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Abstract: The secure separation of functionality is one of the key requirements particularly in mixed
criticality systems (MCS). Well-known security models as the multiple independent levels of security
(MILS) aim to formalise the isolation of compartments to avoid interference and make them reliable
to work in safety critical environments. Especially for in-car multimedia systems, also known as
In-Vehicle Infotainment (IVI) systems, the composition of compartments onto a system-on-chip (SoC)
offers a wide variety of advantages in embedded system development. The development of such systems
implies often the combination of pre-qualified hardware- and software components. These components
are CPU subsystems and operating systems, for example. However, the required strict separation can
suffer due to the pre-qualified and therefore not reconfigurable hardware components. Particularly, this
is true for shared cache levels in CPU subsystems. The phenomena of interference in the concurrent
usage of shared last-level caches, are exploitable by adversaries. Therefore, this article identifies the
attack surface and proposes a mitigation to prevent from the intentional misuse of the fixed cache
association. Generally, the solution is based on a suitable mapping scheme in the intermediate address
space of an asymmetric multiprocessing environment which implements the MCS. Furthermore, we
evaluate the strength of the approach and show how the solution contributes to a separation property
conformal system.
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1. INTRODUCTION

Partitioning and combining different software components
into a shared platform is an ongoing trend in embedded
system development. These partitions provide the
opportunity to separate applications having different
functional or non-functional requirements. Among
other purposes this fosters the development process
or certification needs. Particularly non-functional
requirements as e.g. for safety or security are mandatory
in critical environments like avionics or automotive. Those
software compositions are referred to as Mixed Critical
Systems (MCS). Especially in the automotive sector the
safe and secure composition of MCS is pushed due to the
rising number of functions of in-car multimedia systems,
also known as In-Vehicle Infotainment (IVI) systems.
From a technical view, there are several possibilities to
partition or separate applications. The focus in this work
is set to the combination of multiple operating systems
on a common System-on-Chip (SoC) for automotive
purposes. Multi-operating systems (multi-OS) are going
to be established in future [1].

The development of systems and software in the
automotive environment implies special requirements and
challenges [2]. In particular, one of the challenges is
to integrate the wide-spread functions onto one single
head unit [3]. Furthermore, tightly network-coupled
(cloud) applications, such as social networks will gain
increased entry into that environment. The utilization of
multiple OSs on one platform provides the opportunity

of gaining advantage of their capabilities. An example
is the execution of a real-time OS parallel to a mobile
OS or a general purpose OS. The loosely-coupled
component structure of SoCs offers the possibility
to implement a multi-OS following the asynchronous
multiprocessing (AMP) paradigm rather than following
the classical virtualization schemes implemented in
commodity desktop architectures. The AMP paradigm
implies the total split of every resource in the system.
Specialized hardware extensions introduced with current
RISC processor architectures such as the ARMv7 [4]
enable the assignment of devices and resources of the
SoC to single OSs. The asymmetric paradigm is not yet
applicable to every part of current system-on-chip (SoC)
architectures. Caches are often shared between multiple
processor cores on multi processor SoCs (MP-SoC).
According to their fixed association-scheme to the main
memory, code running on the processor cores is naturally
vulnerable to DoS attacks. Generally spoken, due to the
exploitation of the caching infrastructure an starvation of
an OS-partition is possible. Adversaries could explicitly
aim for this weakness.

Hence, in this work we introduce and provide an empirical
analysis of the separation capabilities of a indirect memory
mapping method. The proposed memory mapping
technique aims to mitigate the surface of interference on
shared caches.

The latency for each memory access of a certain processor
has been chosen to quantify the effects of our proposed
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method. Because this value represents the time consumed
by the cache subsystem to transfer the issued data.
It can be assumed that a heavy usage of a shared
cache will increase the access latency of a co-CPU on
average. Therefore, in order to evaluate the separation
capability, we applied measurements to quantify the
latencies. These measurements are executed using certain
memory access patterns which are supposed to provoke,
intended interference or starvation effects. This pattern
is derived from the specific cache implementation of our
experimental platform.
The outcome of this measurement-tooling is twofold. First,
it is possible to show that the issue of denial-of-service
attacks in such environments is true, as well as the
starvation. Second, the output of the data shows the
effectiveness of our solution to this particular problem. A
detailed description of the quantitative methodology in the
particular setup is given in Section 6.

Additionally, this article maps the novel mapping method
to security models which are commonly applied for mixed
criticality systems.

1.1 Threat Analysis

The security threat discussed in this work is specific
to this particular environment. Thus, this affects the
consideration of threat sources, actors and the foci of
interests/assets. Since this article focuses on the denial
of service attacks we only consider the circumstances that
attack the availability of the asset.

Threat Sources/Actors Commonly, threat sources and
actors are distinguishable. Briefly, the source of an threat
is not necessarily the actor or the actual attacker in the
end. What is more important are the capabilities and the
motivation of the actors. Therefore, in this case, attackers
are assumed to be very knowledgeable insiders. This ends
in a relative high capability considering the substantial
skills in embedded engineering. Furthermore, we assume
actors have access to the non-disclosure documentation of
the hardware platform. As an example, the motivation to
attack the availability could be to prevent important safety
messages from being displayed. This would result in the
safety relevant partitions of the system being threatened.

Threat Vector In this work we consider availability
attacks at system-level. This means we assume an attacker
has already succeeding in compromising and controlling
an OS-domain. This is reasonable due to the attack surface
of highly Internet-coupled mobile-OSs.

Focus of Interest As a result, the actors aim for
vulnerabilities at system-level. Despite privilege escalation
attacks (horizontal or vertical) this article focuses on
DoS-attack-surfaces in the shared last level cache (LLC).
The attacker’s aim is to overcommit the cache from its
compromised OS side in order to degrade the memory
access performance on the target’s side. According to the
cache associativity, the attacker is able to aim for a memory
access to a specific PA in the system. As an example, it is

feasible for adversaries to aim at a co-OS-domain which
computes the cluster device (speedometer) for the driver
of a vehicle. The target would need to fetch data from the
memory in a strict timing order. If the memory access is
delayed by the attacker, the displaying of the data could
also be significantly delayed as well. This has an impact
on the reliability and availability of the target system.

1.2 Related Work

A common known phenomena dealing with caches in
multi-core processors is cache thrashing. This work
aims generally to the intentional interference of the cache
system.
Similar approaches to implement multi-OS are shown
in [5], [6], [7] and [8]. However, the approaches focus
on IA-32 multicore architectures which are used for
desktop computers. The difference to the architecture
proposed in this work lies in the design paradigm,
protocols and hardware compilation, which can not
simply be transferred to SoC architectures. Nevertheless,
in [9] Crespo et al. shows an hypervisor meeting the
requirements of high-assurance mixed critical systems.
The intended solution to manage the cache allocation
indirectly is introduced in [10], [11] and [12]. The
authors propose the solution of coloring caches in order
to avoid interference between applications. They also
deal with the problem of the dynamic allocation and
assignment of cache colors to applications. The solutions
are implemented into the memory allocation mechanism
on OS level.

In [13] and [14] the authors claim approaches for
the prevention of starvation in multinode systems or
cache coherence protocols. Those approaches might be
applicable in AMP based systems. However, they have to
be implemented into the hardware platform, which is not
in scope for the consideration in this work. Not in every
embedded systems development project it is even possible
to introduce changes in pre-qualified hardware blocks, like
the CPU subsystems are.

The approach proposed in this article differs substantially
from this related work. In the case of AMP-based MCS,
the memory segmentation must be enforced on system
level to have the capacity of configuration protection.
Furthermore, since the system setup is statically defined,
no dynamic allocation page coloring algorithms can be
implemented.

1.3 Structure

In Section 5. a method is proposed which addresses
the possible surface for interference. Furthermore,
implementation issues for the solution are given in Section
5.2. To verify the concept, a quantitative measurement
method is introduced in Section 4.. The impact is
shown with an experimental setup examined in Section
6.. All measurement results are given in Section 7.. The
remainder of this article is organized as follows: In Section
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Figure 1: Multi-OS composition and resource assignment

2. the Multi-OS environment and it’s practical realization
is introduced. In Section 3. the organization of the memory
is examined. Lastly, a conclusion is presented in 8..

2. AMP BASED MIXED CRITICALITY SYSTEMS

As previously mentioned, many ways exist to construct a
Mixed Criticality System. In this work we consider MCS
separated into multiple instances of operating systems
(OS). According to their capabilities, they can, but are not
obliged to, be of different types. In this work, OSs are
divided into three categories: real-time, general purpose
and mobile. Each OS maintains its own memory as well as
the physical devices provided by the hardware platform.
The combination of OS, memory and devices builds an
independent and self-organizing OS-domain. Figure 1
shows a semantic system overview.
The difference to other multi-OS approaches (compare
the related work in 1.2) is that OS-domains are statically
bound to a processing unit, which is usually one of
the central processing units (CPU) or CPU-cores of the
hardware platform. This is led by the intention of
achieving a static system configuration. It is not intended
to expand domains in the main memory or to reorganize
the device assignments during runtime. During the boot
phase all necessary initializations and configurations are
set up. In comparison to classical virtualization examples,
this approach avoids interfaces to manage the configuration
once the system is running. The intention is to minimise
the attack surface.
The proposed approach is based on asynchronous multi
processing. AMP systems are not new in certain domains.
Primarily an AMP system provides asymmetric access to
hardware. The term asymmetry refers to the separation
of hardware resources core-by-core in the system. Each
core has access to and works on a different partition of
the main-memory and hardware devices. To maintain and
handle the different core partitions and their applications,
each partition must run an OS. In this way it is also possible
to run different OSs on an AMP multicore system. This
approach for encapsulation is hardware-based and requires
that fundamental hardware functions to be adapted or
configured to run multiple OSs. The approach is contrary
to symmetric multiprocessing (SMP) which runs a single
OS on all CPU-cores and maintains all hardware resources.
AMP based systems can be categorized as mixed critical

Figure 2: Generalized SoC-structure

system [15] because of the independency of all subsystems
running on the multiple CPUs.

2.1 System on Chip Structure

SoC is an integrated circuit that combines all components
of a computing platform or other electronic systems into
a single chip. Designing SoCs is a very demanding
area in embedded system development. The platform
will be constructed for their intended environment. The
architecture of the system is generally tailored to its
application rather than being general-purpose. This means
there is usually no common structure for such platforms.
Nevertheless, most SoCs are developed from pre-qualified
hardware blocks (compare [16]). These blocks are
connected through an on-chip network, often referred to
as system-bus. In Figure 2 a generalized structure for
SoCs is presented. For this work, the focus is set to a
single subsystem which implements CPUs. Furthermore,
the CPU-subsystem’s connection to the main memory is
considered.

2.2 Security Model

The here presented Multi-OS applies a security model
which fits with the mixed criticality of the system.
Multiple Independent Levels of Security (MILS) has been
introduced to prove the security of high assurance systems
especially for aircraft, space, and defence purposes [17]
[18]. The model incorporates the following properties
[19]:

• Data isolation: The isolation of data does not only
affect the confidentionality of information, it is also
aimed at the separation capabilities of the system
design.

• Control of information flow: The location of the
information has to be defined. Furthermore, access
control has to be enforced.

• Periods processing: This aims for single core or
classical virtualized systems which share one or more
processors. In this case, it has to be proven that each
system can meet its timing requirements.

• Fault isolation: Failures are detected, contained and
recovered locally [19].

Security measures to enforce the aforementioned prop-
erties need to implement the following attributes:
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Figure 3: MILS AMP system overview

non-by-passable, evaluable, always invoked, tamper proof.
These are commonly known as the acronym NEAT [20].
In Figure 3 the AMP system which is based on a SoC is
mapped to the MILS model. Single subsystems are either
defined as multi-level secure (MLS) or single level secure
(SLS). Hence, each compartment has its own multiple
security levels or they are considered to be single levelled.
There is no dependency between the security levels of each
compartment. The highest security level of system 1 is
unequal to the highest level of system 2, etc.

One of the key elements of the MILS model in contrast
to our work is the data isolation property. Sometimes
referred to as proof of separability [21], this aims to
assure a multi-compartment system by avoiding surfaces
for interference. Therefore, the method we are going to
introduce must fit with the NEAT attributes in order to be
compliant with the security model.

2.3 AMP Multi-OS Realization

This section will examine issues associated with realizing
an AMP-based multi-OS. In this work hardware architec-
tures are considered which use memory maps for hardware
accesses (memory mapped i/o). Each device connected
to the common shared bus (CSB) is accessible by a
statically defined physical address. These addresses are
bundled in an i/o-address space or configuration address
space if there are any configuration-registers of the device.
Processors map those physical addresses to their virtual
address space using a memory management unit (MMU).
The MMU itself uses a translation table (TT) to match
and redirect accesses to peripherals connected to the CSB.
The translation table itself either resides somewhere in the
physical memory space or is implemented into the MMU
hardware. The whole system configuration is set during the
boot phase within the privileged hypervisor mode. Figure
4 shows the CPU subsystem.

Figure 4: First and second stage MMUs in the CPU centric
memory management

2.4 Centralized Memory Mapping and Peripheral As-
signment

The segmentation of the addressable space as well as the
assignment of certain resources, peripherals or devices is
an integral part necessary for the creation of an AMP
multi-OS.
In this context, assignment means the device is only
accessible by a single, defined OS-domain. As mentioned,
the assignment will be enforced by the second stage
MMU. To bind a resource to an OS-domain, it must
provide an interface (configuration registers) in a dedicated
address area (configuration-space). This includes clock
assignments, MMU activation and signals, etc. In
order to assign a resource to an OS-domain all of the
configuration-registers will be mapped to its address space.
The example in Figure 5 shows two OS-domains and
two devices. Based on the full addressable space, each
device or memory partition is assigned to a domain.
As an example, if 4GB of main memory is given, the
main memory could be mapped from the physical address
0x80000000 to 0xbfffffff. If an address space is shared the
associated addresses are multiply assigned.

2.5 Address Spaces

As a result of the two staged address translations, the
system deals with three different address space types,
which are briefly introduced in this section.

• Virtual address space (VA): This space is typically
maintained by the OS-domain. The addresses used
in this space are referred to as virtual addresses. An
address used in an instruction, as a data or instruction
address, is a VA [4] and has a space of up to 32 bits.

• Intermediate physical address space (IPA): The
IPA is the output of the stage 1 translation and the
input of the second stage. If no stage 2 translation
takes place, the IPA is the same as the physical
address.

• Physical address space (PA): PA contains the
address of a location in the memory map, which is
an output address from the processor to the memory
system.
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Figure 5: Example for a system memory map

The translation process works as follows:

(VA)stage1
−−−−→

(IPA)stage2
−−−−→

(PA) (1)

The proposed method introduces a suitable mapping hat
the second stage.

2.6 Translation Tables

The MMU utilizes a translation table to convert an input
address to a corresponding output address. Depending
on the implementation, these translation tables are located
in the PA address space of the SoC. In order to manage
a huge address space, the translation tables are divided
into different levels. Typically, there are three translation
Levels. According to the ARM reference [4] Level 1
maps 1GiB blocks, Level 2 2MiB blocks and Level 3 4KiB
pages respectively. The input address, particularly the IPA,
indexes the position in the table. Each entry points either to
a memory region or to the next corresponding translation
table level. The suitable construction of these translation
tables is further described in 5.1.

3. MEMORY ORGANIZATION

This work develops general models. Nevertheless, the
organization of memory, cache subsystems, their protocols
and hierarchy are based on the ARMv7 architecture
specification [4]. This specification is the foundation for
a significant amount of SoC platforms.

3.1 Caches

The general intention of the integration of caches to
processors is to speed up access to frequently used
memory. The memory in computing systems is

Table 1: Caching terminology
Sign Description

WS Way Set

CL Cache Line

ML Memory Line

CLSize Size of single cache line

MLSize Size of single memory line

WSID A specific WS

DBSize Size of a Domain Block

WSCount Amount of way sets

CLCount Amount of CLs

hierarchically organized [22]. Regardless of the highest
orders, which are the processor’s registers, there are one
or more levels of cache, which are denoted as L1, L2, etc.
In multi processor (MP) systems some levels are private
to the processor and some are shared between multiple
processors. In SMP based systems a coherence protocol
maintains the synchronization of shared data. Caches
expand from the lower to the higher levels. The smallest
addressable entity within a cache is a cache-line (CL),
which has a fixed CL size, such as 64 Byte.
The last level cache (LLC) before the main memory often
has an associativity scheme. The scheme describes which
CL in main memory, the memory line (ML), is loaded to a
specific location in the cache. The location where a ML is
loaded to, is denoted as CL ID. The associativity between
the LLC can be fully associative or could be organized
into associativity-cache-way sets. Fully associative means
each CL can be loaded to all possible CL ID positions in
the LLC. In most cases caches are divided into way-sets
(WS). Thus, a specific ML is associated with a specific
WS in cache. If a WS has a size of 8, it is called an
8-way-set associative cache. When a ML is loaded to
a CL into the WS, a replacement algorithm determines
the specific location. Upon implementation, this could be
done by a least recently used algorithm or could be totally
randomized. The CL that gets replaced, will be written
back to the main memory. The number of WSs in the cache
can be calculated by:

WScount =
cachesize

(CLsize ∗WSassoc.)
(2)

3.2 Addressing Scheme

Addressing is the fundamental part of memory access.
Usually the smallest addressable entities in computer
systems are 32Bit. As a result, a single CL contains 16
addressable locations. The data or instructions loaded into
the cache can be logically/virtually indexed or physically
indexed. In case of physically indexed caches the PA of a
memory location identifies CLs in the cache system. As a
result, VA or IPAs have to be translated through the MMUs
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before the data can be loaded into the cache. If a processor
accesses a particular memory location on main memory,
the VA will be translated into a PA. In equation 3 how to
determine a specific WS in cache to a given PA is shown.

WSID =
PA

CLsize
mod WScount (3)

4. QUANTITATIVE INTERFERENCE

In this section, the method of how to achieve interference
between the two co-OS-domains will be described.
Furthermore, we show how to implement the method. For
our consideration, we have assumed a two-leveled cache
hierarchy and 16 WS associativity of the L2 cache to the
main memory.

4.1 Method

In order to introduce performance impact on
co-OS-domains, an attack vector is examined which
aims to overcommit a certain WS in the LLC. The
memory mapping introduced in Section 2.4 shows that
the memory partitions are assigned in two big consecutive
blocks to the OS-domains, which are denoted as Memory
Partition 0 and Memory Partition 1 respectively.

As shown in Figure 6, each ML in the main memory is
assigned to a specific WS in the LLC. Since the main
memory is bigger than the L2 cache, the pattern repeats
every time WScount has been reached. The method to fill a
specific WS in the cache is to compute WS ID according
to the following equation:

Blocksize =WScount ∗CLsize (4)

Algorithm 1 Fill specified WS
Require: PA ≥ 0;Stepsize > 0

NextPA ⇐ PA
for i = 0; i ≤WSsize; i++ do

AccessNextPA
NextPA ⇐ NextPA+Blocksize

end for

If the attacker aims to interfere with the victim, he just
has to use the same WSs as the victim. Aiming for a
specific WS, and by doing this very frequently the victim’s
memory accesses to this WS can be significantly delayed.
According to the replacement strategy in the WSs, this
effect can be deterministically predicted in case of least
recently used (LRU) or statistically measured in case of
random replacement.

5. COUNTERMEASURE

The attack vector shows that it is possible to interfere
with an co-OS domain by attacking specific WSs. Since

this would lead to unpredictable memory access execution
delays, a method is introduced to prohibit this effect. The
cache covers the whole main memory. Attributes like the
associativity commonly cannot be changed in the system.
Hence, a method is required which is applicable without
the introduction of architectural hardware changes.

5.1 Domain Block Memory Mapping

The general strategy for the countermeasure is to invert
the DoS method. The method assigns WS in the cache
to OS-domains. This is achieved by the introduction of
Domain Blocks (DB). The DBs are later mapped to the
particular OS-domains. A DB is a memory region that is
assigned to a specified region of a set of WSs in LLC. In
Figure 7 the method is depicted. The example shows a DB
mapping for two memory partitions. As a result, there are
two different ”colors” for DBs in this case. A single DB
consists of a set of MLs. The DBs describe an alternating
pattern within the main memory. In the example, a cache
with 2048 WS is assumed. To split the cache literally into
two halves, a DB consists of 1024 ML. Generally, the size
of a DB is calculated through:

DBsize =
WScount

Domains
∗CLsize (5)

The DBs will be mapped to the OS-domains using
the second stage MMU. The mappings in the Level 3
descriptors are generated as follows: The input address
space, represented by the IPA, must be consecutive for a
proper operation of the OS. The output addresses (PA) are
generated with regard to the proposed pattern. Since each
entry in the TT describes a 4096 Byte page in the main
memory, each page contains 64 MLs with a size of 64 Byte.
To contain 1024 MLs, 16 pages form a single DB. The
mappings are generated using the Algorithm 2. The PA
space for the main memory starts at address 0x80000000.
For OS − domain1 IPA space starts at 0x80000000 and
for OS− domain2 at 0xA0000000. The algorithm iterates
through the whole address space of the main memory.

Algorithm 2 Generate Level 3 TT
IPA1 ⇐ 0x80000000; IPA2 ⇐ 0xA0000000
PA1 ⇐ 0x80000000,PA2 ⇐ 0x80010000
Pagesize ⇐ 0x1000
for j = 0; j ≤ MainMemoroysize; j+= DBsize do

for i = 0; i ≤ 16; i+= Pagesize do
IPA[1,2] ⇔ IPA[1,2]+ = Pagesize
PA[1,2] ⇔ PA[1,2]+ = Pagesize

end for
IPA[1,2] ⇔ IPA[1,2]+ = Pagesize
PA[1,2] ⇔ PA[1,2]+ = DBsize ∗2

end for

There are multiple possibilities to map these pages.
For example, in the introduced algorithm, the DBs are
optimized to the maximum size. To some extent, this
avoids a high fragmentation of the PA memory.
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Figure 6: Exploiting the cache way-set association

5.2 Implementation Issues

The proposed mapping theme shows how to separate
former shared resources like the set associative cache.
In the results we show the applicability to avoid DoS
attacks. However, the implementation of the scheme
involves certain challenges in system and architectural
improvements.

As mentioned previously, the system setup is statically
defined and initialized during bootup. To implement
the proposed mapping, the initialization of the second
stage MMU must be completed before the OS images or
configuration files such as Device Tree Blobs are loaded
into the main memory. This is problematic, since the
second stage MMU is commonly initialized using an
identity mapping, which means there is no remapping
of memory pages. Since, we divide the main memory
into DBs, this scheme has to be considered on loading
the OS-images. Basically the images are bigger than the
64KiB DBs, so they have to be loaded with respect to that
pattern.

Furthermore, the proposed memory mapping scheme
demands a special treatment of direct memory accesses
of other subsystems connected to the common system
interconnect. Direct memory accesses are preformed on
consecutive PA memory areas. In order to use DMA
capabilities of certain resources, the maximum transfer
size needs to be limited and aligned to the DBs. Otherwise,
the IPA address space needs to be established to the
DMA capable resource. This requires that the DMA
device is aware of the mapping scheme, and is able to
translate the IPA addresses which are communicated by the
OS-domains into the real PA residing in the main memory.

Figure 8: Proposed Architecture

5.3 Properties for a System Architecture

In order to incorporate the outcomes of the key findings
in this paper, we propose the properties for a secure
integration of the domain block mapping.

There are secure integration of two levelled memory
mapping or a memory protection unit. As shown in
Figure 8, dedicated MPUs for each master subsystem are
proposed. The MPUs must be implemented in a multi-level
privilege scheme. This means the configuration is only
accessible by the highest privilege level (hypervisor level).

The maximum number of OS-domains, respectively the
CPUs, supported by this method is dependent on the cache
size, CLSize and on the minimum pagesize supported by
the translation table. Assuming an ARMv7 architecture,
the minimum pagesize is set to 4KiB and the CLSize is 64
Byte.

Domains =WSCount/
Pagesize
CLSize

(6)

In the example configuration, 32 OS-domains or CPUs
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Figure 7: The principle of cache domain blocks

would be supported.

The aforementioned properties are needed to meet the
NEAT attributes of the MILS security model.

• Non-bypassable: Once activated, the address
translation will be enforced by the MPU or Second
Stage MMU. Since this is implemented in hardware,
it cannot be bypassed by the software running on the
CPU. However, this implies that i/o devices which are
capable of accessing the main memory directly need
to be aware of the mapping method.

• Always invoked: According to the non-bypassable
attribute, the translation of memory access is done for
every read or write attempt of the processor.

• Tamper proof: The mechanism is implemented
into hardware, which makes it tamper proof
against external manipulation. However, the MMU
translation tables reside within the main memory.
The location needs to be in a restricted area that is
not accessible for the processors. As a result, each
DMA capable subsystem needs to be incorporated by
a MMU/MPU.

• Evaluateable: The herein proposed method to
separate shared caches, does not introduce any further
complexity to the implementation of hard or software.
Our method shows an alternative approach to building
a second-level address translation.

6. EXPERIMENTAL SETUP

This section will give an overview of the system setup that
was used to produce the results given in Section 7.. To
produce the results a SoC platform was chosen which is

available to the public domain. Therefore, a Pandaboard
[23] that incorporates the Texas Instruments OMAP5 SoC
and a set of peripherals necessary for ICM-applications is
used. The OMAP5 implements a multi processing unit
(MPU) subsystem with two ARM Cortex-A15 processors.
The MPUs have a direct connection to the main memory
or an external memory interface (EMIF). Each Cortex-A15
core has a private L1 64KiB (32KiB each for instructions
and data) cache and a shared 2MiB L2 (unified) cache. The
cache line size is 64 Byte and has 2048 WS.
Two OSs run on the platform, the adversary and the victim
OS-domain. Both OS-domains consists of an upstream
Linux Kernel (Version 3.8.13) and a suitable root file
system. The methods to measure the proposed effects are
implemented on OS-level, using Linux kernel modules.

In order to obtain the results the following functions have
been implemented.

• measure-loop(): The Loop simply executes iterations
over a set of data. During each iteration it loads
from a ML into a CPU register using the ARM LDR
instruction.

• DoS-loop(): Compares to the measure-loop without
time measurements.

• get time(): Timestamps at start and end of each
iteration to determine the CPU cycles consumed.

• prepare cachelines(): Determines the CLs to the
targeted WS.

• get next CL(): Iterates through the CLs.

The loops iterate over a set of ML/CLs determined by the
equations given in Section 4..
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m e a s u r e l o o p ( ) {
f o r ( k = 0 ; k < TEST ITERATIONS ; k ++) {

r e s e t t i m e r ( ) ;
p r e p a r e c a c h e l i n e s ( ) ;
f o r ( l = 0 ; l < v a l u e ; l ++) {

s t a r t = g e t t i m e ( ) ;
g e t n e x t C L ( ) ;
end = g e t t i m e ( ) ;
c y c l e s += end − s t a r t ; }}}

Listing 1: Pseudo code to measure the latency

7. RESULTS

According to Section 4. and 5., the methods have been
evaluated. The results are obtained by measuring latencies
of memory accesses.
The measurements are performed as follows: The victim
OS-domain logs the latency of its memory accesses by
producing a characteristic workload through the access of
a specific domain block. The adversary-OS works on the
same amount of data within the same domain-block set.
The following characteristics are considered:

• CPU cycle count: Number of cycles consumed by
an operation. This value quantifies the duration of a
measurement. The cycle count was taken from the
timer subsystem of the experimental platform.

• CL count: Number of CLs allocated and iterated
throughout the measurement.

• DoS impact: This value describes the increased
percentage of the CPU cycle count of an operation
being interfered with.

In order to produce the results the arithmetic mean value
of the measurements has been computed. During the
measurements some factors have been observed which
produce particular outliers. Those factors are caused by
functionalities such as cache prediction [24] or bus usage.
Technically, it would be possible to turn off those processor
features, but this would not produce real world results,
because an adversary is not able to do so. The general
aim was to prove that the concept fits the predictions rather
than to build a polished output.

7.1 Maximum Impact

The first measurement shows how the thrashing impact
compares to the number of CLs iterated in a single WS.
Both systems run the DoS-loop and measure the latency
concurrently. The results to prove the DoS method are
depicted in Figure 9. The most significant impact to the
execution performance of the victim OS peaks at about
457 percent. This means that by using the attack vector,
it is possible to delay the execution of an operation up
to this value. Another value observed is the number of
CLs that have been allocated to cause the interference.
The highest peak of interference appears when the victim
and the attacker are using 16 CLs, meaning a full WS. If
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Figure 9: Analysis of WS hit

both systems use the same full WS the possibility that a
single CL must be replaced by the cache is highest. As a
result, the prediction of the attack model to overcommit a
common WS is proven to be true.

One of the most important results obtained is the maximum
thrashing impact. Here, the victim OS executes the
measure-loop with latency measurement and the adversary
OS only the DoS-loop. The results are shown in Figure
10. For these measurements both systems iterate over 16
CL, which produces the highest impact (compare Figure
10). Table 2 gives an overview of all observed values. In
the test runs, the mean cycle count of a memory access is
about 3,602. By activating the DoS-loop the cycle count
increases up to 132,803. This implies a DoS impact of
about 3686%. Compared to the value of the previous
graph, the significantly higher result is justified by the
frequency of the DoS-loop. If a single iteration of the
DoS-loop runs without the latency marks, then the CPU
cycle count per step is lower.

7.2 Domain Block Mapping

To evaluate the value of the DB memory mapping, the
measurements made after establishing the mappings. The
results in Figure 10 compare the CPU cycles consumed
during a data fetch. According to the measurements
with the identity mapping both systems iterate through the
same full WS. The normal execution of the measure-loop
reveals a mean cycle count of 3,599. By applying the
DoS-loop to the measurement, the cycle count rises to
8,911. Consequently, this results in a DoS impact of about
247,55%. By comparing the mean cycle counts of DB and
identity mapping the DoS impact subsides significantly.

7.3 Overhead Evaluation

Despite the advantages of the separability of LLC, the
herein proposed method will introduce some overhead
evaluation of certain attributes of the system execution.
Therefore we compare the approach according to the
memory access latency, to determine the cost for single
memory access. Furthermore, the latency for memory
accesses in consecutive memory areas in copy operations
will be discussed.

The introduction of the proposed memory mapping will
introduce overhead by retrieving the mapping entries from
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Table 2: Domain Block Mapping impact
Mapping Impact (%) Mean CPU Cycles Std. Derivation

identity - 3,602 0,022

DB - 3,599 0,021

identity DoS 3686,90% 132,803 2,265

DB DoS 247,55% 8,911 2,062
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Figure 10: Comparision of indentity and DB mapping

the MMU translation tables. This might be caused by
additional table walks. A full translation table lookup is
called a translation table walk. As mentioned previously,
the MMU translation tables are concatenated tables, where
each level describes a finer-grained amount of data, from
the higher to the lower level. Using an identity memory
mapping the granularity of Level 2 block descriptors are
sufficient to produce a proper system mapping. According
to the domain block mapping, Level 3 descriptors which
map to the 4KiB pages need to be used rather than the
2MiB blocks in Level 2. This implies, that a lookup
for a physical output address needs to walk through the
descriptor levels 1 to 3, whereas Level 3 has architectural
dependent number of entries.

As mentioned above, the mapping method in the second
stage MMU level implies three table walks to convert the
IPA input address into the PA output address. In order to
quantify the cost of the additional table walk the latency
of the measure-loop has been observed with the original
2 MiB Level 2 mapping and the domain block mapping
which resides in the Level 3 translation table. The results
show that the DB mapping method does not add any
performance overhead to the memory access if a single WS
is considered. The mean CPU cycles remain at 3,602 in
identity mapping and 3,599 using the DB mapping.

In addition to the table walks, the MMU implements
a cache for its recently used translation entries. This
cache is commonly referred to as a translation look aside
buffer (TLB). Depending on the particular architectural
specification, the TLB caches up to 512 translation
descriptors. Assuming a normal identity system
mapping and our experimental platform, utilizing Level 2
descriptors for 2MiB blocks, there are approximately 2048
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Figure 11: Memory bandwidth comparison

descriptors to be stored. In contrast to the DB mapping
method which uses fine grained Level 3 descriptors, there
are about 1048576 (size of main memory divided by the
size of page mapped by the Level 3 descriptor) translations.
The probability of refreshing the TLB is much higher than
the DB mapping compared to with the normal method.

Particularly in this architecture the TLBs stores up to
512 translations. Since, in the previous scenario only 32
different CLs are accessed, these translations reside inside
the TLB. Therefore, we increased the number of CL in
our access scenario to exceed the capacity of the TLB.
The results quantify the impact to access latency caused by
refreshing the TLB. In this case the mean access latency of
the measure loop is about 2.52 percent.

Practically, in infotainment systems sometimes large
amounts of data are going to be transferred. This could
be graphics data or media files which are handled by
the CPU. Therefore, we determine the behaviour of copy
operations of larger data blocks compared to your previous
measurements. Figure 11 shows a comparison of the mean
CPU cycles consumed by copying a particular amount of
data. It analyses the overhead for large data operations.
The data block is contiguous allocated in the intermediate
address space. The results show that the bandwidth of the
identity and the DB mapping is barely at the same level.
In fact, the domain block approach has no influence on the
transfer of contiguous memory areas.

The evaluation shows the negative performance impact of
the deliberate interference of shared caches. By utilizing
the DB mapping, it is possible to substantially mitigate
these effects. Furthermore, the performance overhead
for domain blocking is negligible. Nevertheless, we still
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observe a performance impact using the DB mapping. This
might be caused by the bus interconnect which transports
the data from the main memory through the caches to the
CPUs.

8. CONCLUSION

In Mixed Criticality Systems the isolation of the
independent system components is important. By
implementing an AMP based Multi-OS this goal can
be achieved by design. However, the separation of
common resources like caches must be proven to achieve
a reliable system compilation. In this article, a method
has been introduced to avoid the surface for interference
and DoS attacks on shared caches. In order to prove
the separability of concurrent OS-domains in a mixed
critical system, the herein proposed approach has been
designed to meet the requirements of established security
models. The method is based on the partitioning of
memory lines within the main memory. According to the
way-set associativity, these partitions, so-called domain
blocks, can be assigned to OS-domains. The mapping
is enforced using a MMU within the stage-two memory
address translation. Additionally, the method fits to the
AMP system design paradigm.
Furthermore, this article shows the significance and
the need for a solution to mitigate or prohibit DoS
attacks in shared last level caches. In addition to
that, the surface for interference is quantified to evaluate
our solution. This proposed domain block mapping
breaks the AMP-paradigm down to the shared caches of
CPU-subsystems in SoCs. Since the approach uses the
second-stage MMU which is used by the system anyway,
the complexity of the system design and the additional
engineering cost of the method is kept to a minimum
level. In addition, the measurement results show the
negligible performance degradation. The method enables a
more reliable implementation of AMP-based multi-OSs on
MP-SoCs using shared caches, without the need to modify
the pre-qualified hardware layout. The method and the
results also have an impact on other disciplines related to
SoCs. In the real-time research field, it can be used to make
memory access more predictable, regardless of whether a
multi-OS is implemented or not.

The consideration focuses on a dual core CPU subsystem.
In the future, the technique can be applied and evaluated
in SoCs that incorporate quad (or more) core processors
that share a last level cache. The proposed domain blocks
make it necessary to break the mapping down to the
fully-addressable space on the SoC. Therefore, solutions to
establish these domain blocks for devices which access the
main memory directly must be considered. Furthermore,
the cache interconnection bus provides a further surface
for interference. In future this particular aspect has to
be considered so it fits the AMP system design more
adequately.
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