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Abstract: Flywheel Energy Storage (FES) is rapidly becoming an attractive enabling technology in
power systems requiring energy storage. This is mainly due to the rapid advances made in Active
Magnetic Bearing (AMB) technology. The use of AMBs in FES systems results in a drastic increase
in their efficiency. Another key component of a flywheel system is the control strategy. In the past,
decentralised control strategies implementing PID control, proved very effective and robust. In this
paper, the performance of an advanced centralised control strategy namely, Model Predictive Control
(MPC) is investigated. It is an optimal Multiple-Input and Multiple-Output (MIMO) control strategy
that utilises a system model and an optimisation algorithm to determine the optimal control law. A
first principle state space model is derived for the purpose of the MPC control strategy. The designed
MPC controller is evaluated both in simulation and experimentally at a low operating speed as a proof
of concept. The experimental and simulated results are compared by means of a sensitivity analysis.
The controller showed good performance, however further improvements need to be made in order
to sustain good performance and stability at higher speeds. In this paper advantages of incorporating a
system model in a model-based strategy such as MPC are illustrated. MPC also allows for incorporating
system and control constraints into the control methodology allowing for better efficiency and reliability
capabilities.
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1. INTRODUCTION

Early applications of flywheels mainly centred around the
smooth operation of machines. The type of flywheels
used were purely mechanical, and some primitive versions
only consisted of a stone wheel attached to an axle.
The development of flywheel systems continued through
the years, but rapidly intensified during the Industrial
Revolution. However, it was not until the early 20th
century, when flywheel rotor shapes and rotational stresses
were thoroughly analysed in the work reported by Stodola
[1]. In the 1970s, FES was proposed as a key technology
for electric vehicles, spacecraft, Uninterruptible Power
Supplies (UPSs) and even planetary rovers [2,3]. During
the 1980s, Active Magnetic Bearings (AMBs) and
advances in motor-generator designs placed FES systems
in a position to compete with chemical batteries in terms
of energy density [4-6].

FES systems have a number of attributes that render
them preferred technology for applications where energy
storage is needed.  Flywheel systems are made of
environmentally friendly material as opposed to chemical
batteries, and therefore have a lower environmental impact.
It is a scalable technology and does not require periodic
maintenance.  Flywheels also allow repetitive deep
discharge. The contact-less nature of magnetic bearings
allows for higher energy efficiency, and no lubricants are
necessary. The closed-loop control of magnetic bearings
enables active vibration suppression and on-line control of

bearing stiffness. According to Schweitzer et.al. [7], the
most effective and simplest control strategy for a coupled
system such as a FES system is decentralised and conical
mode control. Examples of these types of strategies
are decentralised PID control, and Centre-Of-Gravity
(COG) coordinate control. Modern control techniques
that give promising results for controlling AMB systems
are 7., and p-synthesis, in particular for flexible rotor
systems [8—13].  Schweitzer et.al. [7] continues by
stating that observer or state estimator based control such
as Linear-Quadratic-Gaussian (LQG) control offers no
appreciable advantage over decentralised control. In fact,
observer based techniques can have destabilising effects
due to uncertain dynamics in AMBs during rotation. In
the case where the observer based control is designed for a
rotating system, the controller may be very effective at the
design speed, but may become unstable at other speeds due
to non-conservative forces introduced by the controller.
This is particularly the case for model based control
techniques where the dynamics of the system change as the
rotational speed changes. This raises the question whether
an advanced model-based control technique such as MPC
can be successfully implemented on a FES system.

MPC has a number of advantages. It is firstly
capable of handling constraints explicitly. Secondly it
treats multi-variable problems in a natural way and it
incorporates a model-based design in the sense that it
uses an explicit internal model to generate predictions
of future plant behaviour. A number of studies were
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previously conducted to evaluate the performance of MPC
control strategies on magnetically suspended FES systems.
Zhang et. al. [14] conducted a study where a FES
system was proposed where the radial motion of the
rotor was controlled by permanent magnet bearings, and
the axial motion was controlled by AMBs that utilised
an MPC strategy. This study was only implemented
in simulation, but concluded that MPC yielded superior
stability, sensitivity and robustness as compared to PID
control. Another study conducted by Zhu et. al. [15]
focused on the cross-coupling between the top and bottom
AMBs of a FES system with a vertical rotor. The study
presented simulation results that indicated that MPC was
effective in reducing the effort needed to ensure robustness
in the presence of disturbances and model uncertainties. A
study conducted by Nguyen et. al [16, 17] implemented
an MPC controller on a FES system and found that MPC
was able to control the FES system effectively for quick
acceleration and deceleration scenarios, that is, fast storing
and releasing of energy. Current research tends to focus
on nonlinear MPC approaches as described by the work of
Bachle et. al [18].

In this paper, a linear state space model of an axially
and radially AMB suspended flywheel is derived. This
model is then used for the design of a linear MPC strategy.
This control strategy is evaluated both in simulation and
on an actual FES system. The results are compared to
study the effectiveness of the control algorithm. The paper
is organised as follows: The experimental setup of the
FES system and the linear state space model derivation
are discussed in Section 2. Section 3 introduces the
linear MPC and the optimisation algorithm. Section 4
presents the simulation and experimental results. Finally,
conclusions are drawn in Section 5.

2. FLYWHEEL ENERGY STORAGE SYSTEM
MODEL

2.1 Flywheel energy storage system overview

The system under consideration is a Flywheel Uninter-
rupted Power Supply (FlyUPS) and is shown in Fig.
1. Tt is designed to deliver 2 kW of electrical energy
for 3 minutes during power dips. The FlyUPS is fully
suspended, which means it has five Degrees Of Freedom
(DOF) controlled by two radial AMBs, and one axial
AMB. The motor/generator mechanism of the FlyUPS
contains a high speed Permanent Magnet Synchronous
Machine (PMSM). This PMSM is designed to rotate the
flywheel to speeds of up to 30 000 r/min which enables the
FlyUPS to mechanically store 527 kJ of energy [19, 20].

2.2 State space model

A similar approach to [21] has been followed in this paper
for deriving a state space model of the rotor and stator of
the system. The effects of the sensors, filters and power
amplifiers are also included to give a total state space
system model of the FlyUPS. As illustrated in Fig. 2 the
model includes five DOF: The translations in the x-, y-

Upper axial AMB .__
Lower axial AMB

Eddy probe -
Upper radial AMB —————

Rotor/flywheel assembly

PMSM and coils

Lower radial AMB -

Eddyprobe\ ~{iI

Figure 1: Experimental setup of the FlyUPS [19]

and z-directions, as well as the rotations about the x- and
y-axes. The rotation about the z-axis is controlled by the
PMSM. In order to develop a model for the rigid rotor,

Z

Sensor

Bearing
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—
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mass Bearing

Sensor‘ -
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Figure 2: Rotor, bearing and sensor coordinate frame

a frame of reference (coordinate framework) first needs
to be established. A rigid body can be represented by
six coordinates: three displacement coordinates and three
rotational coordinates. However, since the rotational speed
is taken as constant and displacement in the axis of rotation
is decoupled from the rest, the rotor can be represented
by four coordinates only [22]. Hence, the coordinate
framework is:

= [xvﬁa.}@_a}T? (1)

which represents the displacement (x,y) and inclination
(B, o) about the centre of mass.

Once the coordinate framework is defined, the rotor and
bearing dynamics are represented. The rotor dynamics
of a simple gyroscopic beam can be represented by the
Newton-Euler equations of motion [7]:

mx = fx, )
LB - LQa = p,, ®3)
my = fy, 4)
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—I,G6— LQP = py. (5)

The variables f, and f are the forces acting on the centre
of mass and py, and p, are the force couple moments.
The rotor mass is represented by m, and Q represents the
constant angular velocity in rad/s about the z axis. Iy, I, and
I, are the moments of inertia in the x, y and z directions
respectively. The Newton-Euler equations above can be
simplified by combining them with the selected coordinate
framework in (1) to create the model

Mi+Gz =f, (6)

with f = [fy, py, fy, Px]. M is the mass matrix defined as

m 0 0 O
10 5L 0 0
M=10 0 m o] ™
0 0 0 L
and G, the gyroscopic coupling matrix defined as
0 0 00
0 0 0 1
G= 00 0 0 LQ. ®)
0 -1 00

The actual system is current-controlled, necessitating coil
current as input to the model [20]. A model with current
as input and displacement as output is therefore required.
However, since the actual position of the rotor is not
available but only the measured position at the bearing
sensor locations, it would be essential to transform or
reference the above equations of motion to the bearing
positions. The transformation from the centre of mass to
the equivalent mass at the bearing locations, a and b, is
done with the transformation matrix

b —a 0 0

1| -1 1 o0 o
Ts=3=—"1 0 0o » —al ©)
0 0 -1 1

The coordinate framework in (1) becomes

Z:TBZB :TB , (10)

and the mass, gyroscopic and force matrices become

Mg = TEMT;, (11)
Gp = TLGT;, (12)
and
Jax
fbx
fg = . 13
B fay ( )
fby
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Finally the equation of motion can be written as

Mgig + Ggzg = 3. (14)

The forces of the AMBs acting on the rotor are derived
from a simple AMB model. The AMB plant constitutes
a stator, coils and rotor as shown in Fig. 3. The position
of the rotor is measured by two perpendicularly arranged
position-sensors and subtracted from the reference position
signal applied as the system input. The resulting error
in position is converted by a compensator into current
references, which in turn are realised by power amplifiers.
In the AMB plant these currents exert electromagnetic
forces on the rotor to restore the rotor position. Active

Upy

Uy

™\t

Figure 3: Stator of an 8-pole heteropolar AMB [23]

magnetic suspension (for a single magnet 1-DOF AMB)
entails that an attractive magnetic force be exerted by
an electromagnet that will counteract the gravitational
force exerted by the earth. The attractive electromagnetic
force exerted by a current-carrying coil on a ferromagnetic
material is also known as a reluctance force [7]. This
force is derived from the energy stored in the magnetic
field. Any small change in the volume of the airgap would
result in an increase in the energy stored in the field. This
increase in energy must be supplied by an external force. If
only the coils of the pole pair 1 (PP1) in Fig. 3 are allowed
to carry a current and electromagnetic cross-coupling is
ignored, the resulting force exerted in the y direction can
be approximated by

Ni
Sm = 1o (

2

with the symbols as described in Table 1.

The force equation for a 1-DOF AMB given in (15)
shows the relationship between the applied current in the
coil, the position of the shaft within the airgap and the
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electromagnetic force exerted on the rotor by the stator
pole. Clearly, the force is proportional to the square of
the current as well as inversely proportional to the square
of the airgap between the stator and the rotor.

Table 1: Symbol description of AMB force equation

Symbol  Description
I length of the magnetic path
(excluding the airgap)
Lo permeability of free space
Uy relative permeability of the AMB stator
Xg size of the airgap between the stator
and rotor

N number of turns per coil

i current in the coils

A pole-face area

0 angle between the vertical axis and
the normal line to the pole face

This equation disregards the effects of fringing and leakage
of magnetic flux and is only valid under the following
assumptions [7]:

e permeability of the iron is constant;
e only small variations in the airgap are allowed; and

e uniform flux in the airgap (i.e. a homogeneous field).

Even when the effects of magnetic saturation and
hysteresis have been disregarded, AMBs are still nonlinear
devices, as can be seen from (15). In order to take
advantage of the existing body of knowledge of linear
systems, most AMB designers opt for linearising the AMB
around a setpoint and controlling it as if it were a linear
system. The range over which a linear approximation is
valid, can be increased by driving opposing electromagnets
in the AMB stator with mirror images of the same current
signal. This is known as differential driving mode and is
exhibited in Fig. 4 [7]. The schematic diagram in Fig. 4

+ N Power iy +i, Top
20 .

T amplifier electromagnet

+
Controller . . iy
A + . .

- 2N Power Iy =1, Bottom
> .

N amplifier electromagnet

Figure 4: Schematic diagram of differential driving mode

only illustrates differential driving mode for the top and
bottom electromagnets of the AMB in Fig. 3, but the
same principle also holds for the other two electromagnets.

The output of the controller is a current reference signal
which is added to and subtracted from a bias current level.
The bias current is typically chosen such that the AMB is
operated in the centre of the linear region of the magnetic
material’s hysteresis curve. The end result is that the
nett force exerted by the top and bottom electromagnets is
symmetrical about some bias force level. In the absence of
gravity, the net electromagnetic force applied to the point
mass is consequently given by:

_Jloti? o= i)
S RN O 1

where the constants py, N, A and cos(0) have been
subsumed into the constant k.

After linearising (16) for small position deviations (5,)
around some bias position (yp), the force exerted by an
AMB in the vertical degree of freedom can be expressed
as follows:

fm :kiiy"‘kssy (17

where the current- and position stiffness constatns are
respectively given by [20]:

72-005(9), (18)

and

N2ipA
— 2H0 1% cos(e). (19)
Yo

According to (17) the bearing forces are dependent on
current and displacement. These linearised forces are now
introduced into the equation of motion (14) and result in

ks

Mgig + Gpzp = Kiip + Kszp. (20)

The displacement-force constants, Kg and current-force
constants, K; of the raidal bearings are simply diagonal
matrices of the previously mentioned, k; and k; constants:

ksar O 0 0

. 0 kgpe O 0
K= 0 0" kw o |0 O

0 0 0k

and

kiaox O 0 0
0 kipe O 0
0 0 kiay 0
0 0 0 kipy

The current-force and displacement-force values in the x
and y directions at a and b are identical, i.e. kyqy = Ky gy,
and k; px = k; . The current vector is given by

K; = (22)

iB = [ iax ihx iay ihy }T- (23)

By rearranging (20) and setting ip = u the following
equation is obtained

ip = —Mg'Gpzp + Mg ' Kyzp + Mg ' Kiu. (24)
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This gives the standard state-space formulation of the
radial AMB system at the bearing coordinates as

xg = Agxg + Bgu

25
yB = Cxp (23)

with

o g _ 0 I

0
BB:{MBIKi],C_[I I].

Next the transformation to sensor coordinates is done. The
bearing coordinate state-space system in (25) is referenced
to the sensor coordinate system by transforming the state
matrices Ag and Bg to

As = TsApT,!
S sAB s (26)
Bs:TsBB
with ) )
| SsTs 0
L= 70" s | 27
and
1 ¢ 0 07
1 4 0 0
=100 1 ¢ (28)
L0 0 1 d ]
This results in the final state-space model
X, = AgXs + Bsu
S SAS S (29)
¥s = Cx;
with
. . . ..aT
Xe=[ X X4 Yo Ya ke Xg Ye Ya ] . (30

The rotational speed of the rotor is taken into account in
this model, and it can be seen from (20), that there is
a coupling between the moment in the x plane and the
moment in the y plane. As a consequence, this radial AMB
model is a fully coupled system with four current inputs
and eight outputs in terms of displacements and velocities
respectively.

In addition to suspending the rotor horizontally, the
FlyUPS system is required to lift and suspend the flywheel
vertically. Consequently, the addition of an axial thrust
bearing is required. The axial AMB is situated at the top of
the FlyUPS rotor, and will use the thrust disc to exert the
required lifting force. The axial AMB is taken as a simple
1-DOF point mass system, since axial rotor movement is
assumed decoupled form the rotational movement due to
rigid simple body motion, hence not influencing the centre
of mass of the radial AMBs. There is no need to transform
the axial model to bearing or sensor coordinates, as it
represents vertical movement of a point mass system only.

The force acting on the axial AMB is calculated in a
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similar manner as to (16), with the current-force and
displacement-force values calculated similarly to (17), but
with values for the axial AMB:

f iz, xz) = kigiy + ks;z = mz. (31)
The state space model for the axial AMB is given by

X, = Azx, + B,u,
Yy = szz

|z o 1 01
XZ_|:Z-:|auZ_[lZ]7AZ_|:]% 0:|7

B,:[i],c,:[l l

m

(32)

with

The model for the axial AMB is simply appended to the
model of the radial AMBs, as illustrated in Fig. 5 and the
parameter values are. The sensors are modelled as five

.\
. > 2
Axial
. ————>
‘ AMB )
>Z
- 0@
. @@
L= > X,
,x,
>,
lb.x — >y,
. d
Radial
. AMBs g
Ly - X,
> i,
. »5.
by —————> > ¥y
- 0
10th order state

space model

Figure 5: System state space model of FlyUPS

cascaded second order low-pass transfer functions with
bandwidths of 10 kHz, and connected to the outputs of the
AMB model [22]:

o

Tv s = 3 Ar.. . L
)= o sl

(33)

with damping { = 0.707 and bandwidth &, =2-7-10 x 103
rad/s.

The power amplifier (PA) model consists of a closed loop
PI controlled system with a bandwidth of 2.5 kHz as shown
in Fig. 6. The closed loop transfer function of the PA is
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given by

Tout (8) _ 2Vius (Ki + Kps)
irep(s)  Ls?+ (2KyVius + R)s + 2K Vs’

where Vp,; = 51 V is the bus voltage, R = 0.152 Q is

i i
ref + K. 1 out
= % Y 2%V,
L o R+sL

Figure 6: PA small signal closed-loop system

Tpa(s) = (34)

the coil resistance, L = 6.494 mH is the nominal coil
inductance, K, = 1 is the proportional constant and K; =
0.1 is the integral constant [20]. The cascaded PA model is
connected to the input of the AMB model.

3. MODEL PREDICTIVE CONTROL DESIGN

A conceptual diagram of a model predictive control system
is shown in Fig. 7. A plant model is used to predict future
values of the output variables. The differences between the
reference signals and predicted outputs, serve as the input
to an optimisation algorithm. At each sampling instant the
control law uses the predicted information to generate the
optimal inputs to the plant. Linear inequality constraints
on the input and output variables, such as upper and lower
limits, may be included in the calculation. The objective
of the MPC control scheme is to determine a sequence of
control moves (changes in the input variables) so that the
predicted response moves to the set point in an optimal
manner.

k
y(k+i|k) tY( )

Prediction
x(k+i|k) Ak +i|k)

&k +ilk)

Ly | —
. Au(k u(k
r®) 20 k), Optimisation u( )"”‘ Ll ) » Plant > y(k)
L P

“y(k) i i

r(k+ilk), 2

Cost function ~— Constraints

V(k)

Figure 7: Conceptual diagram of MPC

Let the 5-DOF state space model be represented in a
linearised, discrete-time, state space form

x(k+ 1) = Ax(k) +Bu(k), 35)

y(k) = Cx(k),
where x is an n-dimensional state vector, u is an
{-dimensional input vector and y is an m-dimensional
output vector.

It is assumed that not all the state variables can be
measured, and are therefore estimated/predicted. The
following notation will be used to denote future values for

the variables u, X,y at time k + i, as assumed at time instant
k:
a(k+ilk),
x(k+ilk),
§(k+ilk).

The cost function V(k) penalises deviations of the
predicted controlled outputs, §(k +i|k), from the vector
reference trajectory r(k + ilk). The cost function is defined
as

HP
Vi)=Y, ||5r(k+i|k)—r(k+i|k)\|f)(i)
i=H,,
o 2 (36)
- L [[AG(K+ ilk)[|R(s)-

H), is the prediction horizon and H,, is the control horizon.
It may not necessarily penalise the deviations of y from r
immediately (if H,, > 1), since there may be some delay
between applying the input and seeing the effect. It will be
assumed that H, < H,, and that Ali(k+ilk) =0. Q(i) > 0
and R(i) > 0 are weight matrices.

It will be assumed that H,, < H), and that Ada(k+i|k) =0
for i > H,. That means

u(k+ilk) =u(k+i+ Hylk) forall i > H,. 37

This cost function also implies that the predicted error
vector &(k+ilk) = §(k+ilk) —r(k—+i|k) is penalised at
every point in the prediction horizon, in the range H,, <
i< Hp.

The states of the system are predicted by iterating the state
space model as follows:
R(k+ 1]k) = Ax(k) + Ba(k|k)
X(k+2lk) = Ax(k+ 1) +Ba(k+ 1|k)
= A%x(k) + ABu(k|k) + Bi(k + 1]k)

K(k+ Hy|k) = Ak(k+H, — 1|k) + Ba(k + H, — 1[k)
= Aty - AP~ B (k|k) + - --
+Bi(k+H, — 1[k)
(38)

The predicted input sequence is given by

a(k|k) = Ad(k|k) +u(k—1)
a(k+ 1[k) = Ad(k + 1k) + Ad(k[k) +u(k — 1)
a(k+H, — 1|k) = Ad(k+ H, — 1[k)+---
+ Ad(k[k) +u(k—1)
(39)

Substituting (39) into (38) results in the predicted state

Vol.106 (3) September 2015



Vol.106 (3) September 2015

equation
X(k) = Qx(k) +Tu(k— 1)+ ®AU(k) (40)
where
X(k+1lk)
X(k) = : ; (4D
X(k+H,y|k)
and
A (k|k)
AU(k) = : ; (42)

Ad(k+ H, — 1[k)

for suitable matrices Q, I and ®.

The prediction of the output equation is obtained as

§(k+ H,|k) = C&X(k+ H,|k)

§(k+ H, + 1|k) = CR(k + H,, + 1|k)
(43)

Y(k+H,|k) = CX(k+ H)|k)

By substituting (39) and (38) into (43) the following
compact representation of the output equation is obtained

Y(k) = Wx(k) +Yu(k—1)+@AU(k),  (44)

where
§(k+H, k)
Y (k) = : ; (45)
y(k+Hylk)

for suitable matrices ¥, Y and ©.

The tracking error may then be defined as

E(k) = T(k) —¥Px(k) — Yu(k—1) (46)
where
t(k+ Hylk)
T(k) = : : 47)
F(k+ Hplk)

is the vector containing the reference signals.

The cost function may then be rewritten as follows
V(k) = [Y(k) =TR)lIG+ UK @48)

where

(49)

(e}
(=)
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and
R(O) 0 0
_ 0 R(1) 0
R= . . (50)
0 0 R(H, — 1)

Equation (48) may be written in its expanded form as

V(k) = E(k)TQE(k) — 2AU (k)" ®" QE (k)

51
+AU(k)" [0 QO +R]AU(k). eV

This equation may also be written in the form
V(k) = const — AU(K)" G+ AU(k) " HAU(k),  (52)

where o
G =207 QE(k) (53)

and o -
H=0"Q0+R (54)

and neither G nor H depends on AU(k). In order to find
the optimal U(k), the gradient of V (k) is set to zero

Vauwk) = —G+2HAU(k) (55)
implying that the optimal set of future input moves is

1

-1
wm=7H'G. (56)

AU(k)
It should be remembered that due to the use of the concept
of a receding horizon, only the first part of the solution
corresponding to the first step is used. Therefore, if the
plant has ¢ inputs, then only the first £ rows of the vector
AU(k) opr are used. This may be represented as follows

Au(k)opt = [ I,, 0 0/] ]AU(k) 57

opt?
where I, is the £ x £ identity matrix, and 0y is the ¢ x ¢ zero
matrix.

4. RESULTS

The MPC control was implemented on a hardware
platform as depicted in Fig. 8. The code for the MPC
controller was implemented in Simulink®. Using the
Real-Time Workshop®, the Simulink® code is converted
to C code and compiled as an executable file. The
executable file is then linked and embedded on a
dSPACE® real-time control target board.

The wuser can monitor the FlyUPS with a host
computer through dSPACE® ControlDesk® software.
ControlDesk® is used for displaying the system status in
real-time. From here the PMSM drive can be activated
and changes to the reference signals can be made.

4.1 Memory usage and cycle time

Memory usage of the controller is described in terms of
the size of the executable file that needs to be embedded
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Simulink® model

mel;:lsllrt:::em MPC Control action
from FlyUPS Controller to FlyUPS

' Real-Time Workshop® 3

i

1 .

\ C code Executable i

1 i
i
1

Online condition
monitoring
and paramter tuning

(ControlDesk®)

file

Host PC

FlyUPs dSPACE®
target

Figure 8: Implementation method of MPC on FlyUPS

on the dSPACE® hardware. The full five DOF MPC
controller for the FlyUPS uses 12.7 MB of memory, which
is well below the limit of 16 MB maximum storage of the
dSPACE® target.

The execution time of the controller indicates the period of
time it takes to implement the control strategy during one
control cycle. This includes reading the measured outputs
of the system, calculating the optimal control signal, and
implementing the optimal control action. In order to
determine the execution time of the MPC controller the
dSPACE® Profiler® is used. The profiler logs the period
of time that passes from the start of the control cycle until
the control action is implemented.

Various factors influence the execution time of the FlyUPS
control system. These factors include the order of the
model from which the controller is derived, the use of
constraints in the design, and the lengths of H, and H,.
This is expected as these factors increase the complexity
and number of operations that are performed during each
cycle.

It was determined experimentally that the largest sampling
period for the FlyUPS control system to maintain stability
is 200 ws, corresponding to a sampling frequency of 5
kHz. For the unconstrained 5 DOF MIMO MPC control
strategy, the execution time is 174 us. This unconstrained
controller is derived from a reduced tenth order state space
model. However, when constraints were included the
controller became unstable due an execution time larger
than 200 us. The effects of the prediction and control
horizons were investigated by keeping one parameter fixed
and varying the other parameter. It turned out that
the optimal choice of these parameters adhering to the
maximum execution time, was H, = 50 and H,, = 5.

4.2 Sensitivity analysis

A comparison of the measured and simulated sensitivity
functions for the axial AMB (Z), top radial AMB (X'1) and
bottom radial AMB (X2) at standstill are given in Figures
9, 10 and 11 respectively.

From Fig. 9 the peak measured sensitivities of the axial
AMB are 4.15 dB at 44.21 Hz and 16.22 dB at 81.76
Hz corresponding to the first two rigid modes of the axial
AMB. The peak of 16.22 dB places the axial AMB of the
FlyUPS in class D of the ISO CD 14839-3 standard. This
measured result reveals that the axial AMB of the FlyUPS
is very sensitive to parameter changes from 82 Hz to 96.5
Hz. The simulated sensitivity function clearly does not
predict this sensitivity. The simulation result indicates a
single peak sensitivity of 4 dB at 160 Hz placing the axial
AMB in zone A of the ISO CD 14839-3 standard. This
difference indicates that the model of the axial AMB may
not be accurate enough to meet the requirements of MPC.

20

—— Measured

10} = Simulated
- — - -8dB

Magnitude (dB)

Frequency (Hz)

Figure 9: Sensitivity function of the axial AMB at standstill

Fig. 10 and Fig. 11 give the results for the sensitivity
functions of the top and bottom radial AMBS respectively,
at standstill. These results indicate a larger correlation
between the simulated and measured results. However, it
is also clear from these results that the actual system has
some inherent dynamics that are not contained in the model
and thus do not appear on the simulation results.

Magnitude (dB)

— Measured
— Simulated
— - -8dB

Frequency (Hz)

Figure 10: Sensitivity function of the top radial AMB at
standstill

Fig. 10 shows three peak sensitivities of -4.82 dB, 4.728
dB and 4.14 dB at 15.38 Hz, 42.16Hz and 57.63 Hz,
respectively, in the measured sensitivity of X1 at standstill.
This places the top radial AMBs within zone A of the ISO
CD 14839-3 standard of AMBs. The simulated sensitivity
expects a single peak of 5 dB at 58 Hz corresponding to
zone A of the ISO CD 14839-3 standard.

At standstill, the measured sensitivity function of X2 given
in Fig. 11 shows peaks in the sensitivity of 3.18 dB and
4.13 dB, at 15.13 Hz and 34.93 Hz, respectively. This
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Figure 11: Sensitivity function of the bottom radial AMB at
standstill

places the bottom radial AMBs within the class A of
the ISO CD 14839-3 standard on AMBs. The simulated
sensitivity of X2 indicates a single peak of 4.1 dB at 35 Hz
corresponding to zone A of the ISO CD 14839-3 standard
as well.

Despite the low sensitivities of the radial AMBs to
parameter changes, the system is classified according to
the worst case measured sensitivity. This means that
the FlyUPS falls within class D of the ISO CD 14839-3
standard due to the peak sensitivity of the axial AMB. For
MPC the shape of the sensitivity function is expected as
the controller is derived from the model of the FlyUPS at
standstil. This means that low sensitivities are expected at
low frequencies, with the gain of the sensitivity function
increasing as the operating speed increases.

The sensitivity functions of Z, X1 and X2 only change
marginally from operation at standstill to an operating
speed of 500 r/min in both simulation and implementation.
These results are given in Fig. 12, Fig. 13 and Fig. 14
for Z, X1 and X2, respectively. The major change that
is noted in the results is the increase in the frequency
components corresponding to integer multiples-of-two
harmonics of the operating speed, indicating the presence
of an unbalance [7]. These harmonics do not appear to
have a large effect on the sensitivity of the axial AMB.
However, in the case of the radial AMBs the sensitivity
at these harmonic frequencies is driven into zone D of the
ISO CD 14839-3 standard for AMBs.
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Figure 12: Sensitivity function of the axial AMB at 500 r/min
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Figure 13: Sensitivity function of the top radial AMBs at 500
r/min
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Figure 14: Sensitivity function of the bottom radial AMBs at
500 1/min

4.3  MPC operating range

The operating range is defined as the amount by which
the operating speed can be adjusted about the design
speed of the MPC controller before the system response
becomes unstable. This is done by implementing an MPC
controller derived for the model of the FlyUPS at standstill
and increasing the operating speed until the maximum
operating speed is attained where the radius of the orbital
pattern about the origin reaches 120 ym.

An increase in the operating speed introduces a visible
change in the performance of the MPC controller in
simulation and implementation where the radius of the
orbital pattern increases nearly exponentially as the
operating speed is increased. In the case of the simulation,
the maximum operating speed reached is 2440 r/min for an
orbital radius of 120 um in X1. In the experimental setup
the orbital radius of 120 um in X1 is already reached at
1500 r/min. Any further increase in the operating speed of
the implementation causes the open-loop PMSM control to
lose synchronism with the rotor. This point along with the
restriction in terms of cycle time resulted in the choice of
the 500 r/min operating speed for the test results.

5. CONCLUSIONS

In order to evaluate the implementation of MPC on
the FlyUPS the MPC controller was firstly validated by
comparing the performance of the implementation to the
simulated performance. This comparison showed that the
performance of the practical implementation correlated to
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the performance expected in simulation with regard to the
sensitivity analysis.

However, at an operating speed of 500 r/min an unbalance
disturbance is noted in the response of the radial AMBs.
This unbalance is seen as the sinusoidal disturbance in the
position output of the radial AMBs and can be identified
by the integer multiples-of-two harmonic components
in the frequency response that are introduced by the
unbalance at the operating speed. From these results it
is clear that the MPC controller is limited to the design
parameters derived at standstill, which cannot implement
enough stiffness in the AMBs to eliminate the unbalance.
Some limitations regarding the operating range due to
unmodelled dynamics, as well as long execution times due
the computational load have also been noticed.

In this paper it was shown that MPC is a viable control
strategy for the FlyUPS, however some limitations of the
current MPC strategy needs to be addressed to improve
performance at higher operating speeds.

One of the main limiting factors is the optimisation
algorithm of the MPC control strategy that utilises a model
of the actual system. In this regard other types of models
such as artificial neural networks or fuzzy models can be
incorporated. These models are also able to update on-line
as the operating point changes. This may be very beneficial
in terms of the operating speed range.

For the optimisation algorithm various techniques have
been proposed for the reduction of the computational load
when calculating the optimal control action for a MIMO
system. The most prominent technique involves convex
optimisation algorithms that reduce the computational
load by exploiting special patterns in the formulation of
the objective function. This technique is common in
applications involving quadratic programming problems
such as the formulation of the MPC cost function
when constraints are implemented on the output and
the increment of the control signals.  Alternatively
the parameters that do not change during the plant
operation can be identified and calculated offline to reduce
the computational load. These parameters can then
be implemented in a gain-scheduling algorithm during
operation.
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APPENDIX A

Parameter values used in the state space model are given in
the following Tables.

Table 1: Parameter values of the FlyUPS
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Table 2: Parameter values for the radial bearings

Symbol  Description Value Unit
I, Moment of inertia 0.11575 kg-m
in the x plane
I Moment of inertia 0.11575 kg-m
in the y plane
I, Moment of inertia 0.10669 kg -m
in the z plane
m Mass of the rotor 17.65 kg
a Bearing displacement —160 x 1073 m
b Bearing displacement ~ 64.4 x 1073 m
c Bearing displacement  —190 x 1073 m
d Bearing displacement ~ 95.4 x 1073 m

Symbol Description Value  Unit
ki Force-current 30 N/A
constant
ks Force-displacement —15000 N/m
constant
o - 4 x 1077 -
A - 204.026 x 1076 m?
N - 80 -
) - 2.5 A
Y0 - 500 x 10~° m
0 - 22.5° -
Table 3: Parameter values for the axial bearings
Symbol  Description Value  Unit
ki- Force-current 549 N/A
constant
ks; Force-displacement —329693 N/m
constant
o - 4mx 1077 -
A - 168.45x 1076 m?
N - 104 -
io - 3 A
20 - 500x107°®  m
) - 0° -
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