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Abstract— Outpatient centers comprised of many concurrent 

clinics increasingly see higher patient volumes. In these centers, 

decisions to improve clinic flow must account for the high 

degree of interdependence when critical personnel or 

equipment is shared between clinics. Discrete event simulation 

models have provided clinical decision support, but rarely 

address high-volume clinics with shared resources. While 

highly complex models are now capable of representing clinics 

in detail, validation techniques often do not evaluate model 

predictive performance when presented with new data. Cross-

validation provides a means to evaluate the robustness of model 

treatment time predictions when ongoing data collection in 

clinics is impractical. Ensuring robust predictions assures 

validity in the use of models to optimize clinic performance. 

 We apply cross-validation in evaluating a model of glaucoma 

clinic service at Duke Eye Center. In-person observation is used 

to verify the accuracy of operations data collected through 

electronic health records (EHR). From the EHR data, we 

formulate a stochastic reward net model, employing phase-type 

distributions to represent treatment durations, and solved 

through discrete event simulation. The model is formulated in 

two configurations to represent (1) concurrent demand on 

clinic staff, or (2) independently functioning clinics. Evaluating 

these two alternatives in cross-validation studies, we find model 

prediction accuracy improves when interdependence is 

explicitly modeled in the examined setting. 

I. INTRODUCTION 

Multi-service centers account for an increasing share of 
outpatient visits in health care, however a minimal share of 
reported clinic flow models [1]. Centers are challenging to 
model, as they may have several clinics operating 
concurrently that share co-located imaging and testing. The 
interdependence between clinics that share critical resources 
makes planning in centers particularly difficult.  Discrete 
event simulation (DES) provides tools for modeling clinics 
and evaluating new plans, however most applications focus 
on independent portions of a health care system [1]. In fact, 
reviews have shown relatively few models for interconnected 
clinics [1-3], such as in centers. Explicitly modeling 
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dependence on shared staff or resources between clinics adds 
to model complexity. Alternatively, simplifying models by 
assuming independence may skew predictions of the length 
of patient visits and impact overall simulation model 
accuracy. Ultimately each model must compromise in 
choosing adequate detail to represent the studied clinic [1]. 
Rigorous validation protocols are necessary to ensure a 
model provides suitable accuracy not only in the data used to 
generate the model, but continues to predict subsequent data.  

Many examples of validation in clinic flow models 
determine if suitable accuracy is achieved by comparing 
model predictions to the same data set used to ‘train’ a model 
via an appropriate statistical test (examples in [4-6]). 
Assessing model accuracy with respect to the same training 
data tends to underestimate model error in predicting new 
data [7]. In more complex models, this optimistic error 
estimate is usually attributed to a greater ability to represent 
nuances in a particular data set [7]. Though preferable for 
increasingly complex models, it is often impractical to 
measure clinic performance on an ongoing basis to have 
follow-up independent data to evaluate predictive ability. 
Several authors noted the difficulty of gathering clinic flow 
data such as visit durations for an initial modeling 
application. Cross-validation techniques provide methods to 
estimate how models predict future data by resampling 
existing data [7]. By subdividing an existing set of operations 
data into training and tests subsets, we can assess how the 
model predicts independent data sampled from comparable 
populations. These methods estimate the model’s accuracy in 
predicting future clinic flow. 

We employ cross-validation to estimate the effect of 
explicitly accounting for interdependence between high-
volume glaucoma clinics at Duke Eye Center on model 
accuracy. Nearly 90 patients visit glaucoma clinics at DEC 
daily, with typically one specialty provider examining as 
many as 60 patients per day directly. Each patient visit can be 
divided into three distinct steps; (1) initial examination by a 
technician (workup), (2) any ordered testing or imaging such 
as visual field tests or retinal photography, (3) visit with the 
patient’s physician. While patients are initially referred to 
these clinics for glaucoma indications, visits to a specialty 
clinic may include broader comprehensive tests such as 
visual acuity measurements or cataract evaluations. For 
clarity in this interim analysis we focus on the workup step, 
which is ubiquitous in many practices and is the first contact 
between patient and staff after check-in. We measure the 
durations of workups by extracting anonymized time stamp 
data from logged activities in electronic health records 
(EHR). The EHR durations are compared to a set of in-
person observations of workups to verify consistency. We 
then use a phase-type distribution fitting algorithm [8] to 
parameterize a distribution for workup durations. These 
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Figure 1. Glaucoma clinic entry SRN diagram. Emulated schedules 
generate patients in the lobby, which then proceed through workup as 

techs become available. Adjacent arrivals can be toggled to examine 

the impact, indicated by the dashed arc from the adjacent transition 

parameterized distributions are finally combined in a 
stochastic reward net (SRN) model which is solved by 
discrete event simulation, using a modification of a previous 
study in this setting [9]. The SRN model in this current study 
can be reconfigured to represent the resource demands of 
adjacent clinics explicitly. Finally, we quantify the tradeoff in 
accuracy by computing the mean root squared error (MRSE) 
between model and data sets when adjacent, concurrently 
operating clinics are represented or omitted.  

II. METHODS 

In this section we outline a multi-tiered approach for 

producing robust models of health care service. In-person 

observation and input from physicians, administrators, and 

staff informed the three-step generalization of visits to 

glaucoma clinics. From observation, the workup step is 

emphasized due to its clear delineation for measurement 

purposes, as well as its criticality in setting the pace of 

patient flow. We now detail how the workup step is 

measured, modeled, parameterized, and validated. 

A. Data Collection 

Workup durations are measured through event logging by 
staff using existing point-of-care stations. In point-of-care 
event logging, clinic staff use additional inputs added to their 
typical workflow in the electronic health record interface to 
log the start and end times of defined treatment steps, such as 
workup. Staff providing treatment are solely responsible for 
logging events. Such a system has been in place at Duke Eye 
Center since late 2015, and yielded approximately 22,000 
raw observations across all specialties in the first three-month 
period available, January through March of 2016. We focus 
on 3082 glaucoma clinic visits during this period, which 
encompasses the previous study [9]. From this period, we 
extract 12 complete schedules for patient arrivals to one high-
volume glaucoma clinic. This clinic sees consistent traffic, 
averaging 56 patients per day, while sharing technicians with 
an average of 33 additional glaucoma patients from other 
practitioners. 

Compared to external observers, event logging has 
allowed for continuous measurement with relatively little 
overhead. Logging reduces ambiguity in start and end times 
as staff recognize when treatment has been performed. There 
are disadvantages in coverage and accuracy. In our 
experience, this form of entry is particularly subject to staff 
cooperation. Logging activities tend to be omitted during 
peak periods as patient care always takes priority, and 
paradoxically these periods are critical to quality 
improvement decisions. Records with inaccurate start, finish, 
or other omissions are difficult to identify without additional 
context. Other forms of context, such as patient complexity, 
may be eliminated in anonymization steps before data 
analysis. Models must estimate treatment duration as well as 
account for system dynamics such as staff occupancy during 
peak periods, with potentially imperfect data. 

Given the concern for potential inaccuracies in reported 
workup durations, we independently verify these timings by 
comparing to in-person observation. During a nine-month 
period spanning 2017, 97 observations were gathered from 
shadowing eye center clinics using a data collection form. 
The mean root squared error between observation to model, 

and EHR data to model, were compared to independently 
verify that EHR samples are representative of the population. 

B. Model Formulation and Parameterization 

We wish to model the time until workups are complete, in 
a manner that still provides insight into system dependencies 
and can be used for planning resource allocations. Consider 
the duration of a patient visit from check-in to workup 
completion as a random variable Y with probability density 
𝑓𝑦(𝑡). Since the workup is the first step in a patient visit, Y is 

the sum of how long the workup procedure itself took, and 
any wait time until the workup began (once a technician 
begins a patient exam it is effectively not interrupted or 
restarted). Denoting the delay time 𝑋𝑑 and the workup time 
𝑋𝑤 also as random variables, we assume that the delay 
duration is independent of the workup duration, and can write 
an expression for the probability density function of 
completion time Y as a convolution (1-2) 

𝑌 = 𝑋𝑑 + 𝑋𝑤                                   (1) 

𝑓𝑌(𝑡) = 𝑓𝑋𝑑
(𝑡) ∗ 𝑓𝑋𝑤

(𝑡)                         (2) 

 EHR logging provides several direct measurements of the 
workup time, 𝑋𝑤, as well as the completion time Y. The 𝑋𝑤 
data are used to parameterize a phase-type distribution from 
the class described in [8], using the implementation in 
BuTools 2 software package [10]. Phase-type distributions 
have been effective in fitting casual measurements for similar 
applications [11, 12]. Y data is used in validation of the 
composite model, which estimates the convolution result (2). 

 In estimating the delay distribution, which is dependent on 
the number of idle technicians, patients, and residual workup 
time currently in the system, we account for the delays by 
limiting the number of available technicians, noting the 
patients-to-technician ratio (PTR). The model hypothesizes 
that delays in service arise due to unavailable staff, which is 
evaluated in results. Resource blocking is modeled by the 
SRN diagram in Figure 1. This SRN uses the phase-type 
distributions to model workup durations in place of standard 
timed transitions. Additionally, black-filled timed transitions 
indicate entry points for the emulated arrivals, which are 
extracted directly from the EHR records. These two 
accommodations are departures from strict SRN formalisms, 
but provide a useful shorthand for the implemented 
simulation while maintaining a clear system logic. 

 The SRN is solved using our implementation of discrete 
event simulation in MATLAB 2017a (Mathworks, Inc.). 
Each schedule is simulated 10000 times, for both model 
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Figure 2. Comparison of in-person observations to event logging 
collected through electronic health record (EHR) system. These data 

are redundant measures of the duration of a workup, once a technician 
begins seeing a patient. Empirical data are evaluated against a phase-

type distribution model of workup duration, estimated from EHR data. 

variations. Each simulation run executes an input schedule by 
generating random number deviants, retaining each predicted 
instance of 𝑥𝑑 , 𝑥𝑤 , 𝑦 from check-in to workup completion.  

C. Validation 

The proposed model is evaluated using k-folds cross 
validation [7].  This variant on cross validation is performed 
by randomizing the order of the original data set at the patient 
visit level, and then dividing the set into k equal portions 
referred to as “folds.” One fold is selected as the validation 
set per test, and all other folds are used in training the model. 
This procedure is repeated k times using each fold as 
validation set once, providing k opportunities to test a model 
against independent validation data that was not used in 
fitting the model, evaluating model performance beyond the 
training data without undue emphasis on the validation set.  

Given a training set 𝑍1̂ with 𝑚1 observations occurring at 

time 𝑡𝑚1
, and similarly a validation set 𝑍2̂, denote a 

hypothesized model for the cumulative distribution function 

(CDF) of Y trained on  𝑍1̂ as 𝐻𝑍1̂
(𝑡). We can compute the 

training and validation errors of a proposed model as the 
mean root squared error from model to each observation in 

the empirical CDF of a set S (denoted as 𝐹̂𝑆(𝑡)) using (3-4) 

𝐸𝑟𝑟𝑡𝑟𝑛 =
1

𝑚1

∑ √(𝐹̂𝑍1̂
(𝑡𝑚1

) − 𝐻𝑍1̂
(𝑡𝑚1

))
2

𝑚1

1

         (3) 

𝐸𝑟𝑟𝑣𝑎𝑙 =
1

𝑚2

∑ √(𝐹̂𝑍2̂
(𝑡𝑚2

) − 𝐻𝑍1̂
(𝑡𝑚2

))
2

𝑚2

1

         (4) 

 

 This error can be used to select the model that minimizes 
the average validation error across all folds. Alternatively, 
validation criteria can be defined as a model that reduces the 
average error below a threshold. We report the average error 
and plot the distribution functions. 

III. RESULTS 

In-person observations are consistent with EHR event log 

measurements as well as models estimated from EHR data, 

with MRSE from Observation to Model of 5.39%; 

comparing EHR to Model is notably 1.84% (Figure 2). The 

model from EHR predicts observation timings with minimal 

error, and so subsequent parameterization uses the larger 

volume event logging data. All measurements are regarded 

as precise to the nearest minute in subsequent analysis. 

From the original set of 3082 visit data, 2624 valid 

estimates of Y and 2360 valid estimates of 𝑋𝑤 are retained 

after excluding record imperfections such as missing time 

stamps. A phase-type distribution with 15 phases is used to 

model workup durations, parameterized from training data in 

each fold. One parameterization’s results are plotted 

alongside the empirical data (Fig. 2). Five folds were 

sampled from the EHR data, all folds showed comparable 

performance. 

Table 1 displays results from the simulation, where three 

variations of the model (Fig. 1) are considered. The 

concurrent model has the adjacent arrivals enabled, which 

represent patients in clinics outside of the primary high-

volume clinic studied. These results are contrasted to an 

independent clinic model (Ind. 4T/Ind. 3T) which disables 

adjacent arrivals and models dedicating technicians solely to 

one clinic. The 3T/4T designations refer to the number of 

technicians assigned, to provide a range of similar patient-to-

technician ratio (PTR) that provide upper and lower bounds 

to the optimal concurrent model PTR. Finally, error is 

reported as a percent, as the MRSE as computed can be 

interpreted as the average vertical distance between 

empirical data distribution and model. This distance, 

measured in percent, represents the average percentile 

deviation from a model estimate to a typical data set. 

IV. DISCUSSION 

Choosing which details to represent plays a pivotal role in 
producing robust predictive models. New modeling 
techniques [12], as well as wide access to powerful tools for 
simulation [1] and data fitting [8] make complex models 
readily available. Compared to the previous study [9] 
modeling this clinic, the model evaluated here has a 
drastically simpler SRN structure, but provides remarkable 
accuracy. Quantitative evaluation is critical in determining 
when adding model complexity has raised model accuracy.  

Accuracy assessments must account for inherent flaws in 
data collection and potential variations or outliers in the 
measurand. One interpretation of overfitting phenomena is 
that accuracy has been improved with respect to a sample by 
representing measurement noise. Adding more complexity 
that improves accuracy with respect to one sample may 

TABLE I.  SIMULATION SYSTEM PARAMETERS AND RESULTS 

Metric 
Model 

Concurrent Ind. 4T Ind. 3T 

Averagea Total Patients 89.08 56.08 56.08 

Technicians Assigned 5 4 3 

Patient-Tech Ratio 17.82 14.02 18.69 

Averageb Training Error 2.38% 15.58% 12.50% 

Averageb Validation Error 2.81% 15.48% 12.60% 

a. Average of total patients in all twelve arrival schedules 

b. Average of error computed in each fold cross-validation test 
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Figure 3. Concurrent clinics model versus independent clinic 
approximation with 3 and 4 technicians. Validation set data 

consistently aligns with the concurrent model predictions in all folds. 

diminish accuracy when evaluated versus a similar, 

independent sample. Independent evaluations in cross-

validation provide an indication of when overfitting may 

occur, and are necessary to produce robust models that 

remain predictive outside of the initial sample. 

The consistent reduction in error seen by explicitly 

modeling concurrency indicates a worthwhile addition of 

complexity to improve accuracy. The concurrent model 

minimizes error compared to the independent alternatives, 

by approximately 10-12%. There is little discernible change 

in training versus validation errors, further indicating a 

robust model that continues to perform as anticipated when 

new data is presented. Interpreted in this application, the 

model will accurately predict patient flow in subsequent 

clinic days. Plotting the predicted distributions along the 

measured data from an arbitrary fold (Fig. 3), the concurrent 

model results are clearly distinguished from the alternatives. 

While PTR values are similar, concurrency better captures 

the transient availability of technicians, where moment-to-

moment a probabilistic number of technicians is available to 

any given clinic. Internally reviewing simulation traces 

further emphasizes this point. We conclude that representing 

explicit dependence improves accuracy by an appreciable 

margin and confirms the need for interconnected models.  

Lastly, we find that independent in-person observations of 

workup durations do not substantially deviate from EHR 

data. The methods sharply differ in data acquisition rate, 

where event logging data collection is approximately 200 

times faster than in-person observation, without the need for 

additional personnel. Such substantially larger data sets 

potentially capture more patient variety than observation 

alone, which can be used to further refine models. Given the 

cost of continued in-person observation, we conclude from 

these results that EHR data are sufficient to produce models 

that accurately reflect clinic flow. 

V. CONCLUSIONS AND FUTURE WORK 

Decisions at outpatient centers impact hundreds of 

patients daily. As clinic flow data become available, more 

centers will form models to test plans. Rigorous evaluation 

ensures more robust predictive models. Cross-validation 

techniques can be used to evaluate when simulative models 

capture sufficient detail. We demonstrate one application in 

modeling patient intake at a high-volume glaucoma clinic. 

Future work extends this model to subsequent treatment 

phases, as well as verifying that the model generalizes to 

other practices as additional data sets are incorporated in the 

cross-validation scheme. Highly predictive clinic models 

provide tantalizing prospects in optimization. More complex 

models require additional research into decision support and 

efficient optimization. 
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