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Abstract: The stability margin of a two degree-of-freedom self-sensing active magnetic bearing (AMB)
is estimated by means of μ-analysis. The specific self-sensing algorithm implemented in this study
is the direct current measurement method. Detailed black-box models are developed for the main
subsystems in the AMB by means of discrete-time system identification. In order to obtain models
for dynamic uncertainty in the various subsystems in the AMB, the identified models are combined
to form a closed-loop model for the self-sensing AMB. The response of this closed-loop model is
then compared to the original AMB’s response and models for the dynamic uncertainty are empirically
deduced. Finally, the system’s stability margin for the modelled uncertainty is estimated by means of
μ-analysis. The results show that μ-analysis is ill-equipped to estimate the stability margin of a nonlinear
system.
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1. INTRODUCTION

In contrast with conventional bearings, active magnetic
bearings (AMBs) use actively controlled magnetic forces
to ensure contactless support of a rotating axle. An
AMB consists of non-contact position sensors, a
digital controller, power amplifiers and a stator with
electromagnets. These components and the general
structure of an AMB are summarized in [1].

Accurate and reliable position sensors form critical
components of a functioning AMB system. These sensors
are however expensive. Self-sensing techniques attempt
to estimate the position of the rotor from the electrical
impedance of the stator electromagnet coils [2].

For self-sensing AMBs to be of practical worth, they have
to be robust. Robustness analysis aims to quantify a control
system’s tolerance for uncertainty. This uncertainty in
general encompasses any deviation of the mathematical
model from the physical reality. Uncertainties surrounding
the model can be broadly classified into parametric
uncertainty and dynamic uncertainty. Parametric
uncertainty is applicable when the system’s model is
accurate with the exception of a few parameters whose
precise values aren’t known [3]. In contrast, dynamic
uncertainty describes the situation when the system’s
model is inaccurate due to unmodelled dynamics [3].

The de facto standard for robustness estimation in the
AMB literature is the sensitivity function [4], [5] and
[6]. Acceptance of the draft ISO standard∗ for the
evaluation of the stability of rotating machinery equipped
with AMBs [7] isn’t unanimous in the AMB research
community. In [8] it is argued that the peak value of

∗This draft standard uses the sensitivity function to assess the

robustness of AMBs.

the sensitivity function only gives a necessary (but not
sufficient) condition for robust stability. Their theoretical
arguments were also supported by practical examples of
AMB suspended systems that met the criteria set out by
the draft ISO standard, yet became unstable due to modal
variations or gyroscopic coupling.

Alternative multiple-input, multiple-output (MIMO) ro-
bustness estimation techniques that have been applied
to AMBs include the generalized Nyquist criterion [9],
Kharitonov’s stability theorem [9] and the ν-gap metric
[10]. Of the available LTI MIMO robustness estimation
techniques, μ-analysis holds out the promise of delivering
the least conservative estimates of the stability margin of
an AMB system. Although μ-synthesis has been applied to
design controllers for AMB systems (e.g. [11] and [10]),
μ-analysis curiously has never been used to assess the
robustness of AMBs.

Robustness analysis techniques have played a pivotal role
in the debate on the viability of self-sensing AMBs. After
the development of state-estimator self-sensing AMBs,
Kucera showed by means of a sensitivity analysis that
such self-sensing AMBs are quite sensitive for parametric
uncertainty [12]. Following this result, Morse et al.
used the sensitivity function to prove that self-sensing in
general has fundamental theoretical limits on its stability
robustness [13]. These negative results were however soon
contradicted by various researchers (e.g. [4]) who showed
that practical modulation based self-sensing AMBs can
be almost as robust as sensed AMBs (according to the
proposed ISO standard).

The apparent contradiction between the theory and
practical results on the robustness of self-sensing AMBs
was addressed by Maslen et al. [14] and [15]. They
found that it is essential to include the switching ripple
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component of the coil current in the AMB model that is
subjected to robustness analysis. Accurate modelling of
switching power amplifiers requires nonlinear time-variant
models.

One of the lessons from [13], [14] and [15] is that
accurate robustness analysis requires that each of the
constituent parts of a self-sensing AMB system be
modelled accurately. The fundamental prerequisite for
μ-analysis is however that the system under scrutiny be
modelled with an analytical LTI model. Fortunately,
it is possible for LTI black-box models obtained via
system identification to closely approximate the oscillatory
behaviour of switching power amplifiers if the order is
chosen sufficiently high. Another advantage of system
identification is that it doesn’t have any trouble in
modelling cross-coupling occurring in a system. This is a
huge benefit since electromagnetic cross-coupling also has
a large effect on self-sensing implemented on heteropolar
AMBs [16], [5]. Furthermore, it is quite difficult to
obtain an accurate analytical model for electromagnetic
cross-coupling in an AMB stator by means of first
principles deductive modelling techniques. The potential
pitfalls of applying system identification to AMBs are
highlighted in [1]. The most important lesson from [1]
is that the excitation signal used for system identification
must be constructed wisely in order to ensure that an LTI
model is obtained.

Robustness analysis of self-sensing AMBs by means
of μ-analysis therefore requires that detailed black-box
models are developed for the main subsystems in the AMB
by means of discrete-time system identification. Accurate
μ-analysis requires accurate models of the nominal system
as well as the uncertainty to which the model is subjected
[3]. For this reason system identification is also applied to
obtain accurate models for the dynamic uncertainty in the
self-sensing AMB system.

Although the basic idea (namely of performing μ-analysis
on the basis of models obtained via system identification)
isn’t new, it is the first time that it has been applied to
self-sensing AMBs. The closest prior work in this general
field was however confined to SISO systems in the process
control industry [17], [18].

This paper’s focus is on a 2-DOF self-sensing AMB. The
dependency of self-sensing on an accurate representation
of the ripple current in turn requires that the self-sensing
module, AMB plant and power ampifier models be
separately obtained by means of system identification.
This is in contrast with the standard practice of system
identification in the AMB literature, namely of including
everything except the controller in the plant model [19],
[20], [21] and [22].

The rest of this paper starts off with a summary of the
specific version of self-sensing under scrutiny, namely the
direct current measurement (DCM) method. Section 3
discusses the application of system identification to obtain
discrete-time models for each of the main components

Figure 1: Magnetic circuit of a 1-DOF AMB

of the self-sensing AMB. Next, section 4 summarizes
the application of μ-analysis by means of a case study,
namely the robustness analysis of the AMB for dynamic
uncertainty in the self-sensing module. Following this, the
procedure with which dynamic uncertainty in the AMB
plant and self-sensing module can be modelled is briefly
described in section 5. Lastly, section 6 contains the
results of simulation studies on μ-analysis applied to assess
the effect of various forms of uncertainty on the stability
margin of the self-sensing AMB.

2. THE DCM SELF-SENSING AMB

2.1 Introduction to DCM self-sensing

Self-sensing capitalizes on the principle that the inductance
of an AMB stator coil is influenced by the size of the
airgap. To see how the impedance of an AMB coil is
influenced by the airgap take for example the magnetic
circuit of a one degree-of-freedom (1-DOF) AMB in figure
1 [4].

To simplify the analysis, eddy current effects are neglected
(as well as magnetic leakage and fringing). Furthermore,
it is assumed that the magnetic flux has a uniform
distribution throughout the magnetic circuit. By making
use of the laws of Faraday, Ohm and Ampere, the
relationship between the coil voltage v(t) and current i(t)
is given by (1) [23],

v(t) =
(

μ0N2A
2xg(t)+ lc/μr

)
di(t)

dt
−

2

(
μ0N2Ai(t)

(2xg(t)+ lc/μr)
2

)
dxg(t)

dt
+ i(t)R, (1)

where μ0 is the permeability of free space; N is the number
of turns in the coil; A is the pole-face area; xg is the
distance of the airgap between the stator and rotor; lc is the
length of the magnetic path (excluding the airgap); μr is
the relative permeability of the AMB stator; and R denotes
the electrical resistance of the coil wire.
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Clearly, the relationship between the coil voltage and
current is influenced by the instantaneous position of the
rotor within the airgap.

DCM self-sensing stems from the fact that the rotor
position is directly related to the peak value of the
ripple current during a switching cycle. This becomes
obvious when (1) is simplified further to its bare essentials.
By neglecting the coil resistance, as well as nonlinear
magnetic effects and assuming that the AMB rotor moves
very slowly compared to the rapid variation in the coil
current, the airgap can be expressed as follows [5]:

xg(t) =
(

μ0N2A
2v(t)

)
di(t)

dt
− lc

μr
. (2)

From (2) it is clear that the airgap can be estimated from
a direct measurement of the peak ripple current value.
More details on how DCM self-sensing compensates for
magnetic nonlinearities and the duty cycle of the power
amplifiers can be found in [5] and [24].

2.2 Simulation platform

This paper’s results are based on simulation studies
performed with a reasonably accurate simulation model
of a two degree-of-freedom (2-DOF) DCM self-sensing
AMB. (The accuracy of this simulation model and its
components has been established in [6] and [5].) The small
inaccuracies of the self-sensing AMB simulation model
(as compared to the eventual physical implementation) can
be attributed to unmodelled behaviour in the electronic
circuitry of the hardware implementation. The above
mentioned simulation model consists of a controller, four
power amplifiers, a magnetic circuit model, point mass and
ideal position sensors. Two identical PID controllers (each
responsible for movement along one axis of freedom)
comprise the controller, while each of the four stator
electromagnets is powered by its own two-state switching
power amplifier.

The flux distribution in the AMB magnetic circuit is
modelled by means of a reluctance network model [25].
The response of the reluctance network model is enriched
with two additional models: one responsible for predicting
eddy currents and the other for modelling magnetic
hysteresis and saturation. The final electromagnetic force
exerted by the AMB on the point mass is proportional to
the square of the magnetic flux density [26], [6]. Finally,
the physical movement of the point mass is determined by
means of the well-known Newton laws.

The characteristic parameters of the simulated AMB are
summarized in table 1 (some of which are explained in
figure 2).

3. SYSTEM IDENTIFICATION OF THE NOMINAL
MODEL

Applying system identification to AMBs is a challenging
exercise due to the inherent instability of magnetic

Table 1: Summary of the simulated self-sensing AMB

Parameter Value

KP (position PID controller) 20,000

KI (position PID controller) 700,000

KD (position PID controller) 38

KP (power amplifier PI controller) 0.7

KI (power amplifier PI controller) 0.01

Relative magnetic permeability 4,000

Power amplifier switching frequency 30 kHz

Supply voltage 50 V

Bias current 3 A

Resistance of coil wires 0.2 Ω
Coil turns 50

Rotor mass 3.86 kg

Airgap 0.6 mm

Backup bearing inner radius 250 μm
Axial bearing length 49.15 mm

Journal inner radius (rr) 15.88 mm

Journal outer radius
(
r j

)
34.95 mm

Stator pole radius
(
rp

)
35.60 mm

Stator back-iron inner radius (rc) 60.00 mm

Stator outer radius (rs) 75.00 mm

Pole width (rw) 13.89 mm

Figure 2: Physical dimensions of an AMB

bearings. Since open-loop operation of an AMB is
impossible, system identification must be performed while
the AMB is in closed-loop operation. More details on
closed-loop system identification can be found in [27]
and [1]. Other relevant system identification topics also
discussed in [1] include: the influence of the injection
point of the excitation signal; general parameterized
model structures suitable for AMBs and their associated
parameter estimation algorithms as well as the important
topic of persistent excitation.

The main disadvantage of black-box modelling is that it
gives limited insight into the internal dynamics of the real
system. In the context of robustness analysis, this implies
that it is difficult to apportion blame to specific system
components when the total closed-loop system is fragile
(and only a single model for the whole system is available).
The solution to this problem is more detailed modelling
where individual components in the control system are also
modelled via system identification.

The main components in a 2-DOF self-sensing AMB
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Figure 3: Block-diagram of an LTI self-sensing AMB

are the controller, power amplifiers, AMB plant and
self-sensing module. A simplified block-diagram of a
2-DOF self-sensing AMB is given in figure 3. In this
study the controller consists of two identical decoupled
PID controllers, each responsible for the control of one
axis of freedom.

The fundamental principle upon which self-sensing is
based is that the impedance of the coils (specifically their
inductance) is a function of the airgap [6]. This means that
a power amplifier’s response is not only a function of the
controller output, but also of the actual position of the mass
within the airgap. To ensure that the outputs of the LTI
power amplifier model contain position information, the
LTI model should be an explicit function of all variables
that have an effect on the real coil currents (namely two
outputs from the controller and two position signals from
the output of the AMB plant).

The AMB model has four inputs (one for each
electromagnet) and two outputs (namely the measured
x-axis and y-axis position of the rotor). In order to evaluate
the performance of the self-sensing algorithm, the x-axis
rotor position is measured with an eddy-current position
sensor, while DCM self-sensing is only implemented on
the y-axis. DCM self-sensing (as implemented in [5]) only
takes a single input (namely the current flowing in the
top pair of coils) to form an estimate of the y-axis rotor
position.

In contrast with the standard practice in the system
identification literature, detrending is inadvisable when
system identification is applied to self-sensing AMBs.
This is because DCM self-sensing is sensitive for the bias
current level in order to compensate for nonlinearity due
to hysteresis and saturation in the magnetic material of
the AMB stator [5]. Detrending would therefore result in
loss of information on the necessary setpoint of the LTI
self-sensing model, with subsequent delevitation of the
rotor.

System identification works best if the sampling frequency
is commensurate with the time constants of the plant
[28]. DCM self-sensing however requires accurate
measurements of the peak values of the modulated
component present at the switching frequency of the power
amplifiers (which is 30 kHz). This means that the eventual
identified models must have sampling frequencies higher

Figure 4: Performance of the nominal LTI closed-loop model

than 60 kHz at least. DCM self-sensing requires accurate
measurements of the peak values of the switching ripple
on the current signal. The risk of consistently missing the
peak value of the current ripple is furthermore dramatically
increased if the sampling frequency is close to being an
integer multiple of the switching frequency. The final
sampling frequency that met all of these requirements was
83.3 kHz.

The de facto procedure in μ-analysis is to convert the
discrete-time model to an equivalent continuous-time
model prior to calculating the values of μ. Since
the latter conversion tends to amplify any errors made
during discrete-time parameter estimation by a factor
approximately equal to the sampling frequency [27], it
is vitally important to obtain very accurate discrete-time
models for the various AMB sub-components.

As an example, parameter estimation was performed on
rectangular pulses injected prior to the power amplifiers
in the nonlinear simulation model. The final nominal
closed-loop LTI model of the 2-DOF self-sensing AMB
of this study consisted of the following discrete-time
state-space models ( [27]): a 9th order AMB plant model
(4 inputs, 2 outputs); a 7th order power amplifier model
(4 inputs, 4 outputs) and a 3rd order SISO model for
DCM self-sensing. Figure 4 shows the responses of
both the original nonlinear simulation as well as the
closed-loop LTI model to a similar signal (but with a
different amplitude). The x-axis performance of the LTI
model is quite impressive (93.76 %), while the y-axis
performance of 50.76 % is much less so. Clearly
the identified self-sensing model is at fault, drastically
reducing the bandwidth and fidelity of the total closed-loop
system model. Poor performance of LTI models for
nonlinear systems containing ”hard” nonlinearities such
as the maximum-operator used in DCM self-sensing is
however to be expected.
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Figure 5: Generalized block diagram

4. APPLICATION OF μ-ANALYSIS TO THE DCM
SELF-SENSING AMB

Robust control theory is built on the notion of
norm-bounded uncertainty [29]. This is a frequency
domain concept where the uncertainty surrounding a
particular model can be expressed by means of bounds on
the norm of the model’s transfer function. The traditional
system block-diagram can be rearranged to obtain the
generalized form of figure 5 [3].

In this block-diagram the controller is represented by
K, while the nominal model of the rest of the AMB
system is collected in P (also known as the generalized
plant). Δ is a block-diagonal matrix that consists
of norm-bounded general uncertainties (scalars or LTI
transfer functions conforming to respectively |Δm| ≤ 1
and ‖Δn( jω)‖∞ ≤ 1 ∀ ω, where the subscripts m and n
refer to the corresponding elements in the block-diagonal
matrix). The uncertainty matrix, Δ, therefore represents
general uncertainties that can impact on the parameters or
dynamics of the nominal generalized plant. The degree
to which the general uncertainties in Δ actually influence
the self-sensing AMB are determined by weights (whether
scalar weights or weight transfer functions). These weights
are incorporated into the generalized plant P.

For the purpose of μ-analysis, the controller K can be
combined with the generalized plant P by means of a lower
linear fractional transformation ( [3]) to obtain (3).[

yΔ
z

]
= N

[
uΔ
w

]
=

[
N11 N12

N21 N22

][
uΔ
w

]
(3)

The last step of μ-analysis is then to isolate the N11

component and to determine its structured singular value
(μ). If the peak value of μΔ( jω) is less than one for
all frequencies, then the difference between one and the
aforementioned peak value reflects the stability margin of
the system.

An example of dynamic uncertainty in self-sensing
AMBs is the unmodelled dynamics that occur if DCM
self-sensing is modelled by means of LTI system
identification. We’ll assume that the dynamic uncertainty
in DCM self-sensing can be modelled with additive

Figure 6: Detailed generalized block-diagram of a self-sensing

AMB with dynamic uncertainty in the self-sensing module

uncertainty. An improved LTI model that attempts to
model the behaviour of DCM self-sensing more accurately,
is the following additive combination between the nominal
LTI self-sensing model ḠSS(s) and the LTI uncertainty
weight function for self-sensing, WSS(s):

GSS(s) = ḠSS(s)+WSS(s)Δ(s). (4)

The resulting generalized block-diagram of a self-sensing
AMB with additive dynamic uncertainty in the self-sensing
module is given by figure 6. All that remains to be done
is to obtain a model for the additive dynamic uncertainty
present in the self-sensing module (i.e. to obtain a specific
model for the transfer function WSS(s)), which is the topic
of the next section.

5. UNCERTAINTY MODELLING

The dominant contributor towards dynamic uncertainty
in self-sensing AMBs is the occurrence of nonlinear
behaviour that can’t be modelled in the LTI paradigm.
The process of modelling this mismatch entails a two step
process [30], [31]. Firstly, the ”difference” between the
model and real system is measured empirically. Secondly,
the measured differences are described by means of a
simplified transfer function.

The ”difference” between the model and real system can
be expressed in terms of an empirical transfer function
estimate (ETFE) of the measured mismatch between the
real plant and its nominal model. The advantage of a
frequency domain comparison between reality and the
model is that it isn’t necessary to use exactly the same
input signal for the real system and its nominal model (in
contrast with time domain residuals).

The general norm-bounded uncertainty Δ(s) in (4) is
constrained as follows: ‖Δ( jω)‖∞ ≤ 1 ∀ ω, where the
H∞-norm is defined as follows for any proper and stable
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transfer function G(s) [3]:

‖G( jω)‖∞ = sup
ω
|G( jω)| (5)

Consequently, the ETFE of the uncertainty weight for
additive uncertainty must conform to the following
inequality:

|W (s)| ≥
∣∣∣∣Y (s)
X(s)

− Ȳ (s)
X̄(s)

∣∣∣∣ , (6)

where the spectra of the input and output signals of the
real system are represented by X(s) and Y (s) respectively.
Similarly, the input and output spectra of the nominal
model are given by X̄(s) and Ȳ (s) respectively.

To summarize, the procedure for obtaining the ETFE of the
uncertainty weight is as follows:

1. Form a closed-loop LTI model for the AMB system
consisting of nominal LTI state-space models for
the controller, power amplifier, AMB plant and
self-sensing module.

2. Apply the same position reference signal to both the
nonlinear AMB simulation model and the closed-loop
LTI model and simulate the responses of both models.

3. Calculate the ETFE of the SISO uncertainty weight
by means of (6). This will result in the measured
uncertainty weight for dynamic uncertainty in the
self-sensing module. By a similar calculation
the ETFEs of the uncertainty weights for additive
dynamic uncertainty in the other subsystems (namely
the power amplifier and the AMB plant) can also be
obtained.

The second step of the uncertainty modelling process
entails summarizing the above mentioned ETFE by means
of an analytical model. The de facto practice in the
literature is to fit a smooth function which acts as an
upper bound to the measured frequency response [3],
[31] and [30]. Various means exist to accomplish this
purpose. One potential solution entails finding a number
of peaks in the ETFE and connect them with low order
curves. The result is a piecewise continuous curve that
closely approximates the original ETFE, yet is much
smoother. Finally, zeros and poles are iteratively added
in accordance with the well-known first order asymptotic
approximations for Bode plots until the deviation between
the observed ETFE and the fitted function is below a
predefined threshold. More details on this algorithm can
be found in [27].

As an example, the effect of dynamic uncertainty occuring
in the self-sensing module on the closed-loop system’s
stability margin can be assessed as follows. First of
all, a random-phase multi-sine signal (with an amplitude
of 100 μm and frequency content stretching from 5 Hz
to 26 Hz) is applied to the system input. The choice
of this excitation signal is motivated by the existence

Figure 7: Uncertainty weight ETFE and bounding function for

dynamic additive uncertainty in the self-sensing module

of frequency-induced nonlinear behaviour in AMBs [1].
From this excitation signal the additive uncertainty weight
in figure 7 is estimated. A maximum of 3 dB deviation was
allowed between the piecewise continuous upper bound
(not shown) and the fitted transfer function, with the added
constraint that the fitted function must be a strictly proper
transfer function. According to the modelled uncertainty,
the nominal LTI self-sensing model’s primary shortcoming
is its high-frequency behaviour. Nonetheless, the generally
low gain levels of the uncertainty weight are indicative of a
relatively accurate LTI model for the self-sensing module.

6. RESULTS

6.1 Validation procedure

An important topic that rarely attracts any attention
in the robust control literature is the validation of the
uncertainty models used as well as the final stability
margins estimated by μ-analysis. Validation of a model for
dynamic uncertainty basically entails assessing whether
the uncertainty model is truly an accurate representation of
the unmodelled effects in the original system as modelled
by the nominal model.

The tack that will be taken in this paper is loosely based
on some of the ideas in [32] and [33]. Essentially, an
uncertainty model would be valid if it could be used
along with the original nominal model to duplicate the
behaviour of the nonlinear system. In other words, a
new LTI closed-loop system model is synthesized from
the nominal models identified during system identification,
as well as the fitted uncertainty weighting functions.
(The norm-bounded uncertainty, Δ(s), which usually
accompanies the uncertainty weight, is now taken as the
all-pass function.) The response of the resultant LTI
model can then be calculated for any particular input
signal. By comparing the response of the new closed-loop
LTI model (known as the augmented model) with the
corresponding response of the nonlinear system, it is
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Figure 8: μ-plot for dynamic uncertainty in the self-sensing

module

possible to qualitatively and quantitatively measure the
accuracy of the uncertainty model.

The stability margin estimated by μ-analysis can be
valdated by applying a sine-sweep test signal to both the
augmented model and the original nonlinear simulation
model. The specific frequency at which delevitation
occurs (due to frequency-induced nonlinear behaviour in
the AMB) is also a convenient measure of the stability
margin of both the augmented model and the nonlinear
simulation. The stability margin predicted by μ-analysis
will be indirectly validated if both the augmented model
and the nonlinear simulation model delevitate at similar
frequencies of the input frequency sweep signal.

6.2 Robustness analysis for dynamic uncertainty in DCM
self-sensing

Previous sections have detailed the nominal LTI model
for a DCM self-sensing AMB as well as a model
for unmodelled dynamics in the self-sensing algorithm.
The unmodelled dynamics are specifically due to
frequency-induced nonlinear behaviour in the AMB. All
that remains is to calculate the value of μ and estimate the
system’s stability margin (by means of the Robust Control
Toolbox in Matlab�).

In order to obtain useful results, the uncertainty weight
function in figure 7 had to be be scaled down by a factor
of 0.0012. Such a large scaling factor is indicative of
the conservatism of μ-analysis for this specific application.
The resultant μ-plot is shown in figure 8. Even though
a 2 Hz component isn’t visible in the uncertainty weight
in figure 7, this component is the dominant factor in the
μ-plot. From the μ-plot we can deduce that the closed-loop
system’s stability margin for dynamic uncertainty in the
self-sensing module is dominated by an extreme sensitivity
for the critical frequency of the AMB plant. The robustness
of a self-sensing AMB for general dynamic uncertainty can
therefore be improved by better control at this frequency.

The LTI uncertainty model is however totally unsuited

Figure 9: Responses to a frequency sweep

to analyse the effect of nonlinear phenomena on the
stability margin of the self-sensing AMB. This is proved
by applying a 99 μm amplitude frequency sweep signal
stretching from 11 Hz to 50 Hz at the system input. Such
an input signal is guaranteed to induce nonlinear behaviour
in the AMB as well as eventual delevitation [1]. As
figure 9 clearly shows, neither the nominal LTI closed-loop
model, nor the augmented model could correctly predict
the frequency-induced delevitation occurring just after
0.18 seconds.

7. CONCLUSION

The fundamental issue uncovered in this paper is the
validity of modelling a mismatch between a nonlinear
system and an LTI nominal model by means of another
LTI model (the uncertainty model). An example of this
problem is the inability of μ-analysis to predict delevitation
due to frequency induced nonlinearities in the AMB
(e.g. in figure 9). Since the augmented model couldn’t
correctly model frequency-induced nonlinear behaviour in
the AMB, the prime cause of the problem lies at the door
of the LTI uncertainty weight.

Nonetheless, the μ-plot obtained for dynamic uncertainty
in the self-sensing AMB is quite useful to identify specific
frequencies where the system is especially fragile (and
where the controller’s performance has to be optimised).

Self-sensing AMBs are nonlinear multivariable systems.
This paper has shown that a linearization approach
to the robustness analysis of this system results in
inaccurate robustness estimates. Accurate robustness
analysis requires accurate models of the nominal system
and the expected uncertainty. A good model for robustness
analysis purposes must mimic all aspects of the true
system’s behaviour. Not only should the model replicate
the system in well-behaved cases, but also when the system
is teetering on the edge of instability. Further work should
therefore be done on the development of an analytical
nonlinear model for a self-sensing AMB and obtaining
robustness estimates for the system by means of nonlinear
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analysis techniques.
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