min PPF

Figure 6: Convergence process of CEED cost (5 generating units)
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Table 5: Comparison of the obtained results for case 1

5 Units System Max Cost Avg Cost Min Cost Avg Elapsed Time (s)
Max Max 2054.5656 2047.5029 2045.8321

BBO Max Min 2065.2573 2061.2359 2059.9912 8.4732
Min Max 2050.3511 2046.0231 2044.6514
Min Min 2052.2072 2049.5228 2046.7632
Max Max 2305.1833 2067.3245 2041.4102

ACOR Max Min 2167.204 2057.1314 2054.7065 6.2199
Min Max 2187.797 2049.3181 2039.7443
Min Min 2144.6517 2049.8958 2044.4932
Max Max 2047.8929 2046.2479 2046.5098

FA Max Min 2062.8454 2061.1854 2061.6578 2.8594
Min Max 2047.8448 2045.8421 2046.1733
Min Min 2051.3145 2049.3753 2049.9321
Max Max 2049.5923 2047.374 2046.5013

GAPSO Max Min 2063.0634 2062.4204 2061.5215 23.2906
Min Max 2049.798 2047.1124 2046.2341
Min Min 2051.9561 2050.6466 2049.9444
Max Max 2049.7785 2047.5568 2046.5321

PSO Max Min 2063.3545 2062.5546 2061.7235 4.2648
Min Max 2049.8845 2047.3345 2047.3121
Min Min 2051.9623 2050.7465 2050.2632
Max Max 2049.8701 2048.0021 2046.6845

GA Max Min 2063.4025 2062.6801 2061.9432 5.4049
Min Max 2050.1478 2047.7468 2046.3145
Min Min 2051.8845 2050.8865 2050.2842
Max Max 2049.9904 2049.9879 2047.3458

ABC Max Min 2064.6541 2062.8788 2063.23 6.3695
Min Max 2050.7456 2048.4563 2048.2032
Min Min 2052.3545 2051.0002 2051.4433
Max Max 2061.4022 2053.9172 2051.1125

CA1 Max Min 2081.2015 2068.8055 2066.1124 1.2386
Min Max 2061.2573 2053.1706 2052.0645
Min Min 2065.9603 2056.1002 2053.1237
Max Max 2061.8546 2053.9832 2049.3154

CA2 Max Min 2081.5487 2069.0458 2065.9541 1.2594
Min Max 2061.7568 2054.0001 2051.0123
Min Min 2066.1254 2056.7453 2051.7311
Max Max 2053.7469 2042.1457 2039.4621

CA3 Max Min 2063.6157 2056.2873 2053.9714 1.3578
Min Max 2055.5814 2042.5414 2039.1724
Min Min 2056.2588 2045.6611 2042.8214
Max Max 2053.8546 2042.5436 2040.9012

CA4 Max Min 2063.7654 2057.021 2054.4532 1.3281
Min Max 2056.3254 2042.8547 2039.6714
Min Min 2056.5487 2045.8745 2043.3302
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Table 6: The best obtained solutions of the proposed method (CA3) for case 1

No. of units 1 2 3 4 5
Schedule (MW) 32.2494 108.7979 161.0268 226.8128 212.3711

Generation Cost ($/h) 97.8191 291.3472 469.2718 625.0697 489.9202
Valve-point Cost ($/h) 1.6309 8.6734 13.8865 21.6623 19.8049
Emission Cost ($/h) 0.0076 0.0218 0.0119 0.026 0.0247

Total Cost ($/h) 2039.178
Ploss (MW) 11.258

3.2 Case 2

In order to demonstrate the robustness of the proposed
method on a larger test system, the proposed method was
applied to a 20 unit system. All the physical constraints
of generating units as described in case 1 (aside from
the spinning reserve requirement) as well as the effect of
POZs were considered in this case. The total load demand
was 2920 MW. In this case, transmission line losses were
neglected. To have the refinement process 100 runs have
been performed for each method. The comparison between
the proposed method and the other evolutionary algorithms
during the convergence process with the consideration of
their PPFs are depicted in Fig 8 (a, b, c and d).

It is clear from Fig 8 (a, b, c and d) that the proposed
method provides the lowest cost among the other methods
in all cases. The convergence process has been extended
in all methods due to the enlargement of the test system;
nevertheless the proposed method has converged in less
than 100 iterations which indicates its effectiveness. It is
noticeable that the Min-Max and Min-Min PPFs provide
the lowest and highest total generation cost for the

proposed method with costs of 8057.23 and 8070.21
($/h) respectively. The detailed results of 20 unit system
with respect to all PPFs are shown in Table (7). It
is clear that the proposed method obtained the lowest
generation cost when compared to other techniques, where
the minimum average cost was computed by its Min-Max
PPF to be 8062.7931 ($/h). It is significant to mention
that even by enlarging the test system where the degrees
of non-convexity and non-linearity of the problem were
significantly increased, the proposed method managed to
maintain a fast run time and its efficiency where the
difference by the previous case is only 1.0993 s. The
proposed method in comparison to the other versions of
cultural algorithm has a slightly longer time to converge
as it is using both knowledge components (situational and
normative) for its influence function. Figure (7) illustrates
the best obtained solution in the solution space where the
best solution is the solution that has the lowest total cost
and lowest emission cost without violating any physical
constraint. Table (8) lists the best solution detailed
information for generator schedules and their associated
costs.

Figure 7: Best obtained solution in the solution space for case 2
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(a) Max-Max PPF

(b) Max-Min PPF

(c) Min-Max PPF

(d) Min-Min PPF

Figure 8: Convergence process of CEED cost (20 generating units)
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Table 7: Comparison of the obtained results for case 2

20 Units System Max Cost Avg Cost Min Cost Avg Elapsed Time (s)
Max Max 8098.153 8074.88 8063.5204

BBO Max Min 8144.5893 8132.983 8117.5522 24.3705
Min Max 8090.8475 8073.56 8057.7132
Min Min 8103.9127 8089.66 8071.3245
Max Max 8111.0125 8095.4521 8087.1253

ACOR Max Min 8201.5435 8185.4565 8144.3356 15.2124
Min Max 8225.5423 8100.0204 8088.6745
Min Min 8254.8457 8116.1024 8098.6974
Max Max 8104.181 8083.8803 8084.4253

FA Max Min 8171.9771 8142.0902 8135.8323 2.8965
Min Max 8100.926 8082.7155 8079.5345
Min Min 8129.6365 8098.029 8091.0254
Max Max 8083.9209 8073.9642 8072.1245

GAPSO Max Min 8141.7844 8131.5726 8128.2845 29.0153
Min Max 8083.1013 8072.2043 8071.3847
Min Min 8093.1127 8085.701 8084.2456
Max Max 8101.2544 8088.4521 8073.5412

PSO Max Min 8145.5478 8134.8542 8130.2045 8.4742
Min Max 8090.6545 8086.7546 8071.5942
Min Min 8125.6587 8097.5687 8085.4675
Max Max 8107.8542 8089.4574 8073.9245

GA Max Min 8187.5687 8135.8765 8131.8345 9.5049
Min Max 8100.2548 8088.5544 8071.7745
Min Min 8145.6578 8101.2587 8085.9175
Max Max 8212.45 8100.4525 8080.2745

ABC Max Min 8275.3587 8175.6547 8135.4457 13.4197
Min Max 8212.5435 8111.5478 8072.7065
Min Min 8346.5435 8101.4587 8086.2745
Max Max 8188.5478 8135.4578 8114.0423

CA1 Max Min 8254.5478 8178.7723 8174.8545 2.1535
Min Max 8145.8528 8122.7744 8108.9147
Min Min 8185.9874 8150.5547 8128.6475
Max Max 8133.5874 8117.5153 8112.5954

CA2 Max Min 8194.3054 8175.8547 8172.5874 2.3326
Min Max 8134.3103 8109.3466 8108.7387
Min Min 8150.7771 8128.0509 8126.6787
Max Max 8104.6353 8067.5709 8060.8475

CA3 Max Min 8158.7169 8118.3626 8117.4178 2.4571
Min Max 8102.5586 8062.7931 8057.2354
Min Min 8113.2448 8074.6219 8070.2145
Max Max 8104.7854 8079.8745 8061.6354

CA4 Max Min 8167.5841 8137.8745 8122.7854 2.4003
Min Max 8103.0124 8078.4658 8058.1088
Min Min 8113.4521 8095.5478 8076.7754
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Table 8: The best obtained solutions of the proposed method (CA3) for case 2

No. of units Schedule (MW) Generation Cost ($/h) Valve-point Cost ($/h) Emission Cost ($/h)
1 56.2537 162.8232 3.3899 0.0097
2 108.0018 289.3965 8.5958 0.0215
3 167.0662 484.3324 14.5249 0.0133
4 192.4141 541.8513 17.6879 0.0177
5 240 558.4 23.1608 0.0327
6 34.8082 104.3093 1.8184 0.0077
7 104.7494 281.4661 8.2784 0.0204
8 140.8305 419.544 11.7503 0.008
9 228.4784 629.1591 21.8545 0.0263
10 240.6657 560.0783 23.2416 0.033
11 43.9795 128.4326 2.4906 0.0083
12 104.1066 279.9063 8.2157 0.0202
13 151.0329 444.5421 12.8297 0.0098
14 183.0794 519.6769 16.6077 0.0158
15 252.4492 590.0045 24.6708 0.0371
16 32.08 97.3929 1.6185 0.0076
17 116.6018 310.6711 9.4345 0.0248
18 137.1604 410.6125 11.3619 0.0074
19 180.1106 512.661 16.2641 0.0152
20 206.1316 474.7726 19.0462 0.0229

Total Cost ($/h) 8057.2343
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3.3 Case 3

To verify the capability of the proposed method with
greater complexity and non-convexity, the method has
been tested on a 50 unit system, which is the largest test
system that considers all the physical constraints of the
generating units found in literature. The total demand for
the system is equal to 7300 MW. Fig 10 (a, b, c and d)
represent the convergence process of optimisation, where
the study was successfully employed and the obtained
results show the effectiveness of CA3 in finding the most
optimum solution in all the considered PFFs cases. By
increasing the complexity of the solution, CA3 has been
able to acquire the lowest cost solution as well as reaching
the final value of the convergence process in almost 100
iterations in most cases. The minimum total cost obtained
by CA3 through Min-Max PPF is 20181.96 ($/h).

The details of the solutions are found in the Table (9),

where CA3 has acquired the lowest total generation costs
in comparison to the other methods. As is seen, all the
versions of CA are fairly fast in terms of convergence while
CA3 is the most robust and fastest algorithm in finding the
most optimal solution. The second algorithm which has
almost the same time to convergence is FA, however from
the results it is obvious that FA is not as capable as CA3
in terms of computation efficiency and convergence. In
this case the best average cost has been obtained by the
proposed method of the study (CA3) at 20190.2474 ($/h)
within 3.7235 seconds

Detailed information regarding the best solution generator
schedules and associated costs is listed in Table (10). Fig
(9) illustrates the best solution in the solution space, where
the best solution is the solution that has the lowest total cost
and lowest emission cost without violating any physical
constraint.

Figure 9: Best obtained solution in the solution space for case 3
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(a) Max-Max PPF

(b) Max-Min PPF

(c) Min-Max PPF

(d) Min-Min PPF

Figure 10: Convergence process of CEED cost (50 generating units)
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Table 9: Comparison of the obtained results for case 3

50 Units System Max Cost Avg Cost Min Cost Avg Elapsed Time (s)
Max Max 20486.2304 20245.0990 20224.5400

BBO Max Min 20637.9955 20383.5605 20356.8399 49.4478
Min Max 20370.6733 20233.6180 20226.9600
Min Min 20400.5471 20264.9528 20241.7100
Max Max 20422.1366 20301.0561 20256.0804

ACOR Max Min 20592.5007 20459.5694 20403.2000 23.4582
Min Max 20374.6079 20319.3026 20295.6132
Min Min 20413.5235 20316.6638 20291.8900
Max Max 20399.4607 20274.9511 20241.5302

FA Max Min 20516.1290 20420.7332 20395.9400 3.2163
Min Max 20294.6761 20251.9225 20234.9412
Min Min 20482.8795 20332.3212 20289.4600
Max Max 20495.4164 20223.9754 20212.6601

GAPSO Max Min 20493.7161 20351.2567 20340.2991 48.1425
Min Max 20376.1368 20209.1629 20192.1619
Min Min 20388.8804 20246.6771 20234.2913
Max Max 20370.6965 20229.7232 20217.0722

PSO Max Min 20637.1721 20360.1736 20350.8318 14.2585
Min Max 20519.0375 20231.8353 20214.8612
Min Min 20428.6969 20255.4949 20239.3713
Max Max 20334.6094 20263.9854 20254.2839

GA Max Min 20563.8023 20380.1259 20364.5017 16.1012
Min Max 20346.2926 20244.1745 20230.6732
Min Min 20384.2346 20263.2494 20249.0332
Max Max 20406.7888 20277.9392 20266.4438

ABC Max Min 20610.1221 20395.0305 20378.6912 20.3574
Min Max 20344.7634 20257.7363 20240.2925
Min Min 20574.4659 20303.0045 20284.0838
Max Max 20382.1294 20276.4824 20270.7821

CA1 Max Min 20545.0166 20428.1621 20418.4901 3.0765
Min Max 20349.7902 20276.4795 20271.4176
Min Min 20444.1817 20312.4488 20298.1400
Max Max 20374.2832 20271.1612 20261.2616

CA2 Max Min 20577.7849 20425.5726 20413.1428 3.5132
Min Max 20419.3395 20274.1327 20259.6235
Min Min 20433.4961 20307.4231 20294.6977
Max Max 20294.3789 20190.7251 20183.1180

CA3 Max Min 20540.3924 20349.5904 20331.5500 3.7235
Min Max 20318.4603 20190.2474 20181.9615
Min Min 20373.0573 20228.6551 20218.6160
Max Max 20317.6973 20198.0954 20187.3556

CA4 Max Min 20493.7161 20351.2567 20340.2991 3.5257
Min Max 20320.1584 20191.5621 20185.4861
Min Min 20379.9107 20236.2923 20221.2304



Vol.107 (3) September 2016SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS164

Table 10: The best obtained solutions of the proposed method (CA3) for case 3

No. of units Schedule (MW) Generation Cost ($/h) Valve-point Cost ($/h) Emission Cost ($/h)
1 40 117.8 2.1989 0.008
2 116.6705 310.8429 9.4413 0.0248
3 160.6625 468.3663 13.848 0.0118
4 158.3568 461.7905 13.7443 0.0116
5 252.9479 591.2801 24.7313 0.0373
6 40 117.8 2.1989 0.008
7 109.7629 293.7169 8.7675 0.0222
8 162.3045 472.4507 14.0216 0.0122
9 159.8847 465.3326 13.9214 0.0118
10 251.3998 587.3225 24.5436 0.0367
11 40.0138 117.8364 2.1999 0.008
12 120.2852 319.9189 9.7937 0.0263
13 170.6043 493.1961 14.8988 0.0141
14 160 465.6 13.9347 0.0118
15 252.774 590.8353 24.7102 0.0372
16 43.5479 127.2671 2.4589 0.0083
17 121.2372 322.3225 9.8865 0.0267
18 160.9754 469.1442 13.8811 0.0119
19 159.0099 463.304 13.82 0.0117
20 245.9009 573.3225 23.8767 0.0348
21 40.1514 118.1998 2.21 0.008
22 112.1372 299.5711 8.9991 0.0231
23 162.0619 471.847 13.996 0.0121
24 159.883 465.3285 13.9212 0.0118
25 265.3076 623.1359 26.229 0.0422
26 40.222 118.3864 2.2152 0.008
27 114.4183 305.2277 9.2216 0.0239
28 135.2949 406.0849 11.1644 0.0071
29 160 465.6 13.9347 0.0118
30 271.1008 638.2249 26.9305 0.0446
31 40.2503 118.4613 2.2173 0.008
32 119.811 318.7238 9.7475 0.0261
33 164.7089 478.4434 14.2758 0.0127
34 159.9998 465.5995 13.9347 0.0118
35 266.2775 625.655 26.3465 0.0426
36 40.4806 119.0706 2.2342 0.008
37 122.9967 326.7787 10.0581 0.0274
38 147.5973 436.0962 12.4663 0.0092
39 156.0101 456.3594 13.4723 0.0112
40 240 558.4 23.1608 0.0327
41 42.303 123.9223 2.3677 0.0082
42 108.4978 290.6113 8.6441 0.0217
43 154.0886 452.0781 13.1529 0.0104
44 159.9994 465.5986 13.9346 0.0118
45 240 558.4 23.1608 0.0327
46 40 117.8 2.1989 0.008
47 118.785 316.1426 9.6474 0.0257
48 164.2809 477.3758 14.2305 0.0126
49 160 465.6 13.9347 0.0118
50 266.9978 627.5278 26.4337 0.0429

Total Cost ($/h) 20181.9612
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4. CONCLUSION

Four different versions of CA have been proposed to
solve the CEED problem while the main emphasis
of emission reduction is focused on the NOx gases.
The proposed method employed the two knowledge
components of the belief space to characterise the versions
of the CA. To enhance the performance of the proposed
algorithms, various sophisticated and highly efficient
influence functions based on that of mixture situational
and normative knowledge component were applied to the
CA versions to find the optimal solution in the complex
non-linear problem of CEED. In order to validate the
effectiveness of the proposed method, different test cases
(5, 20 and 50 units system) with the inclusion of network
and physical constraints of generating units such as the
valve-point effect, emission constraints, the ramp rate
limits and the prohibited zones have been studied. To
maintain the equality and inequality constraints of CEED,
an effective and simple function handle was introduced
to find the feasible space and escape local optima. The
multi-objective CEED problem has been converted to a
single objective problem through four types of PPFs to
investigate the precise effects of emission levels on the
total generation costs. The simulation results demonstrate
the superiority of the CA3 in achieving the best possible
solution in a fast computation time in comparison with
the other methods in all the test cases. This is a
considerable feature for large-scale power systems. The
results conclude that Min-Max price penalty factor yields
a noticeably lower total generation cost for CEED among
all the studied cases of PPFs.
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