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Abstract: Determining models from observations and studying the models’ properties is essentially 
the functionality of science. Models attempt to link observations into some pattern. System 
identification is the art of building mathematical models of dynamic systems based on observed data 
from the systems. This paper presents a system identification methodology that can be utilized to 
derive the classic HVDC plant transfer functions. The model development and verification was 
performed using the PSCAD/EMTDC software. The calculated results illustrated excellent response 
matching with the system results. The derived HVDC plant transfer functions can be utilized to 
perform small signal stability studies of HVDC-HVAC interactions and its use can also be extended 
to facilitate the analytical design of HVDC control systems.  
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1. INTRODUCTION 
 

From the early days of HVDC system applications, the 
importance of mathematical modelling of HVDC systems 
has been appreciated [1-10]. Mathematical models of 
HVDC systems can be utilized to quantitatively analysis 
HVDC operation issues which include second harmonic 
instability and problems related to low short circuit 
capacity of ac systems connected to dc systems [1,4,8]. A 
mathematical model of an HVDC system can also be 
utilized for the design synthesis of HVDC control 
systems [3]. 
 
There are essentially two methodologies used to develop 
mathematical models of dynamic systems. One 
methodology is to figuratively divide the system into 
subsystems. The properties of each subsystem are defined 
by the “laws of nature” and other well-established 
relationships [18]. These subsystems are mathematically 
consummated to formulate a model of the original 
system. Basic techniques of this methodology involve 
describing the system’s processes using block diagrams. 
This methodology is called “White Box Modelling” [18]. 
 
The other methodology used to derive mathematical 
models of a dynamic system is based on experimentation 
[18]. Input and output signals from the original system 
are recorded to infer a mathematical model of the system. 
This methodology is known as “System Identification” 
[18]. 
 

2. MODELLING OF CLASSIC HVDC SYSTEMS:                        
STATE OF THE ART 

 
Traditionally classic HVDC systems have been treated as 
“linear time invariant systems” [3-11]. Based on this 
premise, Persson [3] developed a meshed block diagram, 
illustrated in Figure 1, to calculate the current control 
loop plant transfer function. The transfer functions of 

each block in the meshed system were derived using the 
state variable approach. The transfer functions describing 
the ac and dc interactions were derived using describing 
function analysis. Persson [3] called these transfer 
functions “conversion functions”.  
 

 
Figure 1: Block diagram of HVDC transmission system 

according to [3] 
 
Based on the assumption that the classic HVDC system is 
linear with regard to small variations in the firing angle, 
Freris et al. [4] developed a block diagram, illustrated in 
Figure 2, to calculate the transfer function of the rectifier 
current control loop. Continuous wave modulation and 
Fourier analysis were used to determine the transfer 
functions of each block in the meshed block diagram. The 
continuous wave modulation technique was used as a 
method of developing the describing functions to account 
for the ac/dc interactions.  
 

 
Figure 2: Block diagram of HVDC transmission system 

according to [4] 
From the linear time invariant system foundation, Wood 
et al. [5] performed Fourier analysis on the dc voltage and 
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ac current waveforms of the converter. From these 
analyses, transfer functions were obtained for the dc 
voltage and ac currents with respect to the phase voltages 
and dc currents. These transfer functions accommodated 
variations in the firing angle and the commutation period. 
The subsequent transfer functions facilitated the 
predictions of voltage waveform distortion on the dc side 
of the converter, and the prediction of current waveform 
distortion on the ac side of the converter. Using the 
transfer functions derived in [5], Wood et al. [6] 
developed an expression for the converter dc side 
frequency dependent impedance. This expression was 
developed using the state-variable approach. Using the 
state-variable approach and the frequency dependent 
impedance of the converter, Wood et al [7] derived the 
transfer function for the current control loop.  
 
Jovcic et al. [8], assumed that classic HVDC systems are 
linear time invariant systems, therefore developed the 
plant transfer function of the current control loop using a 
state-variable approach and the block diagram illustrated 
in Figure 3.  
 

 
Figure 3: Block diagram of HVDC transmission system 

according to [5] 
 
The state variables were chosen to be the instantaneous 
values of currents in the inductors and voltages across the 
capacitors. In order to represent the ac system dynamics 
together with the dc system dynamics in the same 
frequency frame, the effect of the frequency conversion 
through the AC-DC converter was accommodated using 
Park’s transformation. The developed system model was 
linearized around the normal operating point, and all 
states were represented as dq components of the 
corresponding variables. The phase locked oscillator was 
incorporated into the system model.  
 
A review of the current state of the art of modelling 
classic HVDC systems clearly indicates that the 
techniques utilized to develop mathematical models of 
classic HVDC systems have used the “White Box 
Modelling” methodology. This methodology requires 
accurate knowledge of the ac systems and the dc systems 
and involves complicated mathematics.  

In practice, it is nearly impossible to obtain accurate 
knowledge of the ac systems connected to classic HVDC 
systems.  
 
Also the limited time constraints imposed on HVDC 
control practitioners, the ac system uncertainties and the 
complicated mathematics have prevented the widespread 
practical use of the “White Box Modelling” methodology 
to derive the plant transfer functions of classic HVDC 
systems. The objective of this study was to utilize the 
“System Identification” methodology to derive 
mathematical models of the classic HVDC systems. 
 

3. SYSTEM IDENTIFICATION METHODOLOGY 
 

System identification is the art of building mathematical 
models of dynamic systems based on observed data from 
the systems [18]. A key concept in utilizing the system 
identification is the definition of the dynamic system 
upon which experimentation can be conducted. Manitoba 
HVDC Research Centre commissioned a study to 
examine the validity of digitally defining the classic 
HVDC system [19-20]. To examine the validity of 
digitally defining the classic HVDC system, the Nelson 
River HVDC system was defined and simulated using the 
EMTDC program. EMTDC is a FORTRAN program and 
was used to represent and solve the linear and non-linear 
differential equations of electromagnetic systems in the 
time domain. A comparison was conducted between the 
actual real-time system responses and the digitally 
derived responses. The results of the study illustrated that 
the digitally derived responses correlated excellently with 
the real system responses. The study concluded that the 
EMTDC program is a valid option for digitally defining a 
classic HVDC system [19-20].  
 
Therefore in this study, the classic HVDC system will be 
defined and experimented upon using the 
PSCAD/EMTDC program. PSCAD is a graphical user 
interface that easily assisted in defining the classic 
HVDC systems’ linear and non-linear differential 
equations in EMTDC.  
 
3.1 Jacobian Linearization 
 
Consider a non-linear system defined by the following 
differential equation: 
 

uxgxf
dt
dx )()(    (1) 

 
)(xhy      (2) 

 
Where  
 
x = the state variable vector 
u = the input vector 
y = the output vector 



Vol.102(4) December 2011 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 115

The Jacobian linearization of the above non-linear system 
at a stable operating point ooo yxu ,,  is defined as  
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Equations (3) and (4) can be written in standard linear 
state space representation as [14]: 
 

BuAx
dt
dx

    (5) 

 

Cxy      (6) 
 

Where  
 
A, B, C = constant matrices 
 
The model described by equations (5) and (6) is a linear 
approximation of the original non-linear system, 
described by equations (1) and (2), around the stable 
operating point ooo yxu ,, .  This implies that original 
non-linear system can be linearized if it can be construed 
to function around a normal stable operating point. 
 
The above fact is exploited in this study. The classic 
HVDC system was simulated in PSCAD/EMTDC to 
reach a normal steady-state operating point. The classic 
HVDC system is considered linearized around the normal 
steady-state operating point. Therefore a classic HVDC 
system can be considered as “linear time invariant 
system” around the stable operating point. The impulse 
response of a “linear time invariant system” is determined 
by first determining the step response and then exploiting 
the fact that the impulse response is obtained by 
differentiating the step response [16]. The Laplace 
transform of the impulse response is defined as the 
transfer function of the “linear time-invariant system” 
[16]. The plant transfer function can be explicitly 
obtained by determining the ratio of the Laplace 
transform of the step response to the Laplace transform of 
the step input [16]. 
 
This implies that the small signal plant transfer function 
of a classic HVDC system can be obtained by 
determining the ratio of the Laplace transform of the 
small signal step response of the classic HVDC system to 
the Laplace transform of the step input of the rectifier 
firing angle or inverter firing angle. 
 

There are 2 definitive modes of operation of the classic 
HVDC system, which are explicitly described as [17]: 
1. Rectifier in Current Control and the Inverter in 

Voltage Control 
2. Rectifier in Voltage Control and the Inverter in 

Current Control  
 

Therefore in the next sections, methodologies utilized to 
derive the Rectifier Current Control transfer function and 
Inverter Current Control transfer function will be defined.  
 

3.2 Rectifier Current Control Plant Transfer Function  
 
The classic HVDC system, shown in Figure 4, was 
modelled in PSCAD/EMTDC.  
 

 
Figure 4: Simulated Feed-Forward Controlled Classic 

HVDC System 
 
The system was simulated so that it reached steady-state. 
At which point a snap shot of system variables was 
recorded. The inverter firing angle was then kept 
constant. A feed-forward step increase in the rectifier 
firing angle r , was executed and the dc current response 

drI was measured and is illustrated Figure 5. 
 

 
Figure 5: Measured DC Current Response 

 
The measured current response was approximated using 
the time domain function illustrated in equation (7): 
 



Vol.102(4) December 2011SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS116

d
at

d
at

d

d
dr TtwteIkeI

Tt
tI

)sin(..1
0

)(  (7) 

 
Where: 
  

dT     = the time delay (sec) 

dI   = the change in the dc current (p.u.) 

k       = constant ( 10 k ); chosen to be 0.25 
 
And:  
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Where: 
 
T1 = the time (sec) it takes the decaying waveform to 

reach 1e of its final value. 
T2 = the period (sec) of the superimposed as ac 

waveform. 
 
The function described by equation (7) is called the 
HVDC Step Response (HSR) equation and was simulated 
using MATLAB and the characteristic time domain 
response is illustrated in Figure 6, together with the 
associated error when compared to the original signal. 
 

 
Figure 6: Characterized DC Current Response 

 
Figure 6 clearly illustrates that the HSR equation 
adequately approximates the dc current response to a step 
change in the rectifier’s firing angle since the resultant 
error does not exceed 1.5%. 
 
Equation (7) was used to calculate the rectifier current 
control plant transfer function. The resultant rectifier 
current control plant transfer function is illustrated in the 
equation (10): 
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3.3 Inverter Current Control Plant Transfer Function  
 
The classic HVDC system, shown in Figure 4, was 
modelled in PSCAD/EMTDC. The classic HVDC system 
was simulated so that it reached steady-state. At which 
point a snap shot of system variables was recorded. The 
rectifier firing angle was then kept constant. A feed-
forward step decrease in the inverter firing angle i was 

executed and the dc current response diI was measured 
and is illustrated Figure 7. 
 

 
Figure 7: Measured DC Current Response 

 
The measured current response was approximated using 
the HVDC Step Response (HSR) equation as described in 
equation (11): 
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The HSR equation was again simulated using MATLAB 
and characteristic time domain response is illustrated in 
Figure 8, together with the associated error when 
compared to the original signal.  
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Figure 8: Characterized DC Current Response 

 
Figure 8 clearly illustrates that the HSR equation 
adequately approximates the dc response to a step change 
in the inverter’s firing angle since the resultant error does 
not exceed 2.0%. Equation (9) was used to calculate the 
inverter current control plant transfer function. The 
resultant inverter current control plant transfer function is 
illustrated below: 
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4. CLASSIC HVDC PLANT UNCERTAINTY 

 
The state of power systems change with sudden 
disturbances in the power system. These sudden 
disturbances will change the short circuit capacity of ac 
busbars in the power system. The factors defining the 
quantitative change in short circuit capacity are loss of 
generation, restoration of generation, loss of transmission, 
loss of demand and loss of reactive compensation.  
 
Due to the diverse nature of the factors affecting the 
quantitative change in short circuit capacity of an ac 
busbar implies that the short circuit capacity at a given 
HVDC converter ac busbar will vary within a range. 
Therefore combined with the varying amount of dc power 
that will be transmitted on the HVDC transmission 
system, the effective short circuit ratio (ESCR) for a 
given HVDC converter station will vary within a certain 
range. 
 
Due to the uncertain nature of the effective short circuit 
ratio of rectifier and inverter converter stations, the plant 
transfer functions developed in the previous section will 
have a range of uncertainty. The objective of this section 
of the paper will be to present the plant transfer function 
parametric ranges for varying short circuit ratios.    
 
The methodologies used to calculate the parametric 
variations in the plant transfer functions were exactly the 
same as the methodologies presented in the previous 

section, with the only exception being that the effective 
short circuit ratios were varied. 
 
In this study, the Thévenin’s equivalent ac network 
impedances were represented using a pure inductance. 
This implies that the network resistance is assumed to be 
zero and the “damping angle” was taken as 90o. Kundur 
[3] states that while local resistive loads do not have a 
significant effect on the ESCR, these resistive loads do 
improve the damping of the system thereby improving 
the dynamic performance of the control system. By 
assuming the resistive element of the Thevenin’s 
equivalent network to be zero, the worst case (from a 
dynamic stability perspective) was simulated and 
analysed. 
 
Kundur [3] states that the dynamic performance of a 
current controller is dependent on the strength of both the 
rectifier and inverter ac systems. Therefore the variations 
of the parameters of the rectifier current control plant 
transfer function and the inverter current control plant 
transfer function were calculated for variations in the 
rectifier converter station’s and the inverter converter 
station’s effective short circuit ratios. 
 
When the rectifier converter station’s ESCR varies from 
2.83 to 7.96 and the inverter converter station’s ESCR 
varies from 3.93 to 7.96, the variations in the rectifier 
current control plant transfer function parameters were 
determined and the results are illustrated in Figure 9 and 
Table 1. 
 

 
Table 1: Parametric Variations of Rectifier Current 
Control Plant Transfer Function for Varying ESCRs 
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Figure 9: Rectifier Current Control Plant Transfer 

Function Parametric Variations 
 
When the rectifier converter station’s ESCR varies from 
4 to 8 and the inverter converter station’s ESCR varies 
from 3.94 to 11.8, the variations in the inverter current 
control plant transfer function parameters were 
determined and the results are illustrated in Figure 10 and 
Table 2. 
 

 
Table 2: Parametric Variations of Inverter Current 

Control Plant Transfer Function for Varying ESCRs 

 
Figure 10: Inverter Current Control Plant Transfer 

Function Parametric Variations 
 

From the above presented results, it can easily be 
identified that if the range of the ac system’s effective 
short circuit ratio is known, the range of parametric 
uncertainty of the classic HVDC plant transfer functions 
can be obtained. 
 

5. DISCUSSSION 
 

The current state of the art of developing mathematical 
models of classic HVDC systems has been to utilize the 
“White Box Modelling” methodology. This paper 
presents a “System Identification” methodology to derive 
the plant transfer functions of classic HVDC systems. 
The classic HVDC system linear and non-linear 
differential equations were modelled in PSCAD/EMTDC. 
For small changes in the rectifier’s firing angle, the 
rectifier’s current control loop can be linearized around a 
stable (or equilibrium) operation point. This is defined as 
the “Jacobian Linearization” of the original non-linear 
current control loop. PSCAD/EMTDC was used to obtain 
the dc current step response of a classic HVDC system. 
The measured current response was approximated using 
the time domain function defined as HVDC Step 
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Response (HSR) equation. The results validated that HSR 
equation adequately approximated the dc current 
response to a step change in the rectifier’s and inverter’s 
firing angle since the resultant error was very minimal.  
The Laplace transform of the characterized dc current 
response and the firing angle step input were determined 
and subsequent ratio of these Laplace transformations 
produce the HVDC Rectifier and Inverter Current Control 
Plant transfer functions. Due to the uncertain nature of 
the state of power systems, the parameters of the plant 
transfer functions that define the classic HVDC systems 
vary. The range of plant transfer function parametric 
variations was determined as a function of ac systems 
effective short circuit ratio. Therefore if the range of the 
ac system’s effective short circuit ratio is known, the 
range of parametric uncertainty of the classic HVDC 
plant transfer functions can be obtained. 
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Notes


