
Vol.106 (3) September 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 119

A STUDY ON IMPULSE NOISE AND ITS MODELS

Thokozani Shongwe ∗ and A. J. Han Vinck † and Hendrik C. Ferreira ‡

∗ Department of Electrical and Electronic Engineering Science, University of Johannesburg, P.O. Box
524, Auckland Park, 2006, Johannesburg, South Africa E-mail: tshongwe@uj.ac.za
† University of Duisburg-Essen, Institute for Experimental Mathematics, Ellernstr. 29, 45326 Essen,
Germany E-mail: vinck@iem.uni-due.de
‡ Department of Electrical and Electronic Engineering Science, University of Johannesburg, P.O. Box
524, Auckland Park, 2006, Johannesburg, South Africa E-mail: hcferreira@uj.ac.za

Abstract: This article gives an overview of impulse noise and its models, and points out some important
and interesting facts about the study of impulse noise which are sometimes overlooked or not well
understood. We discuss the different impulse noise models in the literature, focusing on their similarities
and differences when applied in communications systems. The impulse noise models discussed are
memoryless (Middleton Class A, Bernoulli-Gaussian and Symmetric alpha-stable), and with memory
(Markov-Middleton and Markov-Gaussian). We then go further to give performance comparisons in
terms of bit error rates for some of the variants of impulse noise models. We also compare the bit
error rate performance of single-carrier (SC) and multi-carrier (MC) communications systems operating
under impulse noise. It can be seen that MC is not always better than SC under impulse noise. Lastly,
the known impulse noise mitigation schemes (clipping/nulling using thresholds, iterative based and
error control coding methods) are discussed.
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1. INTRODUCTION

The effects of impulse noise are experienced by most
communications systems. There has been a lot of research
pertaining to impulse noise, which involve modelling of
the impulse noise phenomena and combating impulse
noise in communications systems. Research articles
addressing impulse noise and its effects are found across
different fields in communications, some of which are
electromagnetic interference, wireless communication,
and recently powerline communication. We therefore
see it necessary to bring a contribution which gives a
general view of impulse noise in communications systems,
from the different research fields. The purpose of this
article is to give an overview of impulse noise, and point
out some important and interesting facts about the study
of impulse noise which are sometimes overlooked. We
begin by looking at the earliest work on impulse noise
modelling by Middleton [1, Chapter 11], in Section 2..
Then we go on to discuss the common impulse noise
models in the literature, in Section 3., dividing them into
those with memory and without memory. We also look
at the application of these models with single-carrier and
multi-carrier systems. Lastly, we give an overview of the
currently known methods of combating impulse noise, in
Section 4.. This article follows from the preliminary work
in [2].

2. AN INTRODUCTION TO MIDDLETON NOISE
MODEL

The phenomenon of impulse noise was first described in
detail by Middleton [1, Chapter 11] in the 1960s, where
he gave a model for impulse noise in communications

systems. To obtain the model, Middleton [1, Chapter 11]
described impulsive noise in a system as consisting of
sequences of pulses (or impulses), of varying duration and
intensity, and with the individual pulses occurring more or
less random in time. He went further to divide the origin of
impulse noise into two categories: (a) Man-made, which is
induced by other devices connected in a communications
network and (b) naturally occurring, due to atmospheric
phenomena and solar static which is due to thunder storms,
sun spots etc. The man-made impulse noise was described
as trains of non-overlapping pulses, such as those in
pulse time modulation. The impulse noise due to natural
phenomena was described as the random superposition
of the effects of the individual natural phenomena [1,
Chapter 11]. A model for such noise is given in [3], [4]
and [5] as

n(t) =
L

∑
i=1

aiδ(t − ti), (1)

where

• δ(t − ti) - is the ith unit (ideal) impulse, described as a
delta function.

• ai - are statistically independent with identical
probability density functions (PDFs),

• ti - are independent random variables uniformly
distributed in the time period T0,

• L - the number of impulses in any observation period
T0, assumed to obey a Poisson distribution
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PT0(L) =
(ηT0)

Le−(ηT0)

L!
. (2)

In (2), η is the average number of impulses per second, and
T0 is the observation period of the impulses. Therefore,
ηT0 is the average number of impulses in the period T0. It
can be seen that the noise model described by (1) is ideal
because the impulses are assumed to be delta functions,
where aiδ(t − ti) describes the ith impulse of amplitude ai.

The noise model described by (1) and (2) was originally
referred to as the Poisson noise model in [1, Chapter 11],
and was widely studied and applied in many systems [3]–
[6]. Ziemer [3], utilised the Poisson impulse noise model
to calculate error probability characteristics of a matched
filter receiver operating in an additive combination of
impulsive and Gaussian noise. In [5], the Poisson
noise model was used to evaluate the performance of
noncoherent M-ary digital systems, ASK, PSK and FSK.

In his later work, Middleton [1] developed statistical noise
models which catered for noise due to both man-made and
natural phenomena [7]– [9]. In [7] Middleton classified
the noise models into the following three categories: Class
A – the noise has narrower bandwidth than that of the
receiver; Class B – the noise has larger bandwidth than
that of the receiver; Class C – the sum of Class A and
Class B noise. The most famous of these noise models
is the so-called Middleton Class A noise model, which has
been widely accepted to model the effects of impulse noise
in communications systems. We will, in short, refer to the
Middleton Class A model as Class A model.

3. IMPULSE NOISE MODELS

Following Middleton’s noise models [1, Chapter 11], many
authors studied impulse noise modelling. In this section,
we discuss some impulse noise models found in the
literature. In our discussion of the other impulse noise
models we will occasionally mention the Middleton Class
A model for reference or comparison purposes as it is
a very important model in the study of impulse noise.
To date, the following names appear in the literature for
different impulse noise models:

1. Impulse noise models without memory

• Middleton Class A

• Bernoulli-Gaussian

• Symmetric Alpha-Stable distribution

2. Impulse noise models with memory

• Markov-Middleton

• Markov-Gaussian.

Impulse noise models without memory

3.1 Middleton Class A

The Class A noise model is still a form of the Poison noise
model, but with the impulse width taken into account in
(2). We dedicate space to describing the Class A noise
model because it has become the cornerstone of impulse
noise modelling and has been extensively studied and
utilised in the literature (see [10]– [17].) The Class A noise
model gives the probability density function (PDF) of a
noise sample, say nk as follows:

FM(nk) =
∞

∑
m=0

PmN (nk;0,σ2
m), (3)

where

N (xk;µ,σ2) represents a Gaussian PDF with mean µ and
variance σ2, from which the kth sample xk is taken.

Pm =
Ame−A

m!
(4)

and

σ2
m = σ2

I
m
A
+σ2

g = σ2
g

( m
AΓ

+1
)
, (5)

where σ2
I is the variance of the impulse noise and σ2

g is the
variance of the background noise (AWGN). The parameter
Γ = σ2

g/σ2
I gives the Gaussian to impulse noise power

ratio. We can see that (2) and (4) are Poisson PDFs. The
difference in (4) is that the term (ηT0) has been replaced
by the parameter A. The parameter A here represents the
density of impulses (of a certain width) in an observation
period. Therefore, A = ητ/T0, where η is the average
number of impulses per second (as in (2)) and T0 = 1,
which is unit time. The new parameter τ, is the average
duration of each impulse, where all impulses are taken to
have the same duration. We now talk of density of impulses
instead of number of impulses as done in (2). In (4) we
therefore have the densities of impulse noise occurring
according to a Poisson distribution.

The density is what has become accepted as “impulsive
index”, A. The impulsive index is a parameter that is
not well explained in the literature. We therefore give
some details about the impulsive index, to enhance its
understanding. It is worth stating that A ≤ 1, this follows
from the definition of impulsive index being a fraction of
impulses in a given observation period T0. Therefore, for
ητ > T0, the impulsive index is capped at 1 no matter how
large ητ is, in the observation period T0.

Fig. 1 shows a pictorial view of the impulsive index, A,
and what it means. Fig. 1 (a) shows η impulses each
of duration τ, where the impulses occur in bursts (next
to each other). In Fig. 1 (b) we show η = 3 impulses
each of duration τ, where the impulses do not necessarily
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Figure 1: Example of Impulsive index: (a) Impulsive index
(density) of η impulses, each with width (duration) τ, occupying

a given time period T0 and (b) impulsive index (density) of 3
impulses, each with width (duration) τ, occupying a given time

period T0 = 1.

occur in bursts. We also specify the period of observation
as T0 = 1 in Fig. 1 (b), which is usually the case in the
calculation of the impulsive index. The conclusion drawn
from Fig. 1 is that whether impulses occur in bursts or
not, the calculation of the impulsive index follows the same
procedure.

3.2 Bernoulli-Gaussian

The Middleton Class A noise model has already been
explained. It can be seen that the PDF of the Class
A noise model in (3) is a sum of different zero mean
Gaussian PDFs with different variances σ2

m, where the
PDFs are weighted by the Poisson PDF Pm. This summing
of weighted Gaussian PDFs is generally referred to as a
Gaussian mixture. Another popular impulse noise model,
which is a Gaussian mixture according to the Bernoulli
distribution, exists in the literature and is called the
Bernoulli-Gaussian noise model (can be found in [18]–
[21].) This noise model is described by the following PDF:

FBG(nk) = (1− p)N (nk;0,σ2
g)+ pN (nk;0,σ2

g+σ2
I ). (6)

The Bernoulli-Gaussian noise model has similarities to the
Class A noise model. To show the similarities, we use
the channel models in Fig. 2. Fig. 2 (a) is a two-state
representation of the Class A noise model, and Fig. 2 (b) is
a representation the Bernoulli-Gaussian noise model. The
models in Fig. 2 look very similar, with the only difference
being that in Fig. 2 (b) it is explicitly stated that the noise
sample added to the data symbol Dk, in either of the two

states, is Gaussian distributed. Whereas in Fig. 2 (a), only
the state with variance σ2

g can have a Gaussian distribution.
However, the state with impulse noise does not necessarily
have a Gaussian distribution.

Dk D̃k

σ2
g

σ2
g + σ2

I/A

A

1− A

(a)

Dk D̃k

N (0, σ2
g)

N (0, σ2
g + σ2

I/p)
p

1− p

(b)

Figure 2: (a) Two-state Class A noise model and (b)
Bernoulli-Gaussian noise model.

It should be noted that in the impulse noise model in Fig.
2, for the states with impulse noise, the impulse noise
variance σ2

I is divided by the probability of entering into
that state (A or p), such that the impulse noise variance in
the system (total number of time samples) becomes σ2

I . To
explain this, let us use the Class A noise model as follows:
in the Class A noise model which is defined by (3)–(5), it
can be seen that the impulse noise variance of the state m is
(σ2

I m)/A as shown in (5). This variance of state m occurs
with probability Pm (see (4)), hence the average impulse
noise variance of the Class A noise model is

∞

∑
m=0

Pm
σ2

I m
A

=
σ2

I
A

∞

∑
m=0

mPm =
σ2

I
A

×A = σ2
I . (7)

From a simulation point of view, we explain the division
of σ2

I by A as follows: let us assume a transmission of N
symbols. For the impulse noise variance, in the vector
of length N, to be approximately σ2

I , each symbol has
to be affected by impulse noise variance σ2

I /A. It can
easily be shown that this situation will result in the impulse
noise of σ2

I over the N symbols, as follows: we know
that impulse noise occurs with probability A, and for N
symbols (assuming very large N) we have approximately
AN symbols affected by impulse noise of variance σ2

I /A.
This gives the impulse noise variance in N samples as
σ2

N = AN ×σ2
I /A = Nσ2

I . Then the average impulse noise
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variance is σ2
N/N = σ2

I , which is the result in (7). For the
two models in Fig. 2 to be more similar, set A = p.

The Bernoulli-Gaussian noise model has been widely
adopted in the literature, and some researchers prefer to
employ it over the Class A noise model because it is more
tractable than the Class A noise model. The Class A model
has the advantage of having its parameters directly related
to the physical channel. If so desired the Class A model can
be adjusted to approximate the Bernoulli-Gaussian, hence
giving the Bernoulli-Gaussian model the advantages of the
Class A model as well.

The Class A model can also be simplified, and be made
more manageable. It was shown in [11] that the PDF of
the Class A noise model in (3) can be approximated by the
first few terms of the summation and still be sufficiently
accurate. Truncating (3) to the first K terms results in the
approximation PDF (normalised), which is

FM,K(nk) =
K−1

∑
m=0

P′
mN (nk;0,σ2

m), (8)

where
P′

m =
Pm

∑K−1
m=0 Pm

.

The model in (8) allowed Vastola [11] to design a threshold
detector with a simpler structure, which would not have
been the case if he was using the model in (3) which has
infinite terms. It was also shown in [11] that the first
two or three terms are good enough in (8) to approximate
the PDF in (3). In [17], the first four terms were used
to approximate the PDF of the Class A model. In our
simulations, we shall use up to the first five terms of (8),
and such a model is shown in Fig. 3.

We now give some results showing the bit error rate (BER)
versus SNR when using the model in (8) for different K
values. Such results are shown in Figs. 4 and 5, where
BPSK modulation is used and K = 2, 3 and 5. In each
figure, we use a theoretical BER curve for BPSK (given by
(9) for M = 2, where M is the order of the PSK modulation
and Eb is the signal’s bit energy) as a reference curve
against which all curves are compared. Figs. 4 and 5 show
the effect of different values of A and Γ on the model.

Pe,MPSK = (1−A)
M−1

M
Q

(√
Eb

σ2
g

)

+ A
M−1

M
Q

(√
Eb

σ2
g(1+1/AT )

)
. (9)

Note that the expression in (9) is normally written without
the term (M − 1)/M. However, for accuracy, the (M −
1)/M term needs to be included in the expression to
indicate that a symbol affected by noise only gets to be
in error with probability (M − 1)/M. This is important

Dk
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2σ2
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g

P ′
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3
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Figure 3: Five-term, K = 5, approximation of the Class A model.

for low order modulation, but can be neglected for higher
order modulation because the term approaches one as M
gets larger.

It can be observed in Figs. 4 and 5 that the model in (8)
approximates the Class A model in (3) better for low values
of A (see Fig. 4), such that even for two terms, K = 2,
we get a very good approximation of the theoretical BER
curve. For high values of A (see Fig. 5), however, we
require more terms in (8) to approximate the results of the
model in (3), at least for the part of the curve influenced by
A (the error floor).

Fig. 5 shows that the results of the K = 5 channel model
closely approximate the effect of A on the BER curve
better than when K = 2. This is obviously due to the
fact that the more terms (higher K values), the better the
approximation of the Class A PDF. However, the K = 2
channel model results show a better approximation of the
impulse noise power (1/(AΓ), which is observed around a
BER of 10−5) compared to when K = 5. This is because
of the m parameter in the term σ2

I m/A in (5), which
influences the impulse noise power. Using more terms in
(8) to approximate the results of the model in (3) is more
effective in estimating the effect of A in the BERs, but not
the impulse noise power.

3.3 Symmetric alpha(α)-stable distribution for impulse
noise modelling

The impulse noise models discussed so far (the Middleton
Class A and the Bernoulli-Gaussian) are by far the most
widely used in the literature to model impulse noise.
There is another impulse noise model that is becoming
more common in the literature, and that is the symmetric
α-stable (SαS) distribution. This section is therefore a
short note on symmetric α-stable distributions used to
model impulse noise.

SαS distributions are used in modelling phenomena
encountered in practice. These phenomena do not
follow the Gaussian distribution, instead their probability
distributions may exhibit fat tails when compared to the
Gaussian distribution tails [22, Chapter 1]. While stable
distributions date back to the 1920s (see [23]), their usage
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Figure 4: Bit error rate results using the impulse noise model
shown in Fig. 3, with K = 2, 3 and 5. BPSK was used for the

modulation.

in practical applications had been limited until recently
because of their lack of closed-form expressions except
for a few (Levy, Cauchy and Gaussian distributions) [22,
Chapter 1]. Nowadays powerful computer processors
have made it possible to compute stable distributions
despite the lack of closed form expressions. This has
led to the increasing usage of stable distributions in
modelling. Impulse noise is one phenomenon encountered
in communication systems which has a probability
distribution with fat tails [24]. SαS distributions are
therefore considered appropriate for modelling impulse
noise [24]– [27].

In this section we give examples of the PDFs of the
SαS model for impulse noise, the Class A model and the
Bernoulli-Gaussian model. This is meant to show how the
SαS model compares, in terms of the PDFs, with the other
impulse noise models already discussed.

The SαS distributions are characterised by the following
parameters:

• α: is the characteristic exponent, and describes the
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Figure 5: Bit error rate results using the impulse noise model
shown in Fig. 3, with K = 2, 3 and 5. BPSK was used for the

modulation.

tail of the distribution (1 < α ≤ 2).

• β: describes the skewness of the distribution (−1 ≤
β ≤ 1); if the distribution is right-skewed (β > 0) or
left-skewed (β < 0).

• γ: is the scaling parameter (γ > 0).

• δ: is a real number that gives the location of
the distribution. This number tells us where the
distribution is located on the x-axis (when the x-axis
is used to represent the value of the random variable
as per the norm).

The parameters α and β describe the shape of the
distribution; while γ and δ can be thought of as similar
to the variance and the mean in a Gaussian distribution,
respectively, care should be taken when using these
parameters as variance and mean.

When modelling impulse noise using the SαS distribution,
the noise is thought of as broadband noise, i.e, the
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bandwidth of the noise is larger than that of the receiver
[28]. Hence, the SαS distribution can be used in the
place of the Middleton Class B noise model which requires
more (six) parameters to be defined compared to the four
parameters required to describe the SαS distribution.

Fig. 6 shows PDFs of the SαS models for different values
of α while the other parameters are kept fixed (β = 0 and
δ = 0). The parameter γ is set at γ = 1 for all PDFs
except for the α = 2 PDF where γ = 1/

√
2. This case of

α = 2, γ = 1/
√

2, β = 0 and δ = 0 results in the normal
distribution as seen in Fig. 6. It should be noted that
the SαS distribution of α = 2, β = 0, δ = 0 and γ > 0 is
generally the Gaussian distribution; making the Gaussian
distribution a special case of the SαS distributions. Our
main aim of presenting Fig. 6 is to show the change of
the tails of the SαS PDFs with change in the parameter α
and show that the tails are fatter than that of the Gaussian
distribution for α < 2.
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Figure 6: SαS distributions of different values of α while β = 0,
γ = 1 and δ = 0. The normal distribution is also included as a

SαS distribution of α = 2, β = 0, γ = 1/
√

2 and δ = 0.

It can be seen in Figs. 6 and 7 that the PDFs of the impulse
noise models (Bernoulli-Gaussian, Middleton Class A and
SαS) have fat tails. For the Bernoulli-Gaussian and
Middleton Class A PDFs, the tails are controlled by the
probabilities of impulse noise p and A, respectively; when
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Figure 7: Tails of the PDFs of the Class model for different
values of A and Γ; tails of the PDFs of the Bernoulli-Gaussian

model for different values of p and Γ.

the probability of impulse noise (p or A) increases, the
PDFs tails get fatter. For the SαS PDF, the tails are
controlled by the parameter α; with low values of α (α< 2)
giving PDFs with fatter tails.

Impulse noise models with memory

Through measurements in a practical communications
channel, Zimmermann and Dostert [29] showed that
impulse noise samples sometimes occur in bursts, hence
presenting a channel with memory. They further proposed
a statistical impulse noise model, based on a partitioned
Markov chain, that takes into account the memory nature
of impulse noise. Following the work in [29], other authors
studied impulse noise with memory as seen in [30], [31],
[17] and [32]. In [30], a two-layer two-state Markov
model is used to describe bursty impulse noise. The
first layer uses a two-state Markov chain to describe the
occurrence of impulses and the second layer uses another
two-state Markov chain to describe the behaviour of a
single impulse. To model impulse noise with memory,
Markov chains are invariably used by most authors in the
literature. The two models, Markov-Middleton [17] and
Markov-Gaussian [31] are modifications of the Class A
and Bernoulli-Gaussian models, respectively, by including
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Markov chains. Having discussed the impulse noise
models without memory, there is no need for a lengthy
discussion about the impulse noise models with memory.
This is because the impulse noise models with memory
are founded on those models without memory. In Fig. 8
we show Markov-Middleton models, which means Class
A model with memory. These models in Fig. 8 are an
adaptation of the model shown in Fig. 3. The model in
Fig. 8 (a) is a “direct” adaptation of the one in Fig. 3, with
all the parameters unchanged except for the introduction of
memory. However, the model in Fig. 8 (b) [17] allows for
all states to be connected such that it is possible to move
from one bad state (state with impulse noise) to another
bad state, which was not possible with the models in Fig. 3
and Fig. 8 (a). With this modification, in Fig. 8 (b), comes
a new parameter x, which is independent of the Class A
model parameters A, Γ and σ2

I . The parameter x describes
the time correlation between noise samples. The transition
state in Fig. 8 (b) has no time duration, it facilitates the
connection of the other states. It was shown in [17] that
the PDF of their model in Fig. 8 (b) is equivalent to that of
Class A model shown in (8).

2

3

4

0

1

P ′
0

1− P ′
0

2σ2
I

A

σ2
I

A

4σ2
I

A

3σ2
I

A

P ′
1

P ′
4

P ′
3

P ′
2

1− P ′
0

1− P ′
0

1− P ′
0

(a)

P ′
0

2σ2
I

A
σ2
I

A

4σ2
I

A
3σ2

I

A

P ′
1P ′

4
P ′
3 P ′

2

xxx xx

234 1 0

Transition state

(b)

Figure 8: Markov-Middleton impulse noise models with five
terms: (a) is adapted from [33] and (b) is adapted from [17]

A Note on Multi-carrier and Single-carrier modulation
with Impulse noise

Many authors may correctly argue that the short fall of
the Class A and Bernoulli-Gaussian noise models is that
they do not take into account the bursty nature of impulse
noise. However, for MC modulation it does not matter
whether the noise model employed has memory or is
memoryless. This is because in MC modulation, the
transform (DFT) spreads the time domain impulse noise
on all the subcarriers in the frequency domain such that
it becomes irrelevant how the noise occurred (in bursts
or randomly). This is well explained by Suraweera and
Armstrong [34], who showed that the degradation caused
by impulse noise in OFDM systems depends only on the
total noise energy within one OFDM symbol period, not
on the detailed distribution of the noise energy within the
symbol. When it comes to SC modulation, however, it may
be important to distinguish impulse noise with and without
memory.

Here we employ the two-state Class A memoryless model
in Fig. 2 (a), with the PDF of the state with impulse
noise and AWGN being Gaussian. This makes the model
more similar to the Bernoulli-Gaussian in Fig. 2 (b). In
this two-state Class A model, ignoring the effect of the
background noise for a moment, we know that the average
impulse noise power is σ2

I = σ2
g/Γ. The impulse noise

power affecting a symbol is σ̄2
I = σ2

I /A = σ2
g/AΓ. For

discussions and analysis, we will be using the impulse
noise power σ̄2

I = σ2
g/AΓ.

Given a fixed impulse noise power σ̄2
I = σ2

g/AΓ, we vary
impulse noise probability A and the impulse noise strength
Γ such that σ̄2

I remains the same. This means that if we
lower A by a certain amount, we have to increase Γ by
the same amount such that the product AΓ is unchanged.
This we do in order to keep σ̄2

I the same, while observing
the effect of changing the probability of impulse noise A
on the performance of Single-Carrier and Multi-Carrier
Modulation. It is interesting to note that for very low
A, SC modulation performs better in the low SNR region
compared to MC modulation. However, SC modulation
gives an error floor, while MC modulation does not. This
behaviour is seen in Fig. 9.

Two important conclusions can be drawn from the
behaviour observed in Fig. 9:

• For very low A, very few symbols are affected in
SC modulation, hence the low probability of error in
SC no matter the strength (or average variance) of
the impulse noise. However, with MC modulation,
what matters is the average impulse noise variance in
the system because the noise power is spread on all
subcarriers causing every symbol to be affected by the
impulse noise.

• MC modulation has the benefit of eventually
outperforming SC modulation as the SNR increases.
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Figure 9: Comparison of MC and SC modulation in a channel
with AWGN and impulse noise of variance

σ̄2
I = σ2

g/AΓ = 1/(0.01×0.01) = 104. σ̄2
I is fixed at 104 while

different values of A (10−1, 10−2, 10−3 and 10−4) are seen to
influence the performance of SC modulation.

This is because with MC modulation, the factor 1/A
does not not affect the SNR requirement like in SC
modulation. We show this independence on A in MC
modulation in Fig. 10.

From the two points above, we can say that MC mod-
ulation’s performance is independent on the probability
of impulse noise occurrence A, while SC modulation’s
performance shows a strong dependence on A. Therefore,
one has to carefully choose between MC and SC
modulation depending on the probability of impulse noise
that can be tolerated in the communication. By this we
mean that if, for example in Fig. 9, A = 10−4 and
communication is acceptable at probability of error of
10−4, then SC modulation will be the best choice over
MC modulation because it will only give an error floor
just below A, at A(M −1)/M. Ghosh [18] also mentioned
that there are conditions where SC modulation performs
better than MC modulation. It was also shown in [19],
using the Bernoulli-Gaussian noise model, that the impact
of impulse noise on the information rate of SC schemes is
negligible as long as the occurrence of an impulse noise
event is sufficiently small (i.e. very low p in (6).)

4. COMBATING IMPULSE NOISE

Several techniques for combating impulse noise have
been presented in the literature. We shall discuss these
techniques in light of MC modulation, OFDM. These
techniques fall into the following three broad categories:

1. Clipping and Nulling (or Blanking):
With clipping or nulling, a threshold Th is used to
detect impulse noise in the received signal vector r
before demodulation. Clipping and nulling differ in
the action taken when impulse noise is detected in
r. If a sample of r, rk is detected to be corrupted
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Figure 10: Shows that with MC modulation the SNR
requirement is σ2

I = 1/Γ instead of 1/AΓ, even though a symbol
is affected by impulse noise of variance σ2

I /A . BPSK OFDM
was used, with a DFT size of 10000.

with impulse noise, its magnitude is clipped/limited
according to Th = Tclip (Clipping), or set to zero
(Nulling) according to Th = Tnull. Given the received
sample rk, then the resulting sample r̃k, from the
clipping technique, is given by

r̃k =

{
rk, for |rk| ≤ Tclip

Tclipe j arg(rk), for |rk|> Tclip
,

and the resulting sample r̃k, from the nulling
technique, is given by

r̃k =

{
rk, for |rk| ≤ Tnull
0, for |rk|> Tnull

,

where usually Tclip < Tnull.

Zhidkov [35] gave performance analysis and opti-
mization of blanking (or nulling) for OFDM receivers
in the presence of impulse noise, as well as a
comparison of clipping, blanking, and combined
clipping and blanking in [36]. In [37], the authors
advocated for the clipping technique to combat
impulse noise in digital television systems using
OFDM. The clipping technique, in OFDM, is also
seen in [38], where the focus is on deriving and
utilising a clipping threshold that does not require
the a priori knowledge of the PDF of impulse
noise. Recently, Papilaya and Vinck [39] proposed
to include an additional action (with its threshold)
to the clipping and nulling actions, which is termed
replacement. This was done for an OFDM system.
The replacement action uses a replacement threshold
(Trep) which falls in between the clipping and nulling
thresholds, and replaces impulse corrupted samples
with the average magnitude of the noiseless OFDM
samples.

2. Iterative:
With the iterative technique, the idea is to estimate



Vol.106 (3) September 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 127

the impulse noise as accurately as possible and then
subtract the noise from the received vector r. The
noise estimation can be done in the time and/or
frequency domains. For good iterative methods,
the more iterations the better the estimate of the
impulse noise. There is of course a limit to the
number of iterations, above which there is little or
no improvement in the technique. One of the earliest
works on the iterative technique to suppress impulse
noise, in OFDM, was by Häring and Vinck [13]. A
block diagram of a receiver performing the iterative
technique in [13] is shown in Fig. 11 (a). Another
application of the iterative technique against impulse
noise, in OFDM, is found in [40], where the iterative
algorithm is applied in the frequency domain after
demodulation and channel equalization.

3. Error correcting coding:
Error correcting coding has become a necessary part
of any communications system in order to correct
errors caused by channel noise. In impulse noise
environments, error correcting codes are employed to
correct errors caused by impulse noise. Most research
on using error correcting codes to combat impulse
noise effects in MC systems tend to lean towards
convolutional coding [41] [42], Turbo coding [43]
[44] and low density parity-check coding [45] [46] or
codes that are iteratively decoded [15].

The first two techniques of combating impulse noise,
clipping and/or nulling and the iterative technique, are
termed pre-processing because they process the received
vector before the demodulator processing. Error correcting
coding (decoding) is not a pre-processing technique, it is
implemented after the demodulator to correct errors caused
by the impulse noise. It can be used alone or together with
the pre-processing techniques.

It has become common practice to implement a
combination of the three impulse noise combating
techniques above in one system in order to combat impulse
noise. Mengi and Vinck [47] employed an impulse
noise suppression scheme which combined the iterative
technique, and the clipping and nulling techniques, in
OFDM. In [48], the iterative and blanking techniques
are used together in OFDM. In [38], clipping and error
correcting coding are used to combat impulse noise effects
in OFDM.

Most impulse noise mitigation schemes have been applied
on the memoryless impulse noise models. However, we
see very few attempts, in the literature, at combating
impulse noise with memory. For an example, in [32] they
employed the Markov-Gaussian model for impulse noise
and used convolutional error correcting coding.

We give examples of block diagrams of two OFDM
systems to illustrate the clipping and/or nulling and
iterative techniques in combating impulse noise (see Fig.
11). The figure shows three important points about the
clipping and/or nulling and the iterative techniques. Firstly,

in Fig. 11 (a) the iterative process is performed to get a
good estimate of the noise vector n(l), which is ñ(l), where
l represents the lth iteration. Using a good estimate of
ñ(l), a more accurate estimate of the desired signal vector
S(l) can be obtained. It should be noted that n(l) is found
by subtracting the estimated desired signal vector of the
lth iteration, s(l) or S(l), from the received vector r or R.
Secondly, it should be noted from both Fig. 11 (a) and
Fig. 11 (b) that the vector n(l) can be obtained by doing the
subtraction of the desired signal vector from the received
signal, either in the time or frequency domain. Thirdly,
Fig. 11 (b) shows the combination of clipping and/or
nulling and iterative technique.

The combination of clipping and/or nulling and iterative
technique in Fig. 11 (b) was shown in [47] to give better
performance than the iterative technique alone in Fig. 11
(a). In the system in Fig. 11 (b), the clipping and/or nulling
is used for the first iteration to significantly improve the
estimation of S(l) in the first iteration. This clipping and/or
nulling in the first iteration is the reason for the better
performance delivered by the system in Fig. 11 (b).
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r r(l) R(l)
S(l)

S(l)

−
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R
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Figure 11: (a) Iterative impulse noise suppression [13] and (b)
Iterative impulse noise suppression with clipping and

nulling [47].

The impulse noise combating techniques discussed have
been in light of MC modulation, OFDM. To combat
impulse noise in SC modulation, the same techniques can
be employed. However, for SC modulation we only see
the importance of the impulse noise combating techniques
when they are used together with error correcting coding.
For example, clipping and/or nulling the impulse noise
affected transmitted samples in SC modulation has no
effect in the BER performance without coding. This
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is obviously because the demodulator in SC modulation
does not discriminate between high and low amplitude
noise when making a decision on the transmitted symbol.
The benefit of clipping and/or nulling impulse noise
affected samples, in SC modulation is observed when
performing soft-decision decoding. Impulse noise in
SC modulation has the same effect as narrow-band
interference (NBI) in OFDM, considering the NBI model
in [49]. Therefore, the same techniques of handling
NBI in OFDM found in [49], clipping and/or nulling and
error correcting coding, can be used to handle impulse
noise in SC modulation. It was shown in [49] that
the best technique that gives optimal performance when
using a convolutional decoder, is to combine nulling and
convolutional soft-decision decoding. Combining clipping
and convolutional soft-decision decoding gives suboptimal
performance. Impulse noise in SC modulation can be
handled exactly the same way. If the impulse noise
has memory, the classical interleaver can be employed to
randomise the occurrence of errors, hence improving the
decoded BER performance.

Focusing on the PLC channel, Vinck [50] proposed the
use of a combination of permutation codes and MFSK,
to combat impulse noise, as well as other noise types
in the PLC channel. This technique was applied in
SC modulation, MFSK. Later on, the idea of employing
permutation codes with MFSK, in [50], to combat noise
typical for a PLC channel (including impulse noise) was
taken further in [51] and [52], where powerful permutation
codes (called permutation trellis codes) were constructed
and used not only to combat impulse noise.

Other impulse noise combating techniques

Another technique used to combat impulse noise in OFDM
systems is compressed (or compressive) sensing (CS).
With compressed sensing, the idea is to reconstruct a
digitized signal using a few of its samples. CS works well
with sparse signals. Using CS, the impulse noise in an
OFDM signal can be estimated by using pilot subcarriers
with their values set to zero. We see the idea of using CS
to estimate and cancel impulse noise in OFDM in [53].
In [54] the authors proposed channel estimation working
in conjunction with compressed sensing to combat
impulse noise for OFDM based power line communication
systems. While most research on combating impulse noise
focuses on non-bursty impulse noise, Lampe [55] proposed
a CS based impulse noise mitigation technique for OFDM
that can detect bursty impulse noise. After detecting the
impulse noise positions in the OFDM samples, impulse
noise cancellation or suppression was applied.

Another technique for combating impulse noise in OFDM,
which is similar to compressed sensing, is using the
similarity between the DFT (in OFDM) and error correct-
ing codes (particularly Bose-Chaudhuri-Hocquengem and
Reed-Solomon codes). This idea, of using the similarities
between the DFT and error correcting codes to combat
impulse noise, dates back to the 80s where we see Wolf
[56] showing that the DFT sequence carries redundant

information which can be used to detect and correct errors.
Wolf [56] compared the DFT to BCH codes. In [57] the
authors show that the OFDM modulator is similar to a
Reed-Solomon (RS) encoder and these similarities can be
used in OFDM to cancel impulse noise effects. While
the scheme in [57] could correct a very limited number
of impulse errors because the limitation imposed by the
amount of redundancy, an improved scheme with better
correcting capabilities was proposed by Mengi and Vinck
[58]. The Mengi and Vinck [58] scheme also used OFDM
as a RS code, where they proposed to observe not only
the subcarriers containing the redundancy symbols but the
subcarriers containing information symbols as well.That
way their scheme could correct more impulse errors.

5. CONCLUSION

Our conclusion is mainly a summary of the interesting
facts about impulse noise models. We have also included
Table 1 to summarise some of the important features of
the noise models. It should be noted that in Table 1 the
bandwidth of the noise is narrow or broad in reference to
the bandwidth of the receiver.

Table 1: Summary of the features of the impulse noise
models.

Class A Bernoulli-Gaussian SαS
Noise not
Bandwidth Narrow-band specified Broad-band
Closed-form does
expression exists exists not exists
PDF exhibits exhibits exhibits

fat tails fat tails fat tails
Bursty as as does not
noise Markov- Markov- model
modelling Middleton Gaussian bursty noise

In this article we have discussed some important impulse
noise models found in the literature. The noise models
are divided into those without memory (Middleton Class
A and Bernoulli-Gaussian) and those with memory
(Markov-Middleton and Markov-Gaussian). We went
further to look at the approximation of the PDF of the
Middleton Class A model with five terms. We also showed
that the Bernoulli-Gaussian model has similarities with
the Middleton Class A, and it can be approximated with
the Middleton Class A model. We then showed Bit
error rate simulation results of the approximation of the
Middleton Class A with five terms. Using the Middleton
Class A model with five terms we showed equivalent
Markov-Middleton models. In addition to the Middleton
Class A and Bernoulli-Gaussian models, we also discussed
the symmetric alpha(α)-stable distribution used to model
impulse noise. The Symmetric alpha(α)-stable distribution
as an impulse noise model was compared with the PDFs
of the Middleton Class A and Bernoulli-Gaussian models.
All the three models had PDFs that exhibit fat tails. We
also showed that single-carrier modulation performs better
than multi-carrier modulation under low probability of
impulse noise occurrence. With OFDM transmission,
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it is irrelevant whether the noise occurred in bursts or
randomly, what matters is the total noise energy within one
OFDM symbol period. Lastly, we discussed impulse noise
mitigation schemes: clipping, nulling, iterative and error
correcting coding.
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communications,” AEÜ International Journal of
Electronics and Communications, vol. 54, no. 1, pp.
45–49, Jan. 2000.

[51] H. C. Ferreira and A. J. H. Vinck, “Interference
cancellation with permutation trellis codes,” in
Proceedings of the 2000 IEEE Vehicular Technology
Conference, Boston, MA, USA, Sept. 24–28, 2000,
pp. 2401–2407.

[52] H. C. Ferreira, A. J. H. Vinck, T. G. Swart,
and I. de Beer, “Permutation trellis codes,” IEEE
Transactions on Communications, vol. 53, no. 11, pp.
1782–1789, Nov. 2005.

[53] G. Caire, T. Y. Al-Naffouri, and A. K. Narayanan,
“Impulse noise cancellation in ofdm: an application
of compressed sensing,” in Proceedings of the
2008 IEEE International Symposium on Information
Theory, Toronto, ON, Canada, July 6–11, 2008, pp.
1293–1297.

[54] A. Mehboob, L. Zhang, J. Khangosstar, and
K. Suwunnapuk, “Joint channel and impulsive
noise estimation for OFDM based power line
communication systems using compressed sensing,”
in Proceedings of the 2013 IEEE International
Symposium on Power Line Communications, Jo-
hannesburg, South Africa, Mar. 24–27, 2013, pp.
203–208.

[55] L. Lampe, “Bursty impulse noise detection by
compressed sensing,” in Proceedings of the 2011
IEEE International Symposium on Power Line
Communications, Udine, Italy, Apr. 3–6, 2011, pp.
29–34.

[56] J. Wolf, “Redundancy, the discrete Fourier transform,
and impulse noise cancellation,” IEEE Transactions
on Communications, vol. 31, no. 3, pp. 458–461,
Mar. 1983.

[57] F. Abdelkefi, P. Duhamel, and F. Alberge, “Impulsive
noise cancellation in multicarrier transmission,”
IEEE Transactions on Communications, vol. 53,
no. 1, pp. 94–106, Jan. 2005.

[58] A. Mengi and A. J. H. Vinck, “Impulsive noise
error correction in 16-OFDM for narrowband power
line communication,” in Proceedings of the 2009
IEEE International Symposium on Power Line
Communications, Dresden, Germany, Mar. 29–Apr.
1, 2009, pp. 31–35.


