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Abstract: The paper describes a method and proposes an algorithm for a bilinear observer design as 
part of a state estimation solution for a Continuous Countercurrent Ion Exchange (CCIX) process used 
for desalination of water. The aim of the design is to determine immeasurable process state variables 
using real CCIX measurement data obtained from a different study. The solution requires 
determination of the observer gain matrix and it is formulated on the basis of the pole placement 
method. The contribution of the paper is in the developed bilinear dynamic models of the process and 
the observer and in the extending of the pole placement method for the special matrices of the bilinear 
observer. An analytical procedure is developed and implemented for calculation of the characteristic 
equation of the observer as part of calculation of the observer gain matrix. 
Matlab and SIMULINK software programs for determining the estimated states are developed. 
Investigation of the performance of the bilinear observer and the closed loop system under various 
constant values of the control input and different state initial conditions is performed. The results are 
presented and discussed. 
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1. INTRODUCTION AND BACKGROUND 

A bilinear model of a Continuous Countercurrent Ion 
Exchange (CCIX) process described in [1–3] has been 
developed with the overall objective to be applicable to 
optimal control design of the process [4, 5]. Generally, in 
developing a model, more especially for the purpose of 
monitoring and optimal control of a process based on 
feedback controller design [6], some components of the 
process state are not known, and or cannot be measured 
directly from the process due to a lack of a suitable sensor 
or due to the nature of the plant [6–11]. This necessitates 
the need for developing a method for determining such 
states before application of the designed optimal control 
of the process [12]. [13] suggests that the state estimation 
problem in bilinear systems is a very important part of 
designing controllers in these systems. [14] considered 
the feedback property of the observer. [15] state that a lot 
of ground was covered in design of observers in 
determining the importance of observers in feedback 
control. In designing the observer, generally, two 
conditions must be met, 1) minimization of the error 
difference between the model states and the observer 
estimated states, and 2) keeping error dynamics and its 
rate at zero or close to zero under changing input or state 
variables [6, 7]. The observer methods for design can be 
divided into two main approaches: 1) for linear or 2) 
nonlinear systems. Unfortunately, a linear state observer 
is not adequate to reconstruct states of a nonlinear system 

and this suggests the need for the design of nonlinear 
observers [6, 13, 16]. Unlike in the linear case [9, 12, 16–
20], where the error dynamics are known to be 
independent of the input signal and the present value of 
the state; in the nonlinear or bilinear case, the error 
dynamics are not totally independent of the input signal 
and the state due to the bilinear dependence between 
these two variables [6, 13, 20]. 
With a lot of work in the (1980s) based on physical 
systems, which are mainly nonlinear or bilinear, the result 
was a lot of effort directed on linearization of the 
nonlinear systems [12, 16, 21, 22]. Different observer 
types are considered in [23]. [12, 21, 24] suggest that the 
common approach to solving observer design problem for 
nonlinear systems is to extend the linear Luenberger 
observer, the linear Kalman filter design approach or the 
pseudo-linearization techniques to the nonlinear systems. 
According to [23] these techniques are also valid only for 
small ranges around the operating point; and if applied in 
real time applications, they have an extensive 
computational requirement. A number of authors 
considered the nonlinear systems to be of Lipschitz type
in designing their nonlinear observers [16, 23, 25, 26]. 
[23] gives the full description of the local and global 
Lipschitz systems. According to [8, 27, 28] research in 
nonlinear state observer design resulted in the following 
techniques, by which the above mentioned solutions can 
be categorized under: extended linearization, feedback 
linearization, variable structure, high-gain observer
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design, extended Kalman filter and its family, Lyapunov-
based techniques and state-dependent Riccati equation–
based techniques. 
According to [13, 29] bilinear systems can be considered 
as a special class of nonlinear systems, and can also be 
considered good approximations to the nonlinear systems. 
Bilinear systems appear naturally as models for physical 
systems. [13] describes the bilinear systems as a special 
class of nonlinear systems where the control input 
appears both additive and multiplicative in the system 
model. [13, 29, 30] suggest that bilinear systems occur 
frequently in chemical processes and fault detection 
processes (dynamics). [21] further suggests that there are 
a number of reasons for studying bilinear systems, as a 
class of the nonlinear systems, such as, 1) these systems 
closely resemble linear systems (which already has a 
well-developed theory), 2) bilinear systems arise in 
variety in many physical and practically implementable 
processes [13, 16]. A lot of work on observer design for 
bilinear systems (models) appears in the literature [6, 7, 
29–34]. In the mid 1970’s work on the design of bilinear 
observers started appearing in the literature and this 
attracted a lot of interest towards the end of the 1970’s to 
the early 1980’s. During this period a lot of significant 
successes and milestones were reached in estimating 
unknown state variables for bilinear systems [15, 29, 32–
34, 35]. [13, 20] proposed an observer for nonlinear 
systems where the estimation error decays to zero 
irrespective of the input. These authors further gave an 
analysis of observability of nonlinear systems in 
comparison to that of linear ones. 
A number of authors propose the design of asymptotic 
observers [11, 12, 20]. [11] presented the problem of 
obtaining an asymptotic estimate of the state of a bilinear 
system given input and output measurements. [20] 
proposed an asymptotic observer that is capable of 
estimating state variables for all initialization of the 
observer. The initialization of the observer plays an 
important part in bioprocesses since initial conditions are 
not measured. Many authors considered stability, 
observability and controllability and associated necessary 
conditions for the existence of these properties in their 
design of observers, including analysis of observability of 
nonlinear systems [12, 13, 36]. [11, 12] generated 
necessary and sufficient conditions for the observability 
of a general system of bilinear and nonlinear equations. 
[14] discussed reducibility of a bilinear system to a 
canonical controllability form as a criterion for uniform 
for observability. [37] generated sufficient conditions for 
the existence of a stable observer. [12] considered 
necessary and sufficient conditions for the existence of a 
special observable form. [8, 30] work showed that the use 
of Lyapunov framework facilitates and proves asymptotic 
stabilization of observation errors. [23] gave a procedure 
for obtaining the observer gain such that there is 
quadratic stabilization of the error dynamics based on 
condition of existence of a certain Lyapunov function. 
[10] presented a design of an exponential observer based 
on Lyapunov method. [8, 30, 34] consider the Lyapunov 
stabilization procedure and convergence conditions in the 

observer design. The work of [10, 28, 31] includes 
solving a Lyapunov equation in determining the state 
estimator. [20] proved convergence of their design using 
classical Lyapunov functions. [38] proposed an stable 
observer design based on Lyapunov  stability for bilinear 
systems. This work considers a state observer with the 
error that may depend on the system input signal. 
The pole placement method is often used to design the 
state observer matrix [39–42]. It is applicable in the cases 
of the discrete time implementation of the controller and 
the state observer of the closed loop system. This 
approach is applied to various processes in the industry, 
but till now it has not been applied to the case of the 
countercurrent ion exchange process. This process, due to 
the nature of construction of its columns allows 
measurement only of the output variable and of the input 
disturbance. All states are not measurable and the proper 
control of the process requires corresponding state 
observer equations. There is no described algorithm for 
design on an observer for the countercurrent ion 
exchange process till now in the existing literature. This 
problem of design of the gain matrix of a bilinear 
observer is considered in the paper. 
The aim of the paper is to develop a method and an 
algorithm of designing an observer for a bilinear system 
for the case of the Continuous Countercurrent Ion 
Exchange (CCIX) process – to estimate the unknown 
states of the system that cannot be directly measured from 
the CCIX plant. The paper presents an observer design 
which is an extension of a Luenberger-type observer for 
bilinear systems. The observer design method developed 
proposes a solution where the disturbance is assumed 
constant for a long period of time. The input signal stays 
constant throughout the operational sampling period in 
some constrained region. This is a more realistic 
approach since it is a true reflection of the plant’s 
behaviour. The solution of the problem is developed 
using pole placement stability requirement of the 
characteristic equation of the observer.  
The special structure of the state space matrices of the 
process model makes the derivation of the calculation 
algorithm of the pole placement method very difficult. 
The paper proposes an extension of the existing algorithm 
based on the analytical derivation of the characteristic 
equation of the bilinear state observes. Further, the 
behaviour of the state observer and of the process closed 
loop system dynamics are investigated for various values 
of the control input and of the initial states of the 
observer. The observer matrix is calculated with data 
acquired from an existing counter current Ion Exchange 
process. The simulation results given here are for a 
constant input signal over the full plant trajectory. 
Though assumed constant over the process trajectory, 
different input signal values have been considered and are 
presented in the result section of the paper. 
The contributions of the paper are as follows: 

1) Development of a pole placement method and 
algorithm for the design of the matrix of a bilinear 
observer of the ion exchange states in the case of 
constant values of the input control signal using 
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the observer characteristic equation stability 
analysis and the pole placement based approach. 

2) Mathematical derivation of the characteristic 
equation of the observer and the process for the 
higher dimensional case and special structure of 
the Ion Exchange process. 

3) Development of Matlab/Simulink software for use 
of the data from the ion exchange process for the 
design of the observer matrix and the simulation of 
the system closed loop consisting of a controller, 
the observer, and the process model. 

4) The behavior of the observer and its convergence 
towards the process model states are investigated 
for various values of the constant control input and 
various initial conditions of the estimated states.

5) The behavior of the closed loop system is 
investigated for various values of the constant 
control input and various initial conditions of the 
estimated state. 

The significance of the developments described in the 
paper is the transformation of the ion exchange process in 
a dynamic state space bilinear model, formulation of the 
Luenberg type of a state observer, its design through the 
extension of the pole placement method and the 
verification of the design by simulation, which is novel in 
the existing literature. There are no publications which 
consider the dynamic behavior of the ion exchange 
process and the connected to it state observers. 
The paper is organized as follows: in Section 2, the 
continuous countercurrent ion exchange (CCIX) process 
is described. Section 3 covers the model development of 
a bilinear multistage CCIX process based on component 
balances in the process column stages, and the 
formulation of the state estimation problem is discussed. 
In Section 4, the design of the proposed observer is 
presented. Section 5 presents the pole placement 
procedure applied to solve the stability problem for the 
unknown observer matrix, and in turn find the matrix 
entries using the observer characteristic equation. In 
Section 6 software for the observer design and simulation 
is presented. In Section 7, the observer design data are 
presented and the application of the data in the design of 
the observer is illustrated. Further, simulation results are 
given to demonstrate the effectiveness of the design; and 
this is followed by the conclusion section. 

2. PROCESS DESCRIPTION 

According to [43] an ion exchange process is a reversible 
chemical process where ions with similar polarities are 
exchanged between solids and an electrolyte solution if 
the two are contacted. The interaction of the ions happens 
at different levels, there is ion exchange in the solid phase 
to the liquid phase and also diffusion of ions within the 
solid phase [44–46]. The ion exchange process is a very 
convenient chemical process for wastewater desalination 
[1, 2, 5]. In water desalination application, ion exchange 
resins form the solid phase, and water being treated forms 
the liquid phase. Resins are charged beads of micrometers 
in diameters that are coated with replacement ions +H

(hydrogen ions) or −OH  (hydroxide ions) depending on 
their ionic form (cation or anion). Hydrogen ions are used 
in the cation resins and hydroxide ions are used in the 
anion resins. In the cation phase the +H ions will 
exchange with Na  (sodium) ions from sodium chloride 
( NaCl ) in the water being processed. During the anion 
phase the −Cl  (chloride) ions exchange with −OH  ions 
from the acidic output stream from the cation phase 
(Figure 1). Figure 1 also shows the pilot plant as built in 
the Chemical Engineering Department of Cape Peninsula 
University of Technology [1, 2, 4, 5]. 
The basic ion exchange countercurrent configuration 
consists of four columns, two for each phase of the 
process. The system has a cation load column and a 
cation regeneration column for the cation phase, and an 
anion load column and an anion regeneration column for 
the anion phase. The columns operate in a multistage 
fashion with primary and secondary cycles. During the 
cation load primary cycle, NaCl  is extracted from feed 
water, resulting in an acidic output stream; and during the 
primary cycle of the anion load, this acidic stream from 
the cation load column is split to produce product water. 
The secondary columns are for regeneration of partially 
exhausted resins back to their refreshed form using either 
an acid solution or a base solution for each phase 
respectively. This is one of the greatest advantages of the 
ion exchange process; resins are reusable for a number of 
years, depending on their type [1, 3, 4, 43 ,44, 46]. The 
considered ion exchange process is a countercurrent 
process with the solid and liquid phases flowing in
opposite directions. The exchange is said to be 
countercurrent in that the moving resin bed and liquid 
move in opposite directions. The resins are in a packed 
bed form and they move from column to column in a 
cyclic form. 
This cyclic operation has three distinct periods for each of 
the two main cycles mentioned above in each phase, the 
primary and secondary cycles. Each cycle has three 
periodic flows for moving liquid streams and moving 
resin beds, 1) an up-flow period, 2) the settle time and 3) 
the pulldown period. During the primary cycle of the 
cation phase, liquid to be treated is pumped up the load 
column through a packed bed of resin to fluidize the resin 
beds held by each stage of the column and this is referred 
to as an up-flow period. After a certain predetermined 
period, resin beds are allowed to settle by stopping the 
up-flow stream. This is known as the settle time. And 
then finally, the resin bed at the bottom stage is pulled out 
to prepare it for regeneration; this period is referred to as 
pulldown period. Before pulldown can be initiated there 
must be enough resins to fill up a stage in the top holding 
vessels (Figure 1). During the secondary cycles of the 
regeneration columns, resin beds of specific amounts are 
intermittently moved from the top stage of the 
regeneration column down to the bottom stage in a 
controlled fashion [1, 2, 4, 46]. 
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3. MODEL DEVELOPMENT AND PROBLEM 
FORMULATION 

In the considered countercurrent ion exchange process the 
change in concentration of the feed flow at the first stage 
of the column is considered a disturbance to the system, 
and it needs to be modelled accordingly. The process is 
run under a global aim of the optimization. The 
optimization strategy of the process is to ensure that for a 
given desalination level, maximum purified water output 
is obtained with the minimum usage of the regenerant 
chemicals [1, 2, 3, 44, 46]. 

Figure 1: Continuous countercurrent ion exchange 
(CCIX) process as built at Chemical Engineering 

Department of Cape Peninsula University of 
Technology 

Technically, this aim can be formulated as an 
optimization problem using concentration of salt in the 
product water as a process output and the resin flow rate 
into the column as the control action for the process on 
the basis of the steady state balance [4, 5]: 

)(
)()(

tT
hdtFtu R ==    (1) 

Where  

=)(tu   the control input to the process,  
=)(tFR  the moving resin bed flow rate in the cation load 

column, considered as a control input, 
=)(tT   the upflow period for the cation load column, 

=h   the resin holdups and  
=d   the liquid-resin fractional balance constant 

defining the fraction of the resin hold up which 
is moved from one stage to another and 3/2=d

The observed column behavior requires the developed 
mathematical process model to predict liquid and resin 
composition in each stage for every process cycle. The 
model design is developed on the basis of the steady state 
balance between the principal operating parameters of the 
ion exchange, the liquid flow rate )(tFL  and the resin 
flow rate )(tFR . Up-flow cycle time )(tT  determines the 
control action for the plant [1, 2, 4, 5], as given by 
equation (1). There are some models developed in the 
literature for the same process [44–46], however, these 
models are very complex and could not be used for the 
purposes of optimization and real-time control based on 
the intended overall control strategy. These models are 
more suitable for chemical engineering or analytical 
chemistry type analysis. The process model in the paper 
is developed for the purpose of control, and calculations 
in the model derivation are based on equilibrium and 
kinetic data, resin and liquid flow rates. 

Figure 2: Countercurrent flows of liquid and resin in a 
single stage of a multistage column of a CCIX 

process 

These calculations are performed from the bottom to the 
top column stages, as the changes in the lower stage(s) 
states affect the following upper stage(s) states. Model 
equations are developed on the basis of the input and 
output rates of the mass balances for every process stage, 
Figure 2, based on the following assumptions [1, 2, 44]: 
(1) there is equal volume and amount of liquid and resin 
holdups just before the resin transfer from one stage to 
the other, (2) there is perfectly mixed fluidized phase in 
each stage and no back mixing occurs, (3) the process is 
in a steady state (electro-neutrality is maintained), and (4) 
a linear equilibrium exists between the liquid and resin 
phases. In Figure 2, )(, tx na  is the mole fraction of 
sodium ( Na ) in the liquid phase )(, tF nL , )(' , tx nb  is the 
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mole fraction of Na  in the resin phase )(, tF nR , )(tH n is 
the liquid hold up, and hn(t) is the resin hold up for the 
n -th stage [1, 2, 4, 5, 44]. The ion exchange model is 
obtained based on the thi component mass balance on 
stage n  with N  representing the total number of stages 
in the process columns, Figure 1 [4, 5]. The component 
mass law of material balance based on rate of 
accumulation and rate of materials formation can be 
expressed as: 

[ ]
[ ] NntxtFtxtF

txtFtxtF
dt

txthd
dt

txtHd

nbnRnanL

nbnRnanL

nbnnan

,1  ,)(')()()(    

)(')()()(   

))(')(())()((

,,,,
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=⋅+⋅−
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++−−  (2) 

Where  

=)(, tF nL  the molar flow rate of the liquid, 
=)(, tF nR  the molar flow rate of the resin, 

=⋅ −− )()( 1,1, txtF nanL  the rate of material input with liquid 
coming from stage 1−n , 

=⋅ ++ )(')( 1,1, txtF nbnR  the rate of material input with resin 
coming from stage 1+n , 

=⋅ )()( ,, txtF nanL   the rate of material output with liquid 
leaving plate n  for plate 1+n , 

=⋅ )(')( ,, txtF nbnR   the rate of material output with resin 
leaving plate n for 1−n , 

=
dt

txtHd nn ))()((   the rate of accumulation of sodium 

specie in the liquid phase on plate n , 
and 

=
dt

txthd nbn ))(')(( ,  the rate of accumulation of sodium 

specie in the resin phase on plate n . 

Based on assumptions made, the liquid and resin holdups 
and flow rates are considered constants, i.e., HHn = , 

hhn = , RnR FtF =)(, , and LnL FtF =)(, . 
The equilibrium between the liquid and the resin fractions 
is assumed to be linear to maintain electroneutrality, and 
the relationship between the exchanging cations is given 
by [1, 2] 

nnannb btxatx += )()(' ,,     (3) 

Where  

=nn ba ,  the coefficients of the rate of the ion exchange 
reaction.  

After substituting the conditions for the linear equilibrium 
(3), the component mass law of material balance, based 

on the rate of accumulation and the rate of materials 
formation, the model (2) can be expressed as: 
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After selecting )()()( 01, txtxtx fna ==− , for 1=n  as the 

column input flow concentration, )()( , txty Na=  as the 
output of the system, 

[ ]TNnna txtxtxtxtxtx )(),..,(),..,(),()()( 21, ==  as the state 
space vector, and )()( tutFR =  as the control input, the 
state space model of the ion exchange process (5) can be 
written as  
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The model matrices are: 

=∈ ×NNRA  the matrix of the state,  
=∈ ×NNRB1 the matrix of bilinear term of the state and 

input control signal 
=∈ ×1NRB   the matrix of the input signal 
=∈ ×1NRW  the matrix of the disturbance, 
=∈ ×NRC 1  the matrix of the output signal. 

The model variables are 

=∈ ×11)( Rtu  the control signal,  

=∈ ×1)( NRtx  the state vector and 

=∈=∈ ×× 11
0,

11)( RxRtx af  the disturbance to the system, 

=∈ ×11)( Rty  the output of the system. 

The disturbance is considered as the change of liquid 
concentration that enters the first stage (the most bottom 
stage) of the cation column in the continuous 
countercurrent ion exchange process. Once the model has 
been developed and before using it for real time optimal 
control, one needs to estimate the unknown parameters. 
In the same breath, in this presentation, the liquid 
concentration of the CCIX plant cannot be measured in
all the stages of the column except for the first and the 
last stages, one needs to estimate liquid concentration of 
all other stages using state estimation techniques. The aim 
is to develop a new algorithm for solving state estimation 
problem given that the system is nonlinear in terms of 
variables but linear in terms of parameters. The proposed 
solution is presented in the next section. 

4. DESIGN OF THE OBSERVER  

Consider the model of a bilinear system given by (6) 
above; the objective is to design a full-order observer to 
be able to identify all the unknown states. The proposed 
observer is constructed in the analogy of a Luenberger 
type of observer for linear time–invariant systems. The 
observer equation for the model (6) is expressed so as to 
correspond to the structure of the bilinear system, as 
follows: 

)(ˆ)(ˆ

)()()()()(ˆ)(ˆ)(ˆ
4321

txCty

tLytxLtuLtutxLtxL
dt

txd
f

=

++++=
 (7) 

Where  

=∈ ×1)(ˆ NRtx  the estimated state vector, 

=∈ ×11)(ˆ Rty  the estimated system output based on 
estimated states,  

=∈ ×NNRL1  the observer state matrix, 

=∈ ×NNRL2  the bilinear term matrix of the observer, 

=∈ ×1
3

NRL  the observer control input matrix, and 

=∈ ×1NRL  the output (the observation) matrix. 

The main aim of the observer is to minimize the error 
between the process states )(tx and the estimated states 

)(ˆ tx  and to be convergent, i.e., asymptotically stable. In 
order to achieve this aim, the design of the observer is 
based on fulfillment of two conditions: 1) for the value of 
the error and 2) for the rate of change of the error
between the real and estimated states. The first condition 
states that 0)( →te  for ∞→t  and this is presented by 
the error equation, 

0)(ˆ)()( →−= txtxte     (8) 

This means that the estimated state vector is defined 
by )()()(ˆ tetxtx −= . Based on the condition for the error 
rate dynamics of the observed process and the observer 
states, the second condition is for the minimum error rate 
value and is expressed by 

0)(ˆ)()( ≅



 −=

dt
txd

dt
tdx

dt
tde    (9). 

The error rate dynamic equation can therefore be 
expressed as 

[ ]
[ ])()()()()(ˆ)(ˆ  

)()()()()()(

4321

1

tLytxLtuLtutxLtxL

tWxtBututxBtAx
dt

tde

f

f

++++−

−+++=
(10)

From the output process equation, the error rate can be 
expressed using the output and state variables, 

)()( tCxty = . This equation is used to incorporate the 
measured data )(ty  into the equation (11) as a 
requirement for one of the inputs to the observer before 
producing the estimates. The error rate equation then 
becomes: 

[ ]
[ ]))(()()()()(ˆ)(ˆ  

)()()()()()(

4321

1

tCxLtxLtuLtutxLtxL

tWxtBututxBtAx
dt

tde

f

f

++++−

−+++=
(11) 
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The process of observer design involves determining the 
matrices 1L , 2L , 3L , and L  in such a way that the two 
minimization error requirements for the error difference 
are met: the 1) minimization of the error between the 
process state and the estimated state

0)(ˆ)()( →−= txtxte ; and 2) keeping error rate at zero 

or close to zero, 0)( =
dt

tde . From this requirement it is 

important to note that )(tx  and )(tu  cannot be zero in 
this case for the condition to hold. The mathematical 
derivation of the matrices of the observer is done 
following the steps below: 

1) The error equation (12) is rewritten in the form: 

[ ] )()()()()()(ˆ)(

)(ˆ)()()(

4321

1

txLWtuLBtutxLtxB

txLtxLCA
dt

tde

f−+−+−+

+−−=

            (12) 

2) Condition 1 requirements are considered to be 
fulfilled: if → 0)( =te  or )(ˆ)( txtx = . Then, the equation 
(12) can be rewritten in the following manner 

)()()()(

)()()()()()(

43

211

txLWtuLB

tutxLBtxLLCA
dt

tde

f−+−+

+−+−−=
   (13) 

In order for 
dt

tde )(  to approach zero, and since 0)( ≠tx , 

0)( ≠tu , 0)( ≠tx f , ∞→t  the matrices in front of these 
variables have to be equal to zero. The following 
expressions can be generated from this condition 

01 =−− LLCA  and LCAL −=∴ 1    
021 =− LB  and 12 BL =∴     

03 =− LB  and BL =∴ 3      
04 =− LW  and WL =∴ 4          (14) 

According to equation (14) the observer matrices 2L , 3L
and 4L  are determined.  

3) Condition 2 requirements are such that: 

The observer matrix 1L  is not determined at this moment. 
This can be done through fulfillment of the second 
requirement mentioned above after back substitution of 

1L , 3L  and 4L  obtained in equation (14). The error rate 
equation then becomes 

[ ]

[ ] 0)()(         
)()()()(         

)())(ˆ)(())(ˆ)(()(

1

1

1

→+−=
+−=

−+−−=

tetuBLCA
tuteBteLCA

tutxtxBtxtxLCA
dt

tde

(15) 

The design of the observer is to find a method for 
calculation of the observer matrix L  in such a way that 
the rate of the error )(te  between the process model state 
and the observer state is minimized and 0)( →te  when 

∞→t  under some assumptions about the control input 
)(tu . The above requirement fulfillment means that the 

system to be observed is detectable, which means if it 
cannot be observed, it is still asymptotically stable and 
the observer to be designed should converge to the real 
system. The control signal can be considered to be 
unconstrained or known and fixed. The second case is 
considered in the paper. In this case, the methods for 
observer design of linear time invariant linear systems 
can be applied. 
Using equation (15) it becomes possible to determine the 
L  matrix using the second requirement. For (15) to 
converge to zero, the requirement is that the term 
[ ])()( 1 tuBLCA +−  must be a stable matrix. From this 
requirement, the entries for the observer matrix L  can be 
determined. If the value of the control input is fixed and 
constrained , the values of L  can be determined from the 
matrix ][ LCA − , where )]([ 1 tuBAA +=  and the 
observed behavior is as of a linear system. [13] suggested 
that if the proper choice of the gain matrix L  is made, 
then the error will go to zero with arbitrary exponential 
decay. From these interpretations, the observer design 
problem can be summarized as a problem of choosing or 
selecting the observer gain matrix L  such that the error 
rate dynamics goes to zero. The pole placement method is 
used to calculate the observer matrix L . 

5. POLE PLACEMENT METHOD FOR DESIGN 
OF THE OBSERVER MATRIX 

5.1  Procedure for design of the observer gain matrix L

The procedure for the design of the matrix L  is built on 
the basis of the pole placement method. The solution for 
the procedure is given for the case where the input is 
assumed constant for the entire process time trajectory, 
or for the case when the matrix L  is calculated at every 
time in the sampling period in which the control is 
considered constant. 
The solution is derived from the stability requirement of 
the error rate dynamics, equation (15). This requirement 
translates to the pole placement procedure for system 
stability, i.e., the real parts of the poles of the 
characteristic equation of the observer must be on the 
negative side of the Cartesian plane, but not far from the 
imaginary line in order for the observer to have fast 
dynamics, faster than the process ones. This is another 
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reason why the solution is considered to be based on the 
pole placement method. This method can be used for 
calculation of the Matrix L coefficients at every sampling 
period, and in real time if the values of the input signal 
are changing at every sampling period. Two characteristic 
equations of the observer are needed for the solution, one 
is an equation (16) for the determinant of the observer 
error rate equation and the other is the desired one, 
determined by the equation (17) for the determinant of 
the desired observer error rate equation. 

[ ])()(det 1 tuBLCAsIsobs +−−=    (16) 

0)()(det

   ),)...()(()(det 21

=+=

+++=
N

des

Ndes

pss

orpspspss
  (17) 

Where  

=s  the Laplace variable, 
[ ] 1

21 ... ×∈= NT
N RlllL , 

=Nppp  ..., , , 21  the desired poles for every stage of the 
process and  

=p  the desired pole that has the same value for all 
stages of the process. 

The coefficients of the observer gain matrix for the given 
value of the control input are determined by equalization 
of the two determinants, as follows: 

)(det)(det ss desobs =              (18) 

5.2 Algorithm of the pole placement method for 
determination of the L  matrix

The algorithm for the solving the pole placement problem 
is given by: 
1) Give a trajectory of ftttu ,0),( = , 
2) Select the input signal )(tuut = – for a given time 

fttt ,0, =

3) Form the determinant of the observer ,det obs with 
unknown observer gain matrix L , 

[ ]TN tltltltL )(),...,(),()( 21= , 
4) Form the desired determinant desdet , 
5) Compare the two determinants and calculate the gain 

matrix elements, Ni  tli ,1),( =
The solution to step 5) can be obtained numerically or 
analytically, e.g., using fsolve  functions in Matlab 
software program provides a numerical solution. The 
paper proposes an analytical technique of back 
substitution between the two characteristic equations. The 
derivation is explained in section 5.3. 

5.3 Derivation of the determinant detobs equations 

The observer characteristic equation formed from the 
equation (16) is derived for the considered case of the ion 
exchange process as follows: 
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Where the elements of the observer matrix L  are 
unknown. 
In evaluating (19), the resulting simplified expression of 
the )(det sobs  is a 66×R matrix given by (20), 

[ ]{ } 66det)(det ×∈= RAs obsobs            (20) 

Where 
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Where  

== iiii btug )(  the product of control input and b

coefficients of the bilinear term, 6,1=i
== ijij btug )(  the product of control input and  

coefficients of the bilinear term for 
5,1=i  and 6,2=j . 
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The mathematical derivation of the characteristic 
equation from the determinant obsA  is very complex 
because of the higher dimension of the matrix obsA . In 
order to simplify the calculations the resulting 
determinant is presented as a sum of sub-determinants 
which further aids in simplifying the calculation. The 
sub-determinants are derived from the first row obsA

)(det)(det)(det)(det 621 ssssobs ++=        (21) 

Where  

)(000
)(00
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0
00
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Equations (20) – (24) are determined for every sampling 
period if the control vector is not constant. Using the 
same approach the sub-determinants )(det1 s , )(det 2 s , 
and )(det6 s  are presented by their sub-determinants, (25) 
– (27) 

[ ])(det)(det)(det)(
)()(det

1621223112222

11111

slsgsgas
gass

+−−+×
×−+=

(25) 

[ ])(det)(det)(det          
)(det
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2
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+−
=

    (26) 

[ ])(det)(det)()(det
)(det

63236222226121

16

sgsgassa
ls

+−+−−×
×−=

    (27). 

The procedure above is followed for all new sub-
determinants until their mathematical expressions are 
derived and the characteristic equation of the observer is 
obtained, written according to the power of the Laplace 
variable s . The desired characteristic equation is 
calculated for a real negative desired pole 5−=ip , 

Ni ,1= . Determination of its equation is via a Matlab 
software system function, simplify( ) and expand( ) 
functions, 









= )( 
))^+((s  = 

   

ceexpand
Npsimplifyce

ssyms

θ
        (28) 

Where ce  stands for characteristic equation.  

After evaluating both characteristic equations, the 
resulting simplified equations are equated to determine 
values of Nili ,1, = , as follows: 

6,1    );(det           

1562518759375250037530

)(det
23456

=

=++++++

=

il

ssssss

s

iobs

des

     (29) 

The algorithm for calculation of the observer gain matrix 
is based on the derivations in point 5. It is shown in 
Figure 3 and Figure 4.  

6. SOFTWARE FOR DESIGN AND SIMULATION 

The solution of the observer gain matrix is obtained by 
the development of a Matlab/Simulink software program. 
The software program is written according to the 
proposed algorithm in Figure 3 using the Simulink part as 
described in Figure 4. The algorithm and the developed 
software have two parts: 

1) Matrix calculation. The first part is used to calculate the 
model parameters based on the experimental data; then the 
observer gain matrix L  is calculated based on the
observer and the observer desired characteristic 
equations.  
2) Verification of the observer gain matrix. Once the 
observer parameters are determined, the second part of the 
program is to simulate the system error based on various 
specified constant control input and initial conditions for 
the states of the observer for the full trajectory of the 
system until the error and error rate requirements are 
met. If these requirements are not met, then new desired 
poles are generated and the calculation of the observer 
gain matrix is calculated again, and so on. Simulink 
environment, Figure 4 is used for this part. The results 
from the simulations in this part of the program provide 
means to evaluate, for which area of constant values of 
the control input the proposed algorithm will be 
applicable. The same is done for the initial conditions of 
the estimated states. 
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Figure 3: Algorithm for the design process 

The proposed algorithm for design can be used for real-
time control too, when the control action is changing, but 
having constant values in the sampling periods for the 
calculation of the observer gain matrix. In this case the 
algorithm will be run for every new value of the control 
signal and the obtained value of L will be directly used 
for calculation of the estimated state values. These values 
will be used for calculation of the control action. The 
structure of the algorithm is similar as in Figure 3, but the 
difference is that the real-time system replaces the 
Simulink block, Figure 3, and the calculated observer 
gain matrix is directly used to produce the real-time state 
estimates. No verification of the L values is performed in 
real-time. 

Figure 4: Simulation diagram of the closed loop system 

7. SIMULATION RESULTS AND DISCUSSION 

The observer gain matrix entries are finally determined 
from Matlab using data obtained from the previous CCIX 
project [1, 2, 4, 5], Table I, and the error dynamics are 
observed through Simulink. 

7.1 Description of the data 

Concentration measurement data from [1, 2, 3] were used 
to estimate the state variables of the newly developed 
bilinear model of the continuous countercurrent ion 
exchange (CCIX) process. The results are based on 
normalized data of a six stages CCIX process column. 
Process parameters were calculated for the input flow rate 

hmFL /2000 3= , the up-flow period of hT )60/17(= , 
resin liquid constant ratio 3/2=d , the liquid holdups 

l809.42  and the resin holdups of l93.32  [1, 2, 4, 5].  
The normalised original data measured from the 
University of Cape Town (UCT) project [1] is presented 
in Table I below. 

TABLE I. CCIX DATA SHOWING CONCENTRATION IN 
EACH STAGE OF THE CATION COLUMN AS PER UCT

PROJECT

Stage H+ fractional change in liquid concentration using data 
obtained from UCT Project [Hendry, 1982b ,Vol. 4] 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 

0.221 0.000 0.000  0.000  0.000  0.000  

0.577 0.140 0.040  0.000  0.000  0.000  
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0.730 0.314 0.066  0.004  0.000  0.000  

0.847 0.523 0.184  0.035  0.003  0.000  

0.920 0.656 0.295  0.082  0.020  0.000  

0.936 0.766 0.454  0.168  0.052  0.001  

0.968 0.842 0.601  0.277  0.113  0.024  

0.974 0.886 0.690  0.361  0.167  0.033  

0.981 0.900 0.758  0.440  0.207  0.063  

0.989 0.933 0.804  0.522  0.340  0.124  

0.988 0.958 0.877  0.698  0.474  0.167  

0.997 0.963 0.881  0.784  0.547  0.233  

1.000 0.982 0.951  0.899  0.780  0.482  

1.000 0.974 0.965  0.931  0.860  0.539  

1.000 0.991 0.972  0.966  0.899  0.672  

1.000 0.994 0.981  0.966  0.905  0.779  

1.000 0.993 1.000  0.991  0.975  0.940 

1.000 0.993 0.988 0.991 0.973 0.972 

This data set shows the concentration in fractional 
change of sodium ions, +H  as determined from the 
equation, 

++

++

−
−=

initialfinal

initialn
n FIHFI

HFIHFIFC
....

....   (30) 

Where 

=nFC  the fractional change [2] 

=+
nHFI ..  the ionic fraction of +H  ions of the current 

measurement from the step change moment 
[2], 
=+

initialHFI ..  the initial ionic fraction of the +H  ions in 
stage [2], 

=+
finalHFI ..  the final ion fraction of the +H  ions in the 

stage [2]. 

7.2 Calculation of model matrices 

Matlab software programs were run using the data from 
Table I above to determine the unknown process 
parameters. The matrices of the process model were 
calculated to be: 
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The observer gain matrix evaluated with the constant 
input signal value and model parameters from the above 
model matrices is shown in equation (31). 

[ ]TL 0016.0020.0024.0235.1975.1782.0101 5×=
     (31) 

7.3 Experiments for validation of the observer gain 
matrix and closed loop system performance 

Multiple simulation runs were performed with different 
input signal values, initial conditions for the observer and 
the same initial conditions for the process, as per Table II 
below. A selected sample of the runs is presented here. 
The steps followed in the simulation procedure are also 
presented. The initial values of the estimated states are 
the same for every stage of the column. The simulation 
programs are run according to values in Table II until the 
dynamic error rate reaches zero. 

TABLE II. THE VALUES USED FOR VALIDATION OF
THE OBSERVER PERFORMANCE

Experiments performed 
 Run 1 Run 2 Run 3 Run 4 Run 5 

Input 
value 

)(ku
0.0 1.0 5.0 10.0 20.0 

Process 
Init. Cond. 1.0 1.0 1.0 1.0 1.0 

Observer 
Init. Cond.      

Set 1 – 1.0 – 1.0 – 1.0 – 1.0 – 1.0 
Set 2 0.0 0.0 0.0 0.0 0.0 
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Set 3 0.5 0.5 0.5 0.5 0.5 
Set 4 1.0 1.0 1.0 1.0 1.0 
Set 5 10.0 10.0 10.0 10.0 10.0 
Set 6 20.0 20.0 20.0 20.0 20.0 

7.4 Graphs and results of the simulation process 

The following graphs (Figures 5–22) show the behaviour 
of the process states (from the model) versus that of the 
estimated states (observer) based on Simulink simulation 
runs with a constant input signal of 1.0 and constant 

initial conditions of the states at 1.0 based on the number 
of upflow cycles. The different runs are based on the 
changing observer (estimated) states initial conditions of -
1.0, 0, 1/2, 1.0, 5.0 and 10.0; these initial conditions are 
the same for every stage per each run, i.e., for 

621 ˆ,...,ˆ,ˆ xxx . On the graphs the estimated states are 

represented by nx~ , 6,1=n . The error and error rate 
display (Figures 5–21) colour coding matches that of the 
process and the observer. 

Figure 5:Model states and estimated states for observer initial conditions of –1.0 and model initial conditions of 1.0 
using a constant control input of 1.0. 

Figure 6: Error between process states and estimated states for observer initial conditions of –1.0 and model initial 
conditions of 1.0 using a constant control input of 1.0. 
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Figure 7: Rate of change of the error for observer initial conditions of –1.0 and model initial conditions of 1.0 using a 
constant control input of 1.0. 

Figure 8: Model states and estimated states for observer initial conditions of 0.0 and model initial conditions of 1.0 
using a constant control input of 1.0. 
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Figure 9: Error between process states and estimated states for observer initial conditions of 0.0 and model initial 
conditions of 1.0 using a constant control input of 1.0. 

Figure 10: Rate of change of the error for observer initial conditions of 0.0 and model initial conditions of 1.0 using a 
constant control input of 1.0. 
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Figure 11: Model states and estimated states for observer initial conditions of 0.5 and model initial conditions of 1.0 
using a constant control input of 1.0. 

Figure 12: Error between process states and estimated states for observer initial conditions of 0.5 and model initial 
conditions of 1.0 using a constant control input of 1.0. 
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Figure 13: Rate of change of the error for observer initial conditions of 0.5 and model initial conditions of 1.0 using a 
constant control input of 1.0. 

Figure 14: Model states and estimated states for initial conditions of 1.0 for both the observer and model using a 
constant input signal of 1.0. 

In Figure 14, in the same fashion for 11 ~xx = , 22 ~xx = , etc., 44 ~xx =  and 55 ~xx = . 
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Figure 15: Error between process states and estimated states for observer initial conditions of 1.0 and model initial 
conditions of 1.0 using a constant control input of 1.0. 

Figure 16: Rate of change of the error for observer initial conditions of 1.0 and model initial conditions of 1.0 using a 
constant control input of 1.0. 
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Figure 17: Model states and estimated states for observer initial conditions of 5.0 and model initial conditions of 1.0 
using a constant input signal of 1.0. 

Figure 18: Error between process states and estimated states for observer initial conditions of 5.0 and model initial 
conditions of 1.0 using a constant control input of 1.0. 
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Figure 19: Rate of change of the error for observer initial conditions of 5.0 and model initial conditions of 1.0 using a 
constant control input of 1.0. 

Figure 20: Model states and estimated states for observer initial conditions of 10.0 and model initial conditions of 1.0 
using a constant input signal of 1.0. 
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Figure 21: Error between process states and estimated states for observer initial conditions of 10.0 and model initial 
conditions of 1.0 using a constant control input of 1.0. 

Figure 22: Rate of change of the error for observer initial conditions of 10.0 and model initial conditions of 1.0 using a 
constant control input of 1.0. 

These results are based on a system with constant 
observer gain matrix L . It can be clearly seen from the 
Figures 5–22 that the observer fully tracks the system and 
converges at a relatively short time period, the 30th cycle 
for the last stage. Each cycle is 17min. In general, the 
process of ion exchange is a slow process. In the case 
where the observer and the system have the same initial 
conditions, the observer converges even at a shorter 
period, just before the 20th cycle. This case also shows 
that the observer is stable. These results further show that 
the observer is performing very well. At higher observer 
initial conditions, compared to that of the system (Figure 

20), the observer seems to be not smooth in its tracking, 
but does converge in time compared to other cases where 
the initial conditions are not far from that of the system. 
The process system response times have also been 
examined over various constant control signals and 
different initial conditions, and these cases are presented 
by Table III and Table IV. The system responses 
considered are the rise time ( Tr ), delay time ( Td ) and 
settle time ( Ts ) for the first, the third and the sixth stages 
of the ion exchange process column. Both the model and 
the observer (estimated) system responses are presented 
in Table III – Table IV. 
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TABLE III. RISE TIME VS OBSERVER CHANGING INITIAL 
CONDITION

Process Rise Time vs. Observer Changing Initial Conditions 

Input Signal 0)( =ku

State x1 State x3 State x6 Observer 
Init. 

Cond. 1x 1x̂ 3x 3x̂ 6x 6x̂

-1 9.319 9.319 9.170 9.170 11.42 1.622 
0 8.846 0 8.940 0 11.42 #NA 

0.5 8.079 8.079 8.993 8.993 11.42 1.622 
1 4.061 4.061 4.625 4.625 4.237 4.237 

Input Signal 1)( =ku
-1 9.351 9.290 9.331 9.015 11.56 1.624 
0 8.870 8.814 9.100 10.22 11.57 #NA 

0.5 8.111 7.138 9.130 9.264 11.53 8.831 
1 4.078 4.078 4.693 4.693 4.294 4.294 

Input Signal 5)( =ku
-1 9.483 9.173 10.07 8.638 12.13 1.633 
0 8.964 8.823 10.02 10.85 12.21 #NA 

0.5 8.238 8.380 9.847 11.43 12.08 9.550 
1 4.145 4.145 4.964 6.309 6.300 6.309 

Input Signal 10)( =ku
-1 9.651 9.026 11.61 8.249 12.91 1.643 
0 9.236 8.841 11.58 10.69 13.13 #NA 

0.5 8.413 8.850 11.47 #NA 12.96 10.75 
1 4.231 4.231 5.400 5.400 6.728 6.724 

Input Signal 20)( =ku
-1 10.04 8.863 #NA 7.731 18.56 1.667 
0 9.783 8.947 #NA 10.89 18.21 #NA 

0.5 8.723 10.30 13.26 12.86 17.95 17.10 
1 4.407 4.407 20.96 20.96 20.96 20.96 

TABLE IV. SETTLE TIME VS OBSERVER CHANGING 
INITIAL CONDITION

Process Settle Time vs. Observer Changing Initial Conditions 

Input Signal 0)( =ku

State x1 State x3 State x6 Observer 
Init. Con. 

1x 1x̂ 3x 3x̂ 6x 6x̂

-1 16.00 16.00 23.00 22.90 26.50 28.50 
0 28.20 16.40 40.00 21.00 45.00 42.00 

0.5 14.30 14.40 19.20 21.20 27.70 36.00 
1 11.00 16.00 22.00 22.00 0.000 0.000 

Input Signal 1)( =ku
-1 16.20 15.90 24.00 22.50 29.80 28.80 
0 31.50 21.30 39.70 42.80 46.50 59.00 

0.5 14.50 14.50 22.30 20.30 27.20 28.00 
1 11.50 11.50 14.60 14.60 25.50 29.10 

Input Signal 5)( =ku
-1 17.00 15.20 32.00 26.00 36.00 32.00 
0 39.00 37.50 47.50 38.50 54.00 48.00 

0.5 15.55 19.30 21.10 21.50 30.40 29.70 
1 12.00 12.00 21.00 21.00 28.00 28.00 

Input Signal 10)( =ku
-1 16.00 13.40 23.50 18.20 29.80 28.30 
0 37.50 37.50 41.50 36.00 59.00 59.00 

0.5 17.74 27.50 21.88 21.60 28.40 35.00 
1 15.50 15.50 25.60 25.60 26.00 26.00 

Input Signal 20)( =ku
-1 16.00 16.10 23.00 17.80 29.30 28.00 
0 31.50 25.00 41.50 35.00 58.00 51.00 

0.5 22.00 14.50 21.70 22.00 35.00 29.80 
1 11.75 11.75 13.30 13.30 30.00 25.30 

7.5 Discussion 

The observer has shown that it converges within a 
reasonable time and maintains the error rate close to zero 
for the rest of the observed period, Figure 5 – Figure 22. 
The observer has also shown to be sensitive to the input 
signal. The input signal values should also be kept within 
normalized values (0–1.0), otherwise overshoot will be 
experienced in some process stages. The observer gain 
matrix values tend to be very high; this could be 
associated with the determinant calculation that involves 
a very large number of computational values. Error 
results showed the success of the observer. The error 
tracked the difference between estimated and measured 
states correctly as expected. The error rate showed fairly 
fast tracking capabilities, thus confirming a well designed 
observer. 

8. CONCLUSION 

The observer design for a bilinear model of the 
Continuous Countercurrent Ion Exchange (CCIX) process 
has been developed. The observer design has been 
developed based on real data of the ion exchange process 
obtained from experiments conducted previously in an 
ion exchange process of the same type. The data have 
been normalized for this exercise and simulation results 
from Simulink and Matlab showed the design to be 
competently conclusive. The observer converges even if 
different initial conditions are applied (see Figures 5–22). 
The results show that the bilinear type observer is 
applicable in this type of a bilinear process models. The 
influence of the process initial conditions in comparison 
to the observer initial conditions has been presented 
through system responses as indicated by the figures and 
the tables, Tables III – IV. 
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