SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

OPTIMAL ALLOCATION OF FACTS DEVICES:
CLASSICAL VERSUS METAHEURISTC
APPROACHES

Y. Del Valle’, J. Perkel”, G. K. Venayagamoorthy ", and R. G. Harley”

* Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
30332 USA. Email: yamille.delvalle @ gatech.edu

** Real-Time Power and Intelligent Systems Laboratory, Department of Electrical and Computer
Engineering, Missouri University of Science and Technology, Rolla, MO 65409 USA
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foraging algorithm.

1. INTRODUCTION

The topic of optimal allocation of FACTS (Flexible AC
Transmission System) devices is still in a relatively early
stage of investigation. Currently, there is no widely
accepted method in the academic circles since many
researchers claim their methods to be “better” than
others. Considering the present state-of-the-art in this
area, the comparison of different methods, particularly
between classical and metaheuristic approaches, has been
difficult to evaluate because each study focuses on
different problem formulations, system sizes and
conditions.

This paper provides a common background for
comparing the performance of classical and metaheuristic
optimization algorithms. A simple but realistic case study
of optimal STATCOM allocation (a type of FACTS
devices), considering steady state and economic criteria,
is used to assess the performance of two classical
methods: Bender’s decomposition and Branch-and-
Bound (B&B), and four metaheuristic approaches:
Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), Enhanced-PSO, and Bacterial Foraging
Algorithm (BFA).

It is important to note that the focus of this paper is not to
find a solution to the particular problem, but rather to
illustrate and comment on important details about the
optimization process that tend to be overlooked in the
literature and are unknown to most readers: the
discussion about local versus global optimality (for a
given objective function), understanding convexity
assumptions (that do not apply only to the objective

function), and the importance of the algorithm’s
convergence into feasible regions. Moreover, considering
metaheuristic approaches, a statistical analysis is required
to evaluate their performance since the use of the typical
average and standard deviations must be validated to be
meaningful.

The following sections of this paper provide: an
optimization background (section 2), concepts and issues
that should not be disregarded (section 3), a problem
description (section 4), optimization algorithms (section
5), simulation results (section 6), and concluding remarks
(section 7).

2. BACKGROUND

The optimization techniques used to solve the optimal
allocation of FACTS devices can be decomposed into
two primary groups: classical approaches and
metaheuristic  algorithms,  consisting of  mainly
evolutionary computation techniques (ECTs). A third
group of alternative methods, such as modal analysis,
may also be considered. However, these methods are
primarily based on technical feasibility rather than on
finding optimal solutions.

2.1 Classical Optimization Techniques

In the literature, two classes of classical optimization
methodologies have been applied to this problem: (i)
Mixed Integer Linear Programming (MILP) [1]-[3] and
(i) Mixed Integer Non-Linear Programming (MINLP)
[4]-[6].
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The MILP formulation, as the name indicates, requires
the relationships between all variables to be linear. Thus,
this approach can be only used together with DC power
flow. The main algorithms for solving the MILP problem
are Bender’s Decomposition [1], Branch and Bound
(B&B), and Gomory cuts [2], [3]. The concluding
remarks of the MILP approach indicate that the
optimization process is performed in an efficient manner,
but the DC power flow represents a limitation for the
type problems that can be addressed.

The MINLP formulation allows for the use of non-linear
objective function and constraints, thus, AC power flow
can be used in this case. The algorithm most widely
utilized for solving the MINLP problem is Bender's
Decomposition [4]-[6]. Unfortunately, it has been
reported that the size and non-convexity of the problem,
which depend on the system parameters, are critical
issues that may cause convergence problems.

2.2 Metaheuristic Techniques

Computational intelligence based techniques, such as
Genetic Algorithm (GA) [4], [5], [7]-[10], Particle
Swarm Optimization (PSO) [11]-[13], Simulated
Annealing (SA) [7], [14], Tabu Search (TS) [13], [14],
and Evolutionary Programming (EP) [15], [16], are
alternative methods for solving complex optimization
problems.

Candidate solutions play the role of individuals in a
population and the cost function determines the
environment where the solutions exist. Evolution of the
population then takes place and, after the repeated
application of biological or social operators, the optimal
solution is reached. In general ECTs perform well in
MINLP problems. However the scalability of these
methods requires further investigation.

3. OPTIMIZATION: CONCEPTS
AND ISSUES

3.1 Optimization of offline problems

A common misperception is the belief that the problem
of optimal allocation of FACTS devices is not
challenging from the optimization perspective because it
is an offline problem. Some presume that the solution is
as simple as arranging a number of computers in parallel
and letting them run, for as long as it takes, until all
possible solutions are found and the best one selected
among them.

The fact is that, even when this approach is theoretically
possible to perform for any system, in practice the
number of calculations required to find the solutions to
the problem can grow extremely fast as the size of the
system increases and the objective function becomes
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more sophisticated (evaluation of transient performance
is computationally intensive). If it is also required to
satisfy the N-1 or N-2 contingency criteria, or add
stochastic components and uncertainties to the system,
the number of cases to evaluate simply becomes
uncountable.

Therefore, the study of optimization algorithms applied
to system planning problems, such as the problem of
FACTS allocation is not trivial.

3.2 Convexity assumptions

The concept of convexity is mostly analyzed in the case
of the objective function: if the function is strictly convex
a unique optimal solution is guaranteed (Fig. 1.a).

This characteristic is most desirable but it rarely occurs in
power system problems. Most of the time the plot of the
objective function resembles the function in Fig. 1.b. As
a result, gradient descent algorithms are prone to getting
trapped in local valleys (local minima). In these cases,
special mechanisms, such as injecting randomness to the
search, must be considered.

fx)  (a) a(x) (b)
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Fig. 1: Global versus local minima

The convexity assumption also applies to the feasible
region. For example, in the case of linear programming
problems, the optimum can be found (either by simplex
method or interior point method) if the feasible region is
a convex set, as shown in Fig. 2.a (as opposed to Fig, 2.b)
[17].
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Fig. 2: Convexity of the feasible region

A worst case is presented in Fig. 2.c. where the feasible
region consists of several small areas (white) scattered
among the area limited by the upper and lower bounds of
the decision variables, var; and var; (black area).
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This type of feasible region, as shown later in the paper,
is typical when technical constraints are imposed in the
power system. The optimization algorithms in this case
should have efficient exploration mechanisms so that
feasible solutions can be found fast and therefore
minimum computational effort is wasted wandering
around in infeasible areas.

3.3 Global Optimality

Another aspect that tends to be overlooked in the
literature is the discussion of global versus local
optimality. Contrary to general opinion, this topic is not
related to comparing the values of different objective
functions applied to the same power system. Instead, it
implies the understanding that, for a given objective
function, the problem may a have a unique optimal
solution, thus a local optimum is also the global optimum
(Fig. 1.a) or the problem may have several local optimal
points plus the global optimum. Fig. 1.b represents the
latter, where the first white star represent the minimum in
the interval [a, b], the second white star is the local
minimum in the interval [b, c], and the black star is
global minimum in the overall interval [a, d].

The previous concept may seem superfluous, however
once an optimization algorithm provides a solution,
normally there are no guarantees about its quality. Proof
of global optimality can be obtained but only under very
specific conditions as in the case of linear programming
problems [17]. In the case of MINLP problems, the
capability of each algorithm to find the global optimum,
without getting trapped in local minima, has to be studied
separately.

3.4 Statistical Analysis for metaheuristic methods

Particularly, in the case of metaheuristic algorithms,
statistical analysis is required to assess their performance.
It is important to note that, currently in literature, the
main statistical values used to compare the performance
among different metaheuristic optimization algorithms
are the mean value of the objective function and its
standard deviation.

Intuitively, most people, with some statistical
background, understand the average value as the
expected outcome of a specific trial and the standard
deviation as a measure of the variability of this outcome,
nevertheless this true meaning can be concluded if and
only if the data comes from a Gaussian distribution.

In the literature, results for a normality test, such as the
Anderson-Darling, the Shapiro-Wilk or similar tests, are
not typically reported, therefore conclusions about the
performance of the optimization methods may be
questionable. An example when the data do not distribute
normal will be shown to illustrate the importance of this
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issue. In that case, other statistical tools like Weibull
analysis must be used to derive conclusions that are
statistically significant.

4. PROBLEM DESCRIPTION

The problem to be addressed consists of finding the
optimal placement (bus number) and power rating
(MVA) of multiple STATCOM units in a 45 bus system,
part of the Brazilian power network (Fig. 3) [18].

Mot - i b '“Tw
e e [ P & SO
Rl A

LT : R

o o

TiT i j:?m ,..J- e
o 3 - S

Fig. 3: 45 Bus section of the Brazilian power system

The main objective is to minimize the bus voltage
deviations throughout the power system at minimum
cost. The reasons for selecting the objective criteria and
specific power system are: (i) the power system is not
large; therefore an exhaustive manual search can be
performed to find the global optimum, (ii) the problem
has a reduced, scattered and non convex feasible region,
and (iii) only a steady state criterion is considered to
avoid possible discrepancies when transient analysis is
also included [19].

4.1 Objective Function

Two goals are considered: (i) to minimize voltage
deviations in the system and (ii) to minimize the cost.
Thus, two metrics J; and J> are defined as in (1) and (3).

N
J, = /Z(Vk —-1)?

J; is the voltage deviation metric,
V} is the p.u. value of the voltage at bus &, and
N is the total number of buses.

(1)

Where:

The total cost function, C,,. consists of two
components: a fixed cost per unit that is installed in the
system and a variable cost that is a linear function of each
unit size:
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M
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Where:

M is the number of units to be allocated,
Cyis the fixed cost per unit,

C, is the cost per MV A, and

1, is the size in MVA of unit p.

Since Cy>> C,, it is convenient to normalize each term of
the cost function prior to its inclusion in the objective
function (3).

M M
C.-ym, >,
J = M, m oM 3)
) C,I" -Mm:n Cn' -MIII:IK ‘qm:u Mn\;u Mﬂ't—MVA

Where:

J is the cost metric,

M, is the maximum number of STATCOM units to be
allocated, and

N 18 the maximum size in MVA of each STATCOM
unit.

The multi-objective optimization problem can now be
defined using the weighted sum of both metrics J; and J,
to create the overall objective function J shown in (4).

J=w-J +w,-J, (4)

The weight for each metric is adjusted to reflect the
relative importance of each goal. In this case, considering
the maximum magnitudes of J; and J5, it is decided to
assign values of @, = I and @ = 0.5, such that both
metrics have equal importance.

4.2 Decision Variables

The decision variables are the location of the STATCOM
units and their sizes. These variables can be arranged in a
vector as:

x =4 n, Ay My ] )

Where:

A

il

p=1...M, is the location (bus number) of STATCOM
unit p.

All components of the decision vector are integer

N
numbers, thus x; € Z°M,
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4.3 Constraints

There are several constraints in this problem regarding
the characteristics of the power system and the desired
voltage profile. Each constraint represents a limit in the
search space, which in this particular case corresponds to:

Generator buses are omitted from the search process
since they have voltage regulators to regulate the
voltage.

- Bus numbers are limited to {1, 2,..., N/.

- Only one unit can be connected at each bus.

- The number of units: 1 M 5.

- The size of each unit: 0 5, 250 MVA,

- The desired voltage profile requires N additional
restrictions defined as:

0.95<V, <1.05, Vke{l.2.., N} (6)

Each solution that does not satisfy the above constraints
is considered infeasible.

5. OPTIMIZATION ALGORITHMS

For the optimal allocation of multiple FACTS units in a
45 bus system, six algorithms are fully developed and
compared: Bender's decomposition, B&B, GA, PSO,
Enhanced-PSO, and BFA.

5.1 Benders' Decomposition

This method separates two sets of decisions that are made
into two consecutive stages. In the first stage of the
decision making, some of the constraints are delayed to
reduce the complexity of the original (master) problem.
In the second stage, some of the parameters that influence
the decision, whose values were originally uncertain, are
known and fixed after the first decision vector is found.
Thus the secondary problem is reduced in complexity and
in the number of variables [20], [21].

In the case of the STATCOM allocation problem, the
master problem considers the decision vector in (5) that

can be naturally separated into one sub-vector for
selecting optimal locations and another sub-vector for
choosing optimal sizes.

The separation of the constraints can be stated as follows:

- First_stage: sizes of the STATCOM units become
delayed constraints, thus the reactive power limits for
these devices are relaxed in the solution of the power
flow. The voltage reference is set to 1.0 p.u. for each
STATCOM controller. The objective function
corresponds to the voltage deviation metric defined in

(1).
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-Second stage: with the locations of the devices
determined, the set of constraints is limited to those
related with the maximum size of each unit. The
objective function includes the voltage deviation metric
and the cost metric as in (4).

5.2 Branch and Bound

B&B is a classical approach to search for an optimal
solution by evaluating only a subset of the total possible
solutions. The main steps in the algorithm are [17], [20],
[21]:

- Branching: the set of feasible solutions is
partitioned into simpler subsets. At each iteration, one of
the promising subsets is chosen and an effort is made to
find the best feasible solution within it.

- Bounding: the algorithm proceeds to find upper and
lower bounds for the optimal objective value. There is
only one upper bound u at each stage, which
corresponds to the lowest among the objective values of
all the feasible solutions that have appeared so far.

- Pruning: if at certain a stage, one of the subsets has
a lower bound which is greater than the current upper
bound, then the algorithm prunes (discards) that set.

Branching, bounding and pruning are repeated until the

optimal solution is found.

For this particular problem, the objective function is
defined as in (4). The branching strategy corresponds to
the “depth-first search™ for each subset of feasible
locations, branching is performed by dividing
progressively the STATCOM size intervals into smaller
sub-intervals. The bounding and pruning strategies help
to narrow the search by discarding as many sub-intervals
as possible until the optimal value, for the particular
subset of feasible locations, is found. In the next stage
another subset of feasible locations is chosen, and the
process is repeated until the set of all feasible locations is
covered.

5.3 Genetic Algorithm (GA)

GA is an ECT that patterns itself after Charles Darwin’s
“survival of the fittest” concept. Each chromosome
represents a possible solution to the problem. Through
selection of parents, crossover between members of the
current population, and mutation of the offspring, the
population evolves and, after a number of generations, it
approaches an optimal solution [22], [23].

For this particular problem, the chromosomes are defined
as the decision vector in (5) and the fitness of each
chromosome is evaluated through the use of the objective
function in (4).

After the fitness of the entire population has been
assessed, a subgroup of chromosomes is selected to
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become the parents for the next generation. For this
particular case, elitism and “roulette wheel” are used as
the selection mechanisms. Once the two parents are
chosen, crossover between them produces two offspring.
For each offspring, there is a chance that any number of
its genes may be mutated; the mutation probability
applies to each gene independently resulting in anywhere
from zero to all genes being mutated.

The previous generation is replaced by the new
generation and the entire process is repeated until the
maximum number of generations is reached.

The parameters used in this study are shown in Table I
[24].

Table 1: GA Parameters

Parameter Optimal value
Percentage of elite members 10%
Crossover probability 85%
Mutation probability 5%

5.4 Particle Swarm Optimization (PSO)

The PSO algorithm considers that each particle
represents a potential solution to the problem, thus the
particles are defined as the decision vector in (5). The
quality of the solution, that allows the best position for
each particle and the swarm to be determined, is assessed
using the fitness function defined in (4).

At each iteration, ¢, the position of each particle is
determined by [25], [26]:

xi(t) = xi(t=1)+vi(t) ©)

The velocity of each particle is determined by both the
individual and group experiences:

vi)y=w,-v.(t=1D+...
o (p—x(t—1))+.. (8)
ety (py =X (1=1))
Where:

w, is a positive number between 0 and 1,
c¢; and c; are the cognitive and social acceleration
constants respectively,

r; and r, are random numbers with uniform distribution
in the range of [0, 1].

p; is the individual best
corresponding particle, and
P, is the global best position found by the entire swarm.

position found by the

To avoid the divergence of the swarm, a maximum
velocity for each dimension of the problem hyperspace is
defined (v,,)-
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Additionally, since integer variables are included in the
optimization problem, the Integer-PSO version is used,
where the particle’s position is rounded off to the nearest
integer [26].

The PSO parameters used in this study are presented in
Table II [24].

Table 2: PSO Parameters

Parameter Optimal value

Inertia constant (w;) Linear decrease (0.9 to
0.1y

Individual acceleration 2.5

constant (¢;)

Social acceleration constant (c5) 1.5

Ve for bus location 9

V,yar for STATCOM size 50

5.5 Enhanced-PSO

For this particular application, the canonical PSO
algorithm described in the previous section is enhanced
to facilitate the search through the problem hyperspace
[24].

The additional logic in each individual is defined by the
following rules:

- If the corresponding particle’s best position, pbest, and
the swarm’s best position, ghest, are both feasible
solutions then the wvelocity update is performed
according to (8).

- If the particle has not found a feasible solution yet,
then it is better to rely on the social knowledge and the
velocity update equation is replaced by:

vit)y=w,-v,(t—=1D)+crand-(p, — x,(t—1)) (9)

Where:
¢ is a single acceleration constant: ¢ =c; + ¢,
rand is a random number with uniform distribution in
the range of [0, 1].
- If none of the particles have found a feasible
solution (gbest and pbest values are both infeasible)

then the velocity of each particle is updated using a
random value of the maximum velocity as shown in
(10).

vy =[rv, ) nv, Q2 rv,.0) rv.@] 10

Where:
r;, 18 a random number with uniform distribution in the
range of [0, 1] and

Viaxf 1) 18 the maximum velocity in the A" dimension of
the problem hyperspace.

5.6 Bacterial Foraging Algorithm (BFA)

BFA is based on the movement patterns of E. coli in the
intestines. Each individual, in this case a bacterium,
represents a possible solution to the problem as in (5).

The algorithm considers four successive steps [26], [28]:

- Chemotaxis: the bacteria move towards better nutrient
concentrations. For the N, chemotactic steps the
direction of movement is given by:

O (+1L,kD)=60j,k1)+C(i)-9(j) (11)

Where :

C(i) is the step size,

J is the number of chemotactic step, k is the
reproduction step, and [ is the index for the
elimination event.

@(j) is the unit length of random direction taken at
each step.

The bacterium continues to move in the same
direction (given that the fitness function value
improves) and stops when the number of repetitions
reaches a maximum of N,.

- Swarming: All the bacteria have a cell-to-cell
attraction via attractant and a cell-to-cell repulsion via
repellant, with respect to other bacteria. Thus the
movement of each bacterium towards better nutrient
concentrations can be represented by:

.G, j.k.)+J_(6,P) (12)

Where:

J(i,j.k1) is the fitness function and

Je 18 the term that defines the attraction-repulsion to
other bacteria [24].

The fitness function, J,, corresponds to the objective
function in (4) plus a penalty function defined as the
number of buses in the system that violate the voltage
profile constraint in (6).

- Reproduction: after chemotaxis, the population of
bacteria is allowed to reproduce. S, (S,=5/2) bacteria
having the worst objective function value die and the
remaining part split into two keeping the population
size constant.
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- Elimination-Dispersal: each bacterium is eliminated
with a probability of p,,.

The BFA parameters used in this study are [24]:

Table 3: BFA parameters

Parameter Optimal
value
Number of bacteria (S) 20
Number of chemotactic cycles (N,) 30
Number of swim steps (N;) 3
Number of reproductions (N,.) 3
Number of elimination-dispersal loops (N.4) 2
Probability of elimination (P,,) 0.5
Maximum distance (C(i)) 4
Attraction coefficients d,,qe; A0d Wairacr 0.1
Repellent coefficient d,.,q; and w,,, 0.05

6. SIMULATION RESULTS
6.1 Exhaustive search

An exhaustive search is performed on the problem of
optimally allocating M STATCOMS to the power system
in Fig. 3 by running a powerflow solution for each case
in order to determine the global optimum. The solution
indicates that the minimum number of devices needed to
satisfy the constraints in Section IV-C is two and the
computational effort corresponds to 37,196,250 power
flows.

The feasible region of the problem is reduced, scattered
and non convex. It is not possible to plot the entire
feasible region since the dimensions are greater than
three, however for illustrative purposes Fig. 4 shows the
best scenario considering all possible bus locations and
maximum STATCOM size of 250 MVA for each unit.

430
420

410

400
390
380

Location Unit 2 [bus number]

350 360 370 380 390 400 410 420 430
Location Unit 1 [bus number]

Fig. 4: Feasible region (white) vs. problem hyperspace

Fig. 5 shows the percentage of the feasible region with
respect to the total number of cases [24].
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m Feasible solutions
» Infeasible solutions

m Feasible pairs of locations
u Infeasible pairs of locations

2.52% 1.12%
97.48% 98.88%

Fig. 5 (a): Percentage of feasible locations over total
possible combinations. (b): Percentage of feasible
solutions over total problem hyperspace

The global optimal solution is to place one STATCOM
unit of 75 MVA at bus 378 and the second unit of 92
MVA at bus 433. The effect of the two STATCOM units
is shown in Fig.6.

After the devices are optimally placed, all bus voltages
are in the desired range of +5% voltage deviation.
Additionally, the voltage deviation metric J; improves by
26.5 % from an original value of 0.2482 to 0.1824.
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Fig. 6: Voltage profile without (-e-) and with STATCOM
units (-4-)

6.2 Metaheuristic approaches

Convergence into feasible regions: In order to evaluate
the performance of the metaheuristic optimization
algorithms (GA, PSO, Enhanced-PSO, and BFA), 150
trials are carried out for each algorithm. At each trial, the
number of power flow evaluations (PF) is recorded until
the first feasible solution is found. If no feasible solution
is found, then the algorithm stops when the number of
power flow evaluations reaches a maximum of 2000 [24].
Additionally, a performance indicator called Success
Rate is calculated to determine the percentage of time
that the algorithm is able to converge into feasible
regions.

The Anderson-Darling normality test is performed to
determine if the datasets for each algorithm are normally
distributed. The results of this analysis show that with
better than 99.5% certainty, the data are not normally
distributed. Thus, other statistical distributions must be
used.
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The Weibull distribution is an appropriate alternative to
analyze data of this type. This distribution is used
extensively to study extreme-value data. In this case, the
number of power flows to the first feasible solution [29]
corresponds to such extreme-value data.

A two-parameter Weibull distribution is fitted to each
dataset in the least-squares sense. In each case, the
correlation is greater than 0.95, indicating that the choice
of Weibull is suitable. Fig. 7 shows the resulting
probability plots for each technique and Table IV shows
the corresponding statistical parameters.

Table 4: Statistical values two-parameter
Weibull Distribution

GA PSO | Enhanced | BFA
PSO

Minimum PF 67 28 22 24
Maximum PF | >2000 | >2000 379 1834
Success Rate 30 20.7 100 100
Scale (o) 4329 8650 147 326
Shape (B) 1.1 0.8 25 1.2
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Fig. 7: Weibull plots of all algorithms

Table IV indicates that, based on the ranges for the
number of power flow evaluations, the Enhanced-PSO is
faster in finding feasible solutions compared to the other
algorithms. Moreover its Success Rate is 100% versus
20.7% for canonical PSO and 30% in the case of GA.

Additionally, the Weibull parameters, & and f, carry
important physical meanings. The scale parameter, o,
corresponds to the characteristic time to find the first
feasible solution. This is defined as the number of power
flows needed to obtain a feasible solution in 63.2% of the
trials. The shape parameter, S, represents the slope
produced by data when plotted on a Weibull plot (Fig. 7).
More interestingly, the shape parameter provides insight
into how the algorithms are able to seek out feasible
solutions:
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- P < 1: Less likely to find feasible solutions as the
number of power flows increases.

- B = 1: Same likelihood of finding feasible solution
regardless of the number of power flows that
are performed.

- B> 1: As the number of power flows increases so does
the likelihood of locating a feasible solution.

Applying these concepts, the resulting characteristic time

to find a feasible solution is 147 and 326 power flows for

Enhanced-PSO and BFA, respectively. The canonical

PSO and GA are only able to find feasible solutions in at

most 30% of the trials while the rest of the values are

censored. This leads to characteristic times of 4329 and

8650 for GA and PSO, respectively.

In addition, the Enhanced-PSO is the only algorithm with
a shape parameter grater than one, which means that this
algorithm offers the most efficient means of locating
feasible regions.

The probability of obtaining a feasible solution in any
number of power flows (or less) for each of the
techniques, can also be read off from Fig. 7. Equally, the
probability may be specified and then the maximum
number of power flows required to find feasible regions
may be read off.

Global Optimality: For further comparison of the
performance of Enhanced-PSO and BFA algorithms,
their capabilities for finding the global optimal solution
are investigated. Thus, statistical values are calculated
over a set of 50 trials, with 20 particles and 100
iterations, for each algorithm. In this case, the Anderson-
Darling normality test gives p-values greater than (.05,
indicating that the data have a Normal distribution for
both cases. Table V provides the additional indicators to
evaluate the accuracy in finding the optimal solutions.

TABLE 5: Statistical analysis for optimal solutions

Parameter Enhanced BFA
PSO
Minimum J value 0.91745 0.92441
Maximum J value 1.08390 1.36422
Average J value 0.98791 1.14765
Standard deviation J value 0.04167 0.09654

The accuracy in finding the optimal solution is higher in
the case of the Enhanced-PSO algorithm with a standard
deviation of 0.0417 as compared to 0.0965 of BFA,
which is more than two times larger. In terms of the
maximum and average values of the objective function
value, they indicate a clear advantage of the Enhanced-
PSO over BFA. Furthermore, the Enhanced-PSO
algorithm finds the global optimum for this problem.
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Figure 8 shows the degree of sub-optimality in the
solutions provided by the Enhanced-PSO algorithm. It is
possible to note that 70% of the time, the solutions found
have 10% or less difference with respect to the global
optimum. Additionally, the difference does not exceed
the value of 20% in any of the trials.
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Fig. 8: Degree of sub-optimality for Enhanced-PSO
algorithm

Scalability: As the previous section demonstrates, the
evolutionary computation techniques are able to find
solutions in a small fraction of the number of power
flows required for an exhaustive search. One aspect of
concern about their use is their capability to effectively
solve optimization problems when the size of the power
system is increased.

The Enhanced-PSO algorithm is applied to illustrate how
the algorithm performs when the power system is
changed from the Brazilian 45 bus system to the IEEE
118 bus network [30].

Figure 9 shows the capability of the algorithm to
converge into feasible regions using boxplots (the box
represents the middle 50% of data). The maximum
number of iterations is 100 for both cases and the number
of particles are 20 and 50 for the 45 bus and 118 bus
system respectively. This figure provides evidence that
the performance of the algorithm is not substantially
affected by the size of the system. In both cases, feasible
solutions are found in fewer than 17% of the maximum
allowed power flow computations and the inter-quartile
ranges (difference between the first and third quartile,
that spans the middle 50% of the data) are fairly similar
(4.5% and 5% for 45 bus and 118 bus systems
respectively).
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Fig. 9: Convergence into feasible regions

Due to the large number of power flow computations, an
exhaustive search is not performed for this case. To give
an idea of the computational time involved, for one
power flow computation taking 125 msec, then the total
time to run exhaustive search in the 45 bus system is 54
days, however for the 118 bus system the total time is
475 days (almost one year and four months). For this
reason, the quality of the optimal solutions is assessed
only by statistical analysis over 50 trials.

Table VI, shows the results for the 45 bus and 118 bus
systems. The maximum, average and standard deviation
values are presented as percentages with respect to the
minimum objective function value.

Table 6: Optimal solutions —45 and118 bus system

Parameter 45 Bus | 118 Bus
Minimum J value 0.91745 0.8734
Maximum J value [%] 118.1 109.2
Average J value [%] 107.7 100.7
Standard deviation [%] 4.54 1.34

Comparing the percentages in both columns, it is possible
to conclude that there are not significant differences in
the performance when the size of the power system is
increased.

6.3 Classical versus metaheuristic approaches

Table VII summarizes the overall performance data for
the classical and best metaheuristic algorithms. The
parameters considered for evaluating the performance of
each method are the ability of the corresponding
algorithm to find the global optimal solution and its
computational effort.
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Table 7: Algorithms’ performance — 45 bus system

Parameter Benders B&B Enhanced
PSO

Bus 1, (378,75) | (378,67) (378, 75)
Size 1 (MVA)
Bus 2, (433, 92) | (430, 150) | (433,92)
Size 2 (MVA)
J value 0.9174 1.0170 0.9174
Voltage
deviation (J,) 0.1824 0.1819 0.1824
Time (sec) 18,611 846 666
Power flows 63,095 2,155 2,000

Considering the ability of the algorithms to find the
global optimal solution, Enhanced-PSO and Bender’s
decomposition, are able to find the best solution. On the
other hand, the B&B algorithm gets trapped in a local
minimum.

Concerning the computational effort, the number of
fitness function evaluations for Benders’ decomposition
is 31.5 times larger than the Enhanced-PSO, with the
resultant increase in computational time. Nevertheless,
both algorithms require only a fraction of the total
computational effort required by the exhaustive search,
0.17% and 0.005% for Benders, decomposition and
Enhanced-PSO, respectively.

7. CONCLUSIONS

This paper compares several optimization algorithms
applied to the problem of optimal allocation of FACTs
devices in the power system: classical approaches such as
Bender’s decomposition and Branch and Bound (B&B)
algorithms, and metaheuristic techniques such as Genetic
Algorithm (GA), Particle Swarm Optimization (PSO),
Enhanced-PSO and Bacterial foraging Algorithm (BFA).

Emphasis is placed on aspects of the optimization process
that tend to be overlooked in the literature:

Convergence into feasible regions: for this type of
application the feasible region is reduced, scattered and
non-convex, therefore special consideration has to be
given to the exploratory capabilities of the optimization
algorithms. Enhanced-PSO algorithm is introduced to
show the importance of this aspect: with simple rules to
enhance the initial exploration of the problem
hyperspace, this algorithm is capable of finding feasible
solutions in 100% of the cases and twice as fast as
compared to its closest competitor, the BFA algorithm,
and 30 times faster than the canonical PSO.

Statistical — analysis  of algorithm’s  performance:
performance of metaheuristic techniques is mostly
analyzed using parameters, such as average value and

standard deviation, which assume the data to be normally
distributed. This paper shows that there are cases when
the normality assumption does not hold. Weibull analysis
is presented as an example of how statistical tools
correctly applied in those cases can lead to interesting
conclusions about the underlying search mechanism of
metaheuristic algorithms.

Global Optimality: until now there is no proof that
metaheuristic algorithms provide global optimality. This
paper analyzes this aspect using a simple but realistic
case study of optimal STATCOM allocation considering
steady state and economic criteria. An exhaustive search
is carried out on a 45 bus system to find the global
optimum of the problem, and then statistical results are
obtained for different optimization algorithms. The
algorithm with the best performance is capable of finding
the global optimum at least once over 50 trials, and in at
least 70% of the time, the degree of sub-optimality is less
than 10%.

Scalability of metaheuristic algorithms: scalability is
investigated using as an example the Enhanced-PSO
algorithm. Results are obtained for the IEEE 118 bus
system and compared with the 45 bus system.
Considering both, the convergence to feasible solutions
and the degree of sub-optimality of the optimal solutions
found, there is evidence that indicates that the
performance of the algorithm is not affected by the size
of the system.

Classical versus metaheuristic approaches: the classical
approaches, Bender’s decomposition and B&B are
compared with the Enhanced-PSO considering the
capability of the algorithms in finding the global optimal
solution and their computational effort. Bender’s
decomposition and Enhanced PSO are capable of finding
the global optimum however B&B becomes trapped in a
local optimal point. For all algorithms, the number of
power flow computations is small (compared to the
exhaustive search), but a comparison between them
favors the metaheuristic algorithm since Bender’s
decomposition takes 30.5% more computational effort
than the Enhanced —PSO.

A final concluding remark is that, at present, there is no
optimization method that universally outperforms all
others. The selection of an algorithm is problem
dependent, and this paper makes a particular effort in
showing different aspects that should be considered while
choosing an optimization method for solving the problem
of allocating FACTS devices.
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