
Vol.104(4) December 2013SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS126

A COMPUTER BASED ASSESSMENT SYSTEM FOR UNDERGRAD-
UATE ELECTRICAL ENGINEERING MODULES

P.A. van Vuuren ∗, A. Alberts † and L. Hager ‡

∗ School of Electrical, Electronic and Computer Engineering, North-West University, Private Bag
X6001, Potchefstroom, 2520, South-Africa. E-mail: Pieter.VanVuuren@nwu.ac.za
† E-mail: Andreas.Alberts@nwu.ac.za
‡ E-mail: Louw.Hager@nwu.ac.za

Abstract: Good assessment is an essential component of good learning. Marking test and exam papers
for large classes is however a time-consuming and repetitive task. This paper reports on the design and
implementation of a computer based assessment (CBA) system suitable for undergraduate engineering
modules. This prototype CBA system is capable of automatically grading relatively open-ended
analysis and design problems and is also relatively user friendly. This CBA system consists of two
separate subsystems, namely a test delivery subsystem and an automatic grading subsystem (which
is the contribution of this paper). Automatic grading of the student answer papers is performed in
Matlab�. The grading subsystem can automatically grade typed student answers containing symbolic
mathematical expressions as well as numeric answers. Grading is performed accurately, consistently
and very fast compared to a human lecturer. Students are given partial credit for partially correct answers
and feedback is given in a very intuitive form quite close to the traditional manner in a pen-and-paper
test. The system has been successfully used to take final exams in a second year engineering module on
basic circuit analysis.

Key words: Computer based assessment, engineering education, automatic grading.

1. INTRODUCTION

Large classes are common in modern university level
education. This is especially true of first and second
year engineering modules. This situation places enormous
pressure on lecturers to give timeous feedback to students
after tests or exams have taken place. Despite being an
onerous task grading of test papers is very important, since
good assessment (including detailed feedback) forms one
of the pillars of good learning.

Traits of a good test or exam are: accuracy, consistency
and speed. The accuracy of a test refers amongst other
things to the correctness of the grading of the student’s
answers [1]. Tests should also be marked consistently
for all students in the class. Lastly, students should also
receive speedy feedback on the correctness or quality of
their efforts. The speed with which students receive their
grades has a huge impact on the effectiveness of the
assessment in the learning process [2]. This is obviously
becomes a significant problem in large classes.

One solution to this problem is through the use of
multiple-choice questions. Computer-based assessment
(CBA) systems making use of multiple-choice questions
can give near-instantaneous feedback, but students are
often critical of the inability of multiple-choice type
assessments to give partial credit for the method that they
used [3]. Large problems requiring multiple stages of
calculation furthermore aren’t suited to multiple-choice
questions. This limitation can be circumvented by dividing
a large problem into smaller sub-problems which in
turn can be assessed by means of multiple-choice or
fill-in-the-blank type questions [4]. It is however our

opinion that such an approach carries the risk of guiding
students through the solution of larger problems.

Despite their limitations, tests consisting of so-called
”teacher-supplied answers” (e.g. multiple-choice,
fill-in-the-blank and true/false questions) still form the
mainstay of most modern CBA systems e.g. OASIS [5],
I-ASSESS [6] and QuestionMark’s Perception [7].
Modern CBA systems are however capable of much more
than mere multiple-choice questions as shown in [1]. In
their paper Scalise and Gifford propose a taxonomy of
e-learning assessment on the basis of the degree to which
the problem is constrained and also the relative complexity
of the problem [8]. From this taxonomy one can conclude
that modern CBA systems can assess almost anything
ranging from true/false questions to written essays [1].
It should come as no surprise that CBA systems have
been used in a wide variety of disciplines ranging from
hydraulic engineering [9] to pedagogical psychology [10].

One approach to extend the capabilities of CBA systems
entails making use of existing technology to automate
certain aspects of the grading process. Harnessing the
power of symbolic mathematics engines, some CBA
systems allow students to give answers in the form
of mathematical formulae. Determining whether the
student’s answer is mathematically equivalent to the
memorandum answer is performed by means of software
routines. Examples of such CBA systems are AiM [11],
CABLE [12] and STACK [13]. These CBA systems have
been applied successfully to assess first year calculus and
algebra modules. It should however be noted that the type
of questions used in these systems are still relatively simple
convergent problems. Another disadvantage of STACK is



Vol.104(4) December 2013 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 127

that it assigns partial credit to student answers by means of
so-called ”potential response trees” (directed graphs) that
are cumbersome for a lecturer to create.

Another example of CBA systems capitalizing on
existing software technology is the use of computer
language compilers to automate the grading of computer
programming tests. Since modern compilers can give
quite detailed feedback on syntax errors and scripts can be
written to automate the testing of working programs, it is
no small wonder that even students’ computer programs
can be semi-automatically [14] or automatically [15]
graded by modern CBA systems. In fact, it is even possible
to automatically assess not only whether a student’s
program is syntactically and semantically correct, but also
whether the student’s program exhibits more advanced
programming skills (such as meeting execution time and/or
memory constraints) [16].

An alternative approach is to endow the computer with a
measure of artificial intelligence to allow it to recognize
numerous variants on the correct answer(s). One such
example is a CBA system designed to assess practical
IT skills of students [17]. This system makes use
of a rule-based expert system to give feedback on the
student’s efforts. Rule-based grading has also been
applied for the automatic assessment of freebody diagrams
that are interactively drawn in a biomechanics module
[18]. Bayesian networks have been used to automatically
assess the performance of students performing a practical
exercise in a virtual electronic laboratory environment
[19]. The behaviour of the students is captured during
their interaction with the virtual laboratory (by monitoring
their mouse clicks and keyboard strokes). Each student’s
knowledge, skills and insight in the particular experiment
is then deduced by the Bayesian network from the
observed behaviour and converted into a grade for the
particular student.

Machine learning techniques have furthermore been
used to automatically assess the quality of children’s
argumentation in an elementary school level natural
science module [20]. The children verbalize their
arguments in free text, from which keywords are parsed
and the elements in a Toulin argumentation model
identified. Natural language processing has also been
applied to automatically mark short answers in an
object-oriented programming course [21].

Although only indirectly related to either formative or
summative assessment the work of Hoeft et al. is
noteworthy for their automatic assessment of computer
drawn concept maps (in order to assess student’s
knowledge representations) [22]. Another graph-based
approach for the assessment of students’ structural
knowledge can be found in [23] where quantitative features
are extracted from student-drawn pathfinder graphs with
the objective of predicting the students’ performance in
exams taken at a later date. Recently, an interactive
computer-based assessment system was presented that has
been used for formative assessment of computing and

technology students’ argumentation ability by means of
argument maps [24]. In this system students are presented
with a blank argument map which has to be populated from
a list of options. This system is implemented by means of
OpenMark [25] in Moodle [26].

A common denominator of a number of the above
mentioned examples is that advanced CBA systems (CBA
systems that can automatically grade questions that allow
students more freedom to compose their own answers
to the questions) are often limited in scope. Applying
a CBA system that was designed with one particular
subject in mind to another subject is sometimes difficult.
Another limitation of advanced CBA systems is the
ease of use for the lecturer. Providing a computer
with the necessary alternative solutions to empower it
to automatically grade highly variable answers often
becomes a very time-consuming task.

In view of the above mentioned limitations we decided to
design and implement a CBA system suitable for second
year engineering modules. This system had to be capable
of automatically grading relatively open-ended analysis
and design problems and also be quite user friendly
(requiring minimal additional skills from the students).
The design process for this CBA system was guided by
the following criteria:

1. Accuracy. Answers should be graded correctly and
reliably.

2. Consistency. All students should be treated the same.

3. Ease of use. The prerequisite skills for all users of
the CBA system (both students and lecturers) should
be minimal. Furthermore, the feedback given by the
automatic grading software should also be intuitive.

4. Speed.

5. Partial credit. Students should be given credit for the
process that they followed to arrive at an answer, even
if that process itself is only partially correct.

6. It must be possible for the student to write a
closed-book test on his/her own computer.

The CBA system which is the subject of this paper consists
of two subsystems: a test delivery subsystem and an
automatic grading subsystem. The test delivery subsystem
is responsible for delivering the test to the students and
collecting their answers. The automatic grading subsystem
is responsible for grading each student’s answers and
presenting the results in a format that gives useful feedback
to both the student and lecturer.

The main contribution made by the above mentioned
CBA system is that students are allowed to answer
relatively open-ended questions, which are then graded
automatically.



Vol.104(4) December 2013SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS128

Figure 1: CBA test delivery subsystem

In this paper the spotlight falls on the automatic grading
subsystem. Section 2 briefly summarizes the structure
of the entire system. More detailed discussions on
the test-delivery subsystem and the grading subsystem
are given in respectively sections 3 and 4. The
entire CBA system was implemented in a second year
engineering module during the first semester of 2012.
Section 5 evaluates the performance of the automatic
grading subsystem during its trial implementation.
Recommendations for future work form the topic of the
last section of this paper.

2. CBA SYSTEM OVERVIEW

The test delivery subsystem (figure 1) consists of a central
server that communicates to remote computers via a
computer network. A web-page interface is used to deliver
the test to the students. Each question in the test consists
of a field showing the question and a text box in which the
student can type his/her own answer. When the student
is done with a particular question or the entire test he/she
clicks on a ”submit” button which causes the student’s
answers to be sent back to the server where it is stored in a
database.

Currently, the student answers are graded offline. After the
test has been completed, the automatic grading subsystem
(figure 2) queries the database for each student’s answers
and then grades them by means of the memorandum
supplied by the lecturer. After each student’s entire set
of answers have been graded, the answers are saved in a
LaTeX file, which can be compiled into a PDF file showing
both the student’s answers as well as the traditional red
tick-marks indicating correct responses. When the entire
class has been processed, an Excel spreadsheet is generated
showing how each student fared in each question and also
giving the final grade of the student.

As we can all appreciate, grading exam papers is largely a
repetitive task. Depending on the nature of the question,
some knowledge and understanding of the subject matter
might be required to make sense of the students’ answers.
Examples of such questions are open-ended analysis or
design problems. Therefore, the fundamental hypothesis
upon which the automatic grading subsystem of this CBA
prototype is based is as follows.

Provided that the question, answer and memorandum are
sufficiently detailed and structured, automatic grading

Figure 2: CBA automatic grading subsystem

doesn’t require true knowledge or insight into the specific
subject being assessed.

The above mentioned hypothesis can only be valid in a
real-life examination scenario if the potential variability in
student answers can be constrained to be within acceptable
limits. The variability in the student answers to a question
can be limited in three different ways:

(a) By constraining the question. This topic is briefly
addressed in the discussion on the test-delivery
subsystem in section 3.2.

(b) By including different options in the memorandum.
This tactic is often used in traditional pen-and-paper
exams, where the lecturer beforehand knows which
different strategies will probably be followed by the
students and then accordingly includes all of the
options in the memorandum.

(c) By endowing the automatic grading program with
a measure of simulated intelligence. By simulated
intelligence is meant a program consisting of a
number of conditional statements that has the
appearance of intelligent behaviour on very small set
of tasks.

3. THE TEST-DELIVERY SUBSYSTEM

The test delivery subsystem is built on web based
technology, in order to ease its deployment in modern
heterogenous computing environments. It consists of two
major parts, namely the web site on which the test is
administered and the environment in which the test is
delivered.

The test delivery software is built using a traditional LAMP
(Linux, Apache, MySQL, PHP) stack. Written in PHP, it
dynamically renders web pages showing the test questions
and accepts form data from the clients containing the
student’s answers to the test questions.

Modern web environments are very open by default,
posing significant risks when summative tests are delivered
using it as a medium. We overcome this obstacle by
delivering the test in a secure environment, using a live



Vol.104(4) December 2013 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 129

boot Linux client, configured with only the necessities
for the test and nothing else. This way, otherwise
insecure systems can be made more secure by deploying
a non-intrusive temporary environment on the client
machine which is not under the end user’s control.

More details on the various components of the test-delivery
subsystem are discussed in the following few subsections.

3.1 Test-delivery software

The CBA test system is hosted on a Linux server running
the CentOS distribution. CentOS is a freely available
community driven rebuild of the sources of the commercial
Red Hat Enterprise Linux distribution, widely renowned
for its reliability and stability. We use the Apache
web server, the PHP scripting language and the MySQL
database server in our test system deployment.

Tests are encoded in text files using a very simple markup
style, in order to code and deploy them easily. Students
are registered in a database table containing their user
IDs and passwords, so that only authorized users can log
into the test. When a student successfully logs into the
test program, the directory containing the encoded tests is
parsed to determine which tests are available to the user.
This information is written to a table that keeps track of
session-specific parameters, such as the time the test has
started, the amount of time left on the tests and the amount
of times the test has been submitted. The available tests
are then presented to the user.

When a user clicks on a test, the encoded text file
containing the test is parsed and converted into a HTML
page that is displayed in the browser. Currently, the system
allows for auto-shuffled multiple choice, as well as free
form text style questions.

Answers are saved when the user clicks on the submit
button at the bottom of the test. An enhancement that can
still be made is to submit answers in the background by
means of AJAX queries as soon as they are entered, so that
they are immediately persisted and to prevent the user from
having to submit periodically [27].

3.2 The equation editor

The lingua franca of most engineering and scientific
disciplines is mathematics. It is therefore also very
important to allow students to express their thoughts in
a test or exam by means of mathematical expressions.
Whereas writing math by hand is quite easy, typing
mathematical expressions is a different story all together.

Various standards exist for typesetting mathematical
symbols e.g. MathML (mathematical markup language)
and LaTeX. Of the available standards LaTeX is probably
the most compact and human-readable representation of
mathematical expressions. Unfortunately learning to type
math in LaTeX represents quite a steep learning curve
which would be unreasonable to expect from students

enrolled in e.g. a module on electric circuits. This problem
can however be addressed by means of an equation
editor which allows the user to construct WYSIWYG
mathematical expressions by means of a mouse and
drop-down menus and also convert it to the corresponding
LaTeX code. One such equation editor is EqualX [28].
EqualX is a freeware equation editor primarily designed
for the Linux operating system. This allows it to be
relatively easily incorporated in the Ubuntu live boot disk
used for this CBA test delivery subsystem.

An example of EqualX is shown in figure 3. Numerous
mathematical symbols and templates can be accessed via
mouse from the dropdown menus at the top of the screen.
When anyone of the buttons in the dropdown menus
is pressed, the corresponding LaTeX code is shown in
the bottom textbox. The keyboard can then be used to
construct any conceivable mathematical expression. The
purpose of the centre window is to show the final typeset
version of the LaTex code (in human-readable form). The
centre window therefore also serves the important purpose
as quality control of the code that the student has ”typed”.
It is actually quite simple: if the expression in the centre
window looks correct (i.e. if it looks similar to what the
student intended to write by hand), then the underlying
LaTeX code is also correct.

At this point, the student must copy and paste the LaTeX
code in the bottom window of the equation editor to the
textbox in the test browser. The numerical answers and
LaTeX code typed in by the student will then later be
graded by the automatic grading subsystem.

In order to limit the potential variability in the students’
answers, each question is accompanied with a list of
permissible variables to be used in the answers. The
LaTeX versions of these symbols are also given in the test
browser. These symbols can then be copied and pasted
into the equation editor to construct the expressions that
the student desires. In this manner the process of typing
math by means of an equation editor can be speeded up
significantly. In fact, is is our experience that the entire
process of typing in answers by means of the equation
editor has only increased the time required for students to
complete a test by a factor of at most 3

2 .

3.3 Live boot environment

In order to lock down the workstations the tests are being
displayed on without installing any software or altering
them in any way, we deployed a live boot image of
the Ubuntu Linux distribution containing a minimal set
of software packages. The live boot distribution loads
itself from a DVD-ROM into a RAM disk on startup,
and therefore does not interfere with the configuration of
the computer in question in any way. Users writing tests
in this stripped down environment only have access to
a minimalistic browser and the equation editor software,
and do not have root access to alter this configuration.
This solution is similar to the zip disk approach proposed
by Ko and Cheng [29] in that students are issued with



Vol.104(4) December 2013SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS130

Figure 3: The EqualX equation editor

the live boot DVD prior to a test. Our solution however
allows all student answers to be conveniently stored on a
central database by means of a tightly controlled network
connection.

3.4 Authoring a CBA test

At this point it might be instructive to take a look behind
the scenes at how a test is authored by the lecturer in
this CBA system. The test question and any necessary
figures are produced by the word processing software of
the lecturer’s choice. The test delivery subsystem however
requires the test in a text file format, which precludes
the use of figures, tables and mathematical expressions
as in e.g. a normal Word-file. This limitation can be
circumvented by including each question in its entirety
as a picture file. The result is a text file with numerous
references to picture files, each containing a separate
question.

4. THE AUTOMATIC GRADING SUBSYSTEM

4.1 Subsystem layout

Grading a test or exam paper by means of a memorandum
is in essence a pattern recognition problem. It entails
comparing a student’s answers with the information given
in the memorandum. If a match occurs, then suitable credit

should be assigned to the student. To facillitate feedback
to the student, tick marks are traditionally used to indicate
both correct answers as well as the number of marks earned
by each correct answer.

The process of reading a student’s answer and comparing it
to a memorandum can be easily automated. Figure 4 shows
the main sequence of events in the automated grading
subsystem.

At first, the computer reads the memorandum encoded in
a text file and stores the correct answer(s) to each question
separately. Secondly, Matlab querries the MySQL
database containing the student answers to determine the
class list and determine the number of students in the class.
Then a main loop is engaged which cycles through all of
the students in the class. For each student, the program
retrieves his/her answer to each question separately. The
answer is then converted into a format suitable for later
LaTeX compilation. Finally, each answer is compared with
the corresponding part of the memorandum. This process
is denoted by the red rectangle in figure 4 and consists of
further operations which will be discussed shortly. After
all of the students in the class have been processed in this
manner, a final summary Excel report is generated. This
report indicates how each student fared overall as well as
in each question individually.

Obviously, the heart of the entire grading subsystem is the



Vol.104(4) December 2013 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 131

Figure 4: Main flowchart of the automatic grading process

component responsible for comparing a student’s answer
to an individual question to the corresponding section
in the memorandum. Highlighted in red in figure 4,
this component itself consists of a loop calling different
subroutines. This loop entails that each line in the
memorandum is read, interpreted and suitably used to
grade the student’s answer.

With the exception of the preamble, each line
in the memorandum has the following structure:
GRADING COMMAND:(N) answer. The meanings of
the three different components in the line are as follows:

• GRADING COMMAND - This is a reserved word that
indicates how the computer must treat the text given
in answer and how the student is given credit.
There are currently only six grading commands
namely: SYMBOLS external, SYMBOLS internal,
TICK, TickNumEq, ANSWER and TickEq. Each of these
commands will be introduced shortly.

• (N) - An optional input is the number of marks
allocated to a correct answer. The default value is one.

• answer - A free-form string, number or LaTeX
mathematical expression which indicates a correct
answer.

As an example, consider the following memorandum line:

ANSWER:(3) R_1 = 10 k\Omega.

The above line instructs Matlab to search through the
student’s answer to question x for a statement in which
the student has calculated that R1 = 10 kΩ. This correct
answer is worth three marks.

For each line in the memorandum answer to a question, the
following process is then followed:

1. Read the grading command, the value (N) of a correct
answer as well as the correct answer.

2. If GRADING COMMAND = SYMBOLS external then a
list is compiled of all allowable variable symbols that
students might use in answering this question. This
list contains numerous variations on spelling of the
variable names given in the test paper as a safeguard
against student typing errors.

3. If GRADING COMMAND = SYMBOLS internal then a
list of aliasses for the above list of variable names
is compiled. Two objectives are attained with this
command. Firstly, all variable names are encoded
into a format suitable for Matlab’s Symbolic Toolbox.



Vol.104(4) December 2013SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS132

Secondly, all the different variable symbols that can
be used by the students are translated into a single list
of variables for use by Matlab.

4. If GRADING COMMAND = TICK then Matlab searches
through the student’s answer for an exact match to the
string given in answer. This grading command is of
limited use, since it is extremely sensitive for typing
variations. In future versions of the CBA system, this
grading command should be improved to be robust
for typing and spelling errors.

5. If GRADING COMMAND = TickNumEq then Matlab
searches through the student’s answer for a numerical
value close enough to the given value in answer. If
the correct answer is e.g. 15 μF, then any numeric
value in the student’s answer that lies within a
prespecified tolerance from 15× 10−6 is regarded as
being correct. TickNumEq doesn’t require that the
student use the correct unit, it is only sensitive for the
correct value scaled by the SI prefix used for the unit.

6. If GRADING COMMAND = ANSWER then Matlab
searches for a numeric value close to the given
answer. This command is similar to TickNumEq with
the exception that a few additional requirements have
to be met before the student receives credit for his/her
correct answer. These additional requirements are
specified in answer. As an example the following
answer: L1 = 20 mH implies that the student must
use (a) the correct variable (namely L1) as well as
the correct unit (Henry). This grading command is
useful in design and analysis questions where the
student has to determine specific component values
or specific quantities in a circuit.

7. If GRADING COMMAND = TickEq then Matlab
searches through the student’s answer for a
mathematical expression that is equivalent to

the one given in answer, e.g.
V1−220∠(23)

12k .

8. Repeat the loop until the end of the memorandum for
this question is reached.

At present, the grading subsystem suffers from the
limitation that no logical line of reasoning is enforced
by the automatic grading software. This limitation
can however be addressed relatively easily by means of
pointers progressing through both the memorandum and
a student’s answer. In this manner a student will only be
given credit for correct answers if they are in the same
sequence as in the memorandum.

Of the six grading commands introduced in section
4.1 only three warrant additional explaination, namely:
TickNumEq, ANSWER and TickEq. (The Matlab code of the
entire automatic grading subsystem is freely available from
the authors.)

4.2 The logic of ‘TickNumEq’

The purpose of this grading command is to search
through a student’s answer for a number which is within

a prescribed tolerance from a given number in the
memorandum. The following sequence of events occurs
when TickNumEq is called in the memorandum:

1. The required (complex-valued) number is extracted
from the memorandum. This step is actually quite
involved since both the memorandum and student
answers are encoded in text files. Strings therefore
have to be read and converted into numeric values
where applicable. Regular expressions can be used
to great advantage to perform this step.

2. As soon as the memorandum number is extracted, the
program checks whether the number is accompanied
with a unit and SI-prefix (e.g. kilo). All units
are discarded. If an SI-prefix is detected, then the
memorandum number is re-scaled accordingly.

3. Now the attention of the program shifts from the
memorandum to the student’s answer. All numbers
are extracted from the string containing the student
answer. For each of these numbers the following steps
are performed:

(a) Search for a unit and SI-prefix. If found, re-scale
the number accordingly.

(b) Subtract the found number from the memoran-
dum number.

(c) If the difference is within the prescribed
tolerance, then the required number of tick
marks are placed at the end of the relevant line
in the student’s answer. The current sub-routine
is also summarily ended and the attention of the
automatic assessor is diverted to the next line in
the memorandum.

4.3 The logic of ‘ANSWER’

This command is similar to the command TickNumEq with
the exception that in addition to a correct numeric value
the student also has to supply at least a correct variable
and sometimes the correct unit as well. As one could
expect, the logic of ANSWER is also quite similar to that of
TickNumEq. Evaluating the command ANSWER entails the
following procedure:

1. Translate all variable names in the student’s answer
to valid Matlab variable names. This is done by
making use of the lookup table compiled during the
evaluation of the commands: SYMBOLS external
and SYMBOLS internal as discussed in section 4.1.

2. Find the specific variable mentioned in the memo-
randum answer associated with the current grading
command.

3. Find the correct numeric value of this variable from
the memorandum answer. This numeric value is also
rescaled appropriately if an SI-prefix is detected.



Vol.104(4) December 2013 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 133

4. Find the unit specified (if any) in the memorandum
answer.

5. Search for the next numeric value in the student’s
answer string.

6. Search for any valid variable name immediately prior
to the number extracted in the previous step.

7. Search for any valid unit and SI prefix immediately
after the number extracted in step 5.

8. Test whether the student’s number is sufficiently close
to the memorandum number. Also test whether the
correct variable name and unit (if any) are present in
the student’s answer. If both (or all three) of these
conditions are met, then the student gets his/her due
credit and the subroutine is discontinued. Otherwise,
the search carries on until all numbers in the student’s
answer have been evaluated in this manner.

4.4 The logic of ‘TickEq’

This command directs Matlab to search through the
student’s answer string for a mathematical expression
which is equivalent to the one supplied in the memorandum
answer.

The basic idea upon which the software of this grading
command is based is to convert a student’s LaTeX
expression into a format acceptable for Matlab’s Symbolic
Toolbox. Testing for mathematical equivalence in the
Symbolic Toolbox environment then becomes a mere
formality. The entire procedure can be summarised as
follows:

1. Extract the LaTeX equation in the memorandum
answer.

2. Convert the LaTeX expression into Symbolic Toolbox
format. Regular expressions once again will simplify
this process considerably. At present however the
conversion from LaTeX to Symbolic Toolbox format
is done by means of string operations. As in the
case of ANSWER (step 1), all variable names both
in the memorandum as well as in the student’s
answer are translated to the correct internal format.
The program responsible for converting LaTeX into
Symbolic Toolbox expressions is obviously a work
in progress. At present it is limited to fractions and
algebraic equations.

3. Search through the student’s answer for the next
candidate equation. A candidate equation is any line
containing at least one equals (=) sign.

4. Parse the candidate expression into its main terms.

5. Convert each term into Symbolic Toolbox format and
test for mathematical equivalence. Two expressions
are equivalent if their difference is zero. This test
can be easily performed in the Symbolic Toolbox. If

the student’s answer is equivalent to the memorandum
expression, then credit is allocated and the loop
discontinued.

Although the actual program code of the automatic grading
subsystem is quite complicated, the underlying principles
are simple and intuitive. In its present form the grading
software is generic and forms a useful foundation for
further development. As the next section shows, the
initial results that were obtained during the exams are
encouraging.

5. RESULTS

This section gives an example of the feedback that the
system can give to students. Thereafter the performance of
the automatic grading subsystem is evaluated on the basis
of the results obtained by students who wrote one of their
mid-year exams in the CBA system, as well as on the basis
of qualitative feedback obtained from the same students.

As mentioned earlier, the CBA system was implemented
in a second year module on basic electrical circuits. This
module is compulsory for all students in the Faculty of
Engineering at the North-West University, but is presented
separately to electrical and electronic engineering students
on one hand (78 students in 2012) and chemical and
mechanical engineering students on the other hand (217
students in 2012). The quantitative test results reported in
this paper are those obtained by the latter group of students
due to its greater size.

5.1 An example of a graded answer

Space limitations and ethical considerations prohibit the
publication of an entire graded test paper. An example of
a graded answer to a single question is however given in
figure 5. This question required the students to calculate
a specific voltage in a circuit by means of the well-known
node-voltage method. Each red tickmark(

√
) indicates one

mark (as is tradition). All of the marks obtained for a
particular line in the student’s answer are placed either at
the end of that line or immediately below it.

The design and development of the prototype CBA system
was guided by the list of criteria given in section 1. How
the CBA system measures up to each of these criteria will
now be discussed in turn.

5.2 Accuracy

No errors should be made by the automatic grading
subsystem. More specifically, correct answers shouldn’t
be overlooked and neither should incorrect answers receive
any credit. Quality in this aspect of the CBA system is
ensured by the following three step process: (i) spot checks
performed by the lecturer; (ii) internal moderators; and (iii)
the students themselves.

An indirect measure of the accuracy of the CBA grading
subsystem is the distribution of the marks obtained by the



Vol.104(4) December 2013SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS134

Figure 5: Example of a graded student answer

Figure 6: Distribution of results obtained in two handwritten

tests and the CBA system

students for the various assessments during the course of
the semester. Two semester tests were taken by means of
the traditional pen-and-paper method. Experience gained
in presenting the module over the past few years has
shown that the performance in the semester tests is a good
indicator of the performance in the exam. This holds for
both the individual student as well as the class overall.
If this trend also holds true after the introduction of the
CBA system, then it is safe to conclude that the automatic
grading system can accurately perform its task.

Figure 6 shows the results of these two handwritten
semester tests as well as the first CBA exam paper. These
results reflect the performance of the 207 active students
in the class of 217 Chemical and Mechanical Engineering
students. These distributions show that there isn’t much
difference between the results of the two handwritten
semester tests and the CBA exam. Consequently, one can
conclude that the introduction of the CBA system didn’t
have a significant impact on the students’ performance.
Furthermore, the general shape of the distributions seem
to be roughly the same for both the handwitten tests and
the CBA tests and is no cause for alarm.

5.3 Consistency

From a computer’s perspective each student reduces
to nothing more than a file that has to be processed.
Consistency is therefore an inherent trait of any CBA
system, since it is impossible for an inanimate piece of
hardware to exhibit a preference for one student over
another.

The truth of the matter is one thing, but it is also important
to take the perceptions of the students into account when
evaluating the CBA system. With this in mind, an
attitudinal survey was conducted amongst the students
three months after the first semester exams. Lickert
scale questions were used to measure their opinions and
experiences on a wide variety of aspects of the CBA
system. Only four response categories were used in
the Lickert scale, namely: strongly disagree, disagree,
agree and strongly agree. Unfortunately only 44 of the
grand total of 294 second year students participated in the
survey. This does cast some doubts on how representative
the results of this survey are of the true general feeling
amongst the students.

Two questions were posed in the survey to specifically
measure the students’ perception on the fairness of the
automatic grading subsystem. These questions were:

Q1 Do you feel that the computer is too rigid? In other
words, would you prefer it if a person can read your
answer and judge its merit?

Q2 Do you feel that the computer was truly consistent in
terms of treating all students exactly the same?

Figure 7 summarizes the results obtained by these two
questions. It is quite clear that all of the respondents
felt that the grading system is too rigid. Unfortunately
their preference for a human assessor that can judge their
answers on merit unavoidably introduces subjectivity into
the grading process. Whereas it is undoubtedly true that a
human will often have mercy on a student due to his/her
situation (which constitute external factors to the test),
this does have a detrimental effect on the quality of the
assessment.

With respect to the second question (namely whether the
CBA system treated all students equally), the results in
figure 7 indicate that the majority of respondents felt that
the system did indeed treat all students exactly the same.
Why 43 % of the students didn’t agree with this statement
is puzzling and should be investigated more deeply. All of
the above mentioned results should however be interpreted
by taking into consideration that the CBA system was
introduced during the last two weeks of the semester. The
students therefore only had three weeks to get accustomed
to the CBA system before writing the exam.



Vol.104(4) December 2013 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 135

Figure 7: Student survey results concerning the fairness of the

grading subsystem

5.4 User friendliness

Any CBA system has two primary users, namely the
lecturer and the students. The benefits of a CBA system
for the lecturer in terms of grading test papers are obvious.
Although test papers have to be converted in the correct
format to be displayed in the test-delivery subsystem, this
is indeed a small price to pay in return for having the
grading performed accurately, consistently, quickly and
above all automatically.

To a large extent the students’ experience on the user
friendliness of the entire CBA system is determined by the
test-delivery subsystem.

In terms of the user friendliness of the test-delivery
subsystem, the following five questions were posed in the
attitudinal survey:

Q1 Although the CBA test-delivery system was intro-
duced only three weeks prior to the date on which I
wrote the final exam, I was relatively confident with
the CBA test delivery by the time that I had to write
the exam.

Q2 Students in general will be able to use the test delivery
system with confidence given enough time to get to
know the system.

Q3 I prefer to write traditional pen-and-paper tests.

Q4 I will not mind writing tests or exams on CBA
systems.

Q5 I found the CBA test delivery system user friendly.

The results obtained from these five questions are
summarized in figure 8. The response to question 1
clearly indicate that the students felt that they had too
little exposure to the system before they had to write their
exam. The fundamental user friendliness of the system is
however revealed in the response to question 2. A small
majority of the class were of the opinion that they would be
quite confident in the usage of the system, given sufficient
exposure.

Figure 8: Student survey results concerning the usability of the

CBA system

The typical resistance to paradigm shifts is quite evident in
the response to question 3 (namely that the vast majority
of the class prefers pen-and-paper tests). A significant
minority of the class (29.5 % to be exact) however
wouldn’t mind to write tests or exams on the CBA system
in the future. This is an important result, since it shows that
the system isn’t fundamentally flawed, only introduced
unwisely. Although the fifth question clearly shows that
the majority of the respondents felt that the test-delivery
subsystem was unfriendly, this opinion should be balanced
by slightly more than a third of the respondents who
experienced the system as user friendly.

In balance, the students felt that the CBA system is not
user friendly; a feeling that can only partly be attributed
to the late introduction of the system. Any prototype has
significant room for improvement. Specific aspects of
the test-delivery subsystem that need attention in future
were identified from three open-ended type questions in
the survey. These questions asked the students respectively
what they regarded as the disadvantages and advantages
of the system, as well as any suggestions for future
improvement.

A large contingent of the respondents remarked that they
had to perform draft calculations on paper before typing
in the important parts of their answers. This two-stage
process inconvenienced them, wasted a lot of time and
was a cause of uncertainty (since they had to choose
which parts of their calculations to type in and which
not to). The last drawback mentioned by the students is
very interesting, since it highlights the fact that the CBA
system forces students to put extra thought into how they
communicate their answers. One could therefore postulate
that the CBA system has the added benefit of fostering
logical and systematic thought in students. Support for the
latter hypothesis can be found in the following interesting
statement from one of the students in the survey: ”The CBA
system did not make it any more difficult to pass the module
in the sense that the format is exactly the same as when
the equations were written on paper. Instead it helped
me to avoid writing down unnecessary mathematics and
calculations.”



Vol.104(4) December 2013SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS136

Figure 9: Student survey results concerning the quality of

feedback in the graded papers

Surprisingly, a number of students also mentioned that
typing per se was a problem for them. Being competent
with a keyboard is however essential for professional
engineers. It is therefore important for students to get even
more exposure to electronic communication technology
(even during tests and exams).

Lastly, a number of students implicitly recommended that
the equation editor be embedded in the web-browser.
This will undoubtedly improve the user friendliness of
the system and ultimately increase the levels of user
acceptance.

To measure the quality of feedback given by the automatic
grading system, the following question was posed in the
attitudinal survey: ”Are you of the opinion that the graded
answer papers delivered by the computer (the pdf report
with red tick marks in it) gives informative feedback so
that you can learn from your mistakes?”.

The feelings of the students on this matter are summarized
in figure 9. It is disappointing that only 39 % of the
students regarded the graded answer papers as being useful
feedback. The viewpoint of the majority of the students
can probably be attributed to the fact that tickmarks are
only placed at the end of a line, rather than in between the
text as in a traditional pen-and-paper test.

5.5 Speed

The time required by an average student to complete a
CBA test obviously depends on the student’s proficiency
in the system. Seasoned LaTeX users can produce
mathematical expressions with minimal delay, while
novices will take a long while to type in an equation by
means of a mouse.

Our practical experience with the system has been that
it takes an average student approximately two minutes
for each mark in a test. A typical three hour exam can
therefore only have a maximum of 90 to 100 marks. This
compares favourably to the three hours and 120 marks
allocated for previous handwritten exams in the module.
One can therefore conclude that the CBA system only has
a small impact on the time required by students to answer
tests.

This conclusion is supported by the results of the student

Figure 10: Student survey results concerning the speed of the

CBA system

survey. Figure 10 reflect the students’ experience of how
long it took to complete a CBA test. The results of two
questions are combined in figure 10, namely:

Q1 I found that I took longer to answer questions in the
CBA system than in handwritten tests and exams.

Q2 I could answer all of the questions that I knew the
answers of in the time provided to do the exam on the
CBA system.

Clearly, all of the students felt that it took longer to
complete a CBA test, than a traditional pen-and-paper test.
This result should however be seen in the perspective of
the results of the second question, from which one can
conclude that only a small majority of the class felt that
they didn’t have enough time to communicate the answers
that they knew in the CBA system.

The issue of the time required to answer a CBA test can
therefore be easily addressed by the following measures.
Firstly, students should be given exposure to the system
from as early in a semester as possible. Furthermore the
contents and length of a CBA test should be adjusted to fit
within the constraint of three hours.

The savings incurred during the automatic grading of
answer papers is obviously enormous. The mere fact that
this part of the work is performed automatically already
implies that the lecturer can continue with research during
office hours and leave the grading of tests over to the
computer while he/she is otherwise occupied. Still, the
computer does perform the task of grading answer papers
significantly faster than humans can. More precisely,
it takes on average 60.5 seconds to automatically grade
an entire exam paper of a student. To place these
numbers in perspective, it took approximately 23 minutes
in previous years to mark a single exam answer paper by
hand. The relatively small amount of additional effort
required from the lecturer to compile a machine-readable
memorandum, is therefore handsomely compensated for
by the subsequent automatic grading process.



Vol.104(4) December 2013 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 137

Figure 11: Student survey results concerning the ability of the

system to assign partial credit

5.6 Partial credit

As we’ve seen in the previous section, the automatic
grading subsystem can grade a full length exam paper
in approximately one minute. Whereas this speed is
impressive compared to humans, it is still far from the
near-instantaneous feedback offered by multiple-choice
tests. The difference lies in the detailed feedback and
partial credit offered by the prototype CBA system.

It should be clear from the example given in this paper
(figure 5) that the system does indeed give students partial
credit for what they did correctly in a question. The
grading commands comprising the core of the automatic
grading subsystem (see sections 4.1 to 4.4) allow lecturers
numerous creative ways to allocate marks in a test. This
makes it possible to test more than one aspect of a module
in a single question and yet give the student credit for each
part that he/she could answer correctly.

It is interesting to observe that once again the students
didn’t share the above mentioned viewpoint in the
attitudinal survey. Two questions on the theme of obtaining
partial credit were included in the survey, namely:

Q1 Do you think that the computer system can give credit
for more than one possible approach to answer a
question?

Q2 Do you feel that the computer gave you credit for
following the correct process in certain questions even
though your final answers were sometimes incorrect?

The histograms in figure 11 summarize the student’s
feelings on the topic of the ability of the grading system
to assign partial credit. Clearly, the majority of the
respondents are of the opinion that the system can’t assign
partial credit to their answers. This majority does however
correlate quite well with the general negative disposition
of the class towards the CBA system (due to its late and
forced introduction in a module that is highly unpopular
amongst the majority of the students in the faculty).

6. CONCLUSIONS AND RECOMMENDATIONS

The prototype CBA system was primarily developed with
an introductory course on electrical circuits in mind.
Even though it is more suitable for senior undergraduate
engineering subjects than other CBA systems currently
available, it is still quite limited in its capabilities. These
limitations should however be seen as fertile soil for further
research and development, rather than critical flaws.

• Grading is performed offline once the test has been
completed by all of the students. User acceptance of
the system will obviously be boosted if grading could
be implemented online as well.

• No automatic correction of spelling and typing errors
is performed. The grading software is therefore
very sensitive for spelling errors by the students.
This however didn’t pose much of a problem in the
modules in which this system has been implemented,
due to the mathematical nature of both modules.

• Graphical input can’t be graded at present. Only
numerical answers and mathematical expressions can
at present be reliably graded.

The current version of the system is limited to modules
with a significant mathematical content. Work is however
underway to extend its abilities to automatically grade
textual answers (e.g. paragraph-style questions) in other
Engineering modules.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the help and advice
given by Gustav Otto, Celeste du Preez, Steyn Geldenhuys
as well as the anonymous reviewers who improved the
quality of our paper.

REFERENCES

[1] G. Crisp, The e-Assessment handbook. Continuum,
2007.

[2] S. Mehta and N. Schlecht, “Computerized as-
sessment technique for large classes,” Journal of
Engineering Education, vol. 87, pp. 167–172, April
1998.

[3] R. Henderson, D. Larimore, D. Lowhorn, V. May-
field, and L. Hayes, “Testing and improving
educational software,” Computers in Education
Journal, vol. 16, pp. 2–15, 2006.

[4] S. Hussmann, G. Covic, and N. Patel, “Effective
teaching and learning in engineering education using
a novel web-based tutorial and assessment tool
for advanced electronics,” International Journal of
Engineering Education, vol. 20, pp. 161–169, 2004.



Vol.104(4) December 2013SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS138

[5] C. Smaill, “The implemention and evaluation of
oasis: A web-based learning and assessment tool
for large classes,” IEEE Transactions on Education,
vol. 48, pp. 658–663, 2005.

[6] L. Fawcett, B. Foster, and A. Youd, “Using computer
based assessments in a large statistics service course,”
MSOR Connections, vol. 8, no. 3, August - October
2008.

[7] Questionmark, “Questionmark perception: measure
knowledge, skills and attitudes securely
for certification, regulatory compliance and
successful learning outcomes,” 2012. [Online].
Available: https://www.questionmark.com/us/
perception/Pages/default.aspx

[8] K. Scalise and B. Gifford, “Computer-based assess-
ment in e-learning: A framework for constructing
intermediate constraint questions and tasks for
technology platforms,” The Journal of Technology,
Learning, and Assessment, vol. 6, no. 6, pp. 4–44,
June 2006.

[9] N. Nirmalakhandan, “Use of computerized dynamic
assessment to improve student achievement: Case
study,” Journal of Professional Issues in Engineering
Education and Practice, vol. 135, pp. 75–80, 2009.

[10] V. Crisp and C. Ward, “The development of a for-
mative scenario-based computer assisted assessment
tool in psychology for teachers: The pepcaa project,”
Computers and Education, vol. 50, pp. 1509 – 1526,
2008.

[11] “AiM assessment in mathematics,” 2012. [Online].
Available: http://maths.york.ac.uk/yorkmoodle/
course/view.php?id=67

[12] “CABLE: computer algebra based learning and
evaluation,” 2012. [Online]. Available: http://www.
cable.bham.ac.uk

[13] C. Sangwin and T. Hunt, “Philosophy of STACK,”
November 2012. [Online]. Available: https://github.
com/maths/moodle-qtype\ stack/blob/master/doc/
en/About/The\ philosophy\ of\ STACK.md

[14] N. Kalogeropoulos, I. Tzigounakis, E. Pavlatou,
and A. Boudouvis, “Computer-based assessment
of student performance in programing courses,”
Computer Applications in Engineering Education,
2011.

[15] E. Gutierrez, M. Trenas, J. Ramos, F. Corbera,
and S. Romero, “A new moodle module supporting
automatic verification of vhdl-based assignments,”
Computers & Education, vol. 54, pp. 562–577, 2010.

[16] S. Almajali, “Computer-based tool for assess-
ing advanced computer programming skills,” in
2012 International Conference on E-Learning and
E-Technologies in Education, ICEEE 2012, Lodz,
2012, pp. 114–118.

[17] S. Long, R. Dowsing, and P. Craven,
“Knowledge-based systems for marking professional
it skills examinations,” Knowledge-based Systems,
vol. 16, pp. 287–294, 2003.

[18] R. Roselli, L. Howard, and S. Brophy, “A
computer-based free body diagram assistant,” Com-
puter Applications in Engineering Education, vol. 14,
pp. 281–290, 2006.

[19] I. Achumba, D. Azzi, V. Dunn, and G. Chukwudebe,
“Intelligent performance assessment of students’
laboratory work in a virtual electronic laboratory
environment,” IEEE Transactions on Learning
Technologies, vol. 6, no. 2, pp. 103–116, 2013.

[20] C. Huang, Y. Wang, T. Huang, Y. Chen, H. Chen,
and S. Chang, “Performance evaluation of an online
argumentation learning assistance agent,” Computers
& Education, vol. 57, pp. 1270–1280, 2011.

[21] R. Siddiqi, C. Harrison, and R. Siddiqi, “Im-
proving teaching and learning through automated
short-answer marking,” IEEE Transactions on
Learning Technologies, vol. 3, pp. 237–249, 2010.

[22] R. Hoeft, F. Jentsch, M. Harper, A. Evans III,
C. Bowers, and E. Salas, “TPL-KATS - concept
map: A computerized knowledge assessment tool,”
Computers in Human Behavior, vol. 19, pp. 653–657,
2003.

[23] D. Burkolter, B. Meyer, A. Kluge, and J. Sauer,
“Assessment of structural knowledge as a training
outcome in process control environments,” Human
Factors, vol. 52, pp. 119–138, 2010.

[24] P. Piwek, “Supporting computing and technology
distance learning students with developing argumen-
tation skills,” in 2013 IEEE Global Engineering
Education Conference (EDUCON), IEEE. Berlin:
IEEE, March 13-15 2013, pp. 258–267.

[25] “Openmark examples,” 2013. [Online]. Available:
http://www.open.ac.uk/openmarkexamples/

[26] “Moodle,” 2013. [Online]. Available: https://moodle.
org/

[27] H.-C. Yang and T. K. Shih, “Using ajax to build an
online assessment management system based on qti
and web 2.0,” WSEAS Transactions on Information
Science and Applications, vol. 4, no. 5, pp. 939 – 945,
2007.

[28] M. Niculescu, “ExualX LaTeX equation editor,”
2010. [Online]. Available: http://equalx.sourceforge.
net/

[29] C. Ko and C. Cheng, “Flexible and secure
computer-based assessment using a single zip disk,”
Computers & Education, vol. 50, pp. 915–926, 2008.


