
Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS46

A SANDBOX-BASED APPROACH TO THE DEOBFUSCATION AND
DISSECTION OF PHP-BASED MALWARE

P. Wrench∗ and B. Irwin†

∗ Department of Computer Science, Rhodes University, P.O. Box 94, Grahamstown 6140, Email:
pete.wrench@gmail.com
† Department of Computer Science, Rhodes University, P.O. Box 94, Grahamstown 6140, Email:
b.irwin@campus.ru.ac.za

Abstract: The creation and proliferation of PHP-based Remote Access Trojans (or web shells) used
in both the compromise and post exploitation of web platforms has fuelled research into automated
methods of dissecting and analysing these shells. Current malware tools disguise themselves by making
use of obfuscation techniques designed to frustrate any efforts to dissect or reverse engineer the code.
Advanced code engineering can even cause malware to behave differently if it detects that it is not
running on the system for which it was originally targeted. To combat these defensive techniques, this
paper presents a sandbox-based environment that aims to accurately mimic a vulnerable host and is
capable of semi-automatic semantic dissection and syntactic deobfuscation of PHP code.

Key words: Code deobfuscation, Sandboxing, Reverse engineering

1. INTRODUCTION

The overwhelming popularity of PHP as a hosting platform
[1] has made it the language of choice for developers
of Remote Access Trojans (RATs) and other malicious
software [2]. Web shells are typically used to compromise
and monetise web platforms by providing the attacker with
basic remote access to the system, including file transfer,
command execution, network reconnaissance and database
connectivity. Once infected, compromised systems can
be used to defraud users by hosting phishing sites,
perform Distributed Denial of Service (DDOS) attacks, or
serve as anonymous platforms for sending spam or other
malfeasance [3].

The proliferation of such malware has become increasingly
aggressive in recent years, with some monitoring institutes
registering over 70 000 new threats every day [4]. The
sheer volume of software and the rate at which it is
able to spread make traditional, static signature-matching
infeasible as a method of detection [5,6]. Previous research
has found that automated and dynamic approaches capable
of identifying malware based on its semantic behaviour
in a sandbox environment fare much better against the
many variations that are constantly being created [5, 7].
Furthermore, many malware tools disguise themselves by
making extensive use of obfuscation techniques designed
to frustrate any efforts to dissect or reverse engineer the
code [8]. Advanced code engineering can even cause
malware to behave differently if it detects that it is not
running on the system for which it was originally targeted
[9]. To combat these defensive techniques, this project
intended to create a sandbox environment that accurately
mimics a vulnerable host and is capable of semi-automatic
semantic dissection and syntactic deobfuscation of PHP
code. The novel technique of performing deobfuscation
based on the identification and reversal of common
obfuscation idioms proved highly effective in revealing

hidden code. Although not included in the scope of
this project, this could act as a stepping stone for
the identification of PHP-based malware on production
servers.

This paper expands substantially on a work previously
published [10] in the proceedings of the 13th Annual
Information Security South Africa Conference held in
2014. The two most substantial extensions included the
reworking of the Design and Implementation section to
provide more detail on how the two major components
were configured, and the inclusion of additional testing
outcomes in the Results section. The Summary section was
also updated to reflect these two changes, and to provide a
more in-depth analysis of the new results.

2. PAPER STRUCTURE

The remainder of the paper commences with an overview
of the PHP language and its relevant features in Section
III, along with an outline of a typical web shell and its
common capabilities. The concept of code obfuscation
is also introduced, with particular emphasis on how it is
typically achieved in PHP. Several alternate deobfuscation
techniques are briefly discussed, along with dynamic
approaches to code analysis such sandboxing. Section IV
details how the system was designed and implemented,
outlining the structure and functionality of the two main
components (namely the decoder and the sandbox). The
results obtained during system testing are presented in
Section V. The work concludes in Sections VI and VII,
which provide a summary of the results and present ideas
for future work and improvement.

3. BACKGROUND AND PREVIOUS WORK

The deobfuscation and dissection of PHP-based malware
is a non-trivial task with no well-defined generalised

Based on: “Towards a Sandbox for the Deobfuscation and Dissection of PHP Malware”, by Peter Wrench and Barry Irwin which appeared in the Proceedings of
Information Security South African (ISSA) 2014, Johannesburg, 13 & 14 August 2014. © 2014 IEEE

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 47

solution. Many different techniques and approaches can be
found in the literature, each with their own advantages and
limitations [8,11,12,13,14]. In an attempt to evaluate these
approaches, this section provides an overview of PHP,
a description of the structure and capabilities of typical
web shells, and an overview of both code obfuscation and
dissection techniques.

3.1 PHP Overview

PHP (the recursive acronym for PHP: Hypertext Prepro-
cessor) is a general purpose scripting language that is
primarily used for the development and maintenance of
dynamic web pages. First conceived in 1994 by Rasmus
Lerdof [15], the power and ease of use of PHP has
enabled it to become the world’s most popular server-side
scripting language by numbers. Using PHP, it is possible
to transform traditional static web pages with predefined
content into pages capable of displaying dynamic content
based on a set of parameters. Although originally
developed as a purely interpreted language, multiple
compilers have since been developed for PHP, allowing it
to function as a platform for standalone applications. Since
2001, the reference releases of PHP have been issued and
managed by The PHP Group [16].

Language Features:

Much of the popularity of PHP can be attributed to its
relatively shallow learning curve. Users familiar with
the syntax of C++, C#, Java or Perl are able to gain
an understanding of PHP with ease, as many of the
basic programming constructs have been adapted from
these C-style languages [15, 17]. As is the case with
more recent derivatives of C, users need not concern
themselves with memory or pointer management, both of
which are dealt with by the PHP interpreter [18]. The
documentation provided by the PHP group is concise and
comprehensively describes the many built-in functions that
are included in the language’s core distribution [19]. The
simple syntax, recognisable programming constructs, and
thorough documentation combine to allow even novice
programmers to become reasonably proficient in a short
space of time.

PHP is compatible with a vast number of platforms,
including all variants of UNIX, Windows, Solaris,
OpenBSD and Mac OS X [15]. Although most
commonly used in conjunction with the Apache web
server, PHP also supports a variety of other servers, such
as the Common Gateway Interface, Microsoft’s Internet
Information Services, Netscape iPlanet and Java servlet
engines [15]. Its core libraries provide functionality for
string manipulation, database and network connectivity,
and file system support [15, 16], giving PHP unparalleled
flexibility in terms of deployment and operation.

As an open source language, PHP can be modified to
suit the developer. In an effort to ensure stability and
uniformity, however, reference implementations of the

language are periodically released by The PHP Group
[16]. This rapid development cycle ensures that bug fixes
and additional functionality are readily available and has
contributed directly to PHP’s reputation as one of the most
widely supported open source languages in circulation
today [15, 20]. An abundance of code samples and
programming resources exist on the Internet in addition
to the standard documentation [21, 22, 23], and many
extensions have been created and published by third party
developers [24].

Performance and Use:

PHP is most commonly deployed as part of the LAMP
(Linux, Apache, MySQL and PHP/Perl/Python) stack [25].
It is a server-side scripting language in that the PHP code
embedded in a page will be executed by the interpreter on
the server before that page is served to the client [16]. This
means that it is not possible for a client to know what PHP
code has been executed – they are only able to see the
result. The purpose of this preprocessing is to allow for
the creation of dynamic pages that can be customised and
served to clients on the fly [15].

When implemented as an interpreted language, studies
have found that PHP is noticeably slower than compiled
languages such as Java and C [26, 27]. However, since
version 4, PHP code has been compiled into bytecode that
can then be executed by the Zend Engine, dramatically
increasing efficiency and allowing PHP to outperform
competitors written in other languages (such as Axis2
and the Java Servlets Package) [28, 29, 30]. Performance
can be further enhanced by deploying commonly-used
PHP scripts as executable files, eliminating the need to
recompile them each time they are run [31].

At the time of writing, PHP was being used as the
primary server-side scripting language by over 240 million
websites, with its core module, mod php, logging the most
downloads of any Apache HTTP module [32]. Of the
websites that disclosed their scripting language (several
chose not to for security reasons), 79.8% were running
some implementation of PHP, including popular sites such
as Facebook, Baidu, Wikipedia, and Wordpress [33].

Security:

A study of the United States National Vulnerability
Database performed in April 2013 found that ap-
proximately 30% of all reported vulnerabilities were
related to PHP [34]. Although this figure might seem
alarmingly high, it is important to note that most of
these vulnerabilities are not vulnerabilities associated with
the language itself, but are rather the result of poor
programming practices employed by PHP developers. In
2008, for example, a mere 19 core PHP vulnerabilities
were discovered, along with just four in the language’s
libraries [34]. These numbers represent a small percentage
of the 2218 total vulnerabilities reported in the same year
[34].

Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS48

Apart from a lack of knowledge and caution on the part
of PHP developers, the most plausible explanation for
the large number of vulnerabilities involving PHP is that
the language is specifically being targeted by hackers.
Because of its popularity, any exploit targeting PHP can
potentially be used to compromise a multitude of other
systems running the same language implementation [34].
PHP bugs are thus highly sought after because of the high
pay-off associated with their discovery. This mentality
is clearly demonstrated in the recent spate of exploits
targeting open source PHP-based Content Management
Systems like phpBB, PostNuke, Mambo, Drupal, and
Joomla, the last of which has over 30 million registered
users [35, 36].

3.2 Web Shells

Remote Access Trojans (or web shells) are small scripts
designed to be uploaded onto production servers. They
are so named because they will often masquerade as a
legitimate program or file. Once in place, these shells
act as a backdoor, allowing a remote operator to control
the server as if they had physical access to it [37]. Any
server that allows a client to upload files (usually via the
HTTP POST method or compromised FTP) is vulnerable
to infection by malicious web shells.

In addition to basic remote administration capabilities,
most web shells include a host of other features, such as
access to the local file system, keystroke logging, registry
editing, and packet sniffing capabilities [3].

The motive behind the use of web shells to compromise
servers is usually financial gain. Compromised servers
can either be monetised directly (by selling access to
compromised servers to a third party), or indirectly,
by using the servers to facilitate fraudulent activities.
Common uses include the establishment of phising sites,
piracy servers, malware download sites, and spam sites
[3, 37].

The structure of a web shell can vary according to its
intended function. Smaller, more limited shells are better
at avoiding detection, and are often used to secure initial
access to a system. These shells can then be used to upload
a more fully-featured RAT when it is less likely to get
noticed.

3.3 Code Obfuscation

Code obfuscation is a program transformation intended
to thwart reverse engineering attempts. The resulting
program should be functionally identical to the original,
but may produce additional side effects in an attempt to
disguise its true nature.

In their seminal work detailing the taxonomy of
obfuscation transforms, Collberg et al. [38] define a code
obfuscator as a “potent transformation that preserves the
observable behaviour of programs”. The concept of
“observable behaviour” is defined as behaviour that can

be observed by the user, and deliberately excludes the
distracting side effects mentioned above, provided that
they are not discernible during normal execution. A
transformation can be classified as potent if it produces
code that is more complex than the original.

All methods of code obfuscation can be evaluated
according to three metrics [38]:

• Potency – the extent to which the obfuscated code is
able to confuse a human reader

• Resilience – the level of resistance to automated
deobfuscation techniques

• Cost – the amount of overhead that is added to the
program as a result of the transformation

Although primarily used by authors of legitimate software
as a method of protecting technical secrets, code
obfuscation is also employed by malware authors to hide
their malicious code. Reverse engineering obfuscated
malware can be tedious, as the obfuscation process
complicates the instruction sequences, disrupts the control
flow, and makes the algorithms difficult to understand.
Manual deobfuscation in particular is so time-consuming
and error-prone that it is often not worth the effort.

Although the number of code obfuscation methods is
limited only by the creativity of the obfuscator, the ones
listed in the sections below fall neatly into the three
categories of layout, data and control obfuscation [39].
Each category boasts methods of varying potency, and a
powerful obfuscator should employ methods from each
category to achieve a high level of obfuscation.

3.4 Code Obfuscation and PHP

As a interpretedl language with object-oriented features,
PHP can be obfuscated using all of the methods detailed
above. In addition to this, the language contains several
functions that directly support the protection/hiding of
code and which are often combined to form the following
obfuscation idiom:

eval(gzinflate(base64 decode($str)))

The string containing the malicious code is encoded in
base64 before being compressed. At runtime, the process
is reversed. The resulting code is executed through the use
of the eval() function.

The ubiquitous nature of idioms such as these means
that they can be used as a means of detecting obfuscated
code. Although seemingly complex, code obfuscated
in this manner can easily be neutralised and analysed
for potential backdoors. Replacing the eval() function
with an echo command will display the code instead of
executing it, allowing the user to determine whether it is
safe to run. This process can be automated using PHP’s
built-in function overriding mechanisms.

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 49

3.5 Deobfuscation Techniques

The obfuscation methods described in the previous
sections are all designed to prevent code from being
reverse engineered. Given enough time and resources,
however, a determined deobfuscator will always be able to
restore the code to its original state. This is because perfect
obfuscation is provably impossible, as is demonstrated
by Barak et al. [40] in their seminal paper “On the
(Im)possibility of Obfuscating Programs”. Collberg et
al. [38] concur, postulating that every method of code
obfuscation simply “embeds a bogus program within a
real program” and that an obfuscated program essentially
consists of “a real program which performs a useful task
and a bogus program that computes useless information”.
Bearing this in mind, it is useful to review the techniques
that are widely employed by existing deobfuscation
systems:

• Pattern matching – the detection and removal of
known bogus code segments

• Program slicing – the decomposition of a program
into manageable units that can then be evaluated
individually

• Statistical analysis – the replacement of expressions
that are discovered to always produce the same value
with that value

• Partial evaluation – the removal of the static part
of the program so as to evaluate just the remaining
dynamic expressions

3.6 Code Dissection

The process of analysing the behaviour of a computer
program by examining its source code is known as code
dissection or semantic analysis [41]. The main goal of the
dissection process is to extract the primary features of the
source program, and, in the case of malicious software,
to neutralise and report on any undesirable actions
[42]. Sophisticated anti-malware programs go beyond
traditional signature matching techniques, employing
advanced methods of detection such as sandboxing and
behaviour analysis [43].

3.7 Static Dissection Techniques

Static analysis approaches attempt to examine code
without running it [44]. Because of this, these approaches
have the benefit of being immune to any potentially
malicious side effects. The lack of runtime information
such as variable values and execution traces does limit
the scope of static approaches, but they are still useful
for exposing the structure of code and comparing it to
previously analysed samples [45].

Signature Matching:

A software signature is a characteristic byte sequence that
can be used to uniquely identify a piece of code [45].
Anti-malware solutions make use of static signatures to
detect malicious programs by comparing the signature of
an unknown program to a large database containing the
signatures of all known malware – if the signatures match,
the unknown program is flagged as suspicious. This kind
of detection can easily be overcome by making trivial
changes to the source code of a piece of malware, thereby
modifying its signature [45].

Pattern Matching:

Pattern matching is a generalised form of signature
matching in which patterns and heuristics are used in
place of signatures to analyse pieces of code [45]. This
allows pattern matching systems to recognise and flag
code that contains patterns that have been found in
previously analysed malware samples, which, although an
improvement on signature matching, is still insufficient to
identify newly developed malware [45]. Patterns that are
too general will lead to false positives (benign code that is
incorrectly classified as malicious), whereas patterns that
are too specific will suffer from the same restrictions faced
by signature matching [45].

3.8 Dynamic Dissection Techniques

Dynamic approaches to analysis extract information about
a program’s functioning by monitoring it during execution
[44]. These approaches examine how a program behaves
and are best confined to a virtual environment such as a
sandbox so as to minimise the exposure of the host system
to infection [44].

API Hooking:

Application programming interface (API) hooking is a
technique used to intercept function calls between an
application and an operating system’s different APIs [46].
In the context of code dissection, API hooking is usually
carried out to monitor the behaviour of a potentially
malicious program [47]. This is achieved by altering
the code at the start of the function that the program
has requested access to before it actually accesses it and
redirecting the request to the user’s own injected code [47].
The request can then be examined to determine the exact
behaviour exhibited by the program before it is directed
back to the original function code [46].

The precision and volume of code required for correct
API hooking mean that behaviour monitoring systems
that make use of the technique are complex and time
consuming to implement [47]. They are also virtually
undetectable and thoroughly customisable (only functions
relevant to behaviour analysis need be hooked) [47].

Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS50

Sandboxes and Function Overriding:

A sandbox is a restricted programming environment that
is used to separate running programs [48]. Malicious code
can safely be run in a sandbox without affecting the host
system, making it an ideal platform for the observation of
malware behaviour [49].

PHP’s Runkit extension contains the Runkit Sandbox
class, which is capable of executing PHP code in a
sandbox environment [50]. This class creates its own
execution thread upon instantiation, defines a new scope
and constructs a new program stack, effectively isolating
any code that is run within it from other active processes
[50]. Other options are also provided to further restrict the
sandbox environment [50]:

• The safe mode include dir option can be used to
specify a single directory from which modules can be
included in the sandbox.

• The open basedir option can be used to specify a
single directory that can be accessed from within the
sandbox.

• The allow url fopen option can be set to false to
prevent code in the sandbox from accessing content
on the Internet.

• The disable functions and disable classes
options can be used to disable any functions and
classes from being used inside the sandbox.

Of particular interest to a developer of a code dissection
system is the runkit.internal configuration directive
that can be used to enable the ability to modify, remove
or rename functions within the sandbox [50]. This can
facilitate the dissection of PHP code by providing the
functionality to replace functions associated with code
obfuscation (such as eval()) with benign functions that
merely report an attempt to execute a string of PHP code
[50]. Network activity could be monitored in much the
same way – calls to url fopen() could be replaced by an
echo statement that prints out the URL that was requested
by the code.

4. DESIGN AND IMPLEMENTATION

The development of a system capable of analysing
PHP shells required the design and construction of two
main components: the decoder and the sandbox. The
environment in which both of these components were
developed and run is detailed in Section 4.2. The design
and implementation of the decoder responsible for code
normalisation and deobfuscation is presented in Section
4.5 and the next stage of the analytical process, the
sandbox capable of dynamic shell analysis, is described in
Section 4.6.

4.1 Scope and Limits

The system was originally envisioned as consisting of
three distinct components (the decoder, the sandbox, and
the reporter) that would communicate via a database.
As development progressed, it was found that a
separate reporting component would necessitate complex
communication between itself, the other components, and
the database. For this reason, the design of the system
was modified and each component was made responsible
for reporting on its own activities. The closer coupling
between the components and the feedback mechanisms
allows information relating to each stage in the process
of shell analysis to be relayed to the user as it occurs –
deobfuscation results are displayed during static analysis,
and the results of executing the shell in the sandbox
environment are displayed during dynamic analysis.

4.2 Architecture, Operating System and Database

While the deobfuscation and dissection of PHP shells is a
nontrivial task, neither of the stages involved in the process
is computationally intensive. It was thus not necessary
to acquire any special hardware – the system was simply
developed and run on the lab machines provided by Rhodes
University.

A core part of the system is the sandbox environment,
which is designed to safely execute potentially malicious
PHP code. This component relies heavily on the
Runkit Sandbox class that forms part of PHP’s Runkit
extension package [50]. Since this extension is not
available as a dynamic-link library (DLL) or Windows
binary, a decision was made to develop the system in a
Linux environment. Ubuntu (version 12.10) was chosen
because of its familiarity and status as the most popular
(and therefore most widely supported) Linux distribution.
Another welcome byproduct of Ubuntu’s popularity is
the abundance of Ubuntu-specific tutorials for procedures
such as setting up web servers, installing and configuring
libraries, and setting file permissions, all of which were
useful during the development period.

VMware Player is used to run an Ubuntu host in a
virtual machine environment. The primary reason for
this is to protect the host machine from being affected
by any malicious actions performed by the PHP shells
during execution and to provide greater control over the
development environment. Although the Runkit Sandbox
class can be configured to restrict the activities of such
shells (see Section 4.6), there is still a risk that an
incorrectly configured option or unforeseen action on the
part of the shell could corrupt the system in some way.
Backups of the virtual machine were therefore made on
a regular basis. These backups had the added benefit of
acting as a version control system that permitted rollback
in the event of system failure due to shell activity or errors
that arose during development. Traditional version control
systems such as Git would have worked well with just
the source files, but since the project involved extensive
recompilation and configuration of both PHP and Apache,

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 51

it proved more expedient to backup snapshots of the entire
virtual machine.

Both the decoder and the sandbox components make use
of a MySQL database for the persistent storage of web
shells. PHP scripts being analysed are stored by computing
the MD5 hash of the raw code and using the resulting
32-bit string as the primary key. MD5 was chosen because
it is faster than other common hashing algorithms such
as SHA-1 and SHA-256 [51]. Each MD5 hash is then
checked against the previously analysed code stored in
the database to prevent duplication. Once the shell has
been decoded, the resulting deobfuscated and normalised
version of the code is stored alongside the hash and the
raw code in the database. This deobfuscated code is what
is then executed in the sandbox environment. A flowchart
depicting the passage of a shell through the system is
shown in Figure 1.

Figure 1: The path of a web shell though the system

4.3 Web Server Sandbox

The PHP shells, which the system was created to dissect
and analyse, are all designed to be uploaded onto web
servers thereby providing remote access to an attacker
[52]. For this reason, many of the shells only function
correctly when run in a web server environment –
advanced scripts fail to begin executing at all if they do
not detect an HTTP server and its associated environment
variables [53, 9]. The system was thus designed to closely
mimic conditions that might be found on a real world
web platform to facilitate correct shell execution and allow
analysis to take place.

In pursuit of this goal, an Apache HTTP server was
installed inside the virtual machine. This server can be
accessed via the loopback network interface by directing a
web browser in the virtual machine to the default localhost
address of 127.0.0.1. Although the virtual machine itself
has no access to the broader Internet, shells executing
inside the sandbox are barred from making web requests
as an added precaution. This restriction was achieved by
modifying the configuration options of the Runkit Sandbox

class (see Section 4.6 for full details of how the sandbox
was configured).

Choice of Apache:

As the world’s most popular HTTP server, Apache is used
to power over half of all websites on the Internet [54]. Its
rampant popularity made it an ideal choice for this project
for two reasons: Firstly, as was the case with Ubuntu,
many installation and configuration guides are available
for Apache. Since it was necessary to compile the web
server from its source code (Ubuntu’s Advanced Packaging
Tool does not allow configuration options relating to
non-standard modules such as Runkit and PHP to be set,
it simply performs a default install of commonly used
modules), these guides and the documentation provided
by the Apache Software Foundation proved invaluable.
Secondly, Apache’s popularity means that it is also well
supported by the developers of web shells – a significant
number of these shells are able to run on the Apache HTTP
server.

Apache was also chosen as the preferred web server
because of its modular design and the abundance of
modules available for use. Its behaviour can be modified
by enabling and disabling these modules, allowing it to be
tailored to suit the needs of any system designed to run on
it. This modularity also allows it to be compatible with
a wide variety of languages used for server-side scripting,
including PHP, the language used to develop this system.
Furthermore, PHP’s Runkit Sandbox class, a core part of
the sandbox environment, requires that both the underlying
web server and PHP itself support thread-safety. This was
achieved by manipulating configuration options during the
compilation process. A detailed description of exactly how
this was performed is provided in Section 4.6.

In a system of this scale, server performance is not an
important factor. Shells are uploaded and processed
individually instead of concurrently. In future, however,
if the system were to be extended to automatically
collect and process web shells, performance would
become more of a concern and other approaches (such as
multithreading or concurrent programming) would have to
be considered. Furthermore, the focus during development
was on testing a proof of concept rather than developing
a high-performance system able to be deployed in a
production environment.

Apache Compilation and Configuration:

As has already been stated, it was necessary to compile
Apache from the source to gain access to the configuration
options needed to enable the thread safety required by
PHP’s Runkit extension. Although this was the primary
reason, compiling the server from its source code had
other key advantages. It provided more flexibility, as
it was possible to choose only the functionality required
by the system and no more – this would not have been
possible if the server was installed from a binary created

Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS52

by a third party. Furthermore, the default install directory
could be modified during compilation, which proved
helpful when managing multiple versions of Apache and
testing different configuration settings. Descriptions of the
configuration options required specifically for the system
and the Runkit Sandbox in particular, but which are not
included as part of the default install, are shown below:

--enable-so

The --enable-so configuration option was used to enable
Apache’s mod so module, which allows the server to load
dynamic shared objects (DSOs). Modules in Apache
can either be statically compiled into the httpd binary
or exist as DSOs that are separate from this binary
[55]. If a statically compiled module is updated or
recompiled, Apache itself must also be recompiled. Since
recompilation is a time-consuming process, PHP was
compiled as a shared module so that it was only necessary
to restart Apache when changes were made to the PHP
installation.

--with-mpm=worker

The --with-mpm=worker configuration option was in-
cluded to specify the multi-processing module (MPM)
that Apache should use. MPMs implement the basic
behaviour of the Apache server, and every server is
required to implement at least one of these modules [55].
The default MPM is prefork, a non-threaded web server
that allocates one process to each request. While this
MPM is appropriate for powering sites that make use of
non-thread-safe libraries, it was not chosen for this system
because it is not compatible with PHP’s Runkit Sandbox
class. It was therefore necessary to specify the use of
the worker MPM, a hybrid multi-process multi-threaded
server that is able to serve more requests using fewer
system resources while still maintaining the thread-safety
demanded by the aforementioned class.

4.4 PHP Configuration

As was the case with Apache, PHP was compiled
from source and installed in the wwwroot directory for
flexibility and ease of modification. It was configured by
manipulating configuration options during installation –
once again, the focus was on enabling thread safety and
creating a sandbox-friendly environment.

--with-zlib

When developers of malware attempt to hide their
work, they often employ compression functions such as
gzdeflate() as part of the obfuscation process. Since
the goal of the system is to remove such obfuscation,
it is necessary to reverse these functions. The zlib
software library facilitates reverse engineering of this
kind by allowing the system to decompress compressed
data using the gzinflate() function. Listing 1
depicts an obfuscation idiom that includes a call to the
aforementioned function, where the string in brackets
represents the obfuscated code.

<?php
eval(gzinflate(base64_decode("4+VKK8n...")));

?>

Listing 1: A common obfuscation idiom

--enable-maintainer-zts and
--enable-runkit

PHP is interpreted by the Zend Engine. This engine
provides memory and resource management for the
language, and runs with thread safety disabled by
default so as to support the use of non-thread-safe PHP
libraries. Thread safety was enabled by passing the
--enable-maintainer-zts configuration option during
the compilation process. The purpose of enabling thread
safety was to provide an environment in which the Runkit
extension could function - this extension was enabled using
the last configuration option.

4.5 The Decoder

The first of the major components developed for the system
was the decoder, which is responsible for performing code
normalisation and deobfuscation prior to execution in the
sandbox environment. Code normalisation is the process
of altering the format of a script to promote readability
and understanding, while deobfuscation is the process of
revealing code that has been deliberately disguised [56].

The decoder is considered a static deobfuscator in that
it manipulates the code without ever executing it. The
advantage of this approach is that it suffers from none
of the risks associated with malicious software execution,
such as the unintentional inclusion of remote files, the
overwriting of system files, and the loss of confidential
information. Static analysers are however unable to access
runtime information (such as the value of a variable at
any given time or the current program state) and are thus
limited in terms of behavioural analysis.

The purpose of this component is to expose the underlying
program logic and source code of an uploaded shell by
removing any layers of obfuscation that may have been
added by the shell’s developer. This process is controlled
by the decode function, which is described in Section
4.5. It makes use of two core supporting functions,
processEvals() and processPregReplace().

In addition to performing code deobfuscation, the decoder
also attempts to extract information such as which
variables were used, which URLs were referenced, and
which email addresses were discovered. Some code
normalisation (or pretty printing) is also performed on
the output of the deobfuscation process in an attempt to
transform it into a more readable form.

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 53

BEGIN
Format the code
WHILE there is still an eval or preg_replace

Increment the obfuscation depth
Process the eval(s)
Format the code
Process the preg_replace(s)
Format the code

END WHILE

Perform pretty printing
Initiate information harvesting
Store the shell in the database

END

Listing 2: Psuedo-code for the decode() function

Decode():

The part of the Decoder class responsible for removing
layers of obfuscation from PHP shells is the decode()
function. It scans the code for the two functions
most associated with obfuscation, namely eval() and
preg replace(), both of which are capable of arbitrarily
executing PHP code. The eval() function interprets its
string argument as PHP code, and preg replace() can
be made to perform an eval() on the result of its search
and replace by including the deprecated ’/e’ modifier.
Furthermore, eval() is often used in conjunction with
auxiliary string manipulation and compression functions
in an attempt to further obfuscate the actual code.

Once an eval() or preg replace() is found
in the script, either the processEvals() or the
processPregReplace() helper function is called to
extract the offending construct and replace it with the
code that it represents. To deal with nested obfuscation
techniques, this process is repeated until neither of the
functions is detected in the code. Some pretty printing is
then performed to get the output into a readable format,
the functions that carry out the information gathering are
called, and the decoded shell is stored in the database
alongside the raw script. The full pseudo-code of this
process is presented in Listing 2.

After both the processEvals() and
processPregReplace() functions have been called,
the formatLines() pretty printing function is used
to remove unnecessary spaces in the code that could
otherwise thwart the string processing techniques used in
these helper functions.

ProcessEvals():

The eval() function is able to evaluate an arbitrary string
as PHP code, and as such is widely used as a method of
obfuscating code. The function is so commonly exploited
that the PHP group includes a warning against its use. It is
recommended that it only be used in controlled situations,
and that user-supplied data be strictly validated before

BEGIN
WHILE there is still an eval in the script

Find the starting position of the eval
Find the end position of the eval
Remove the eval from the script
Extract the string argument
Count the number of auxiliary function
Populate the array of functions
Reverse the array

FOR every function in the reversed array
Apply the function to the argument

END FOR

Insert the deobfuscated code
END WHILE

END

Listing 3: Psuedo-code for the processEvals() function

being passed to the function. [57]

Listing 3 shows the full pseudo-code of the
processEvals() function. This function is tasked
with detecting eval() constructs in a script and replacing
them with the code that they represent. String processing
techniques are used to detect the eval() constructs and
any auxiliary string manipulation functions contained
within them. The eval() is then removed from the script
and its argument is stored as a string variable. Auxiliary
functions are detected and stored in an array, which is then
reversed and each function is applied to the argument. The
result of this process is then re-inserted into the shell in
place of the original construct.

The processEvals() function was designed to be
extensible. At its core is a switch statement that is
used to apply auxiliary functions to the string argument.
Adding another function to the list already supported by
the system can be achieved by simply adding a case for
that function. In future, the system could be extended to
try and apply functions that it has not encountered before
or been programmed to deal with.

ProcessPregReplace():

The preg replace() function is used to perform a regular
expression search and replace in PHP [17]. The danger
of the function lies in the use of the deprecated ’/e’
modifier. If this modifier is included at the end of the
search pattern, the interpreter will perform the replacement
and then evaluate the result as PHP code, but the system
prevents this from happening, as is demonstrated below.

Listing 4 shows the full pseudo-code of the
processPregReplace() function. It is tasked with
detecting preg replace() calls in a script and replacing
them with the code that they were attempting to obfuscate.
In much the same way as the processEvals() function,
string processing techniques are used to extract the

54 Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

BEGIN
WHILE there is still a preg_replace

Find the starting position
Find the end position
Remove the preg_replace from the script
Extract the string arguments
Remove ’/e’ from first argument

to prevent evaluation
Perform the preg_replace
Insert the deobfuscated code

END WHILE
END

Listing 4: Psuedo-code for the processPregReplace()
function

<?php
preg_match_all($pattern , $this ->decoded ,

$matches);
?>

Listing 5: Call to the preg replace all() function

preg replace() construct from the script. Its three string
arguments are then stored in separate string variables
and, if detected, the ’/e’ modifier is removed from the
first argument to prevent the resulting text from being
interpreted as PHP code. The preg replace() can then
be safely performed and its result can be inserted back into
the script.

Information Gathering:

The Decoder class contains three functions for extracting
variables, URLs, and email addresses from PHP code.
These functions are called after decoding has been
completed to ensure that no obfuscation constructs are
able to frustrate the information gathering process. Three
accompanying functions for listing these code features are
also contained within the class and are called from the
HTML code associated with it to display the results of the
information gathering to the user.

Each of these functions uses simple pattern matching
and regular expressions to locate the three code features.
PHP’s preg match all() function is used to perform this
matching, accepting a pattern to search for, a string to
search through, and an array in which to store the results
as its arguments. The call to the function is identical for
all three of the feature extraction functions, and is shown
in Listing 5.

The only difference between the three feature extraction
functions is the regular expression (or pattern) that is
passed to the preg match all() function. The regular
expressions for each of the functions are shown in Table
1.

Table 1: Regular expressions used for information
gathering

<?php

...
//Update server
$updateurl = "http://emp3ror.com/N3tshell//update/";
//Sources server
$sourcesurl = "http://emp3ror.com/N3tshell/";
...

?>

Listing 6: Extract from c99.php showing a reference to an
update server

The information gathered in this way is useful for the
purposes of discovering where a web shell has originated
from and where it is reporting server information to. For
example, some web shells, including many of the variants
derived from the original c99 shell, will attempt to update
themselves via an update server if given the opportunity
(see Listing 6). Large resources are also often stored on
remote servers and accessed at runtime to minimise shell
size [43]. A list of these servers could potentially be
stored and published as a URL blacklist that could then
be blocked by ISPs or individual web hosts.

In addition to URLs, creators and modifiers of shells often
include email addresses that can reveal information about
their online aliases and any groups with which they may
be associated. This information, in conjunction with the
URL and variable analysis, could potentially be used to
track the evolution of common web shells or as inputs
to a system that attempts to perform similarity matching
between shells (see Section 7.3 for more details).

4.6 The Sandbox

The second major component developed for the system
was the sandbox, which is responsible for executing the
deobfuscated code produced by the decoder in a controlled
environment. As such, it forms the dynamic part of
the shell analysis process – information about the shell’s
functioning is extracted at runtime [42]. The purpose of the
sandbox component is to log calls to functions that have the
potential to be exploited by an attacker and make the user
aware of such calls by specifying where they were made in
the code. This was achieved in part through the use of the

55Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

Runkit Sandbox, an embeddable sub-interpreter bundled
with PHP’s Runkit extension. A description of the Runkit
Sandbox class and how it was configured is discussed later
in this section.

The part of the sandbox responsible for identifying
malicious functions and overriding them with functions
that perform an identical task (at least as far as the script
is concerned), but also record where in the code the call
was made is the redefineFunctions() function. This
redefinition process takes place before the code is executed
in the Runkit Sandbox. Finally, shell execution and call
logging is performed to complete the process.

Class Outline:

Unlike the decoder, which involves extensive string
processing and the removal of nested obfuscation
constructs, the sandbox is mainly concerned with the
configuration of the Runkit Sandbox, the redefinition of
functions, and the monitoring of any malicious function
calls. As such, it requires far less processing logic and
dispenses with a controlling function (like the decoder’s
decode() function) altogether.

To begin with, the deobfuscated shell is retrieved from the
temporary file created by the decoder. The outer PHP tags
are then removed, as the eval() function used to initiate
code execution inside the Runkit Sandbox requires that the
code be contained in a string without them. An array of
options is then used to instantiate a Runkit Sandbox object,
and redefineFunctions() is called to override malicious
functions within the sandbox.

The callList class is an auxiliary class created to maintain a
list of potentially malicious function calls made by a shell
executing in the sandbox. A callList object is initialised by
the constructor before the shell is run, and is constantly
updated as execution progresses. Once the shell script
has completed, it is displayed in the user interface along
with its output and a list of exploitable functions that it
referenced.

Runkit Sandbox Class:

The sandbox’s core component is the Runkit Sandbox
class, an embeddable sub-interpreter capable of providing
a safe environment in which to execute PHP code.
Instantiating an object of this class creates a new
thread with its own scope and program stack, effectively
separating the Runkit Sandbox from the rest of the shell
analysis system. It is this functionality that necessitated
the enabling of thread safety in both Apache and the PHP
interpreter.

The behaviour of the Runkit Sandbox is controlled by an
associative array of configuration options. Using these
options, it was possible to restrict the environment to a
subset of what the primary PHP interpreter can do (i.e.
prevent activity such as network and file system access).

BEGIN
FOR every exploitable function

Copy the function to "name"_new
Redefine the original function
Modify the function body to echo

function information
Modify the function body to call

the copied function
END FOR

END

Listing 7: Pseudo-code for the redefineFunctions()
function

These options were all set proir to the initialisation of the
sandbox object and are passed to its constructor, which
then configures the environment appropriately.

Function Redefinition and Classification:

The redefineFunctions() function is used to override
potentially exploitable PHP functions with alternatives that
perform identical tasks, but also log the function name,
where it was called in the code, and type of vulnerability
that the function represents. The pseudo-code for this
process is shown in Listing 7.

To begin with, the potentially exploitable
function is copied using the Runkit extension’s
runkit function copy() function to preserve its
functionality and prevent it from being overwritten
completely. The runkit function redefine() function
is then used to override the original function, accepting
the name of the original function, a list of new parameters,
and a new function body as its arguments. The parameters
are kept the same as those of the original function to allow
it to be called in exactly the same way, but the body is
modified to echo information about the function, which is
then processed for logging purposes. A call is then made
to the function that was copied to ensure that the script
continues to execute.

Functions with the potential for exploitation can be
grouped into four main categories: command execution,
code execution, information disclosure and filesystem
functions. Command execution functions can be used
to run external programs and pass commands directly to
a client’s browser, while code execution functions (such
as the infamous eval()) allow arbitrary strings to be
executed as PHP code. Information disclosure functions
are not directly exploitable, but they can be used to leak
information about the host system, thereby assisting a
potential attacker. Filesystem functions can allow an
attacker to manipulate local files and even include remote
files if PHP’s allow url fopen configuration option has
been set to true.

Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS56

//Output handler for the sandbox

//Split the string into separate words
$arr = explode(" ", $str);

//For every word in the array
for($i = 0; $i < count($arr); $i++)
{

//If the word has ###PROCESS### attached to it
//it is a function call and must be written to
//call_list.txt
if (strpos($arr[$i],’###PROCESS###’) !== false)
{

file_put_contents("/wwwroot/htdocs/temp/
call_list.txt", str_replace(
"###PROCESS###", "", $arr[$i]).
"\n", FILE_APPEND);

}
//If it does not, it is sandbox output
//and must be written to output.txt
else
{

file_put_contents("/.../temp/output.txt",
$arr[$i]."\n", FILE_APPEND);

}
}
return ’’;

Listing 8: Output handler for the Runkit Sandbox object

Shell Execution and the Logging of Function Calls:

During the function redefinition process, the body of the
original function is modified to echo information about it.
While the shell is executing, this output is then captured
by the output handler, a function designed to process all
sandbox output without allowing it to affect the outer
script. Since the output handler deals with both the
information about the function calls and the actual output
of the script executing in the sandbox, it is necessary to
differentiate between the two. For this reason, processing
tags consisting of an unlikely sequence of characters are
appended to all information pertaining to the function calls.
When the output handler receives information enclosed
in such tags, it writes the information to a file, which is
then read by the addCall() method of the callList object
to record the details of the call. Information that is not
enclosed in these tags is written to a separate file that
is subsequently output to the browser. A code snippet
demonstrating the output handler’s selection process is
shown in Listing 8.

The function names and classifications are hard-coded into
each of the redefinition operations. As the only dynamic
part of the three pieces of information associated with
a function call, the line numbers must be determined
at runtime. This is achieved through the use of PHP’s
debug backtrace() function, which returns a backtrace
of the function call that includes the line it was called
on. An example of the use of debug backtrace() in a
function redefinition is shown in Listing 9.

//--------------Command Execution----------------
//Exec
$this ->sandbox ->runkit_function_copy(’exec’,

’exec_new’);
$this ->sandbox ->runkit_function_redefine(’exec’,\

’$str’,’echo " ".array_shift(debug_backtrace())
["line"]."### PROCESS### exec###PROCESS
Command_Execution###PROCESS### ";
return exec_new($str);’);

Listing 9: Example of a function redefinition

5. RESULTS

Throughout the development of the shell analysis system
the components were tested to ensure that they functioned
as intended. These ranged from the smaller unit tests
designed to test specific scenarios to comprehensive tests
that involved functional units from all parts of the system.
The smaller unit tests were based on sections of real shell
code, but were adapted to clearly demonstrate the specific
capabilities of the system.

In addition to the adapted unit tests, several active and
fully-featured web shells were used as inputs to the
system in order to assess its performance in a live
production environment. These shells were sourced from
a comprehensive web malware collection maintained by
Insecurety Research [58], which contains a variety of bots,
backdoors and other malicious scripts. This repository is
updated on a regular basis, and could theoretically be used
to automate the addition of shells to the system’s database
by simply checking the repository on a regular basis and
downloading any new shells.

5.1 Decoder Tests

The decoder is responsible for performing code nor-
malisation and deobfuscation prior to execution in the
sandbox, with the goal of exposing the program logic
of a shell. As such, it can be declared a success if
it is able to remove all layers of obfuscation from a
script (i.e., if it removes all eval() and preg replace()
constructs). The tests for this component progressed
from scripts containing simple, single-level eval() and
preg replace() statements to more comprehensive tests
involving auxiliary functions and nested obfuscation
contructs. Each test was designed to clearly demonstrate
a specific capability of the decoder. Finally, several tests
were performed with the fully-functional web shells.

5.2 Single-level Eval() and Base64 decode()

The most basic test of the decoder involved providing a
single eval() statement and base64-encoded argument as
input and recording whether it was correctly identified,
extracted, and replaced with the code that it was obscuring.
The input script is shown in Listing 10.

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 57

<?php
echo "Hello";
eval(base64_decode("ZWNobyAiR29vZGJ5ZSI7"));

?>

Listing 10: Single-level eval() with a base64-encoded
argument

<?php
echo "Hello";
echo "Goodbye";

?>

Listing 11: Expected decoder output with the script in
Listing 10 as input

To create the input script, a simple echo() statement (with
“Goodbye” included as an argument) was encoded using
PHP’s base64 encode() function. The expected output
would therefore be a script in which the eval() construct
has been replaced by this echo() statement, as is shown in
Listing 11.

The actual output produced by the decoder component
matched the expected output exactly.

5.3 Eval() with Auxiliary Functions

A slightly more complex eval() was tested to ensure that
the system could cope with a combination of auxiliary
string manipulation functions. The string shown in Listing
12 was subjected to the str rot(), base64 encode() and
gzdeflate() functions before being placed in the eval()
construct. The reverse of these functions (str rot13(),
base64 decode() and gzinflate()) were then inserted
ahead of the string.

The decoder was expected to detect all of these functions
and apply them to the string, leaving only the decoded
string shown in Listing 13. The actual output produced
by the decoder component matched the expected output
exactly. In addition to the results shown above,
several other tests of this nature were performed with
different arrangements of the string manipulation functions
mentioned in Section 4.5, all with the same degree of
success.

<?php
eval(gzinflate(base64_decode(str_rot13(’GIKK

PhmVSslK+7V2LJg+S3Lrv...’))));
?>

Listing 12: Extract of a single-level eval() with multiple
auxiliary functions

<?php
h5(’http://mycompanyeye.com/list’ ,1*900);
functionh5($u,$t){$nobot=isset

($_REQUEST[’nobot’])?true:false;
$debug=isset($_REQUEST[’debug’])?true:false;
$t2=3600*5;
$t3=3600*12;
$tm=(!@ini_get(’upload_tmp_dir’))?’/tmp/’:

@ini_get(’upload_tmp_dir’);
...

?>

Listing 13: Extract of the expected decoder output with the
script in Listing 12 as input

<?php
preg_replace("/x/e", "echo ($greeting);", "y");

?>

Listing 14: Single-level preg replace() with explicit
string arguments

5.4 Single-level Preg Replace()

The single-level preg replace() test was very similar
to the single-level eval() test in Section 5.2, but its
purpose was to test the processPregReplace() function
specifically. To this end, a very simple preg replace()
function that searches for the pattern “x” in the string
“y”, replaces it with the string “echo($greeting);” and then
evaluates the code was constructed. As was discussed in
Section 4.5, the preg replace() function can be used to
execute PHP code through the use of the ’/e’ modifier. The
script used to test the removal of such constructs is shown
in Listing 14.

The decoder was expected to detect the preg replace(),
remove the ’/e’ modifier from the first argument to prevent
evaluation, and then perform the preg replace(), leaving
only the replacement string (see Listing 15). The actual
output produced by the decoder component matched the
expected output exactly.

During testing, it was found that the
processPregReplace() function was able to deal
with preg replace() constructs that contained explicit
strings as arguments, but failed to deal with constructs
that passed variables as arguments. The preg replace()

<?php
echo($greeting);

?>

Listing 15: Expected decoder output with the script in
Listing 14 as input

Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS58

<?php
preg_replace("/.+/e","\x65...",".");

?>

Listing 16: Extract of a simple preg replace() statement

<?php
eval(gzinflate(base64_decode(’TVCuzIFfy...’)));

?>

Listing 17: Extract of an eval() construct encapsulating
the preg replace() statement in Listing 16

construct was still identified and correctly removed from
the script, but it was not replaced with any code. This
is because of the nature of the decoder – as a static
code analyser, it has no way of knowing what the value
of a variable is. The preg replace() was therefore
performed with empty strings as arguments and returned
an empty string as a result. In future, this limitation could
be elimated by adapting the processPregReplace()
function (and the processEvals() function, which
suffers from the same shortcoming) to be part of the
sandbox component, as they would then have access to
runtime information such as the value of variables passed
as arguments. This extension is discussed further in
Section VII as a possible addition to the system in the
future.

5.5 Multi-level Eval() and Preg replace() with Auxiliary
Functions

To test the system’s capacity for dealing with nested ob-
fuscation constructs, a preg replace() was encapsulated
inside an eval() statement. The same script from Section
5.3 was placed in a preg replace() statement before the
whole construct was obfuscated using gzdeflate() and
base64 encode(), and placed in an eval() statement.
The original preg replace() is shown in Listing 16,
and the preg replace() encapsulated in the eval() is
shown in Listing 17.

The decoder was expected to remove both layers of
obfuscation and replace them with the script from Section
5.3. The actual output showed that the decoder was able
to handle the layered obfuscated construct, and is shown in
Listing 18.

5.6 Full Shell Test

The previous tests were all aimed at ensuring that all
parts of the decoder component functioned as intended.
Aside from the limitations associated with static analysis
(i.e. the inability to determine the value of a variable),
each of the individual tests succeeded. As part
of a final and more comprehensive set of tests, a

<?php
h5(’http://mycompanyeye.com/list ’,1*900);
functionh5($u,$t){$nobot=isset

($_REQUEST[’nobot ’])?true:false;
$debug=isset($_REQUEST[’debug ’])?true:false;
$t2=3600*5;
$t3=3600*12;
$tm=(!@ini_get(’upload_tmp_dir ’))?’/tmp/’:

@ini_get(’upload_tmp_dir ’);
?>

Listing 18: Extract of the actual decoder output with the
script in Listing 16 as input18

eval(gzinflate(base64_decode(’FJ3HcqPsFkUVA...’)));

Listing 19: Extract of the outermost obfuscation layer

fully-functional derivative of the popular c99 web shell
was passed as input. The shell is wrapped within
13 eval(gzinflate(base64 decode())) constructs, the
outermost of which is partially displayed in Listing 19.

The decoder correctly produced the output shown in
Listing 20. An analysis of the output found that
all eval() and preg replace() constructs had been
correctly removed from the input script.

5.7 Sandbox Tests

The sandbox is responsible for executing potentially
malicious scripts in a secure environment, with the goal
of identifying calls to exploitable PHP functions. As
such, it can be declared a success if it is able to classify
and redefine the aforementioned functions and report on
where they were called. The tests for this component
included determining whether functions could be correctly
identified, copied and overridden, and whether example
PHP scripts could be executed successfully within the
sandbox. Finally, several fully-functional web shells were

<?php
if(!function_exists("getmicrotime"))
{

functiongetmicrotime(){list($usec ,$sec)...
}
error_reporting(5);
@ignore_user_abort(TRUE);
@set_magic_quotes_runtime (0);
$win=strtolower(substr(PHP_OS ,0,3))=="win";
define("starttime",getmicrotime());
...

?>

Listing 20: Extract of the decoder output with the script in
Listing 19 as input

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 59

<?php
echo getlastmod();
echo "\n";
echo getlastmod_new();

?>

Listing 21: Script calling an overridden function and the
corresponding copied function

Sandbox Ouput:

1382402952
1382402952

Listing 22: Sandbox output and results with the script in
Listing 21 as input

executed in the sandbox to determine its feasibility as a
tool for code dissection.

5.8 Function Copy

The first step during function redefinition is the copying
of the original function to a new function so that it can
be overridden without losing its functionality. The end
result of this process should be the existence of two
functions, one with the original function name that has
been overridden to echo log information when it is called,
and a new function that contains the logic of the original
function. This outcome was tested by utilising a script that
calls both the overridden function and the copied function,
as is shown in Listing 21. The function used in this test
is the getlastmod() function, which simply returns a
number denoting the date of the last modification of the
current file [59].

It was expected that both of the function calls would be
successful and would return identical results. The output
of the sandbox is shown in Listing 22.

It can be seen that both functions were run successfully,
the logic of the original function was preserved, and the
overridden function was able to call the copied function to
complete its task before logging the call.

5.9 Overriding and Classification of System Functions

Functions in the sandbox are overridden to report
information about the name of the function and where it
was called. The type of vulnerability that they represent
should also be recorded. To test this, a script containing
three functions (one each from the Command Execution,
Information Disclosure, and Code Execution classes of
functions described in Section 4.6) was constructed and
input to the sandbox. This script is shown in Listing 23.

As expected, the sandbox identified all three of these

<?php
exec("whoami");
echo getlastmod();
$newfunc = create_function("$a", "return $a;");

?>

Listing 23: Script calling three exploitable functions

Sandbox Results:

Potentially malicious call to:
Command_Execution function "exec" on line 1
Potentially malicious call to:
Information_Disclosure function "getlastmod" on

line 2
Potentially malicious call to:
Code_Execution function "create_function" on line 3

Listing 24: Sandbox results with the script in Listing 23 as
input

functions as being potentially exploitable, and correctly
classified each of them. The sandbox results are shown
in Listing 24.

5.10 Full Shell Test - connect-back.php

When executed, this shell attempts to open a socket
connection to a remote host and provide it with
the system’s username, password, and an ID number
identifying the current process. An extract of the relevant
code is shown in Listing 25.

In order to get the shell to run, the code had to be modified
to force the call to fsockopen() to be made regardless of
the lack of an IP address. The function was duly identified
and reported by the sandbox, as is shown in Listing 26.

The testing of the sandbox proved to be far more complex
and unpredictable. Shells containing malformed CSS and
JavaScript failed to run at all, and modifications had to be
made to some shells to ensure that certain functions were

...
$ipim=$_POST[’ipim’];
$portum=$_POST[’portum’];
if (true)
{

$mucx=fsockopen($ipim , $portum , $errno , $errstr);
}
if (!$mucx){

$result = "Error: didnt connect !!!";
}
...

Listing 25: Extract of the connect-back.php web shell

Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS60

Sandbox Results:

Potentially malicious call to:
Miscellaneous function "fsockopen" on line 32

Sandbox Output:

<title >ZoRBaCK Connect </title >
...

Listing 26: Sandbox results and output with the script in
Listing 25 as input

called even if their required arguments were not present.
Despite this, testing of the individual elements proved
successful – exploitable functions were correctly copied
and redefined, and calls to these functions were recorded
and displayed as intended. Furthermore, shells containing
a combination of PHP and HTML were successfully
analysed in a dynamic environment, and any attempts by
these shells to call exploitable functions were recorded and
correctly classified.

6. SUMMARY

The two primary goals of this research were to create a
sandbox-based environment capable of safely executing
and dissecting potentially malicious PHP code and a
decoder component for performing normalisation and de-
obfuscation of input code prior to execution in the sandbox
environment. Both of these undertakings proved to be
successful for the most part. Section 5.1 demonstrated how
the decoder was able to correctly expose code hidden by
multiple nested eval() and preg replace() constructs
and extract pertinent information from the code. Similarly,
the sandbox environment proved effective at classifying
and reporting on calls to potentially exploitable functions
(see Section 5.7).

As a proof of concept, the research ably demonstrated
that the sandbox-based approach to malware analysis,
combined with a decoder capable of code deobfuscation
and normalisation, is a viable one. Despite this, the
system was found to have some limitations: the decoder
was able to deal with obfuscation contructs such as
eval() and preg replace() if they contained only
explicit string arguments, and performed no analysis of
the shell information after it was extracted. The sandbox
environment proved unpredictable, occassionally failing to
execute real-world shells that employed a mixture of CSS
and JavaScript in addition to PHP and HTML. Although
these limitations make the system unsuitable for use in
a production environment, they do not detract from the
results proving the feasibility of the approach itself.

7. FUTURE WORK

7.1 System Structure

The system is currently composed of two core components,
namely the decoder and the sandbox. Each of these
components represents a different approach to malware
analysis – the decoder engages in static code analysis, and
the sandbox performs dynamic code analysis. One of the
major disadvatages of the decoder is that it is unable to
deobfuscate constructs that contain variables as arguments,
as it has no way of knowing which values these variables
might represent. As a component that performs dynamic
analysis, the sandbox has access to this information. In
future it would therefore be useful to implement a closer
coupling between the two components to allow them to
share this information instead of working in isolation to
allow for a more comprehensive code analysis system.

7.2 Implementation Language

The current system was implemented using PHP because
of the existence of the Runkit Sandbox class, which forms
a core part of the sandbox component. If the system
were to be expanded, it would be beneficial to recode it
in a language more suited to larger development projects,
such as Python, which supports true object orientation and
multiple inheritance, and is more scalable as a result of its
use of modules as opposed to include statements. The core
of the sandbox component would still have to use PHP and
the Runkit Sandbox for code execution, but the decoder
and all information gathering and inference logic could be
converted to Python scripts.

7.3 Similarity Analysis and a Webshell Taxonomy

A useful extension to the current system would be to
include a component capable of determining how different
shells relate to each other. This would be responsible for
the following two tasks:

• Code classification based on similarity to previously
analysed samples. This would draw on existing work
in the field of similarity analysis [60, 61] and could
make use of the information gathered by the decoder.
Fuzzy hashing algorithms such as ssdeep could also
be used to obtain a measure of the similarity between
shells [62].

• The construction of a taxonomy tracing the evolution
of popular web shells such as c99, r57, b374k and
barc0de [63] and their derivatives. This would involve
the implementation of several tree-based structures
that have the aforementioned shells as their roots
and are able to show the mutation of the shells
over time. Such a task would build on research
into the evolutionary similarity of malware already
undertaken by Li et al. [64].

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 61

REFERENCES

[1] K. Tatroe, Programming PHP. O’Reilly &
Associates Inc, 2005.

[2] N. Cholakov, “On some drawbacks of the PHP
platform,” in Proceedings of the 9th International
Conference on Computer Systems and Technologies
and Workshop for PhD Students in Computing,
ser. CompSysTech ’08. New York, NY, USA:
ACM, 2008, pp. 12:II.7–12:2. [Online]. Available:
http://doi.acm.org/10.1145/1500879.1500894

[3] M. Landesman. (2007, March) Malware
Revolution: A Change in Target. Microsoft.
[Online]. Available: http://technet.microsoft.com/
en-us/library/cc512596.aspx

[4] E. Kaspersky. (2011, October) Number of
the Month: 70K per day. Kaspersky
Labs. Accessed on 1 March 2013. [Online].
Available: http://eugene.kaspersky.com/2011/10/28/
number-of-the-month-70k-per-day/

[5] M. Christodorescu, S. Jha, S. Seshia, D. Song, and
R. Bryant, “Semantics-aware malware detection,” in
2005 IEEE Symposium on Security and Privacy, May
2005, pp. 32–46.

[6] M. D. Preda, M. Christodorescu, S. Jha, and
S. Debray, “A semantics-based approach to malware
detection,” SIGPLAN Notices, vol. 42, no. 1,
pp. 377–388, January 2007. [Online]. Available:
http://doi.acm.org/10.1145/1190215.1190270

[7] A. Moser, C. Kruegel, and E. Kirda, “Limits of Static
Analysis for Malware Detection,” in Twenty-Third
Annual Computer Security Applications Conference,
December 2007, pp. 421–430.

[8] M. Christodorescu and S. Jha, “Testing malware
detectors,” SIGSOFT Softw. Eng. Notes, vol. 29,
no. 4, pp. 34–44, Jul. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1013886.1007518

[9] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee,
“Impeding Malware Analysis Using Conditional
Code Obfuscation,” in NDSS, 2008.

[10] P. Wrench and B. Irwin, “Towards a sandbox for
the deobfuscation and dissection of php malware,” in
Information Security for South Africa (ISSA), 2014,
Aug 2014, pp. 1–8.

[11] H. C. Kim, D. Inoue, and M. Eto. (2009)
Toward Generic Unpacking Techniques for Malware
Analysis with Quantification of Code Revelation.
Accessed on 1 March 2013. [Online]. Available: http:
//jwis2009.nsysu.edu.tw/location/paper/Toward%
20Generic%20Unpacking%20Techniques%
20for%20Malware%20Analysis%20with%
20Quantification%20of%20Code%20Revelation.pdf

[12] E. Laspe. (2008, September) An Automated
Approach to the Identification and Removal of Code
Obfuscation. Riverside Research Institute. Accessed
on 26 May 2013. [Online]. Available: http://www.
blackhat.com/presentations/bh-usa-08/Laspe Raber/
BH US 08 Laspe Raber Deobfuscator.pdf

[13] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras,
and W. Lee, “Eureka: A Framework for
Enabling Static Malware Analysis,” in Computer
Security - ESORICS 2008, ser. Lecture Notes
in Computer Science, S. Jajodia and J. Lopez,
Eds. Springer Berlin Heidelberg, 2008, vol.
5283, pp. 481–500. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-88313-5 31

[14] M. Madou, L. Van Put, and K. De Bosschere,
“LOCO: an interactive code (de)obfuscation tool,” in
Proceedings of the 2006 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program
manipulation, ser. PEPM ’06. New York, NY,
USA: ACM, 2006, pp. 140–144. [Online]. Available:
http://doi.acm.org/10.1145/1111542.1111566

[15] L. Argerich, Professional PHP4, ser. Professional
Series. Wrox Press, 2002. [Online]. Available:
http://books.google.co.za/books?id=gcD3NX92fucC

[16] M. Doyle, Beginning PHP 5.3. Wiley, 2011.
[Online]. Available: http://books.google.co.za/
books?id=1TcK2bIJlZIC

[17] The PHP Group. (2013, May) Basic Syntax.
Accessed on 22 May 2013. [Online]. Available:
http://php.net/manual/en/language.basic-syntax.php

[18] B. McLaughlin, PHP & MySQL, ser. Missing
Manual. O’Reilly Media, Incorporated, 2012.
[Online]. Available: http://books.google.co.za/
books?id=39s5PElSmg8C

[19] The PHP Group. (2013, May) Function Reference.
Accessed on 22 May 2013. [Online]. Available:
http://www.php.net/manual/en/funcref.php

[20] D. Sklar, Learning PHP 5. O’Reilly Media,
2008. [Online]. Available: http://books.google.co.za/
books?id=PVvmMRSGzFEC

[21] The Resource Index Online Network. (2005,
January) The PHP Resource Index. Accessed
on 24 May 2013. [Online]. Available: http:
//php.resourceindex.com/

[22] The PHP Group. (2013, May) PEAR - PHP
Extension and Application Repository. Accessed
on 24 May 2013. [Online]. Available: http:
//pear.php.net/

[23] Zend Technologies. (2013, February) The PHP
Company. Accessed on 24 May 2013. [Online].
Available: http://www.zend.com/en/resources/

[24] The PHP Group. (2013, May) PECL. Accessed on 24
May 2013. [Online]. Available: http://pecl.php.net/

Vol.106 (2) June 2015SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS62

[25] J. Bughin, M. Chui, and B. Johnson, “The next step
in open innovation,” The McKinsey Quarterly, vol. 4,
no. 6, pp. 1–8, 2008.

[26] A. Wu, H. Wang, and D. Wilkins, “Perfor-
mance Comparison of Alternative Solutions For
Web-To-Database Applications,” in Proceedings of
the Southern Conference on Computing, 2000, pp.
26–28.

[27] L. Titchkosky, M. Arlitt, and C. Williamson,
“A performance comparison of dynamic Web
technologies,” SIGMETRICS Perform. Eval. Rev.,
vol. 31, no. 3, pp. 2–11, Dec. 2003.
[Online]. Available: http://doi.acm.org/10.1145/
974036.974037

[28] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite,
and W. Zwaenepoel, “Performance Comparison of
Middleware Architectures for Generating Dynamic
Web Content,” in Middleware 2003, ser. Lecture
Notes in Computer Science, M. Endler and
D. Schmidt, Eds. Springer Berlin Heidelberg, 2003,
vol. 2672, pp. 242–261.

[29] T. Suzumura, S. Trent, M. Tatsubori, A. Tozawa,
and T. Onodera, “Performance Comparison of Web
Service Engines in PHP, Java and C,” in IEEE
International Conference on Web Services, 2008, pp.
385–392.

[30] S. Trent, M. Tatsubori, T. Suzumura, A. Tozawa,
and T. Onodera, “Performance comparison of
PHP and JSP as server-side scripting languages,”
in Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware, ser.
Middleware ’08. New York, NY, USA:
Springer-Verlag New York, Inc., 2008, pp. 164–182.
[Online]. Available: http://dl.acm.org/citation.cfm?
id=1496950.1496961

[31] L. Atkinson and Z. Suraski, Core PHP
Programming, ser. Core series. Prentice Hall
Computer, 2004. [Online]. Available: http:
//books.google.co.za/books?id=e7D-mITABmEC

[32] The PHP Group. (2013, May) Usage Stats for
January 2013. Accessed on 21 May 2013. [Online].
Available: http://php.net/usage.php

[33] Web Technology Surveys. (2013, May) Usage
statistics and market share of PHP for websites.
Accessed on 24 May 2013. [Online]. Available: http:
//w3techs.com/technologies/details/pl-php/all/all

[34] F. Coelho. (2013, April) PHP-related vulnerabilities
on the National Vulnerability Database. Accessed
on 25 May 2013. [Online]. Available: http:
//www.coelho.net/php-cve.html

[35] R. Miller. (2006, January) PHP
Apps A Growing Target for Hackers.
Accessed on 25 May 2013. [Online].
Available: http://news.netcraft.com/archives/2006/
01/31/php apps a growing target for hackers.html

[36] Open Source Matters. (2013, January) What is
Joomla? Accessed on 25 May 2013. [Online].
Available: http://www.joomla.org/about-joomla.
html

[37] R. Kazanciyan. (2012, December) Old Web
Shells, New Tricks. Mandiant. [Online].
Available: https://www.owasp.org/images/c/
c3/ASDC12-Old Webshells New Tricks How
Persistent Threats haverevived an old idea and
how you can detect them.pdf

[38] C. Collberg, C. Thomborson, and D. Low, “A taxon-
omy of obfuscating transformations,” Department of
Computer Science, The University of Auckland, New
Zealand, Tech. Rep., 1997.

[39] C. Linn and S. Debray, “Obfuscation of Executable
Code to Improve Resistance to Static Disassembly,”
in In ACM Conference on Computer and Communi-
cations Security. ACM Press, 2003, pp. 290–299.

[40] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. Vadhan, and K. Yang, “On the
(im)possibility of obfuscating programs,” in Ad-
vances in Cryptology-CRYPTO 2001. Springer,
2001, pp. 1–18.

[41] D. Binkley, “Source Code Analysis: A Road
Map,” in 2007 Future of Software Engineering, ser.
FOSE ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 104–119. [Online]. Available:
http://dx.doi.org/10.1109/FOSE.2007.27

[42] C. Willems, T. Holz, and F. Freiling, “Toward auto-
mated dynamic malware analysis using cwsandbox,”
Security & Privacy, IEEE, vol. 5, no. 2, pp. 32–39,
2007.

[43] G. Wagener, R. State, and A. Dulaunoy, “Malware
behaviour analysis,” Journal in Computer Virology,
vol. 4, no. 4, pp. 279–287, 2008. [Online]. Available:
http://dx.doi.org/10.1007/s11416-007-0074-9

[44] M. Christodorescu, S. Jha, J. Kinder,
S. Katzenbeisser, and H. Veith, “Software
transformations to improve malware detection,”
Journal in Computer Virology, vol. 3, no. 4,
pp. 253–265, 2007. [Online]. Available: http:
//dx.doi.org/10.1007/s11416-007-0059-8

[45] A. M. Zaremski and J. M. Wing, “Signature
matching: a tool for using software libraries,”
ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 4, no. 2, pp. 146–170,
1995.

[46] H.-M. Sun, Y.-H. Lin, and M.-F. Wu, “API
Monitoring System for Defeating Worms and
Exploits in MS-Windows System,” in Information
Security and Privacy, ser. Lecture Notes in Computer
Science, L. Batten and R. Safavi-Naini, Eds.
Springer Berlin Heidelberg, 2006, vol. 4058, pp.
159–170. [Online]. Available: http://dx.doi.org/10.
1007/11780656 14

Vol.106 (2) June 2015 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 63

[47] J. Berdajs and Z. Bosnic, “Extending applications
using an advanced approach to DLL injection and
API hooking,” Software: Practice and Experience,
vol. 40, no. 7, pp. 567–584, 2010. [Online].
Available: http://dx.doi.org/10.1002/spe.973

[48] I. Goldberg, D. Wagner, R. Thomas, and
E. A. Brewer, “A secure environment for
untrusted helper applications confining the Wily
Hacker,” in Proceedings of the 6th conference
on USENIX Security Symposium, Focusing on
Applications of Cryptography - Volume 6,
ser. SSYM’96. Berkeley, CA, USA: USENIX
Association, 1996, pp. 1–1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267569.1267570

[49] L. Gong, M. Mueller, and H. Prafullch, “Going
beyond the sandbox: An overview of the new security
architecture in the Java development kit 1.2,” in In
Proceedings of the USENIX Symposium on Internet
Technologies and Systems, 1997, pp. 103–112.

[50] The PHP Group. (2013, May) Runkit Sandbox.
Accessed on 27 May 2013. [Online]. Available:
http://php.net/manual/en/runkit.sandbox.php

[51] W. Dai. (2009, March) Crypto++ 5.6.0 Benchmarks.
Accessed on 26 October 2013. [Online]. Available:
http://www.cryptopp.com/benchmarks.html

[52] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T.
Lee, and S.-Y. Kuo, “Securing web application
code by static analysis and runtime protection,” in
Proceedings of the 13th international conference on
World Wide Web, 2004, pp. 40–52.

[53] K. Borders, A. Prakash, and M. Zielinski, “Spector:
automatically analyzing shell code,” in Twenty-Third
Annual Computer Security Applications Conference,
2007, pp. 501–514.

[54] NetCraft. (2013, June) June 2013 Web Server
Survey. Accessed on 9 October 2013. [Online].
Available: http://news.netcraft.com/archives/2013/
06/06/june-2013-web-server-survey-3.html

[55] The Apache Software Foundation. (2013, February)
Dynamic Shared Object (DSO) Support. Accessed
on 10 October 2013. [Online]. Available: http:
//httpd.apache.org/docs/2.2/dso.html

[56] M. Preda and R. Giacobazzi, “Semantic-Based
Code Obfuscation by Abstract Interpretation,” in

Automata, Languages and Programming, ser.
Lecture Notes in Computer Science, L. Caires,
G. Italiano, L. Monteiro, C. Palamidessi, and
M. Yung, Eds. Springer Berlin Heidelberg, 2005,
vol. 3580, pp. 1325–1336. [Online]. Available:
http://dx.doi.org/10.1007/11523468 107

[57] The PHP Group. (2013, May) Eval. Accessed
on 16 October 2013. [Online]. Available: http:
//php.net/manual/en/function.eval.php

[58] Insecurety Research. (2013, June) Web Malware
Collection. Accessed on 26 October 2013. [Online].
Available: http://insecurety.net/?p=96

[59] The PHP Group. (2013, May) Get Last Mod.
Accessed on 24 October 2013. [Online]. Available:
http://php.net/manual/en/function.getlastmod.php

[60] A. Walenstein and A. Lakhotia, “The Software
Similarity Problem in Malware Analysis,” in
Duplication, Redundancy, and Similarity in Software,
ser. Dagstuhl Seminar Proceedings, R. Koschke,
E. Merlo, and A. Walenstein, Eds., no. 06301.
Dagstuhl, Germany: Internationales Begegnungs-
und Forschungszentrum Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2007/964

[61] A. Gupta, P. Kuppili, A. Akella, and P. Barford,
“An empirical study of malware evolution,” in Com-
munication Systems and Networks and Workshops,
2009. COMSNETS 2009. First International, 2009,
pp. 1–10.

[62] J. Kornblum. (2013, July) Context Triggered
Piecewise Hashes. Accessed on 26 October 2013.
[Online]. Available: http://ssdeep.sourceforge.net/

[63] T. Moore and R. Clayton, “Evil Searching:
Compromise and Recompromise of Internet
Hosts for Phishing,” in Financial Cryptography
and Data Security, ser. Lecture Notes in
Computer Science, R. Dingledine and P. Golle,
Eds. Springer Berlin Heidelberg, 2009, vol.
5628, pp. 256–272. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-03549-4 16

[64] J. Li, J. Xu, M. Xu, H. Zhao, and N. Zheng,
“Malware obfuscation measuring via evolutionary
similarity,” in First International Conference on
Future Information Networks, 2009, pp. 197–200.

