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Abstract— In hospitals, physicians diagnose brain-related
disorders such as epilepsy by analyzing electroencephalograms
(EEG). However, manual analysis of EEG data requires highly
trained clinicians or neurophysiologists and is a procedure
that is known to have relatively low inter-rater agreement
(IRA). Moreover, the volume of the data and rate at which
new data is acquired makes interpretation a time-consuming,
resource hungry, and expensive process. In contrast, automated
analysis offers the potential to improve the quality of patient
care by shortening the time to diagnosis, reducing manual
error, and automatically detecting debilitating events. In this
paper, we focus on one of the early decisions made in this
process which is identifying whether an EEG session is normal
or abnormal. Unlike previous approaches, we do not extract
hand-engineered features but employ deep neural networks that
automatically learn meaningful representations. We undertake
a holistic study by exploring various pre-processing techniques
and machine learning algorithms for addressing this problem
and compare their performance. We have used the recently
released “TUH Abnormal EEG Corpus” dataset for evaluating
the performance of these algorithms. We show that modern
deep gated recurrent neural networks achieve 3.47% better
performance than previously reported results.

Index Terms— Electroencephalogram, Deep Learning, Recur-
rent Neural Networks, Epilepsy.

I. INTRODUCTION

Electroencephalogram (EEG) data i.e. recordings of elec-
trical activity along the scalp, is often used for the diagnosis
and management of various neurological conditions such as
epilepsy, somnipathy, coma, and encephalopathies. The high
temporal resolution of EEG recordings and the noninvasive
nature and comparatively low cost of equipment contribute
to the popularity of EEG data among physicians [1].

The diagnosis of a neurological disorder by interpreting
EEG data typically involves the recording of multiple short
sessions or long-term monitoring [1]. This is because the
peculiarities of a disorder are not guaranteed to be present in
EEG data during one short recording session. For example,
only 50% of epileptic patients show interictal epileptiform
discharges (IED) in their first recording [1]. This can lead to
the generation of a large amount of data that then needs to
be manually interpreted by expert investigators.

A typical EEG report contains information such as pa-
tient history, medications, interesting findings, and general
peculiarities. This includes a first impression of whether the
recorded activity is normal or abnormal, a decision based on
the raw signal and the patient’s state of consciousness [2].
Based on this classification alone, it can be decided if further
investigations are done or medication is prescribed.
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Since training and certification to medically interpret EEG
data can take years, this task falls on a relatively low number
of neurologists. Hence, delays between data aqcuisition and
diagnosis can range from hours to weeks. Moreover, the
EEG interpretation process is known to have low inter-rater
agreement, which can lead to misdiagnoses [3].

A way to address these issues is the introduction of
automated EEG interpretation, an approach that has recently
gained in popularity. In a first instance, automatically labelled
data could serve as an aid to neurologists, reducing heavy
workload and delays.

This work, similar to [2], [4], is concerned with the au-
tomatization of the abnormal/normal EEG data classification.

In [2] and [4], the authors first extracted hand-engineered
frequency features from the recordings. Next, traditional ma-
chine learning algorithms were used, such as k-nearest neigh-
bour, random forests, and hidden markov models, and deep
learning techniques such as convolutional neural networks
were used. The authors [2], [4] released the corresponding
dataset which is known as the ”TUH Abnormal EEG Corpus”
[5] and is the largest dataset containing normal/abnormal
scalp EEG recordings.

We envision that modern deep learning algorithms such
as deep gated recurrent networks or time-distributed neural
networks might be capable of directly learning useful repre-
sentations from the data without any explicit pre-processing
and/or transformation step. Note that, to the best of our
knowledge, this is the first time these two types of networks
have been used for solving the abnormal EEG identification
task. However, to obtain a holistic view, we did not constrain
ourselves to these methods. Hence, we undertake a com-
prehensive study by exploring various data augmentation,
data pre-processing, and machine learning techniques on
the “TUH Abnormal EEG Corpus” for automated EEG
identification. The primary contributions of this work are:

• We propose a novel data augmentation technique for
the “TUH Abnormal EEG Corpus” which leads to a 11
fold increase in the training data. Note that this is crucial
for modern deep learning techniques where performance
typically tends to increase with more training data.

• We explore three pre-processing techniques: feeding
the input EEG directly to a classifier with minimal
pre-processing (only filtering), converting EEG data
into spectrograms [6], and transforming EEG data into
Gramian Angular Fields (GAF) [7].

• We present results for classical machine learning al-
gorithms such as logistic regression and multi-layer
perceptrons as well as more sophisticated deep learning
algorithms such as 1D convolutional neural networks,
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deep convolutional gated recurrent neural networks,
and time-distributed convolutional recurrent neural net-
works. To the best of our knowledge, we have used
deep recurrent neural networks on this dataset for the
first time.

II. BACKGROUND AND THEORY

In this section, we briefly discuss the various pre-
processing techniques and learning algorithms we have used.

A. Pre-processing techniques

1) Filtering: All EEG data considered in our study were
highpass filtered using a 4th order Butterworth filter with a
cutoff frequency of 0.01 Hz.

2) Spectrograms: Multiple previous studies have reported
that analyzing EEG signals in the frequency domain can
be effective for subsequent pattern recognition tasks. Tak-
ing inspiration from that, we converted the recorded EEG
time series signal into spectrograms. Spectrograms are two-
dimensional representation of the signal spectrum over time.

3) Gramian Angular Field: Gramian Angular Fields allow
to encode time-series in a two-dimensional space. GAF
images are generated by representing input time-series in a
polar coordinate system where each element is the trigono-
metric sum between different time intervals.

B. Learning algorithms

1) Logistic Regression: Logistic regression is a linear
classifier that predicts the probability of occurrence of an
event by fitting input data to a logit function. It is a simple
and widely used machine learning technique [8].

2) Multi-layer perceptron: Multi-layer perceptron is a
class of feed-forward neural networks which consist of at
least three layers of non-linear (except the input layer) nodes.
It is trained using the backpropagation learning rule [8] and
has the capability to discriminate non-linearly separable data.

3) 1D convolutional neural network (1D-CNN): 1D-CNN
is a multi-layered architecture where each layer consists of a
few one-dimensional convolution filters. The filters operate
on short consecutive subsequences of the input for extracting
meaningful features. Hence it is well-suited for time-series
classification [9].

4) 2D convolutional neural network (2D-CNN): 2D-CNN
is a category of artificial neural networks that is particularly
suited for processing image data. The primary idea is to train
two-dimensional filters to extract local features in different
level of hierarchies. Recently, 2D-CNNs have achieved im-
pressive results in various different pattern recognition tasks
[9].

5) Deep 1D convolutional gated recurrent neural network
(1D-CNN-RNN): Recurrent Neural Networks (RNN) are a
family of neural networks for processing variable-length
sequential data. Since RNNs have a tendency to overfit,
efficient recurrent units have been proposed in recent times
such as long short term memory (LSTM) [10] and the
gated recurrent unit (GRU) [11]. In this paper, 1D-CNN-
RNN denotes a combination of one-dimensional convolution

layers followed by stacked GRU layers. It is computationally
efficient and particularly suited for time-series analyses.

6) Time-distributed convolutional recurrent neural net-
work (TCNN-RNN): Unlike 1D-CNN that processes se-
quences or one dimensional input and 2D-CNN which takes
two dimensional images as input, TCNN-RNN processes one
sequence of images at a time and classifies them. They are
useful in scenarios where time-series data is converted into
image representation (spectrograms, GAFs, etc.) and fed to
a classifier.

III. EXPERIMENTS

A. Data selection

In this article, we have considered the TUH Abnormal
EEG Corpus [4] that contains EEG records labelled as either
clinically abnormal or normal. The TUH Abnormal EEG
Corpus is the worlds largest publicly available dataset of
its type and consists of 1488 abnormal and 1529 normal
EEG sessions respectively. The dataset is demographically
balanced with respect to gender and age of patients. For
evaluation of automated systems, it was divided into a
training set (1361 abnormal/1379 normal samples), and a
test set (127 abnormal/150 normal samples).

B. Data preparation and augmentation

First, we converted the EEG signal recorded by the elec-
trodes to a set of differentials according to the transverse
central parietal (TCP) montage system [4]. We did not
extract any hand-crafted features from this dataset since
we envisioned that the deep neural networks used in this
paper will be able to automatically capture relevant features.
Typically the sessions were recorded at a sampling frequency
of 250 Hz. When this was not the case, the signal was
resampled to 250 Hz.

In previous studies [2], [4], the authors noted that trained
clinicians can accurately determine whether an EEG session
is abnormal or normal by examining its first few minutes.
This encouraged them to design automated systems that can
classify EEG sessions by looking at only the first minute of
data. Hence, to create the training and test set the authors
extracted the first minute of data from the available EEG
sessions. This protocol was adopted during the testing or
inference phase to make a fair comparison of their system
to human-level performance. On the other hand, using only
the first minute of data during training was a design choice
motivated by the fact that it might be most representative of
the test set. Once the electrodes are placed on the scalp and
data recording starts, the signal will gradually deviate from
the first minute due to changing impedances. However, this
method significantly constricts the amount of data that can
be used for training. This impacts the performance of deep
neural networks which typically gets better as more training
data is used.

To alleviate this problem, our intuition was to include data
beyond the first minute in the training set. To find out how
much data can be used without performance degradation we
performed the following experiment: we chose a random
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Fig. 1: The effect of each training minute on the validation
accuracy.

subset of sessions from the original training data which
was further divided into smaller training and validation sets.
Separate models were trained for each minute of the training
sets, allowing us to assess the performance during inference
on the first minute of the validation sessions. Figure 1 shows
the outcome of this experiment. It is evident from Figure 1
that performance starts to drop after the 11th minute thereby
suggesting that we can use up to 11 minutes of data from
the training EEG sessions. This led to a 11-fold increase in
our training data as compared to previously reported methods
[4].

C. Results

We used the dataset described above to train combinations
of pre-processing techniques and learning algorithms de-
scribed in Section II. We combined algorithms that are suited
to process two-dimensional data with GAFs or spectrograms.
This includes 2D-CNN and TCNN-RNN. On the other hand,
time-series data is directly fed to algorithms that are suited
to handle one-dimensional data such as logistic regression,
MLP, 1D-CNN, and 1D-CNN-RNN.

For logistic regression we used mini-batch gradient de-
scent with a learning rate of 0.001. For MLP, we employed
one hidden layer having 1000 sigmoidal neurons and used
gradient descent with a learning rate of 0.01. The architecture
of 1D-CNN and 1D-CNN-RNN used in this paper are shown
in Figure 2. Moreover, we show the specific network for 2D-
CNN and TCNN-RNN in Figure 3. The format we have
used throughout the paper to describe the layers used in
deep networks are (layer name, filter length, number of
filters, stride size) whenever applicable. 1D-CNN, 2D-CNN,
1D-CNN-RNN, and TCNN-RNN were trained using the
adaptive moment estimation optimization [12] algorithm with
a learning rate of 0.001.

In Table I, we list the average results obtained through 5
repetitions of the above experiments. We find that logistic
regression overfits on the input data and hence provides a
test accuracy similar to a random classifier. A slightly better
performance is achieved by MLP which reduces overfitting
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Fig. 2: (a) The 1D convolutional neural network is formed
by stacking multiple 1D convolutional layers. (b) The deep
1D convolutional gated recurrent neural network (1D-CNN-
RNN) stacks multiple 1D convolution layers followed by
GRU layers. Both networks take sequences as input and
hence time-series EEG data is fed into them with minimal
pre-processing (filtering only).

and achieves a test accuracy slightly over chance. 1D-
CNN achieves a training and test accuracy of 82.04% and
76.90% and therefore outperforms both logistic regression
and MLP. Compared to 1D-CNN, 1D-CNN-RNN increases
the test accuracy even further to 82.27%. However, due to
the presence of the recurrent layers 1D-CNN-RNN overfits.

The second and third rows of the table show the re-
sults for the cases where time-series is converted to image
representations. We find that for the classifiers (2D-CNN
and TCNN-RNN) considered in this paper, spectrogram
representation works better than GAFs. 2D-CNN and TCNN-
RNN achieve test accuracies of 70.39% and 71.48% when
input is represented as spectrograms.

Our findings suggest that the best performance is obtained
by 1D-CNN-RNN directly operating on time-series data. We
speculate that since minimal pre-processing is involved in
this case, the deep network is automatically able to learn
representative features from the data. Compared to previously
reported best results [4], 1D-CNN-RNN shows a 3.47%
increase in performance.

IV. CONCLUSION

In this paper, we have focused on classifying an EEG
record into either abnormal or normal type. This is one of
the first steps in EEG data interpretation and successfully
automating this procedure will not only substantially reduce
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````````Pre. proc.
Algo. Log. Reg. MLP 1D-CNN 2D-CNN 1D-CNN-RNN TCNN-RNN

Train Test Train Test Train Test Train Test Train Test Train Test
Time-series 83.72% 49.09% 69.64% 54.15% 82.04% 76.90% N/A N/A 99.16% 82.27% N/A N/A

Spectrograms N/A N/A N/A N/A N/A N/A 86.31% 70.39% N/A N/A 95.22% 71.48%
GAF N/A N/A N/A N/A N/A N/A 79.46% 68.61% N/A N/A 92.55% 67.02%

TABLE I: Comparison of performance for combination of pre-processing techniques and learning algorithms.
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Fig. 3: (a) The 2D convolutional neural network (2D-CNN)
combining Convolution2D, MaxPool, Flatten, and Dense
layers. (b) The time-distributed convolutional neural network
(TCNN-RNN) that combines Convolution3D, MaxPool, Flat-
ten, and Dense layers. While both these networks take inputs
represented as images only TCNN-RNN takes sequence of
images as input.

time required to read EEG but also act as an aid to human in-
vestigators. For this study, we have used the TUH Abnormal
EEG Corpus [5], [4]. We explored various pre-processing
techniques, traditional machine learning algorithms, and
modern deep neural networks to solve this problem. The
best performance is achieved by directly feeding time-series
data to a hybrid convolutional recurrent network architecture.
This network denoted as 1D-CNN-RNN achieves a 3.47%
increase in performance compared to previous reported best
result. However, the network can overfit and in future we
intend to develop custom recurrent neural networks to tackle
this problem.
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