
A Typing Result for Stateful Protocols

Andreas Viktor Hess and Sebastian Mödersheim
DTU Compute

Technical University of Denmark
2800 Kongens Lyngby, Denmark

e-mails: {avhe,samo}@dtu.dk

Abstract—There are several typing results that, for certain
classes of protocols, show it is without loss of attacks to restrict
the intruder to sending only well-typed messages. So far, all these
typing results hold only for relatively simple protocols that do
not keep a state beyond single sessions, excluding stateful pro-
tocols that, e.g., maintain long-term databases. Recently, several
verification tools for stateful protocols have been proposed, e.g.,
Set-π, AIF-ω, and SAPIC/TAMARIN, but for none of these a
typing result has been established. The main contribution of this
paper is a typing result, for a large class of stateful protocols,
based on a symbolic protocol model. We illustrate how to connect
several formalisms for stateful protocols to this symbolic model.
Finally, we discuss how the conditions of our typing result apply
to existing protocols, or can be achieved by minor modifications.

I. INTRODUCTION

Many automated protocol verification methods [7], [8], [10],

[25], [26] rely on a typed model in which the attacker can

only send well-typed messages. Such a restriction to a typed

model can also significantly reduce verification time and in

some approaches [9], [5] protocol verification even becomes

decidable in a typed model. There are in fact several results [1],

[17], [16], [12], [23], [2] that show the relative soundness of a

typed model if the protocol satisfies reasonable and sufficient

conditions of a syntactic nature (i.e., can be checked without

an exploration of the state space of the protocol). These typing
results are of the form: if a protocol that satisfies the sufficient

conditions has an attack then it has a well-typed attack, in

which the attacker only sends well-typed messages. In other

words, if the protocol is secure in a typed model then it is

secure in an untyped model.

In a nutshell, when proving a typing result, one shows

(for a given class of protocols) that from an ill-typed attack

we can construct a similar well-typed attack, i.e., every ill-

typed message that the intruder sends can be replaced with a

well-typed one so that all the remaining steps of the attack

can still be performed in a similar way. To avoid messy

and round-about arguments, all existing typing results argue

via a constraint-based representation of the intruder. In these

constraints, all messages sent and received by the intruder

may contain variables where the corresponding honest agent

would accept any value. Every attack is then a solution of

such a constraint. There is a sound, complete, and terminating

reduction procedure for such intruder constraints. It thus

suffices to show that for the considered class of protocols, this

reduction procedure will never instantiate any variable with a

term of a different type than the variable has. If the procedure

leaves any variables uninstantiated (i.e., its concrete value does

not matter for the attack to work) then the intruder may as

well choose a well-typed value here. This therefore allows to

conclude that if there is a solution (i.e., attack), then there is

a well-typed one. This can also be extended with equality and

inequality constraints on messages, see e.g. [1].

All mentioned typing results, however, only apply to simple

protocols in which agents do not maintain a global state, but

have state only local to a single session, like a session key.1 A

more interesting and general class of protocols is one in which

agents can additionally manipulate a global mutable state,

e.g., maintain sets of public keys. In such protocols updating

the global state during one session might influence other

running sessions. We call such protocols stateful. Currently

there exist several tools and approaches for verifying stateful

protocols [15], [22], [24], [3], [19], [4], [20]. If we consider

as a global state a database to which entries can be added

(without bound) and deleted, and where negative checks are

allowed (i.e., that no entry of a particular form is present), then

this is not possible with a straightforward extension of existing

typing results. While one could encode the positive operations

and checks as special messages, the negative ones essentially

amount to checking that a particular operation or message

did not occur, and this negation is at odds with the intruder

constraints needed to perform the main proof argument of the

typing result.

The main contribution of this paper is a typing result for

a large class of protocols with a global state that consists of

a countable collection of sets, even when admitting deletion

and negative checks. This is done in a precise and declarative

way that uses existing typing results for stateless protocols

as a basis. To have a simple and yet powerful formalism to

work with, we introduce a notion of strands with set operations

to model both honest agents and intruder constraints. In the

intruder constraints, this represents at which point particular

set operations occurred during an attack. We then show that

we can reduce the satisfiability of these intruder constraints to

the satisfiability of constraint systems without set operations.

We can then make use of existing typing results.

A second contribution of this work is thus the formalisms

with set operations for honest agents and for intruder con-

1An exception is [23], but this paper contains significant mistakes and its
result does not hold in this generality; we explain this in detail in section V-D.

374

2018 IEEE 31st Computer Security Foundations Symposium

© 2018, Andreas Hess. Under license to IEEE.
DOI 10.1109/CSF.2018.00034

straints which are useful beyond the typing result to represent

and work with stateful protocols. While this formalism is

deliberately reduced to the essentials, we also show how to

connect other more complex formalisms for stateful protocols,

namely using rewriting and process calculi, so that our typing

result can be also applied accordingly in these languages.

The paper is organized as follows. After preliminaries in

section II we introduce in section III a new strand-based

protocol model for stateful protocols. In section IV we extend

intruder constraints with set operations and define a reduction

mechanism on constraints that we prove sound and complete.

We prove our main theorem, the typing result, in section V.

Finally, we have case studies and connections to other for-

malisms in section VI and VII. A detailed description of the

formalization in Isabelle is found in the extended version [18].

II. PRELIMINARIES

A. Term Algebra

We formally define a term algebra over a signature Σ con-

taining symbols with associated arities and over a countable

set of variables V . The set of terms over Σ with variables

from V is denoted by TΣ(V) and we normally use the lower-

case letters t, s, m, and e to denote arbitrary terms. A term

t ∈ TΣ(V) is then either a variable t ∈ V or a composed

term of the form f(t1, . . . , tn) for some f ∈ Σ of arity n and

ti ∈ TΣ(V). When we later define our protocol model we will

allow agents to send messages, modify sets, and emit events.

We use terms to represent all of these different concepts and

so we do not at this level distinguish between them.

The set Σ is partitioned into the public symbols Σpub (which

the intruder has access to) and the private symbols Σpriv

(which the intruder cannot access). By Σn we denote the set

of symbols of arity n. Similarly, Σn
pub (respectively Σn

priv)

denotes the public (respectively private) symbols of arity n.

The set of constants C is defined as Σ0. The set of free
variables fv(t) of a term t is defined as usual and we say

that t is ground iff fv(t) = ∅. As usual we extend fv to sets

of terms. Constants will usually be denoted by the lower-case

letters a, b, c, i, and k. We write f , g, and h as meta-variables

ranging over non-constant symbols of Σ and we use sans serif
to denote the actual elements of Σ, e.g., ring and crypt. We

define substitutions as (finite or countably infinite) mappings

from variables to terms, and we write δ(x) for the application

of substitution δ to variable x. We usually use the letters δ and

σ to denote substitutions. Substitutions are further extended

to terms and sets of terms homomorphically as expected. The

domain of a substitution δ is the set of variables which are

not mapped to themselves: dom(δ) = {x ∈ V | δ(x) �= x}.

The image of a substitution δ is then defined as usual:

img(δ) = δ(dom(δ)) = {δ(x) | x ∈ dom(δ)} and we say

that δ is ground when fv(img(δ)) = ∅. For substitutions with

finite domain we often write them as [x1 �→ t1, . . . , xn �→ tn].
Note that we divert slightly from the conventional definition

by also allowing for substitutions with infinite domain. Finally,

a substitution δ is called a unifier of two terms t and t′ iff

δ(t) = δ(t′).

B. Intruder Model

We now define a Dolev-Yao style intruder deduction relation

where M � t means that the intruder can derive the term

t from the set of terms M called the intruder knowledge.

Our model is similar to standard Dolev-Yao models but we

parameterize ours over arbitrary signatures Σ instead of fixing

a particular set of cryptographic primitives. Note also that we

work in the free algebra; two terms are equal iff they are

syntactically equal. For these reasons we additionally param-

eterize over an analysis theory Ana that serves as an analysis
interface. For instance, to decrypt the message crypt(k,m) and

obtain m we can require that the inverse key inv(k) must be

provided, and we write Ana(crypt(k,m)) = ({inv(k)}, {m})
to formally express this. Note that this would be similar to

introducing a destructor dcrypt and an algebraic equation

dcrypt(inv(k), crypt(k,m)) ≈ m if we were not using the

free algebra. More generally, if Ana(t) = (K,T) then the

analysis of the term t results in the terms in T provided that

all “keys” in K can be derived. Given such an Ana we define

the deduction relation � as the least relation closed under the

following rules:

M � t
(Axiom),
t ∈ M

M � t1 · · · M � tn
M � f (t1, . . . , tn)

(Compose),
f ∈ Σn

pub

M � t M � k1 · · · M � kn
M � ti

(Decompose), ti ∈ T,
K = {k1, . . . , kn},
Ana(t) = (K,T)

Here, the (Axiom) rule expresses that the intruder can derive

any message in his knowledge. The rule (Compose) allows

the intruder to compose messages with any public symbol.

For instance, if the intruder can derive a key k and a message

m from a given intruder knowledge M (that is, M � k and

M � m) then he can asymmetrically encrypt m with k, i.e.,

M � crypt(k,m). This rule also subsumes derivation of public

constants, e.g., agent names. The final rule, (Decompose),
defines decomposition or analysis of terms, and it expresses

that the intruder can decompose a derivable message t if he

can derive the required keys K.

While the intruder deduction relation is defined for ground

terms only, the analysis interface is defined on terms that might

contain variables. The analysis interfaces we consider will be

subject to some restrictions:

Ana1: Ana(x) = (∅, ∅) for variables x ∈ V ,

Ana2: Ana(f(t1, . . . , tn)) = (K,T) implies K is finite, T ⊆
{t1, . . . , tn}, and fv(K) ⊆ fv(f(t1, . . . , tn)), and

Ana3: Ana(f(t1, . . . , tn)) = (K,T) implies

Ana(δ(f(t1, . . . , tn))) = (δ(K), δ(T)).

The first requirement, Ana1, ensures that variables cannot be

decomposed. Ana2 consists of two parts. First, all terms in T
must be immediate subterms of the term being decomposed,

and so the intruder cannot obtain any new terms by decompos-

ing something that he composed himself, and it is a technical

requirement that is crucial in proofs of typing results. In fact,

the typing result of [23] has a counter-example because it lacks

375

this requirement (see section V-D). The second part restricts

the set of keys K to be finite and to not introduce any new

variables, but the keys are otherwise independent of the term

being decomposed. This is useful when modeling asymmetric

decryption as we can then require the intruder to derive the

inverse key inv(k) of the key k used for the encryption. Ana3
expresses that decomposition is invariant under substitution.

In concrete examples of this paper we use the following

Ana theory on the usual set of cryptographic primitives:

Ana(crypt(k,m)) = ({inv(k)}, {m}), Ana(scrypt(k,m)) =
({k}, {m}), Ana(sign(k,m)) = (∅, {m}), Ana(〈t, t′〉) =
(∅, {t, t′}) where 〈·, ·〉 ∈ Σ2 is a pairing operator, and

Ana(t) = (∅, ∅) for all other terms t.

III. STATEFUL PROTOCOLS

In this section we will define our protocol model. There

are several protocol models based on strands where protocol

execution is defined in terms of a state transition system,

e.g., [14], [1], [17]. In these works a state is a set (or

multi-set) of strands that represents the honest agents, and

a representation of the intruder knowledge. We extend this

model with strands that work with sets to model long-term

mutable state information. Thus a distinguishing feature of

our strands is that honest agents can query and update sets. A

protocol state in our model will thus contain not only short-

term session information but also the long-term contents of

sets, and we call protocols based on these strands stateful.

A. Strands with Sets

We now define the syntax of strands with sets as an exten-

sion of [1] (the part of the syntax marked with � corresponds

to the strands of [1]):

� : := φ.� |
�︷ ︸︸ ︷

ψ.� | 0
with ψ : := send(t) | receive(t) | t .

= t′ | ∀x̄. t � .= t′

and φ : := insert(t, s) | delete(t, s) | t ∈̇ s | ∀x̄. t � ∈̇ s |
assert(e) | event(e) | ∀x̄. ¬event(e)

where t, t′, s, e ∈ TΣ(V), and x̄ ranges over finite sequences

x1, . . . , xn of variables from V . Strands built according to the

above grammar but using only the cases marked with � are

referred to as ordinary strands. A strand consists of a sequence

of steps and we use here a process calculus notation where we

delimit steps by periods and mark the end of a strand with a 0.

We normally omit writing the end-marker 0 when it is obvious

from the context. We will also omit writing the quantifier ∀x̄
whenever x̄ is the empty sequence.

The steps can be categorized into four parts: the message

transmission steps (send and receive), the equality checks (
.
=

and � .=), the set operations (insert, delete, ∈̇, and � ∈̇), and the

event steps (assert, event, and ¬event). The most basic ones

are the message transmission steps which denote transmission

over an insecure network. A send(t) step then means that an

agent transmits t and receive(t) means that an agent waits

for a message pattern (since it might contain variables) of

the form t. Like [1], we extend strands with equalities and

inequalities—they represent checks that must hold true to

proceed—and a construct for emitting events; assert(e). We

further extend strands with steps for checking whether an event

has happened or not; event(e) and ¬event(e). Finally, the main

novel addition to the concept of strands are the set operations.

They allow for updates (insert and delete) and queries (∈̇ and

� ∈̇) of sets. Here, the delete operation allows for removal of

elements that have previously been inserted into a set, and

so the contents of sets do not grow monotonically during

transitions. This is in contrast to the messages that the intruder

has seen, i.e., the messages sent by honest agents; we cannot

force the intruder to forget a message he has learned. Similarly,

we cannot retract an asserted event. Thus the set of events and

the messages sent over the network grow monotonically during

transitions.

The set of terms occurring in a strand � is denoted by

trms(�). The events of a strand � is the set of terms ev(�)
defined as ev(�) = {e | assert(e) occurs in �}. The free
variables, denoted by fv(�), are the variables occurring in

� which are not bound by a universal quantifier, and when

fv(�) = ∅ then � is said to be closed. In many formalisms

like process calculi, variables in a receive step would also

be considered as bound variables. Since we, however, also

express pattern matching here (since we allow arbitrary terms

in receive steps, and, in particular, the same variable can occur

in several receive steps and more than once), we like to refer

to all such variables as free variables, anyway. We will later

introduce a notion of well-formed constraints that requires all

free variables to first occur in a receive step or a positive

check, and thus corresponds to a notion of closedness in other

formalisms. Moreover, given a substitution δ we can apply it to

a constraint � as expected, written δ(�), by applying δ to every

free occurrence of a variable in �. Note that the variables of a

substitution δ might clash with the bound variables occurring

in a strand �, e.g., for δ = [y �→ f(x)] and � = ∀x. x � .= y
we have that δ(�) = ∀x. x � .= f(x). However, we can always

avoid these issues by variable-renaming. For simplicity we

therefore assume that the bound and free variables of strands

are disjoint. Note also that we restrict ourselves here to a

“bare metal” formalism by discarding all notions that are not

relevant to our typing result. For instance, we have no notion

of repetition, since one can simply consider an infinite set of

such strands. We then also do not need a construct for creating

fresh constants since we can simply consider a set of strands

with uniquely chosen constants. However, we do support an

unbounded number of sessions and freshly generated nonces,

by modeling protocols as infinite set of transaction strands.

This is similar to Guttman’s original strand spaces [28] that

can model an infinite number of strands containing an infinite

number of fresh constants. The actual specification language

for an end-user should include constructs like creating fresh

nonces and repetitions. For that reason we show in section VII

how to connect to formalisms like Set-π and AIF-ω.

376

B. A Keyserver Example

Before we proceed with the formal definition of our proto-

col model we introduce a small keyserver protocol example

adapted from [24]. In this protocol each participant u has an

associated keyring ring(u) of currently used public keys. Any

agent (or user) can register public keys with a trusted keyserver

and these public keys can later be revoked. The lifetime of a

key may span multiple sessions, but whenever it is revoked

the corresponding private key will be publicly known, and

it should therefore not be used in a later session. Thus the

keyserver needs to maintain the current status of keys and to

model this feature we consider sets valid(u) and revoked(u)
containing the valid respectively revoked keys for each user

u. As an initial rule of the protocol we model an out-of-band

registration of fresh keys (e.g., the user physically visits the

server). Suppose we have a (countably infinite) set of constants

that represents the users. For every user u and for every j ∈ N

we then declare the strand:

insert(pku,j , ring(u)).insert(pku,j , valid(u)).send(pku,j)
(T1)

where each pku,j is a public key. Here, j is a “session number”

and pku,j represents a fresh public key the user u “has created

in session j”. This strand thus represents that a user u can

create a fresh key pku,j and insert it into its keyring, and the

server then additionally inserts the key into its own set of valid

keys. Lastly, the key is made public by sending it out.

We will later define the semantics of protocols by a state

transition system, where in the initial state all sets are empty

and no messages have been sent. Then for user u = a and

session j = 1, the above strand would get us to a new

state where pka,1 is contained in ring(a) and valid(a) and

the message pka,1 has been sent. Note that we do not have

any built-in notion of set ownership, so we can model here

strands that represent a mutual action of a user and the server.

As a second rule we model a key-revocation mechanism

consisting of two separate strands: one for the users and one

for the server. In the first strand the condition PK u,j ∈̇ ring(u)
expresses that PK u,j can be any value in the keyring. Not

having any other condition, this models that the user can

arbitrarily select a key from its keyring. Then it generates a

fresh key npku,j , inserts it into its keyring, and sends the new

key to the server, signed with the old key PK u,j :

PK u,j ∈̇ ring(u).insert(npku,j , ring(u)).

send(sign(inv(PK u,j), 〈u,npku,j〉)) (T2)

for each user u and for each session j ∈ N. (Note that

we also parameterize the variables; later on, we will require

that different strands have different variables.) Rule T2 is, for

instance, applicable to our concrete state where key pka,1 has

been registered: it gets us to a new state where npka,1 has been

added to ring(a) and the message sign(inv(pka,1), 〈a,npka,1〉)
has now been sent.

Afterwards, in the second strand, it is the keyserver’s turn

to act and its actions are initiated by an incoming message of

the form sign(inv(PK i), 〈Ui,NPK i〉):
receive(sign(inv(PK i), 〈Ui,NPK i〉)).
(∀Ai. NPK i � ∈̇ valid(Ai)).(∀Ai. NPK i � ∈̇ revoked(Ai)).
PK i ∈̇ valid(Ui).insert(NPK i, valid(Ui)).
insert(PK i, revoked(Ui)).delete(PK i, valid(Ui)).
send(inv(PK i)) (T3)

for each i ∈ N. Again, this rule is applicable to the concrete

state reached above, moves the value pka,1 from valid(a) to

revoked(a), and inserts npka,1 into valid(a). Finally, the server

discloses the private key inv(pka,1); while this is of course

not done in an actual implementation, it expresses that this

protocol is secure even if the intruder learns the private key

to an old revoked key.

C. Transaction Strands

One may wonder about the execution model for the strands

from the previous example, in particular if that could cause

race conditions on the checks and modifications of the sets

if parallel execution of several strands leads to some in-

terleaving of the respective set operations. Suppose for in-

stance, in our keyserver example, that we register the key

pka,1 using strand T1, and then send out the messages

sign(inv(pka,1), 〈a,npka,i〉) for i ∈ {1, 2} using T2. Then

pka,1 is in valid(a) and ring(a) contains the keys pka,1,

npka,1, and npka,2. If we now run two instances of the strand

T3, one for each of the signatures, and we assume that they

are executed step-by-step instead of one atomic block, then we

could end up in a state where both npka,1 and npka,2 have

been registered at the keyserver (i.e., inserted into valid(a))
but only one public key, pka,1, has been revoked, because both

instances of T3 can perform all their checks before updating

their databases. In fact, as we will define formally in the next

subsection, we adopt a transaction semantics: a transaction
strand (or just transaction) is defined to be a strand of the form

receive(T).L.send(T ′) where T and T ′ are finite sets of terms,

L is a strand that does not contain any send or receive steps,

and where we write receive({t1, . . . , tn}) as an abbreviation

for receive(t1). · · · .receive(tn) (similarly for send steps). The

idea is that such a transaction is always performed atomically,

i.e., as a single transition. This reflects, in our opinion, very

well the normal work-flow of a web server with a database: the

server receives an incoming request, performs some lookups

and checks on its database (possibly aborting the transaction),

then performs some modifications on its database, and sends a

reply (which may be also a request to another server). The key

is that the server serializes the handling of such transactions

(to avoid said race conditions). A transaction semantics allows

us to abstract from the implementation of such serialization

mechanisms and thus focus on the verification of a larger

system. Another example are crypto APIs, where a token

receives an API command, performs some lookups and checks

in its memory (possibly aborting the transaction), performs

some updates to its memory and then gives out a result. Also

377

here, we typically do not want to reason about race conditions

from several API calls in parallel.

This is indeed slightly different from the “philosophy” of

many process calculus approaches (e.g., StatVerif [3] and Set-

π [11]) where one would have to introduce explicit locking

mechanisms. Also, the original notion of strand spaces by

Guttman [28] is actually based on a notion of only a partial

(instead of a total) order on send and receive steps in an

execution; if we regard however set operations as interactions

with a database with locking, then we obtain the partial order

that our transaction semantics defines.

D. Transition Systems

Now that we have introduced the elements of our protocols

we define a protocol S to be a countable set of transaction

strands where no variable occurs in two different strands. The

set of terms trms(S) occurring in S is defined as expected.

Before giving the formal definition of the transition system

we will first define the notion of a database mapping D to be

a finite set of pairs (t, s) of terms, and for closed strands � we

define the ground database mapping db(�) as

db(�) = {(t, s) | insert(t, s).�′ is a suffix of �
and delete(t, s) does not occur in �′}

Let D = {(t1, s1), . . . , (tn, sn)} be a database mapping and

� a closed strand, then we may write db(insert(D).�) as a

shorthand for db(insert(t1, s1). · · · .insert(tn, sn).�).
States in the (ground) transition system are of the form

(S;M,D,E) where S is a protocol, M is the set of messages

that has been sent over the network and that we also refer to as

the intruder knowledge, D is a database mapping representing

the state of all databases, and E is the set of events that have

occurred. The initial state is (S0; ∅, ∅, ∅) for a protocol S0.

Definition 1: A transition relation on states is defined as:

(S;M,D,E)
σ,�
=⇒ (S \ {�};M ∪ σ(T ′), D′, E′)

where D′ = db(insert(D).σ(L)) and E′ = E ∪ ev(σ(L)))

if the following conditions are met:

C1: � = receive(T).L.send(T ′) ∈ S is a transaction strand,

C2: σ is a ground substitution with domain fv(�),
C3: M � σ(t) for all terms t ∈ T ,

C4: σ(t) = σ(t′) for all steps t
.
= t′ occurring in L,

C5: σ(δ(t)) �= σ(δ(t′)) for all steps ∀x̄. t � .= t′ occurring in

L and all ground substitutions δ with domain x̄,

C6: σ((t, s)) ∈ db(insert(D).σ(L′)) for all prefixes L′.(t ∈̇ s)
of L,

C7: σ(δ((t, s))) /∈ db(insert(D).σ(L′)) for all prefixes

L′.(∀x̄. t � ∈̇ s) of L and all ground substitutions δ with

domain x̄,

C8: σ(t) ∈ E ∪ ev(σ(L′)) for all prefixes L′.event(t) of L,

C9: σ(δ(t)) /∈ E ∪ ev(σ(L′)) for all prefixes

L′.(∀x̄. ¬event(t)) of L and all ground substitutions δ
with domain x̄.

Here the first side-condition C1 simply ensures that � is

actually a transaction strand of the protocol, and the second

condition C2 ensures that σ is actually an assignment of the

free variables in � to concrete values. Condition C3 states that

the intruder must be able to derive the messages that � expects

to receive. The conditions C4 to C9 state that all checks and

set updates performed by � are satisfied under σ. As the effect

of a transition the strand � is removed from S , the intruder

learns σ(T ′), the asserted events of σ(L) are added to the

successor state, and the databases are updated according to

the set operations of σ(L).
Note that the whole transaction strand � is “consumed” in

each transition because we want the strands of protocols to

be atomic transactions. This is different from other strand-

based approaches in which a transition only eliminates one

step of a strand and in which strands might contain mul-

tiple transactions (e.g., from a state containing the protocol

{PK .
= pka,1.receive(npka,1).send(PK)} we can reach a

state containing {receive(npka,1).send(PK)} and where PK
must be mapped to pka,1). Defining our protocol semantics

on a transactional level, however, is without loss of gener-

ality: it is always possible to refine a strand into smaller

transaction strands while preserving the causal relationship

of the original strand (i.e., transaction i + 1 of a strand

with n transactions can only be performed after transaction

i, for any i ∈ {1, . . . , n − 1}). For instance, one can

insert additional message-transmissions between steps, e.g.,

the strand PK
.
= pka,1.receive(npka,1).send(PK) can be

split into two transactions, namely PK
.
= pka,1.send(f(PK))

and receive(f(PK)).receive(npka,1).send(PK) where f is

a fresh private symbol of arity one that we here use to

preserve the causal relationship and to carry state information.

In general, to split a strand �1. · · · .�n containing transac-

tion strands �i we can add additional steps that carry state

information from �i to �i+1 and which ensure that �i can

only be performed after �i+1: �i.send(state�i(x1, . . . , xm))
and receive(state�i(x1, . . . , xm)).�i+1, where state�i ∈ Σm

priv

is private and unique to �i and where fv(�i) = {x1, . . . , xm}.

Such a transformation can also be used to link transactions

�1, . . . , �n together, or to split a transaction strand into smaller

transactions if one wishes to have greater granularity in state

transitions. For tools based on transaction strands such an

encoding would be useful; it would be convenient for users

if they are allowed to specify strands containing multiple

transactions. In this paper, however, we will not provide such

an input language for a tool—rather, we have decided to

keep the protocol model simple by only allowing single-

transaction strands. This decision is legitimate, in our opinion,

since the above encoding for linking transactions can easily

be automated and be transparent to end-users.

Finally, we note that protocol goals such as secrecy can

also be encoded as strands. For instance, we can extend our

running keyserver example with strands

receive(inv(PK ′
i)).PK

′
i ∈̇ valid(h).assert(attack)

for each honest user h and i ∈ N, and an event attack
that denotes when an attack has happened. Hence, if the

private key of a valid public key for an honest agent is

leaked then there is a violation of secrecy, and in those

378

cases we emit the event attack using the construct assert.
In other words, if there is a reachable state (S;M,D,E) in

which attack ∈ E then the protocol has a vulnerability. In

principle we support all properties expressible in the geometric

fragment [1] over events. This includes many reachability

goals like authentication.

IV. SYMBOLIC CONSTRAINTS

At the core of all typing results is a sound and complete

constraint reduction system. It was originally used as an effi-

cient procedure for model-checking of security protocols [21],

[27], [6], but is also used as a proof technique when proving

relative soundness results such as [13], [23], [2], [1], [17]. The

constraints themselves arise from the symbolic exploration of

the protocol state space where each symbolic state contains

a constraint that represents the steps taken in the protocol so

far. Any solution to a reachable constraint then represents (one

or several) concrete runs of the protocol. In this section we

consider constraints for stateful protocols.

A. Syntax and Semantics

The most basic parts of a symbolic constraint are require-

ments on the intruder to produce messages that honest agents

expect to receive. For instance, if the messages m1, . . . ,mn

(where each mi might contain variables) have been sent out

and some agent expects to receive a message pattern t it is

standard to represent as a constraint the requirement on the in-

truder to produce t given the mi. Any solution I to such a con-

straint is an assignment of the variables fv({m1, . . . ,mn, t})
to ground terms such that I({m1, . . . ,mn}) � I(t) holds.

In [17] there was the idea to represent a (finite) set of such

constraints by a strand, with send steps for messages the

intruder has to generate, and receive steps for messages that

the intruder learns (all in the order this happens), e.g., the

constraint we just explained can be represented as the strand

receive(m1). · · · .receive(mn).send(t). We additionally want

to handle strands with sets, and so we also just insert all the

set operations (and similarly the checks and event assertions)

into the intruder strands in the order they happen in a concrete

execution. With this, our constraints are just like the strands

for honest agents but with the direction of send and receive

steps inverted, i.e., a send step from an honest agent becomes

a receive step in our constraints and vice versa. For these

reasons we define the syntax of our constraints to range over

strands. Similarly to the ordinary strands we call constraints

that only contains receive, send, equalities, and inequalities

for ordinary constraints. We will often reuse the operations

defined on strands for symbolic constraints, since they share

the same syntax, and we also make the assumption that the

bound variables occurring in a constraint are disjoint from its

free variables. Moreover, we define the intruder knowledge
ik(A) of a constraint A as the set of received messages:

ik(A) = {t | receive(t) occurs in A}.

An interpretation I for a constraint A (or just an interpre-
tation if dom(I) = V) is now defined to be a substitution

such that fv(A) ⊆ dom(I) and img(I) is ground. We then

Definition 2 (Constraint semantics):

I |=M,D,E 0 iff true
I |=M,D,E send(t).A iff M � I(t) and I |=M,D,E A
I |=M,D,E receive(t).A iff I |=M∪{I(t)},D,E A
I |=M,D,E t

.
= t′.A iff I(t) = I(t′) and I |=M,D,E A

I |=M,D,E (∀x̄. t � .= t′).A iff I |=M,D,E A and

I(δ(t)) �= I(δ(t′)) for all ground δ with domain x̄
I |=M,D,E insert(t, s).A iff I |=M,D∪{I((t,s))},E A
I |=M,D,E delete(t, s).A iff I |=M,D\{I((t,s))},E A
I |=M,D,E t ∈̇ s.A iff I((t, s)) ∈ D and I |=M,D,E A
I |=M,D,E (∀x̄. t � ∈̇ s).A iff I |=M,D,E A and

I(δ((t, s))) /∈ D for all ground δ with domain x̄
I |=M,D,E assert(e).A iff I |=M,D,E∪{I(e)} A
I |=M,D,E event(e).A iff I(e) ∈ E and I |=M,D,E A
I |=M,D,E (∀x̄. ¬event(e)).A iff I |=M,D,E A and

I(δ(e)) /∈ E for all ground δ with domain x̄

inductively define a model relation |=M,D,E between interpre-

tations and constraints where M , D, and E are respectively the

initial intruder knowledge, state of databases, and events—see

Definition 2.

Finally, we say that an interpretation I is a model of (or
solution to) a constraint A, written I |= A, iff I |=∅,∅,∅ A.

We can now prove some useful lemmas about the constraint

semantics. First, we have a lemma that we frequently apply

in proofs (without explicitly referencing it) that allows us to

split and merge constraints:

Lemma 1: Given a ground set of terms M , a ground

database mapping D, a ground set E of asserted events,

an interpretation I, and symbolic constraints A and A′, the

following holds:

I |=M,D,E A.A′ iff I |=M,D,E A and I |=M ′,D′,E′ A′

where M ′ = M ∪ ik(I(A)), D′ = db(insert(D).I(A)),
and E′ = E ∪ ev(I(A))

Secondly, we can prove a useful relationship between the

side-conditions C1 to C9 of the ground transition system and

the constraint semantics. First we define the notion of the dual
of a strand S by “swapping” the direction of receive and send
steps. Formally, dual(s) denotes the dual of the strand step s
defined such that dual(receive(t)) = send(t), dual(send(t)) =
receive(t), and dual(s) = s for any other step s. It is then

extended homomorphically to strands as expected. We will

interpret dual strands as symbolic constraints and under this

interpretation we can prove the following relationship:

Lemma 2: Given a ground state (S;M,D,E), a transaction

strand � ∈ S (condition C1), and a ground substitution σ with

domain fv(�) (condition C2), then the conditions C3 to C9

hold if and only if σ |=M,D,E dual(�).

B. Symbolic Transition System

Now that we have defined the syntax and semantics of

constraints we can construct a protocol transition system in

which we build up constraints during transitions. In this

379

symbolic transition system a symbolic state (S;A) consists

of a protocol S and a constraint A, and the initial state

(S0; 0) then consists of the initial protocol S0 and the empty

constraint 0. During transitions we then build up a constraint

by interpreting dual honest-agent strands as constraints:

Definition 3: A transition relation on symbolic states is

defined as:

(S;A)
�

=⇒• (S \ {�};A.dual(�)) if � ∈ S
We will now impose a well-formedness requirement on pro-

tocols; variables in honest-agent strands must either originate

from a received message or in a positive check (e.g., a set

query). In ordinary protocols there is nothing non-deterministic

in the behavior of honest agents, so all free variables in their

strands shall first occur in messages they receive. Now that we

add set operations, we extend well-formedness naturally to set

comprehensions: a set-membership check like x ∈̇ s allows the

agent to non-deterministically choose any element from s for

x—unless x is already constrained before, thus limiting the

choice accordingly.

We also require that reachable constraints in the symbolic

transition system are of a well-formed kind that is dual to

the well-formedness of protocols; every free variable of a

constraint represents either a message that depends on choices

the intruder can make (e.g., variables originating from send
steps), or originates from a positive check. To that end we

formally define constraint well-formedness first and then use

this definition to define protocol well-formedness:

Definition 4: A constraint A is well-formed w.r.t. variables
X (or simply well-formed when X = ∅) iff wf X(A) where

wf X(0) iff true
wf X(send(t).A) iff wf X∪fv(t)(A)

wf X(receive(t).A) iff fv(t) ⊆ X and wf X(A)
wf X(t

.
= t′.A) iff fv(t′) ⊆ X and wf X∪fv(t)(A)

wf X(insert(t, s).A) iff fv(t) ∪ fv(s) ⊆ X and wf X(A)
wf X(delete(t, s).A) iff fv(t) ∪ fv(s) ⊆ X and wf X(A)
wf X(t ∈̇ s.A) iff wf X∪fv(t)∪fv(s)(A)

wf X(assert(t).A) iff fv(t) ⊆ X and wf X(A)
wf X(event(t).A) iff wf X∪fv(t)(A)

wf X(a.A) iff wf X(A) otherwise

Here the set X collects the variables that have occurred in send
steps or positive checks. In other words, every free variable of

a well-formed constraint originates from either a send step, a

∈̇ step, an event step, or at the left-hand side of a
.
= step (or

a negative check such as an inequality, but in those cases the

new variables cannot be used elsewhere). We can then reuse

the definition of well-formedness of constraints to formally

define a notion of well-formedness of protocols:

Definition 5: A protocol S is well-formed iff for all strands

� ∈ S the symbolic constraint dual(�) is well-formed.

Note that the well-formedness requirement on t ∈̇ s allows

us to model protocols where we pick arbitrary elements from

sets—as in the keyserver example.

Well-formedness of reachable constraints is now easy to

prove. We write
w

=⇒∗ here to denote the reflexive-transitive

closure of
·

=⇒ where the label w = (σ1, �1), . . . , (σn, �n)

denotes a sequence of transition labels, and similarly
w′
=⇒•∗

denotes the reflexive-transitive closure of
·

=⇒• where w′ =
�1, . . . , �n.

Lemma 3 (Well-formedness of reachable symbolic con-
straints): If S0 is a well-formed protocol and (S0; 0)

w
=⇒•∗

(S;A) then A is a well-formed symbolic constraint and S is

a well-formed protocol.

We now prove that the symbolic and ground transition sys-

tems are equivalent. Essentially, if we consider for every reach-

able symbolic state (S;A) and every model I of A the cor-

responding ground state (S; ik(I(A)), db(I(A)), ev(I(A))),
then we obtain exactly the reachable states of the ground

transition system:

Theorem 1 (Equivalence of transition systems): For any

protocol S0,

{(S;M,D,E) | ∃w. (S0; ∅, ∅, ∅) w
=⇒∗ (S;M,D,E)} =

{(S; ik(I(A)), db(I(A)), ev(I(A))) |
∃w. (S0; 0)

w
=⇒•∗ (S;A) and I |= A}

C. Reduction to Ordinary Constraints

Definition 6 (Translation of symbolic constraints): Given a

constraint A its translation into ordinary constraints is denoted

by tr(A) = tr∅,∅(A) where:

trD,E(0) = {0}
trD,E(insert(t, s).A) = trD∪{(t,s)},E(A)
trD,E(delete(t, s).A) = {

(t, s)
.
= d1. · · · .(t, s) .

= di.
(t, s) � .= di+1. · · · .(t, s) � .= dn.A′ |
D = {d1, . . . , di, . . . , dn}, 0 ≤ i ≤ n,
A′ ∈ trD\{d1,...,di},E(A)}

trD,E(t ∈̇ s.A) = {(t, s) .
= d.A′ | d ∈ D,A′ ∈ trD,E(A)}

trD,E((∀x̄. t � ∈̇ s).A) = {
(∀x̄. (t, s) � .= d1). · · · .(∀x̄. (t, s) � .= dn).A′ |
D = {d1, . . . , dn}, 0 ≤ n,A′ ∈ trD,E(A)}

trD,E(assert(e).A) = trD,E∪{e}(A)
trD,E(event(e).A) = {e .

= e′.A′ | e′ ∈ E,A′ ∈ trD,E(A)}
trD,E((∀x̄. ¬event(e)).A) = {
(∀x̄. e � .= e1). · · · .(∀x̄. e � .= en).A′ |
E = {e1, . . . , en}, 0 ≤ n,A′ ∈ trD,E(A)}

trD,E(a.A) = {a.A′ | A′ ∈ trD,E(A)} otherwise

The key to our typing result—that allows us to benefit from

existing typing results—is to first reduce the problem of

solving general intruder constraints (with set operations) to

solving ordinary intruder constraints (without set operations).

To that end we introduce a sound and complete translation

mechanism that removes the stateful parts of constraints, for

instance those reachable in
·

=⇒•∗. The translation tr(·) is

then defined in Definition 6 where D is a database mapping

and E is a set of events that records what has occurred in

the constraint so far. Intuitively, the set trD,E(·) of reduced

constraints represents a disjunction of ordinary constraints, and

since we cannot represent disjunctions in our constraints we

use sets instead. Note also that D and E will always be finite

380

and that this does not mean that we are restricting ourselves to

only finitely many sessions. Rather, in each protocol execution

only finitely many things have happened and D and E then

represents the state of the sets and events respectively. Hence

the translation always produces a finite set and for this reason

we can interpret the set as a finite disjunction of constraints.

We will now explain how each set operation is translated

(the event steps are translated similarly). The purpose of the

translation tr(A) is to capture precisely the models of A
using only a finite number of ordinary constraints, so we will

proceed with the explanation with this in mind. The simplest

case is the insert(t, s) case, and here we record the insertion

for the remaining translation. Now consider the t ∈̇ s case.

For any model I of t ∈̇ s with a given database mapping

D = {(t1, s1), . . . , (tn, sn)} (where each entry of D might

contain variables) we know that I((t, s)) ∈ I(D). In other

words, some check (t, s)
.
= d for some d in D has I as a

model if and only if t ∈̇ s has I as a model, and by then

constructing one constraint for each di ∈ D where we require

(t, s)
.
= di we get the desired result. For the ∀x̄. t � ∈̇ s case

we know that I(δ(t)) �= I(δ(t′)) or I(δ(s)) �= I(δ(s′)) for

any (t′, s′) ∈ D and ground substitution δ with domain x̄. In

other words, I(δ((t, s))) �= I(δ((t′, s′))) for all (t′, s′) ∈ D
and this is exactly what the translation expresses. We also have

to make sure that the newly introduced quantified constraints

do not capture any variables of D. This is, in fact, the case

for all constraints reachable in our symbolic transition system,

since we have previously assumed all strands of protocols to

have disjoint variables from each other and also that the bound

and free variables of strands are disjoint. Thus this property

also holds for the reachable constraints. The most interesting

case is the translation of delete(t, s) steps. Since terms may

contain variables we do not know a priori which insertions to

remove from D, but we still need to ensure that t has actually

been removed from the set s in the remaining constraint

translation—otherwise the translation would be unsound. We

accomplish this by partitioning the insertions D into those

{d1, . . . , di} that must be equal to (t, s) in the remaining

translation and the remaining D\{d1, . . . , di} that are unequal

to (t, s), and we thus add equality and inequality constraints

to express this partitioning. Consequently, we then remove

{d1, . . . , di} from D for the remaining translation. Note that

there will in general be cases where the choice of partitioning

results in an unsatisfiable constraint, but since we construct

constraints for all possibilities the translation still captures

exactly the models of the original constraint. Note also that

this partitioning of D implies that an exponential number of

constraints are constructed in this case, namely one for each

subset of D. The translation is meant to be used purely as

a problem reduction—in a verification procedure one could

ensure that trivially unsatisfiable translations are ignored to

reduce the number of produced constraints.

Finally, we show that tr is indeed a reduction, i.e., that

tr(A) captures exactly the models of A, and that tr preserves

well-formedness:

Theorem 2 (Semantic equivalence of constraints and their

translation): I |= A if and only if there exists A′ ∈ tr(A)
such that I |= A′. Also, if A is well-formed and A′ ∈ tr(A)
then A′ is well-formed.

V. LIFTING TYPING RESULTS TO STATEFUL PROTOCOLS

So far everything has been untyped. We will now consider

a simple type system in which we annotate terms with types.

In particular, each message pattern that an honest agent in a

protocol expects to receive will have an intended type, and

in a typed model we restrict all substitutions to well-typed

ones. In a typed model the intruder is therefore effectively

restricted to only sending messages which conform to the

types. For protocols that satisfy a syntactic requirement—

type-flaw resistance—we then prove that this restriction is

sound, and this result we call a typing result. For proving our

result we use the reduction tr from constraints with sets to

ordinary constraints, enabling us to use existing typing results

for protocols without sets and “lift” them to stateful protocols.

A. Typed Model

The type system we introduce now uses a structure for types

which is similar to the structure of terms (and so we will

be able to reuse all notions of terms for types as expected).

Recall that our notion of terms are parameterized over a set

Σ of symbols. The idea is to use almost the same notion for

our types, only not allowing constants C ⊆ Σ and variables

in types and instead use a finite set of atomic types Ta that

could include, for instance, agent. In addition to atomic types

we also have composed types. For instance, in our running

example we use private keys of the form inv(PK). This term

has the composed type inv(value), where PK has type value.

We can also assign the type inv(value) to variables and we

are therefore not limited to only using atomic keys.

We define the intended types of a protocol specification by

a typing function Γ that assigns a type to every term; it can

be any function that satisfies the following properties:

1) Γ(c) ∈ Ta for every c ∈ C.

2) Γ(f(t1, . . . , tn)) = f(Γ(t1), . . . ,Γ(tn)) for every f ∈
Σn \ C and terms ti.

The first of these axioms assigns atomic types to constants

whereas the second axiom assigns composed types to com-

posed terms. We also assign types to variables and we only

require here that symbols occurring in a type have been applied

with the correct number of parameters, and that constants from

C do not appear in the types of variables. The function Γ is

moreover extended to sets of terms as expected.

For instance, in our running example we might define Ta =
{value, agent, attacktype} where Γ(a) = agent for all users

and servers a, Γ(pk) = value for any element pk of a set,

and Γ(attack) = attacktype. Similarly, the variables Ui have

type agent and the variables PK u,j , PK i, and NPK i have

type value. All short-term public keys have type value and

all short-term private keys have type inv(value). Since we use

terms to model families of sets we have as a consequence

that, e.g., keyrings of the form ring(u), for users u, have type

ring(agent).

381

For the typing result to hold we need to ensure that the

intruder always has access to arbitrarily many terms of any

type (otherwise he would not necessarily be able to always

make a well-typed choice). More formally, we partition the

set of public constants Cpub into the countably infinite sets

Cα1

pub , . . . , Cαn

pub where Ta = {α1, . . . , αn} and Γ(Cαi

pub) =
{αi} for all i ∈ {1, . . . , n}. This models that the intruder

has access to an unbounded supply of fresh constants of any

atomic type. To ensure the same for composed types, there is

a small technical problem, namely that we want functions like

inv(·) to be private, but this would lead to a quite complicated

model to ensure that the intruder can do this. So for the sake

of this section we make the following technical restriction:

we assume that all non-constant function symbols Σ \ C are

public. To model a private function f of arity n > 0, we can

encode as a public function symbol f ′ of arity n + 1 where

the additional argument is filled in all protocol strands with a

secret constant secf that the intruder does not know. Note that

this simple encoding of private functions is merely used here

in the typing result section to make the development smooth.

With this construction the intruder can always generate well-

typed instances of any type.

Finally, in the typed model we restrict ourselves to only

consider well-typed solutions to intruder constraints. To cap-

ture this idea we define a predicate on substitutions stating

that every variable is mapped to a term of the same type for

substitutions satisfying this property:

Definition 7: A substitution δ is well-typed iff Γ(x) =
Γ(δ(x)) for all x ∈ V .

Conversely, substitutions that are not well-typed are ill-typed.

B. Type-Flaw Resistance

In this subsection we will define a sufficient syntactical

condition for protocols (i.e., verifying the condition does not

require an exploration of the state space of a protocol) that

allows us to prove our typing result for protocols that have this

property. This condition will be named type-flaw resistance
and it is similar to the typing result conditions of [1], [17].

First, we will define a set of sub-message patterns SMP(M)
for sets of message patterns M :

Definition 8 (Sub-message patterns): The set of sub-message
patterns, SMP(M), of a set of terms M is the least set closed

under the following rules:

1) If t ∈ M then t ∈ SMP(M)
2) If t ∈ SMP(M) and t′ is a subterm of t

then t′ ∈ SMP(M)
3) If t ∈ SMP(M) and δ is a well-typed substitution

then δ(t) ∈ SMP(M)
4) If t ∈ SMP(M) and Ana(t) = (K,T)

then K ⊆ SMP(M)

The intention is that we can apply SMP to the message

patterns trms(S) of a protocol S , and SMP(trms(S)) is

then an over-approximation of the messages that the intruder

might ever learn from the honest agents of S (or send out

to the honest agents) in any well-typed protocol run. The

definition is generalized over an arbitrary set of terms, so

that we can also apply SMP to messages occurring in a

strand or a constraint. Consider, for instance, the set of sub-

message patterns SMP(trms(A)) built from the terms that

occur in some well-formed constraint A. The set then covers

all message patterns of every message that might be sent over

the network, and any pattern in a check made by an honest

agent, for well-typed choices of the variables in the patterns.

Note that we also close the set of sub-message patterns

under terms occurring during decomposition. (For proving a

typing result for ordinary constraints one should prove that the

constraints arising through constraint reductions never “fall

out” of the set of sub-message patterns. Here one needs to

make sure that the terms arising from decomposition are also

captured by the sub-message patterns, since the keys usually

end up in a reachable constraint in the constraint reduction

system.) Since we assume that the terms obtained from a

decomposition must be subterms of the original term, however,

we already cover those terms in the second rule of Definition 8

and so we only include the keys used during decomposition

in the fourth rule.

We will now require that all pairs t, t′ of sub-message

patterns that are not variables (i.e., are non-variable) can only

be unified if their types match, and this will be our main

condition of type-flaw resistance. This is a sufficient require-

ment to distinguish terms of different types and it therefore

enables us to argue that ill-typed choices are unnecessary.

In a nutshell, the typing result works as follows: with the

condition of type-flaw resistance we ensure that the intruder

cannot take a message generated by an honest agent (or a non-

variable subterm of it) and use it in a different “context” of

the protocol, i.e., a non-variable subterm of a different type.

The constraint-based representation then allows one to argue

that no attack relies on an ill-typed choice by the intruder:

one can show that there is a sound, complete, and terminating

reduction procedure for (ordinary) intruder constraints that will

instantiate variables only upon unification of two elements of

SMP—and such a unifier is guaranteed to be well-typed for

a type-flaw resistant protocol. All remaining uninstantiated

variables can be instantiated arbitrarily by the intruder, in

particular in a well-typed way. Thus one can conclude that

there is a well-typed solution if there is one at all.

Definition 9 (Type-flaw resistance): First, let the set opera-
tion tuples of a constraint (or strand) A be defined as:

setops(A) = {(t, s) | insert(t, s) or delete(t, s) or t ∈̇ s or

(∀x̄. t � ∈̇ s) for some x̄ occurs in A}
and extend this definition to protocols S as follows:

setops(S) =
⋃
�∈S

setops(�)

Then we define type-flaw resistance as follows:

1) A set of terms M is type-flaw resistant iff for all t, t′ ∈
SMP(M) \ V it holds that Γ(t) = Γ(t′) if t and t′ are

unifiable.

2) A strand (or constraint) A is type-flaw resistant iff

trms(A) ∪ setops(A) is type-flaw resistant, all bound

382

variables of A have atomic type, and for any terms t, t′

and variable sequences x̄:

a) If t
.
= t′ occurs in A then Γ(t) = Γ(t′) if t and t′ are

unifiable.

b) If ∀x̄. t � .= t′, insert(t, t′), delete(t, t′), t ∈̇ t′, or ∀x̄. t � ∈̇
t′ occurs in A then Γ(fv(t) ∪ fv(t′)) ⊆ Ta.

c) If assert(t) occurs in A then t /∈ V and Γ(fv(t)) ⊆ Ta.

d) If event(t) occurs in A then t /∈ V .

e) If ∀x̄. ¬event(t) occurs in A then Γ(fv(t)) ⊆ Ta.

3) A protocol S is type-flaw resistant iff the set trms(S) ∪
setops(S) is type-flaw resistant and for all � ∈ S the

strand � is type-flaw resistant.

The main type-flaw resistance condition is defined in Defi-

nition 9(1) and it states that matching pairs of messages that

might occur in a protocol run must have the same type. For

equality steps t
.
= t′ any solution I must be a unifier of t

and t′, and so they should have the same type. If t
.
= t′ is

unsatisfiable (i.e., t and t′ are not unifiable) then their types

do not matter. Hence we can later prove that our reduction

tr preserves type-flaw resistance, even if tr produces some

unsatisfiable equality steps. For inequality steps ∀x̄. t � .= t′ we

only need to require that the variables occurring in x̄, t, and t′

are atomic. For the remaining constraint steps note that when

we translate a set operation such as delete(t, s) we construct

steps of the form (t, s)
.
= (t′, s′) and (t, s) � .= (t′, s′). Thus we

must require all variables of t, t′, s, and s′ to be atomic, and if

(t, s) and (t′, s′) are unifiable then they should have the same

type. By requiring that the set trms(A) ∪ setops(A) is type-

flaw resistant we have that the translated set operations must

have the same type if they are unifiable. Similar conditions

are needed for the event steps, but we can here relax the re-

quirements slightly since their translations are simpler. Finally,

a protocol is type-flaw resistant whenever its strands are, and

we must additionally require here that trms(S)∪setops(S) is

type-flaw resistant because terms from different strands might

be unifiable.

Note that if we allow for composed types for variables in in-

equalities then we can easily construct constraints which only

have ill-typed solutions. For instance, consider the inequality

∀x. y � .= f(x) where Γ(y) = f(Γ(x)). For any instance f(c)
of y where Γ(f(c)) = Γ(y) there is an instance of x (namely

c) that does not satisfy the inequality. Hence the constraint

has no well-typed solution. However, there does exist ill-

typed solutions; since we are working in the free algebra

terms are equal if and only if they are syntactically equal,

and hence any instance of y that is not of the form f(c) for

some c would be a solution to the inequality. [23] has no

such restrictions on the type of universally quantified variables

and we thus found a counter-example to its typing result (see

section V-D). Thus it seems that a typing result for stateful

protocols necessarily requires a carefully restricted setting like

our set-based approach.

As an example of type-flaw resistance we show that the

keyserver protocol is type-flaw resistant. One approach to

proving type-flaw resistance of a protocol S is to first find

a set of strand steps M that subsumes the steps of S as well-

typed instances. By proving type-flaw resistance of all steps in

M , and of the set of terms occurring in M , we can conclude

that S must be type-flaw resistant. For our example we can

consider the following set, where Γ({A,S, U}) = {agent}
and Γ(PK) = value:

M = {assert(attack), delete(PK , valid(U)),
∀A. PK � ∈̇ revoked(A), ∀A. PK � ∈̇ valid(A),
insert(PK , valid(U)), insert(PK , ring(U)),
insert(PK , revoked(U)),PK ∈̇ valid(U),PK ∈̇ ring(U),
receive(inv(PK)), receive(sign(inv(PK), 〈U,PK 〉)),
send(inv(PK)), send(PK), send(sign(inv(PK), 〈U,PK 〉))}

Hence all variables have atomic type and so the non-constant,

non-variable sub-message patterns of M consist of the com-

posed terms and subterms closed under well-typed variable

renaming and well-typed instantiation of the variables with

constants. It is easy to see that each pair of non-variable terms

among these composed sub-message patterns have the same

type if they are unifiable. Thus the total set of terms of the

protocol—and in each strand—is type-flaw resistant.

What remains to be shown is that each strand step in

M satisfy requirement 2(b) and 2(c) of Definition 9 (the

remaining requirements are vacuously satisfied). The only

event step occurring in M is assert(attack), and so 2(c) is

satisfied. For the set operations occurring in M it is easy to

see that the set terms are composed and only contains variables

of atomic type, and that all elements PK of sets are of type

value. Thus the final requirement, 2(b), is also satisfied.

In general, type-flaw resistance is in our opinion a rea-

sonable property to require from protocols and their imple-

mentations: most importantly one should not have messages

that encrypt raw data, like a nonce or a key, without any

bit of information what the data means, because this opens

the door for the intruder to reuse messages from honest

agents that he cannot produce himself (and whose precise

content he may not even know) in a different context. In

fact, most concrete implementations satisfy this. Our result

extends previous typing results in the scope of protocols that

can be considered to stateful protocols; the type-flaw resistance

requirement is thus also extended accordingly, however this is

in some sense also conservative: all protocols that are type-

flaw resistant according to the notion of [17] are also type-

flaw resistant according to our Definition 9. In a nutshell,

the additional requirements for set operations and events are

simply to exclude that sets and events can be used as an

“unchecked side-channel” where type-flaws attacks can creep

in. The requirements on set operations are, in fact, only

as strict as the requirements on inequalities and the tuples

(·, ·) that arise in the translation tr . In particular, we support

arbitrary types for set elements—the only restrictions being

that the variables in set elements have atomic types and that

unifiable set elements in the same set have the same type. Thus

we support set elements of atomic types, composed types, and

even non-homogeneous sets (i.e., sets containing elements of

different types). In the extended version [18] we give further

383

examples to illustrate that our notion works on real-world

examples.

Finally, we prove that reachable constraints A, and their

translations tr(A), are type-flaw resistant whenever the initial

protocol is:

Lemma 4 (Type-flaw resistance preservation): If S0 is a

type-flaw resistant protocol and (S0; 0)
w

=⇒•∗ (S;A) then

both S and A are type-flaw resistant. Moreover, if A′ ∈ tr(A)
then A′ is also type-flaw resistant.

C. The Typing Result

All that remains is to prove the actual typing result for state-

ful protocols. We use here the Isabelle-formalized typing result

of [17] to obtain well-typed models of ordinary constraints.

This result has already been extended to support equalities

t
.
= t′ and inequalities ∀x̄. t � .= t′ in strands and constraints,

and to support the Ana theories that we use in this paper. The

formalization is available at:

https://people.compute.dtu.dk/samo/typing-soundness/ (*)

Thus we get from Theorem 4 of (*) the following result

(note that their theorem is on the level of protocol transition

systems, i.e., on constraints reachable in a symbolic protocol

transition system =⇒•, but that this can easily be used to prove

a result on constraints A since ({dual(A)}; 0) =⇒•∗ (∅;A)):

Theorem 3 (Typing result on ordinary symbolic constraints):
If A is well-formed and ordinary, I |= A, and A is type-flaw

resistant, then there exists a well-typed interpretation Iτ such

that Iτ |= A.

By using our reduction tr together with Theorem 3 on

ordinary constraints we can prove the following:

Theorem 4 (Typing result on symbolic constraints): If A is

well-formed, I |= A, and A is type-flaw resistant, then there

exists a well-typed interpretation Iτ such that Iτ |= A.

Proof 1: From Theorem 2, Lemma 4(1), and the assump-

tions we can obtain a type-flaw resistant ordinary constraint

A′ such that A′ ∈ tr(A) and I |= A. Hence, we can obtain a

well-typed interpretation Iτ such that Iτ |= A′ by Theorem 3.

By applying Theorem 2 again we can conclude the proof.

With this intermediate result we can prove our main theo-

rem:

Theorem 5 (Typing result for stateful protocols): If S0

is a type-flaw resistant protocol, and (S0; ∅, ∅, ∅) w
=⇒∗

(S;M,D,E) where w = (σ1, �1), . . . , (σk, �k) then there

exists a state (S;M ′, D′, E′) such that (S0; ∅, ∅, ∅) w′
=⇒∗

(S;M ′, D′, E′) where w′ = (σ′
1, �1), . . . , (σ

′
k, �k) for some

well-typed ground substitutions σ′
1, . . . , σ

′
k.

Proof 2: By using the equivalence between the ground and

the symbolic transition system (Theorem 1) we need only

to show that reachable constraints in the symbolic transition

system have well-typed models. Since reachable constraints

for type-flaw resistant protocols are also type-flaw resistant

(Lemma 4(2)) we need only to apply Theorem 4 to the

reachable constraints. Thus we obtain the desired result.

Declarations:

ik : pred (untyped)
X,n : nonce
Y : f(nonce)
attack : pred ()

Initial state:

ik(n)

Transition rules:

ik(Y). ¬∃X : Y = f(X) ⇒ attack()

Horn clauses:

∀X : ik(X) → ik(f(X))

Figure 1. A flawed TASLan specification.

D. A Mistake in a Related Work

Typing for stateful systems has also been considered in [23];

some of its theorems have only proof sketches. Rigorously

formalizing however the lazy intruder and the typing result

(parts of which are now formalized in Isabelle), we have dis-

covered several significant mistakes and we can demonstrate

with counter-examples, that the result of [23] does not hold in

this generality as we explain in detail now.

[23] allows a quite general specification of the intruder by a

set of Horn clauses. There are restrictions of the form of these

Horn clauses [23, Sec. 2.1]: each clause expresses either that

the intruder can generate new terms by applying a function

symbol to known terms (this corresponds to public function

symbols in our work) or how the intruder can analyze terms,

somewhat corresponding to our specification of Ana. For that,

the requirement on the term obtained by the analysis is only

that it must be a proper subterm of the term being analyzed.

This allows for instance for the following Horn clause (where

the predicate ik represents messages known by the intruder):

ik(f(g(x)) → ik(x)

Suppose now f is a public function and the intruder knows

g(s) for a secret s. Then he can with the above rule apply

f to g(s) to obtain s. Such a step is however not covered

by the constraint reduction procedure in [23], since analysis

steps can only be applied to terms that the intruder directly

knows, not ones he has to first compose. Now this leads to

a counter-example for the typing result if we assume that

f is not a public symbol, but there is an honest strand

receive(x).send(f(x)) with variable x an atomic type, say,

nonce. If the intruder knows g(s) and s is a secret, then there

is an ill-typed attack with x = g(s), but no well-typed attack.

There is a second problem that there is no restriction on

the type of universally quantified variables in [23]. Indeed

composed-typed variables can also break the typing result as

we have shown before. For instance, consider the inequality

∀x. y � .= f(x) where Γ(y) = f(Γ(x)). For any instance

f(c) of y there is an instance of x (namely c) that does not

satisfy the inequality. Hence the constraint has no well-typed

solution. However, there does exist ill-typed solutions; since

384

we are working in the free algebra terms are equal iff they

are syntactically equal, and hence any instance of x that are

not of the form f(c) for some c would be a solution to the

inequality. The ASLan specification in Figure 1 demonstrates

this issue. Here the attack predicate cannot be derived if Y is

instantiated with a well-typed instance in the transition rule.

It turns out that the result from the present paper is sufficient

to fix the mistakes of [23] by applying the same restrictions

on the intruder deduction and on composed-typed variables.

A fixed version of [23], highlighting the changes, is available

at https://people.compute.dtu.dk/samo/taslanv3.pdf .

VI. CASE STUDIES

In this section we discuss how our typing result is applicable

in practice on several protocols, in particular that many pro-

tocols already satisfy the requirements of type-flaw resistance

or require only minor changes to do so.

Due to lack of space we will only consider an extension

of the keyserver example here. In the extended version [18]

we also consider the examples from the AIF and AIF-ω tools

(some of those examples have similarly been considered in

SAPIC, in particular PKCS#11 and ASW, but in a way that

violates the corresponding type flaw-resistance requirements).

A. Automatically Checking Type-Flaw Resistance

One crucial point of the typing result is that it is relatively

easy to check, namely by statically looking at the format of

messages rather than traversing the entire state space, and that

this can also be done automatically as a static analysis of a

user’s specification before verification in a typed model.

Note that SMP(M) is in general infinite, but it is sufficient

to check the following finite representation SMP0 for type-

flaw resistance: starting with SMP0 = M , we first ensure

that for every message t ∈ SMP0 that contains a variable

x of a composed type f(τ1, . . . , τn), we ensure that also

[x �→ f(x1, . . . , xn)](t) ∈ SMP0 for some variables x1 :
τ1, . . . , xn : τn that do not occur in t. (Even if some τi are

themselves composed types, this can be done by adding finitely

many messages, since all type expressions are finite terms.)

Next, we close SMP0 under subterms and key terms of Ana.

Finally, let us ensure by well-typed α-renaming that all terms

in SMP0 have pairwise disjoint variables. Note that SMP0 is

a representation of SMP(M) in the sense that every SMP(M)
term is a well-typed instance of an SMP0 term. Now the

condition that every pair s, t ∈ SMP0 \ V with Γ(s) �= Γ(t)
has no unifier, is equivalent to the type-flaw resistance of M .

Proof sketch: Note that SMP0 ⊆ SMP(M), giving us one

direction of the equivalence. For the other direction, suppose

there are any s, t ∈ SMP(M) \ V such that Γ(s) �= Γ(t).
We need to show that s and t are not unifiable. Since SMP0

represents SMP(M), there exists terms s0, t0 ∈ SMP0 and

well-typed substitutions θ1 and θ2 such that s = θ1(s0) and

t = θ2(t0). Hence also Γ(s0) �= Γ(t0), and so s0 and t0 are

not unifiable by assumption. Thus s and t cannot be unified

as well because s0 and t0 do not share variables.

Note that for protocols with an infinite number of strands

the initial set M should be chosen carefully to prevent an

infinite SMP0. In our keyserver example, for instance, we can

choose for M a more general and finite set where all terms

and set operations of the protocol are well-typed instances of

terms in M—such as in the type-flaw resistance example of

section V-B. This is sufficient to ensure finiteness of SMP0.

B. Extension of the Keyserver Example

We will now illustrate by a small example how type-

flaw problems can arise in practice, how type-flaw resistance

is violated in such a case, and how the situation can be

fixed. Suppose for the key server example, we augment the

protocol with an exchange where a user can prove to be alive,

formalized by having for each user u and each session j ∈ N

the following transaction strand:

receive(Nj).PK u,j ∈̇ ring(u).send(sign(inv(PK u,j), Nj))

where all Nj and PK u,j have atomic types. The idea is that

anybody can send the user a challenge Nj , and u answers

with a signature on it. In this blunt form it is obviously

a bad idea, since an intruder can send an arbitrary term

instead of Nj . Indeed the protocol now violates type-flaw

resistance: sign(inv(PK u,j), Nj) has a unifier with the normal

update message sign(inv(PK i), 〈Ui,NPK i〉), while they have

different types. The general recommendation is thus to use

some form of tag to indicate what the messages should

mean. In fact, many protocol standards already describe a

concrete message format, e.g., in this case that nonces and

public keys have certain byte lengths, or even fields that

indicate the length, if it is not fixed; in contrast many protocol

models model only abstractly the exchanged information as

tuples. It is thus recommended to model the concrete message

formats by transparent functions, i.e., functions like pair that

the intruder can compose and decompose, and check that

the concrete formats of the protocol standard are disjoint so

that a confusion is impossible. In this case we may have

functions update(U,PK) that is used in the update message

and functions challenge(N) and response(N) to model the

challenge response protocol to have rather the following form:

receive(challenge(Nj)).
PK u,j ∈̇ ring(u).send(sign(inv(PK u,j), response(Nj)))

One may argue that the formatting of the challenge message

is irrelevant since it is in cleartext. We suggest, however, to

use formatting information also here, since it is in fact good

practice for implementations anyway and does not really hurt.

With the change we now have again type-flaw resistance

and our typing result is applicable.

VII. CONNECTIONS TO OTHER FORMALISMS

We have introduced the formalism of transaction strands

to have a simple and mathematically pure formalism as a

protocol model for our result without the disturbance of the

many technical details of various protocol models. We want

to illustrate now that our result can nonetheless be used in

385

various protocol models, but we only sketch the main ideas

and discuss also limitations of our typing results.

Note that the core of our result is proved on symbolic

constraints (intruder strands) of a symbolic transition system.

Connecting another formalism with our typing result requires

only two aspects. First, one needs to define the semantics for

the formalism in terms of a symbolic transition system with

constraints (including set operations, equalities, and inequal-

ities). Second, one needs to transfer the notion of type-flaw

resistance, so that a type-flaw resistant specification in the

formalism will only produce type-flaw resistant constraints.

We have done this for transaction strands with detailed proofs.

Due to the variety of other formalisms and their technical

details, we only sketch in the following the ideas for the most

common constructions.

1) AIF-ω and Rewriting: Our transaction strands are in

some sense a purified version of AIF-ω. In a nutshell, it

describes protocols by a set of rewrite rules for a state

transition system, where each state is a set of facts like ik(m)
to denote that the intruder knows message m. It is thus also

similar to other rewriting based languages like Maude-NPA or

the AVANTSSAR ASLan.

One can translate each AIF-ω rule into transaction strands as

follows. Every intruder knowledge fact ik(m) on the left hand

side of a rule corresponds to receiving a message m, and on

the right hand side to sending a message m. If the expression

t in s occurs on the left-hand side, then the transaction strand

must contain t∈̇s; if the same expression does not occur on the

right-hand side, then the transaction must include delete(t, s).
If the expression t notin s occurs on the left-hand side, then the

transaction must contain ∀x̄. t � ∈̇ s where x̄ are the variables

that on the left-hand side only occur in notin expressions.

Finally, if t in s occurs on the right-hand side but not on the

left, then the transaction must include insert(t, s). All other

facts of AIF-ω are persistent (i.e., once true, they remain true

in all successor states), therefore we can model them as events

in transaction strands, using event(e) for the left-hand side

facts and assert(e) for right-hand side facts. Note that the

order of all these actions in the transaction matters: first we

should have all receiving messages, checking for events and set

memberships, then modifying sets and sending the outgoing

messages. Still one may wonder what happens in the following

AIF-ω rule: x in s.y in s ⇒ x in s. If x = y then this

rule is contradictory, and the semantics of AIF-ω excludes

such substitutions. For that reason, we also have to include

the inequality x �= y to the transaction to exactly follow

the AIF-ω semantics. In all remaining cases the inner order

of the actions is actually irrelevant, but these subtle points

were one of the motivations to introduce transaction strands.

Finally, note that the rules from AIF-ω may have variables

that represent any value from a countable set of constants, as

well as the creation of fresh values. Since transaction strands

do not have a mechanism for creating fresh values and free

variables are not allowed, one must instantiate these variables

appropriately, producing a countable set of transaction strands

from finitely many rules.

With this translation from AIF-ω rules to transaction

strands, we also directly obtain a semantics using symbolic

constraints and actually immediately transfer the notion of

type-flaw resistance from transaction strands with the obvious

adaptations. However, type-flaw resistance will not be directly

satisfied for typical AIF-ω specifications immediately, because

they would contain rules for the intruder that contain untyped

variables. While for honest agents, it is not a restriction

to declare the intended type for each variable, the intruder

deduction rules should be applicable to messages of any
type. Thus, we have to make the reservation that the intruder

deduction of an AIF-ω specification must be within the bounds

of the intruder model we have used here, namely composition

with public functions and decomposition according to an Ana
theory. This is indeed possible for all the standard operators

like symmetric and asymmetric encryption, signatures, hashes,

and transparent functions like pair; operators that require alge-

braic equations like xor are however not supported. We come

back to this when discussing process calculi and reduction

rules below.

Finally, note that other rewriting based formalisms like

Maude-NPA (or the closely related linear logic rules) are

not based on sets, but usually multi-sets of facts, and they

are not persistent, i.e., facts can be removed by transitions,

which cannot directly be modeled by our notion of events

in transaction strands. There is however a way to encode

this using sets: for each fact where we want to encode

non-persistent behavior, we introduce a corresponding event

with one more argument. For this argument we use a fresh

constant whenever a fact is introduced by a transition and the

argument becomes member of a special set active. Whenever

the fact shall be removed, we simply remove the corresponding

constant from the set active. This allows for modeling both

the multi-set aspect as well as the non-persistent aspect.

2) Set-π and Process Calculi: Process calculi are a very

popular way of specifying protocols. While they can immedi-

ately describe stateful systems (due to Turing completeness),

this is usually not at a level that directly works with existing

verification methods so well. Therefore several extensions have

been proposed, namely Set-π for set operations similar to AIF-

ω, and SAPIC for adding a notion of maps. One gap to the

rewriting formalisms above is that process calculi do not have

the notion of an atomic transaction. Therefore both Set-π and

SAPIC rely on the use of locks, i.e., in order to read and write

on a set or (an element of) a map, one has to first lock it, and

no other process can get a lock on the same item before it

is unlocked. It is possible to give a translation to transaction

strands, modeling explicitly the locks by an additional set that

stores which of the other sets are locked. However, it is a bit

more convenient to directly give a semantics as a symbolic

transition system, i.e., producing symbolic constraints in each

execution.

However, before we can do that, there is another obstacle

to overcome: it is convenient to model in process calculi

decryption and checking of messages explicitly by a let
construct and reduction rules. For instance if the public

386

function crypt represents asymmetric encryption and inv the

private function that maps from public to private keys, for

decryption one would introduce a new operator dcrypt and

have the reduction rule dcrypt(crypt(x, y), inv(x)) → y. Then

receiving and decrypting a message for instance would be

in(u).let v = dcrypt(u, inv(k)) in P else Q. Thus process P
is executed if the received message u is indeed encrypted with

k (and binding v to the content of that message), otherwise Q
is executed. Note that the destructor dcrypt does not occur as

part of “normal” messages.

Our typing result can only support such destructors if we can

express such decryption operations using an Ana theory. In the

example we would have Ana(crypt(x, y)) = ({inv(x)}, {y})
and we would translate the above example process into

in(u). if (crypt(k, ?v)
.
= u) then P else Q. Note that here

we have actually made an extension of Set-π, namely adding

the concept of equalities from transaction strands to the if
construct, including that newly introduced variables on the

left-hand side are binding, here v, and we mark this by a

question mark as is standard. This is formally defined by the

symbolic semantics below.

Besides destructors, process calculi also commonly

use reduction rules for checks on messages, e.g.,

verify(sign(inv(x), y), x) → true that can be used

to verify a signature, for instance: in(u). let true =
verify(u, k) in P else Q. For this, we do not need to have a

corresponding line in Ana, rather we can model this directly

by an equality: in(u). if sign(inv(k), ?z)
.
= u then P else Q.

With this, all the standard operators can be supported, except

those that require algebraic equations like xor.

If we now assume Set-π without let but instead with

equations in if, we can define its semantics as a symbolic

transition system as in Figure 2 (using notation and labels

similar to the original ground semantics) where α(P) is a

fresh renaming of all variables in P that are bound by an in
statement, and the translation ctr(b) of a condition b is defined

as follows. Recall that we had used the notion of binding

occurrences also in equations (and logically this can also be

done in set membership checks) and marked the respective

occurrence by a question mark, like ?x = Let in the

following x̄ be the set of variables of a condition that are

marked with the question mark:

ctr(s
.
= t) = s

.
= t ctr(s � .= t) = ∀x̄. s � .= t

ctr(t ∈̇ s) = t ∈̇ s ctr(t � ∈̇ s) = ∀x̄. t � ∈̇ s

Note that the locking is not checked upon set operations,

as this is done statically in Set-π. Since in general sets can

have terms with variables, we have formulated the check as

inequalities in the LCK rule.

In order to check type-flaw resistance, one now needs to

consider the translation from let-statements into equations

(which can be done transparent to the user) and then the type-

flaw resistance property is almost as before, only we need

to consider each condition positive and its negation (unless

the else case is empty). Note that sometimes this may lead

to violations of type-flaw resistance when we have variables

NIL : P � {(0, ∅)},A → P,A
COM1 : P � {(in(x).P1, L1)},A →

P � {(P1, L1)},A.send(x)
COM2 : P � {(out(N).P2, L2)},A →

P � {(P2, L2)},A.receive(N)
PAR : P � {(P1 |P2, ∅)},A → P � {(P1, ∅), (P2, ∅)},A
REPL : P � {(!P, ∅)},A → P � {(α(P) |!P, ∅)}
NEW : P � {(new x.P, L)},A → P � {(P [x �→ c], L)},A

for some fresh name c
IF1 : P � {(if b thenP1 else P2, L)},A →

P � {(P1, L)},A.ctr(b)
IF2 : P � {(if b thenP1 else P2, L)},A →

P � {(P2, L)},A.ctr(¬b)
SET+ : P � {(insert(t, s).P, L)},A →

P � {(P,L)},A.insert(t, s)
SET− : P � {(delete(t, s).P, L)},A →

P � {(P,L)},A.delete(t, s)
LCK : P � {(lock(l).P, L)},A →

P � {(P, {l} ∪ L)},A.l � .= l1. · · · .l � .= ln
where {l1, . . . , ln} = L ∪⋃

(P ′,L′)∈P L′

ULCK : P � {(unlock(l).P, {l} � L)},A →
P � {(P,L)},A

Figure 2. A symbolic transition system for Set-π.

of composed types, since they are not allowed in inequalities.

This is only a problem if two issues arise at the same time

though: (1) the else branch is not empty and (2) the structure

of the message is not entirely discernible to that agent (e.g.

if the result of a decryption is an encryption that the agent

does not have the key to). One of the two issues alone can be

handled, however.

3) SAPIC: Finally, let us consider the SAPIC tool that

is also a process calculus, but instead of sets has a global

map, i.e., one can insert key-value pairs into the map (where

inserting multiple times with the same key is overwriting),

delete pairs, and query what value is associated to a key.

For a restricted setting, we can indeed express this map

with sets, namely if we can split the map into finitely many

partitions where each key and value are of some atomic type.

For instance, in the PKCS examples, the value type are actually

tuples, but the second part ranges over finitely many values

and thus one could represent this maps as a finite collection

of maps with atomic value type.

The idea is of course to model map m = [k1 �→
v1, . . . , kn �→ vn] by a family of sets m(·) such that v1 ∈
m(k1), . . . , vn ∈ m(kn). Initially, all maps should contain one

distinguished symbol ⊥ to represent that for that key no value

is in the map. Then to insert the tuple (k, v) translates to

the set operations x ∈̇ m(k).delete(x,m(k)).insert(v,m(k)).
To delete key k from the map is then like inserting (k,⊥).
Querying for key k is checking x ∈̇ m(k) and x � .= ⊥.

387

VIII. CONCLUSION

Over the past years, several typing results have emerged for

security protocols, gradually extending the class of protocols

that can be supported, in particular [16], [2], [1], [17]. A

common idea for proving such typing results is to use a notion

of symbolic constraints to represent executions (in particular

attacks) and show that whenever there is a solution then there

is a well-typed one. The requirement that the protocols have

to fulfill for such a result is only that all messages of different

intended type have sufficiently different structure to never be

confused. This is fulfilled by many common protocols like a

standard setup of TLS [17].

One relevant trend in protocol security is the support for

stateful protocols, i.e., protocols in which participants can

manipulate a global state that is shared among an unbounded

number of sessions. This is for instance relevant to model

security devices like key tokens or servers that maintain a

database. There is only one typing result so far that supports

stateful protocols, namely [23]. We point out several mistakes

of this paper in section V-D, showing that their results do

not hold in this generality. A particular problem are variables

of composed types in negative conditions, which illustrates

that typing results for stateful systems are far more subtle

than intuition suggests and rigorous proofs are necessary. Our

main contribution of this paper is to establish the first precise

typing result for a class of stateful protocols—fixing also [23].

Despite a meticulous formalization it is conceptually still quite

simple, as it is based on a reduction to the existing typing

results, in particular the formalization of [17].

Our typing result conservatively extends existing ones, i.e.,

for stateless protocols we do not require any further restric-

tions. The restrictions on set operations are similar to those

on messages, but additionally, we have to limit here the use

of variables of composed types (unless negative operations

are not needed for a set). In fact, the condition of our typing

result is satisfied by most examples distributed with the AIF-ω
tool [24], and in the remaining cases a simple disambiguation

of messages is sufficient.

Besides the trend towards the verification of more complex

stateful protocols that this typing result focuses on, there

are other crucial trends like the verification of privacy-type

goals using equivalence properties, and typing results in this

direction have been established [12]. A question for future

research is thus if statefulness and equivalence proofs can be

combined. Another closely related area are compositionality

results that can often benefit from typing results, for instance

in [1]. Establishing compositionality for stateful protocols is

another interesting direction for future research.

Acknowledgments: This work was supported by the

Sapere-Aude project “Composec: Secure Composition of Dis-

tributed Systems”, grant 4184-00334B of the Danish Council

for Independent Research. We thank Achim Brucker and Luca

Viganò for helpful comments and discussions.

REFERENCES

[1] O. Almousa, S. Mödersheim, P. Modesti, and L. Viganò. Typing
and compositionality for security protocols: A generalization to the
geometric fragment. In ESORICS 2015, pages 209–229, 2015.

[2] M. Arapinis and M. Duflot. Bounding messages for free in security
protocols - extension to various security properties. Inf. Comput.,
239:182–215, 2014.

[3] M. Arapinis, E. Ritter, and M. Ryan. Statverif: Verification of stateful
processes. In CSF 2011, pages 33–47. IEEE, 2011.

[4] A. Armando, W. Arsac, T. Avanesov, M. Barletta, A. Calvi, A. Cappai,
R. Carbone, Y. Chevalier, L. Compagna, J. Cuéllar, G. Erzse, S. Frau,
M. Minea, S. Mödersheim, D. von Oheimb, G. Pellegrino, S. E. Ponta,
M. Rocchetto, M. Rusinowitch, M. T. Dashti, M. Turuani, and L. Viganò.
The AVANTSSAR platform for the automated validation of trust and
security of service-oriented architectures. In TACAS 2012, pages 267–
282, 2012.

[5] A. Armando and L. Compagna. Sat-based model-checking for security
protocols analysis. Int. J. Inf. Sec., 7(1):3–32, 2008.

[6] D. A. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model
checker for security protocols. Int. J. Inf. Sec., 4(3):181–208, 2005.

[7] G. Bella. Formal Correctness of Security Protocols - With 62 Figures
and 4 Tables. Information Security and Cryptography. Springer, 2007.

[8] G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET purchase
protocols. J. Autom. Reasoning, 36(1-2):5–37, 2006.

[9] B. Blanchet and A. Podelski. Verification of cryptographic protocols:
tagging enforces termination. Theor. Comput. Sci., 333(1-2):67–90,
2005.

[10] A. D. Brucker and S. Mödersheim. Integrating automated and interactive
protocol verification. In FAST 2009, 2009.

[11] A. Bruni, S. Mödersheim, F. Nielson, and H. R. Nielson. Set-pi: Set
membership p-calculus. In CSF 2015, pages 185–198, 2015.

[12] R. Chrétien, V. Cortier, and S. Delaune. Typing messages for free in
security protocols: The case of equivalence properties. In CONCUR
2014, pages 372–386, 2014.

[13] V. Cortier and S. Delaune. Safely composing security protocols. Formal
Methods in System Design, 34(1):1–36, 2009.

[14] C. Cremers and S. Mauw. Operational Semantics and Verification of
Security Protocols. Information Security and Cryptography. Springer,
2012.

[15] J. D. Guttman. State and progress in strand spaces: Proving fair
exchange. J. Autom. Reasoning, 48(2):159–195, 2012.

[16] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks
on security protocols. Journal of Computer Security, 11(2):217–244,
2003.

[17] A. V. Hess and S. Mödersheim. Formalizing and Proving a Typing
Result for Security Protocols in Isabelle/HOL. In CSF 2017, 2017.

[18] A. V. Hess and S. Mödersheim. A typing result for stateful protocols.
Technical report, DTU Compute, 2018. Extended version and Isabelle
proofs available at https://people.compute.dtu.dk/samo.

[19] S. Kremer and R. Künnemann. Automated analysis of security protocols
with global state. Journal of Computer Security, 24(5):583–616, 2016.

[20] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The TAMARIN
prover for the symbolic analysis of security protocols. In CAV 2013,
2013.

[21] J. K. Millen and V. Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In CCS 2001, 2001.

[22] S. Mödersheim. Abstraction by set-membership: verifying security
protocols and web services with databases. In CCS 2010, 2010.

[23] S. Mödersheim. Deciding Security for a Fragment of ASLan. In
ESORICS, pages 127–144. Springer, 2012. Fixed version available at:
\url{https://people.compute.dtu.dk/samo/taslanv3.pdf}.

[24] S. Mödersheim and A. Bruni. AIF-ω: Set-based protocol abstraction
with countable families. In POST 2016, 2016.

[25] L. C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6(1-2):85–128, 1998.

[26] L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM
Trans. Inf. Syst. Secur., 2(3):332–351, 1999.

[27] M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number
of sessions and composed keys is NP-complete. Theor. Comput. Sci.,
299, 2003.

[28] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving
security protocols correct. Journal of Computer Security, 7(1):191–230,
1999.

388

