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Abstract: The abundance of PHP-based Remote Access Trojans (or web shells) found in the wild has
led malware researchers to develop systems capable of tracking and analysing these shells. In the past,
such shells were ably classified using signature matching, a process that is currently unable to cope
with the sheer volume and variety of web-based malware in circulation. Although a large percentage of
newly-created webshell software incorporates portions of code derived from seminal shells such as c99
and r57, they are able to disguise this by making extensive use of obfuscation techniques intended to
frustrate any attempts to dissect or reverse engineer the code. This paper presents an approach to shell
classification and analysis (based on similarity to a body of known malware) in an attempt to create
a comprehensive taxonomy of PHP-based web shells. Several different measures of similarity were
used in conjunction with clustering algorithms and visualisation techniques in order to achieve this.
Furthermore, an auxiliary component capable of syntactically deobfuscating PHP code is described.
This was employed to reverse idiomatic obfuscation constructs used by software authors. It was found
that this deobfuscation dramatically increased the observed levels of similarity by exposing additional
code for analysis.
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1. INTRODUCTION

PHP’s popularity as a hosting platform [1] has made
it the language of choice for developers of Remote
Access Trojans (RATs) and other malicious software
[2]. This software is typically used to compromise
and monetise web platforms, providing the attacker
with basic remote access to the system, including file
transfer, command execution, network reconnaissance,
and database connectivity. Once infected, compromised
systems can be used to defraud users by hosting phishing
sites, perform Distributed Denial of Service (DDOS)
attacks, or serve as anonymous platforms for sending spam
or other malfeasance [3].

Although many new shells are frequently created, truly
unique samples are rare - the vast majority of new threats
are at least partially derivative, incorporating large portions
of code from more established shells [4]. These subtle
differences are often the result of malware authors adding
functionality or attempting to make shells more resistant
to signature-based matching techniques through the use
of obfuscation. By investigating idiomatic deobfuscation
techniques and different measures of similarity, this paper
presents an alternative approach to malware analysis,
with the goal of eventually developing a comprehensive
taxonomy of web shells. Reference is made throughout
the paper to work already published by the authors in the
area of code deobfuscation and normalisation [5, 6].

This paper begins with an outline of a typical web

shell and its common capabilities. The concept of code
obfuscation is also introduced, with particular emphasis
on how it is typically achieved in PHP. Section 2 also
describes the ssdeep fuzzy hashing tool and its usefulness
as a basis for similarity analysis, and discusses the
concept of data visualisation. Section 3 details how the
system was designed and implemented, outlining both the
deobfuscation process and the construction of similarity
matrices and visual representations of sample similarity.
The results obtained during system testing are presented in
Section 4. Section 5 concludes the paper before ideas for
future work and improvement are presented in Section 6.

2. BACKGROUND AND RELATED WORK

This section begins by detailing research already carried
out by the author into the creation of a module capable of
syntactically deobfuscating PHP code [5]. This includes
a description of the structure and capabilities of typical
web shells and an overview of idiomatic code obfuscation
techniques. The latter part of the section introduces the
concept of code similarity and the various methods of
testing for it, with particular emphasis on context-triggered
piecewise hashing (CTPH) algorithms. The section
concludes by briefly describing two methods of visualising
data similarity.

2.1 Web Shells

Remote Access Trojans (or web shells) are small scripts
designed to be uploaded onto production servers. Once
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infected, a remote operator is able to control the server as
if they had physical access to it [6, 7]. Most web shells
include features such as access to the local file system,
keystroke logging, registry editing, and packet sniffing
capabilities [3].

2.2 Code Obfuscation and PHP

Code obfuscation is a program transformation intended
to thwart reverse engineering attempts [5]. Collberg
et al. [8] define a code obfuscation as a “potent
transformation that preserves the observable behaviour of
programs”. Although often used to protect proprietary
code, code obfuscation is also employed by malware
authors to hide their malicious code. Reverse engineering
obfuscated malware is non-trivial, as the obfuscation
process complicates the instruction sequences, disrupts
the control flow and makes the algorithms difficult to
understand.

As a procedural language with object-oriented features,
PHP can be obfuscated using all of these methods. Of the
many built-in functions included in the core distribution
of PHP, just two code execution functions account for
the majority of code hiding efforts and are specifically
marked by the PHP Group as being potentially exploitable
[5, 9, 10].

As a result of its ability to execute an arbitrary string as
PHP code, the eval() function is widely used as a method
of hiding code. The potential for exploitation is so great
that the PHP Group includes a warning against its use,
advising that it only be used in controlled situations, and
that user-supplied data be strictly validated before being
passed to the function [11].

The eval() function is often combined with auxiliary
string manipulation functions to form the following
obfuscation idiom [3]:

eval(gzinflate(base64_decode(’GSJ+S...’)));

The string containing the malicious code is compressed
before being encoded in base64. At runtime, the process
is reversed. The code that is produced is then executed
through the use of the eval() function.

The preg_replace() function is used to perform a regular
expression search and replace in PHP [12]. Although this
doesn’t present a problem in itself, the deprecated ’/e’
modifier allows the resultant text to be executed as PHP
code (in effect causing an eval() function to be applied to
the result). An example of the use of the preg_replace()
function for hiding code is shown in the following code
extract:

The example shows a very simple preg_replace()
function that searches for the pattern ‘x’ in the string ‘y’,

preg_replace(’/x/e’, ’echo($a);’, ’y’);

replaces it with the string ‘echo($a);’ and then evaluates
the resulting code. In this case, the text contained in the $a
variable would be displayed if the code was executed.

2.3 Lexical Analysis and the Zend Engine

Parsing is defined as the process of analysing a string of
symbols to determine whether it conforms to the rules laid
out by a formal grammar [13]. In the field of Computer
Science, the first step in the parsing process is referred to as
lexical analysis, which is the process of converting a string
of symbols into a sequence of meaningful tokens [14]. In
PHP, lexical analysis is carried out by the Zend Engine,
an open source interpreter originally developed by Andi
Gutmans and Zeev Suraski [15].

The Tokenizer PHP extension [16] provides an interface
to the lexical analyser used by the Zend Engine. Using
this interface, it is possible to carry out token-based source
code analysis and modification without the need for a
custom parser. Of particular interest to this research are
the token_get_all() function and the T_FUNCTION token
type, which can be used in combination to locate and
extract function names and bodies (see Section 3.3 for
more detail on these processes).

2.4 Fuzzy Hashing and Ssdeep

Hashing is a technique commonly used in forensic analysis
that transforms an input string of arbitrary length into
a fixed-length signature [17]. Once generated, these
signatures can then be used to efficiently match identical
files. Traditional cryptographic hashing algorithms such
as MD5 and SHA256 are designed so that changing just
one bit in the input file will lead to the generation of
a completely different hash signature. This approach,
although ideal for matching identical files, makes
these algorithms incapable of matching files that are
merely similar. For this purpose, it is necessary to
use context-triggered piecewise hashing (CTPH) [18].
Also known as fuzzy hashing, this technique combines
piecewise hashing and rolling hashes to create a hash that
is composed of values that only depend on part of the input.
Piecewise hashing is the process of breaking an input into
chunks and hashing these chunks separately, which means
that changing part of the input file will only affect part of
the resulting hash [19]. Because of this property, CTPH
can be used to identify similar files as well as identical
files. The rolling hash is used to provide the trigger points
for separating the input into chunks by monitoring the
context, which in this case is represented by the last n
characters in a file [17].

Ssdeep is a hashing tool that was developed by Jesse
Kornblum in 2006 [17]. It is capable of using CTPH
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to generate fuzzy hashes that can then be compared to
determine the similarity of a set of files. The similarity
value that the tool generates represents the edit distance
between two fuzzy hashes (i.e. the number of changes
that need to be made to convert the one hash into the
other). As a result of its combination of both rolling and
piecewise hashes, the tool’s hashing algorithm is more
computationally intensive than other algorithms such as
MD5, but it is a far more effective way of identifying code
reuse in similar files.

2.5 Data Visualisation

Data visualisation is the process of representing mundane
data (such as numerical values) as visual objects with
the aim of increasing accessibility and understanding
[20]. Successful visualisation techniques should assist the
viewer with analytical tasks such as making comparisons
and identifying patterns in data. Although a wide
variety of data visualisation structures exist, heatmaps and
dendrograms are considered the most adept at highlighting
similarity and relationships, and were thus selected as the
tools for visualising the results of this research.

Heatmaps: Heatmaps are used to display each value in
a given matrix as a colour that represents the magnitude
of that value. Because of this property, the structures can
be used to easily identify values (or areas of values) that
represent a high level of similarity.

Dendrograms: Dendrograms are tree-like structures that
can be used to display relationships that result from
hierarchical clustering algorithms. The hierarchical nature
of the dendrograms produced in this way allows for the
identification of derivative sample relationships, as well as
the magnitude of such relationships.

3. DESIGN AND IMPLEMENTATION

This section begins by describing the decoder, which
was developed and tested in previous research [5, 6] and
is responsible for code deobfuscation and normalisation
prior to analysis. The script’s primary decode() function
is also outlined, along with its two auxiliary functions,
processEvals() and processPregReplace(), before
Viper, (the malware analysis framework used in this
research) is discussed. Four individual preprocessing
modules are then introduced, each of which represent
a unique measure of similarity. A brief description of
the batch modules and their respective configurations is
provided, as well as an overview of the module which is
responsible for the creation of similarity matrices. Finally,
the visualisation modules that are used to interpret and
display these matrices are described in Section 3.6.

3.1 The Decoder

The first of the major components developed for the system
was the decoder, which is responsible for performing
code deobfuscation and normalisation prior to analysis.
Deobfuscation is the process of revealing code that has
been deliberately disguised, while code normalisation is
the process of altering the format of a script to promote
readability and uniformity [21].

The decoder is considered a static deobfuscator in that
it manipulates the code without ever executing it. The
advantage of this approach is that it suffers from none
of the risks associated with malicious software execution,
such as the unintentional inclusion of remote files, the
overwriting of system files, and the loss of confidential
information. Static analysers are, however, unable to
access runtime information (such as the value of a variable
at a given point in the execution or the current program
state) and are thus limited in terms of behavioral analysis.

The purpose of this component is to expose the
underlying program logic of an uploaded shell by
removing any layers of obfuscation that may have
been added by the shell’s developer. This process is
controlled by the decode function, which makes use
of two core supporting functions, processEvals() and
processPregReplace() and is described below.

Decode: The part of the decode script responsible for
removing layers of obfuscation from PHP shells is the
decode() function. It scans the code for the two functions
most associated with obfuscation, namely eval() and
preg_replace(), both of which are capable of arbitrarily
executing PHP code. The eval() function interprets
its string argument as PHP code, and preg_replace()
can be made to perform an eval() on the result of its
regular expression search and replace by including the
deprecated ‘/e’ modifier. Furthermore, eval() is often
used in conjunction with auxiliary string manipulation and
compression functions in an attempt to further obfuscate
the code.

Once an eval() or preg_replace() is found
in the script, either the processEvals() or the
processPregReplace() helper function is called to
extract the offending construct and replace it with the
code that it represents. To deal with nested obfuscation
techniques, this process is repeated until neither of the
functions is detected in the code. Some code normalisation
is then performed to get the output into a readable format
before the decoded shell is stored in the database alongside
its raw counterpart. The full pseudo-code of this process
is presented in Listing 1.

ProcessEvals: The eval() function is able to evaluate
an arbitrary string as PHP code, and as such is widely
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BEGIN
Format the code
WHILE there is still an eval or preg_replace

Increment the obfuscation depth
Process the eval(s)
Format the code
Process the preg_replace(s)
Format the code

END WHILE

Perform normalisation
Store the decoded shell in the database

END

Listing 1: Psuedo-code for the decode() function

used as a method of obfuscating code. The function is
so commonly exploited that the PHP group includes a
warning against its use - it is recommended that it only be
used in controlled situations, and that user-supplied data be
strictly validated before being passed to the function. [9]

As is described in Section 2.2, authors of malicious
software often use the eval() function in conjunction
with other string manipulation functions in order to further
frustrate reverse engineering attempts. These functions
typically compress, encode, or otherwise modify the string
argument to increase the complexity of the obfuscation and
thereby increase its resilience to automated analysis. The
processEvals() function is able to detect and perform
some of the more common string manipulation functions
in an attempt to reveal the obfuscated code. A list of the
functions that processEvals() is currently able to detect
and process is shown in Table 1.

Function Description
base64_decode() Decodes data encoded by base64_encode()

gzinflate() Inflates a deflated string gzdeflate()

gzuncompress() Decompresses compressed data

str_rot13() Restores a string encoded using str_rot13()

strrev() Restores a string reversed using strrev()

rawurldecode() Decodes data encoded using rawurlencode()

stripslashes() Unescapes an escaped string

trim() Strips whitespace from the edges of a string

Table 1: Auxiliary string manipulation functions that are
handled by processEvals()

The processEvals() function was designed to be
extensible. At its core is a switch statement that is
used to apply auxiliary functions to the string argument.
Adding another function to the list already supported by
the system can be achieved by simply adding a case for
that function. In future, the system could be extended to
try and apply functions that it has not encountered before
or been programmed to deal with.

Listing 2 shows the full pseudo-code of the
processEvals() function. To begin with, string

processing techniques are used to detect the eval()
constructs and any auxiliary string manipulation functions
contained within them. The eval() is then removed
from the script and its argument is stored as a string
variable. Auxiliary functions are detected and stored in an
array, which is then reversed allowing each function to be
applied to the argument. The result of this process is then
re-inserted into the shell in place of the original construct.

BEGIN
WHILE there is still an eval in the script

IF the eval contains a string argument
Find the starting position
Find the end position
Remove the eval from the script
Extract the string argument
Count the number of auxiliary functions
Populate the array of functions
Reverse the array

FOR every function in the reversed array
Apply the function to the argument

END FOR
END IF
Insert the resulting code

END

Listing 2: Psuedo-code for the processEvals() function

ProcessPregReplace: The preg_replace() function is
used to perform a regular expression search and replace
in PHP [10].

BEGIN
WHILE there is still a preg_replace

Find the starting position
Find the end position
Remove the preg_replace from the script
Extract the string arguments
Remove the ’/e’ from first argument

to prevent evaluation
Perform the preg_replace
Insert the deobfuscated code

END WHILE
END

Listing 3: Psuedo-code for the processPregReplace()
function

Listing 3 shows the full pseudo-code of the
processPregReplace() function. It is tasked with
detecting preg_replace() calls in a script and replacing
them with the code that they were attempting to obfuscate.
In much the same way as the processEvals() function,
string processing techniques are used to extract the
preg_replace() construct from the script. Its three
string arguments are then stored in separate string
variables and, if detected, the ‘/e’ modifier is removed
from the first argument to prevent the resulting text from
being interpreted as PHP code. The preg_replace() can
then be safely performed and its result can be inserted
back into the script.
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Normalise: Many of the outputs of the feature extraction
modules described later in this chapter are affected by the
layout of the scripts that are passed to them. Furthermore,
it was found that the deobfuscation operations performed
by the processEvals() and processPregReplace()
functions often produced unpredictable and irregularly
formatted code. In order to mitigate the effects of arbitrary
formatting constructs on the results of the similarity
analysis process, the normalise() function was created.

The purpose of the normalise() function is to apply a
uniform formatting convention to every shell sample after
the deobfuscation process is completed. A useful way
of achieving this is to pass the script to a PHP parser
which then creates an AST. All the original formatting is
lost during the parsing process, as the AST only stores
the lexical tokens found in the script. These tokens can
then be output according to a predefined set of formatting
rules, ensuring that every sample conforms to the same
formatting scheme.

Although the Zend engine that is used to interpret PHP can
be used to split source code into an array of PHP tokens,
it lacks the functionality to construct an AST and output it
in a uniform way. For this reason, an open source lexical
parser called PHP Parser was used to construct the AST
and overwrite the existing sample text.

3.2 The Viper Framework

Viper [22] is a unified framework designed to facilitate the
static analysis of arbitrary files. It consists of commands
(core functions used to open, close, delete, and tag file
samples) and modules, which are dynamically loaded and
can be run against either an open file or any number of
files from the database. This modular design makes the
framework highly extensible - additional functionality can
be added by simply creating a new module. It is this
extensibility that prompted Viper’s use as a basis for this
research.

Projects: Malware samples in Viper can be organised
into separate projects [23]. Every project maintains its
own repository of binary files, and an arbitrary number of
projects can be created. All commands and modules in
Viper can only be run against samples that form part of the
project that is currently open.

Viper projects are particularly useful when dealing with
large malware collections, as they allow specific families
of samples to be stored and analysed separately. Once
it has been determined that a group of samples share a
common feature, it is a simple matter to transfer these
samples into a new project for further analysis. Tests run
against a smaller selection of samples are more expedient,
and the resulting graphs are more concise, allowing for
faster and more accurate conclusions to be drawn.

Sessions: Access to a specific malware sample in Viper
is achieved by opening a Viper session [24], either by
searching for the sample by name or by specifying its MD5
hash. Most of the commands and the modules provided
in the core Viper framework are designed to be run on a
single file and require a session, but any module can access
multiple files by retrieving them from the database (see
Section 3.2 for information about how this is achieved).

Session objects are used to provide modules with
information about the sample that is currently open. A
global __sessions__ object provides access to the current
session object (__sessions__.current), a list of all
open session objects (__sessions__.sessions), and a
list containing the results of the last find command that was
executed (see Table 3 for more information on commands
in Viper). A summary of the information that each session
object encapsulates is provided in Table 2.

Session Attribute Description
current.file.path The absolute path of the current file

current.file.name The name of the current file

current.file.size The size (in bytes) of the current file

current.file.type The type and encoding of the current file

current.file.mime The MIME type of the current file

current.file.md5 The MD5 hash of the current file

current.file.sha1 The SHA-1 hash of the current file

current.file.sha256 The SHA-256 hash of the current file

current.file.sha512 The SHA-512 hash of the current file

current.file.crc32 The CRC-32 check value for the current file

current.file.tags A list of tags attached to the current file

Table 2: Attributes of a __session__ object in Viper

The individual modules developed for this research (and
described in Section 3.3) all require that an active session
be open on the sample that needs to be processed. This
is because these modules rely on the session attributes
listed in Table 2 in order to perform their respective tasks.
An extract from the Decode.py module shown in Listing
4 demonstrates how the is_set() function of the global
__sessions__ object is used to check for the presence of
an open session on line eight.

1 class Decode(Module):
2 cmd = ‘decode’
3 description = ‘Reveals hidden code’
4
5 def run(self):
6
7 # Check for an open session
8 if not __sessions__.is_set():
9 print_error(’No session opened’)

10 return
11 ...

Listing 4: Extract from the Decode.py module demonstrat-
ing the use of the is_set() function
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Database: The Viper sessions discussed in the previous
section provide a more accessible way to access
information about a single sample without resorting to
database queries. If a module requires access to multiple
samples, it must import and interact with the Database
class, which acts as a wrapper for the SQLLite database
used to organise and store malware samples. Once
imported, the Database object can be used to access the
local project repository through the use of the find()
function, which accepts a key and a value as search
parameters.

The batch modules described in Section 3.4 all make use
of the Database class’s find() function to retrieve and
process all samples in a given project. An extract from
the Decode All.py module shown in Listing 5 details how
this is achieved on lines fourteen and fifteen.

1 from viper.core.database import Database
2
3 class Decode_All(Module):
4 cmd = ’decode_all’
5 description = ‘Reveals hidden code’
6 in all samples’
7
8 def run(self):
9

10 # Get Viper’s root path
11 viper_path = __project__.get_path()
12
13 # Retrieve all samples from the database
14 db = Database()
15 samples = db.find(key=‘all’)
16
17 # Decode all samples
18 for sample in samples:
19 ...

Listing 5: Extract from the Decode All.py module
demonstrating the use of the find() function

Commands: Simple sample access and modification
operations in Viper are carried out using commands [25].
This set of core operations allows a user to open, close,
delete, store, or tag an open binary file, as well as display
an overview of its characteristics. Table 3 details all the
available Viper commands and their respective uses.

3.3 The Indivdual Modules

Three preprocessing modules were created to process
samples in different ways to prepare them for similarity
analysis. Each of these modules was designed to
be run against a single shell sample, and require that
a Viper session already exists (see Section 3.2 for
more information on sessions in Viper). BDecode.py
processes samples in their entirety and produces a new
file, whereas Functions.py and FunctionBodies.py extract
relevant features for analysis.

Command Description
clear Clears the console window

close Closes the current session

delete Deletes the current file

exit Terminates the current execution of Viper

export Saves the surrent session to a specified file

find Searches for a file using a name or hash

help Displays the help dialogue

info Display an overview of the current file

new Creates a new file

notes Allows file notes to be viewed, edited, or deleted

open Opens a specified file using either its SHA-1 or MD5 hash

projects Lists all existing projects

sessions Lists all open sessions

store stores a specified file or folder in the local repository

tags Allows associated file tags to be modified

Table 3: Viper’s core commands

Decode.py: The purpose of the Decode.py module is
to remove idiomatic PHP obfuscation constructs from a
single sample, thereby exposing more code for analysis
and processing by the other three individual modules (all
of which can be run on either raw or decoded samples for
the purposes of comparison). It does this by accessing the
Viper session, retrieving the open file, and passing it to the
Decode.php script, the details of which are described in
Section 3.1. Once the script has reached completion, the
resulting code is stored alongside the original script in the
Viper repository.

FunctionBodies.py: The purpose of the FunctionBodies.py
script is to extract the contents of all user-defined function
bodies present in a malware sample for subsequent
comparative analysis. The identification and extraction of
these bodies required that the samples be separated into
tokens, which was more easily achieved using PHP itself.
For this reason, the FunctionBodies.py script makes use of
an external PHP script, as is the case with Functions.py and
it’s accompanying Functions.php script.

Functions.py: The purpose of the Functions.py script
is to extract the names of any user-defined functions in
a given sample. To do this, it makes use of PHP’s
Tokenizer extension to split a sample into tokens before
looping through each token in search of the T FUNCTION
token type. Once this token type is found, the next
string (representing the name of the function) is stored.
Because the Tokenizer is implemented in PHP, an external
PHP script called Functions.php was used to perform
the name extraction process and return the results to the
Functions.py script.
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3.4 The Batch Modules

The batch modules contain no feature extraction or sample
processing capabilities of their own, but rather apply each
of the individual modules to all of the samples in the
current project (see Section 3.2 for more information on
projects in Viper). The purpose of the batch modules is
to prepare an entire collection of samples for comparison
by the Matrix.py module. Each of the command line
options contained in this module (apart from a special
case involving unprocessed samples) require that a specific
batch module already be complete. A list of the batch
modules and a short description of their functionality is
shown in Table 4.

Module Description
DecodeAll.py Reveals hidden code for all samples

FunctionBodiesAll.py Extracts function bodies from all samples

FunctionsAll.py Creates a list of functions for all samples

Table 4: The batch modules and their descriptions

3.5 The Matrix Module

The purpose of the Matrix.py module is to produce
matrices that represent the observed similarity between
all samples in a given collection based on a specified
measure of similarity. It relies on the feature extraction and
sample processing performed by the aforementioned batch
functions (which in turn rely on the individual functions to
perform their tasks).

Several options can be passed to the matrix module. Each
option represents the measure of similarity that should be
used to generate a similarity matrix. If one would like to
view the number of user-defined function name matches
between raw shells in a project, for example, the command
would be ’matrix -f raw’. To make use of the same measure
of similarity (i.e. function name matches) on decoded
shells in a project, the command would be ’matrix -f
decoded. A full list of the available option combinations
is shown in Table 5.

Options Description
-r Compares raw samples using ssdeep

-d Compares decoded samples using ssdeep

-b raw Compares the function bodies of raw samples

-b decoded Compares the function bodies of decoded samples

-f raw Compares the function names of raw samples

-f decoded Compares the function names of decoded samples

Table 5: The possible option combinations for Matrix.py

Each option (or measure of similarity) in the Matrix.py
module is associated with a validation function and a
comparison function. The validation function ensures that
the batch functions needed to create the required files

have been run successfully, and the comparison function
calculates the observed similarity between two given files.
A completed matrix represents the collation of the results
returned by the comparison function for every pair of
samples in the project.

3.6 The Visualisation Modules

The purpose of the visualisation modules is to create
a graphical representation of a given similarity matrix.
These representations are easier to interpret, and can be
studied to discover relationships between samples.

Heatmap.py: The Heatmap.py module is used to display
each value in a given matrix as a colour that represents the
magnitude of that value. Heatmaps can be generated from
matrices created using any of the measures of similarity
listed in Table 5. Clusters of dark colours represent areas
of greater similarity, while lighter areas indicate a lack of
similarity.

Dendrogram.py: Dendrograms are tree-like structures
that can be used to display relationships that result
from hierarchical clustering algorithms. Dendrogram.py
performs this clustering and displays the resulting figure,
and can be run on any matrix created using the measu
res of similarity listed in Table 5. The hierarchical nature
of the dendrograms produced in this way allows for the
identification of derivative sample relationships, as well as
the magnitude of such relationships.

4. RESULTS

This section begins with a description of the collection of
samples that was used for testing purposes. It then goes on
to evaluate the effectiveness of the Decoder.py module and
its attempts to normalise and deobfuscate samples prior to
similarity analysis. A case study involving the c99 family
of shells is then presented to demonstrate the results of the
aforementioned analysis.

4.1 Test Data

Although the malware samples used in this research were
obtained from a variety of online sources (see Table 6
for a detailed source breakdown), the vast majority were
retrieved from the collection of samples maintained by
the VirusTotal online analysis service. VirusTotal allows
researchers and commercial clients with access to a private
key to download samples that have been submitted by other
users. This is achieved by making scripted search and
download queries to the service’s online API.

The query string was parameterised in such a way as to
limit the results to RATs written in PHP. Additionally, only
samples that have been identified as being malicious by at
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Source Number of Shells
VirusTotal.com 1978
Insecurety.net 87
c99shell.gen.tr 21

r57shell.net 7
r57.gen.tr 10
hoco.cc 35

Table 6: Sample Source Breakdown

least one antivirus engine are included in the request. The
full parameterised query is shown below:

params = urllib.urlencode({‘apikey ’: key ,
‘query ’: ‘type:php engines:"Backdoor:PHP"
positives:1+’})

File sizes among the 2138 shell samples ranged from 1.1kb
to 546kb. An MD5 hash was generated for each file and
compared to the hashes of every other file to ensure that no
two files were identical. This was further reinforced during
the comparison of the fuzzy hashes - 100% similarity was
only ever observed when a shell was compared against
itself.

4.2 Decode.py Tests

The decoder is responsible for performing code normalisa-
tion and deobfuscation prior to execution in the sandbox,
with the goal of exposing the program logic of a shell. As
such, it can be declared a success if it is able to remove all
layers of obfuscation from a script (i.e., if it removes all
eval() and preg_replace() constructs). The tests for
this component progressed from scripts containing simple,
single-level eval() and preg_replace() statements to
more comprehensive tests involving auxiliary functions
and nested obfuscation constructs. The results of these
tests are omitted from this paper for the sake of brevity, but
can be found in work previously published by the authors
[5, 6].

4.3 Similarity Analysis Case Study: The c99 Family of
Shells

Given the prohibitive size of the graphs generated when
run against the entire collection of shells, it proved more
expedient to demonstrate the results produced by the
visualisation modules with a smaller subset of samples.
The samples used in this case study contain seven variants
of the popular c99 shell, which are listed below:

1. c99.txt

2. c99-bd.txt

3. c99-locus.txt

4. c99-mad1.txt

5. c99-mad2.txt

6. c99-v1.txt

7. c99-ud.txt

For testing purposes, all of the option combinations were
passed to the Matrix.py module in order to create all
possible similarity matrices. These matrices were then
processed by the visualisation modules to produce both
heatmaps and dendrograms for every matrix.

Heatmap.py Tests: The measure of similarity that
was chosen to demonstrate the output produced by
the Heatmap.py module was the user-defined function
matching module (FunctionBodies.py) outlined in Section
3.3. The FunctionBodiesAll.py batch module was run
against the family of c99 shells described in the previous
section in both raw and decoded form, and the Matrix.py
module was then used to create two similarity matrices
based on the extracted function bodies. The matrix based
on raw samples is shown in Figure 1, and the matrix
based on decoded samples is shown in Figure 2. After
running the Heatmap.py module against both matrices, the
heatmaps shown in Figures 3 and 4 were produced. Darker
colours represent a high level of similarity and vice versa.

Figure 1: Similarity matrix based on the function bodies
extracted from raw c99 family shells

Figure 3 reveals a relatively sparse distribution of
similarity, with high values only occurring as a result
of comparing samples against themselves. Of particular
interest are the ud.txt and mad1.txt samples, which exhibit
no similarity to the other shells in their raw forms.
Clustering algorithms using this figure as an input would
conclude that these two shells were not part of the c99
family of shells.

The similarity shown in Figure 4 differs slightly from that
in Figure 3. In each case the values either increased or
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Figure 2: Similarity matrix based on the function bodies
extracted from decoded c99 family shells

Figure 3: Similarity heatmap based on the function bodies
extracted from raw c99 family shells

remained the same, which is to be expected when a larger
portion of code is available for analysis. The decoded
ud.txt and mad1.txt samples in particular demonstrated a
far greater overall level of similarity to the rest of the
collection. Upon examination of both the raw and decoded
samples, it was discovered that these two shells were both
encapsulated in eval() statements, which explains both
their lack of similarity in Figure 3 and the subsequent
increase shown in Figure 4.

Dendrogram.py Tests: The same measure of similarity
(i.e. the comparison of extracted user-defined function
bodies) was used to demonstrate the capabilities of the
Dendrogram.py module so as to avoid the inclusion of two
new matrices. Reference can therefore be made to the
matrices depicted in Figures 1 and 2. The figures that were
produced once the Dendrogram.py module had been run
against these two matrices are shown in Figures 5 and 6
respectively.

Figure 4: Similarity heatmap based on the function bodies
extracted from decoded c99 family shells

Figure 5: Similarity dendrogram based on the function bodies
extracted from raw c99 family shells

The height of each cluster in a dendrogram represents
the average distance between all inter-cluster pairs, and
therefore the level of similarity between the samples that
form that cluster. The lower the cluster height, the greater
the similarity, and vice versa. As an example, consider the
dendrogram shown in Figure 6. The c99.txt sample is more
similar to mad1.txt than ud.txt is to locus.txt, because the
first cluster is lower than the second. The two most similar
samples are mad2.txt and bd.txt, because their cluster is
the lowest on the dendrogram. These observations are
supported by the values in the matrix shown in Figure 2,
as the highest similarity value between two different shells
is 65, which occurs between mad2.txt and bd.txt.

The difference between the similarity observed amongst
raw and decoded samples is even more apparent from the
change in the shape of the dendrogram from Figure 5 and
Figure 6. The only pair of samples with any meaningful
level of similarity in Figure 5 was observed between the
v1.txt and bd.txt samples. As was the case with the
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Figure 6: Similarity dendrogram based on the function bodies
extracted from decoded c99 family shells

heatmaps in Section 4.3, all sample relationships either
strengthened or remained the same.

4.4 Similarity Analysis Case Study: Cluster Identifica-
tion

Although the smaller c99 case study is useful for
demonstrating the similarity analysis process in a more
concise and manageable way, the goal of the system is
to identify areas of interest within a larger dataset. Once
found, these areas could be subjected to further analysis.
In order to demonstrate this process, a random selection
of 150 raw shells was used to create a large heatmap that
could be used to identify areas of elevated similarity. The
measure of similarity used for this case study was the
percentage of matching function names, which drew on
the function lists created by the Functions.py module. One
similarity cluster was then identified and expanded upon
by running the clustered samples through the decoder and
then rendering the cluster again to gauge any differences in
observed similarity.

Figure 7 shows the heatmap that was obtained by running
the 150 shells through the analysis process. Once this
was completed, an area of interest was selected for the
purposes of demonstration. An enlarged version of this
area is displayed in Figure 8. In order to more accurately
determine how similar this collection of samples was, all
of the shells were run through the decoder, a new matrix
was created, and a new heatmap was rendered, as is seen in
Figure 9. A comparison of the heatmaps created before and
after the deobfuscation process (shown in Figures 8 and 9
respectively) highlights the improvement in similarity due
to the increased availability of code for analysis.

5. CONCLUSION

The primary goal of this research was to determine the
patterns of similarity within a collection of malware

samples. This was achieved by using four different
measures of similarity to create representative similarity
matrices, and then visualising and interpreting these
matrices graphically. Section 4.3 demonstrates the results
of this process, and outlines how conclusions relating to
sample similarity can be drawn by consulting either the
matrices or their graphical representations. In addition to
this, it was demonstrated that the deobfuscation process
described in Section 3.1 was successfully able to increase
the amount of code available for comparison, and thereby
increase the accuracy of the similarity analysis process as
a whole.

6. FUTURE WORK

The development of different methods of similarity
analysis and visualisation are intended to be used as a tools
for creating detailed webshell taxonomies in the future.
To this end, alternate methods of comparing shell samples
need to be examined and other research into the evolution
of malware needs to be investigated.

6.1 Alternative Shell Comparison Methods

Although the four measures of similarity discussed in
Section 3.3 are useful as measures of similarity, they
represent only a few approaches to the detection of code
reuse in webshells. In future, a thorough evaluation of
alternate classification methods could be carried out to
determine which approach (or combination of approaches)
is most accurate. The following methods could be
considered:

• HTML output matching

• Control graph matching

• Dynamic sandbox analysis

• Line-by-line analysis

• N-gram analysis

• Normalised compression distance

6.2 A Webshell Taxonomy

It is envisioned that this work will eventually lead to
the construction of a taxonomy tracing the evolution
of popular web shells such as c99, r57, b374k and
barc0de [26] and their derivatives. This would involve the
implementation of several tree-based structures that have
the aforementioned shells as their roots and are able to
show the mutation of the shells over time. Such a task
would build on research into the evolutionary similarity
of malware already undertaken by Li et al. [27], and
would draw on the deobfuscation and similarity analysis
capabilities described in this paper.
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Figure 7: Similarity heatmap based on the function names extracted from a random selection of 150 raw shells

Figure 8: Focussed similarity heatmap based on the cluster identified in Figure 7
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Figure 9: Similarity heatmap based on decoded version of the samples shown in Figure 8
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