
A little more conversation, a little less action, a lot more satisfaction:
Global states in ProVerif.

Vincent Cheval
INRIA, LORIA, France

Véronique Cortier
CNRS, LORIA, France

Mathieu Turuani
INRIA, LORIA, France

Abstract—ProVerif is a popular tool for the fully automatic
analysis of security protocols, offering very good support to
detect flaws or prove security. One exception is the case
of protocols with global states such as counters, tables, or
more generally, memory cells. ProVerif fails to analyse such
protocols, due to its internal abstraction.

Our key idea is to devise a generic transformation of the
security properties queried to ProVerif. We prove the soundness
of our transformation and implement it into a front-end
GSVerif. Our experiments show that our front-end (combined
with ProVerif) outperforms the few existing tools, both in terms
of efficiency and protocol coverage. We successfully apply our
tool to a dozen of protocols of the literature, yielding the first
fully automatic proof of a security API and a payment protocol
of the literature.

1. Introduction

Formal methods have been successful in the analysis of
security protocols. They provide a nice level of abstraction,
that allow good automation while being sufficiently precise
to detect logical flaws. ProVerif [9] is a popular tool for
the automatic analysis of security protocols. It has been
successfully applied to hundreds of protocols ranging from
TLS [8], web services [7], secure messaging [26], to voting
protocols [19], [17].

The reasons of success are the flexibility and efficiency
of ProVerif: ProVerif can cover a wide class of crypto-
graphic primitives and various protocols structures (with else
branches, private channels, etc.), yielding a very flexible tool
that can be used to analyse various encoding of protocols
and security properties. ProVerif is also one of the only tools
that can analyse an unbounded number of sessions, together
with Scyther [18], Maude-NPA [21], and Tamarin [33].

While ProVerif can handle a wide range of primitives
and complex protocols, one well identified limitation is the
case of protocols with global states. Global states appear
in many examples. For example, in contract signing, an
authority would issue a contract only if it has not previ-
ously aborted the transaction [23]. Secure device APIs (eg
PKCS#11 [32] or TPM [2]) may or may not execute a com-
mand depending on the current internal state (status of a key,
previous history). Several protocols include counters (e.g.
Yubikey [35], avionic protocols [11]) and their security rely

on the fact that a counter cannot take twice the same value.
In voting protocols, the voting server typically maintains
a table that contains the list of voters that have voted so
far, which can be crucial when revotes are forbidden [22].
Unfortunately, in most of these cases, ProVerif immediately
finds false attacks and therefore fails to prove security.

Why does ProVerif fail to handle global states? This
is due to its internal abstraction: ProVerif takes as input a
protocol specified in (a dialect of) the applied-pi calculus [4]
and translates it into Horn clauses. This yields several over-
approximations. In particular, Horn clauses can be applied
an arbitrary number of times, for arbitrary instantiations.

This issue is well known and there have been several
attempts to add global states to ProVerif or to other tools
of the literature.

• StatVerif [5] introduces an extension of the ap-
plied pi-calculus to specify protocols with states and
automatically translates it into Horn Clauses. The
main idea is that the predicate attacker(M), which
models that the attacker knows M , is replaced by
attacker(v1, . . . , vk,M), which models that the at-
tacker knows M when cell s1 has value v1, ..., and
cell sk has value vk. It is limited to a finite number of
cells and runs very quickly into state explosion.

• SetPi [13] proposes another extension of the applied-pi
calculus to define sets and set membership. Such sets
can be used to store values, provided the values are
atomic. SetPi again translates the input language into
Horn Clauses. It assumes that protocol messages follow
a strict format (possibly ruling out type flaw attacks)
and often requires several protocol abstractions.

• AIF-ω [30] is a recent tool that follows the approach
developped by SetPi. Compared to SetPi, it typically
handles better cases where operations on sets are not
locked by the protocol (for example when several pro-
cesses may read or write a state at the same time).

• SAPIC [27] relies on a different tool, Tamarin, that
offers both an automatic and interactive mode. SAPIC
takes as input an extension of the applied pi-calculus,
extended to global states and translates it into Tamarin,
such that the resulting model is well suited for Tamarin.
In particular, part of the semantics is passed directly to
the security property (instead of the protocol rules).

Our contribution. The contribution of the paper is to

344

2018 IEEE 31st Computer Security Foundations Symposium

© 2018, Vincent Cheval. Under license to IEEE.
DOI 10.1109/CSF.2018.00032

significantly enhance ProVerif in order to handle both global
states and natural numbers. Our technique is flexible and
covers various flavours of global states: for example private
channels, cells, tables, or counters.

Our first idea is simple and therefore easy to use and
adapt. Instead of querying ProVerif whether a protocol P
satisfies a property φ, we query instead ”φ ∨ some action has
been taken twice”. Provided that we can ensure (typically
through simple syntactic checks) that this action is actually
unique, we can immediately deduce that φ holds.

More formally, we devise several formulas φact, φcom,
φcell, φcounter, φtable corresponding respectively to “fresh
actions” (when an action is guarded by a fresh nonce/key),
private channels, cells, counters, and tables. Then we au-
tomatically annotate protocols with events that record for
example when a channel is used, with which message, and
possibly with some freshness indicator. We then formally
prove the soundness of our transformation. In other words,

we prove that whenever P
act |= φ ∨ φact then P |= φ,

where P
act

is the protocol P annotated with some events
(and similarly for the other formulas).

Maybe surprisingly, ProVerif can very efficiently prove
properties like φ ∨ φact. This is due to the fact that, after
saturating the set of Horn clauses, ProVerif can show that
any trace (derivation) where φ is not satisfied is such that
two “unique” actions have taken place, hence the conclusion.

Our second and main contribution is to enrich ProVerif
with natural numbers together with equalities and inequali-
ties. Formally, we introduce a new type nat together with
predicates =, �=,≥ with the expected semantics. Our moti-
vation is twofold. First natural numbers arise naturally in
the case of counters. For example, a server would typically
accept a request containing a counter only if this one is
“fresh”, that is greater than the current value of the counter
stored on the server. Second, this allows us to express
finer properties, useful for some of our transformations. For
example, we can characterize more precisely when an event
occurs before another one. And of course, natural numbers
may be used in other contexts.

Running directly ProVerif on protocols with naturals
quickly yields false attacks again. Therefore, we enrich
ProVerif’s procedure with the algorithm of Pratt [31], for
checking satisfiability of inequalities between naturals. This
allows ProVerif to detect that many clauses are actually
unsatisfiable. We also improve the behaviour of ProVerif
when proving disjunctions. Indeed, ProVerif typically fails
to prove a query of the form E(x) ⇒ x = a ∨ x �= a
(where E is some event). This is due to the fact that ProVerif
actually tries to prove E(x) ⇒ x = a or E(x) ⇒ x �= a. We
therefore introduce a more precise treatment of disjunctions.
These two improvements are of independent interest and
could be added to the main development of ProVerif.

Implementation and experimentation. We have im-
plemented our approach into an extension of ProVerif,
GSVerif, that given a protocol P , automatically annotates it
with events whenever applicable and tries to prove φ∨φ′ in-
stead of φ. We have successfully tested GSVerif on various

protocols of the literature, yielding the first fully automatic
proof of a security API [27] and a payment protocol [15],
two protocols previously analysed in the literature. GSVerif
demonstrates a major improvement compared to StatVerif,
SetPi, or SAPIC, in terms of efficiency or simply covering
examples that could not be handled so far. In previous
studies [27], [5], [13], only a few simple protocols (2 to
4) were analysed. We conduct a systematic comparison of
the existing tools on a dozen protocols of the literature,
including a voting protocol (for verifiability properties) and
a payment protocol. This extended study offers a better
understanding of the scope of existing approaches. To our
knowledge, we provide the first automatic proof in ProVerif
of protocols with a true representation of counters. In pre-
vious approaches, counters were abstracted by fresh nonces
or by arbitrary values controlled by the attacker (avionic
protocol [11]).

During our study, we also discovered two new attacks
against the Key Registration protocol of [13] and a recent
mobile payment protocol [15] (for some choice of imple-
mentation).

Interestingly, when GSVerif fails to prove the security
of a protocol, it is still possible to apply our technique
by hand, by designing another formula ψ well adapted to
the protocol. This is for example the case of the YubiKey
protocol. This authentication protocol strongly relies on
counters to ensure that the server will never accept the same
authentication twice. Despite our transformations, GSVerif
cannot automatically prove its security because it requires
some inductive reasoning. So instead of querying ProVerif
whether some authentication property φauth holds, we query
the following three properties: ψ(0), ∀n ψ(n) ⇒ ψ(n+ 1),
and φauth∨(∃n¬ψ(n)). These three properties can be auto-
matically proved by ProVerif. We can then straightforwardly
conclude that φauth holds. Similarly, it is always possible to
add a succession of intermediate formulas, e.g. φ1, φ2∨¬φ1,
. . . , φ∨¬φn instead of φ. Therefore our approach not only
yields a major improvement over the tools StatVerif, SetPi,
and SAPIC, for global states but also adds a flavour of
interactivity to the ProVerif tool.

Related Work. Several tools have been developed for
analyzing protocols for a bounded number of sessions (e.g.
Avispa [6] or Scyther [18]). When the number of sessions
is bounded, it is easy to model global states by simply
enumerating all possible cases. However, these tools suffer
from a state-explosion issue and cannot prove security in the
general case. Scyther [18] can also prove protocols for an
unbounded number of sessions as well as Maude-NPA [21]
but we are not aware of any attempt to use them to prove
protocols with global states (for an unbounded number of
sessions). Tamarin [33] is a recent tool that allows the user
to enter an interactive mode when Tamarin fails to prove
security automatically. In the interactive mode, Tamarin can
in theory prove almost any protocol (possibly at the cost of
heavy user interactions) so we focus here on the automatic
mode. There are two main approaches to use Tamarin with
global states. The first one is a direct encoding in Tamarin,
which supports built-in memory cells (through linear facts)

345

and counters may be directly encoded using multisets [29],
[1]. A second approach is the tool SAPIC [27], that auto-
matically provides an appropriate encoding for Tamarin, as
already discussed. The two approaches closest to our work
are StatVerif and SetPi that we have discussed in details
above. Another advantage of our approach is that we do not
impose any particular encoding for states: the user is free to
encode states at her will since the input language remains
the applied-pi calculus, allowing a simple integration into
ProVerif, a tool already well understood by many users.

2. Overview

We overview here our main transformations. We leave
the ones relying on natural numbers to Section 6. The
corresponding ProVerif files (of the initial and transformed
examples) can be found here [3].

2.1. Unique action

A first simple example where ProVerif fails due to states
is when the security of a protocol relies on the fact that some
rule is executed at most once. The issue is well illustrated
by the following mock example.

A = out(c, enc(s, (k1, k2)));
out(c, enc(k1, k));
out(c, enc(k2, k))

B = in(c, x);
let y = dec(x, k) in
out(c, y)

Alice sends a secret s, encrypted with the pair of k1 and
k2 and she also sends both k1 and k2 encrypted by a fresh
key k. Bob will decrypt any message encrypted by k but
at most once for this key k. This corresponds to the case
where e.g. a server will answer some particular request at
most once. When we specify this protocol in ProVerif, it is
internally translated into the following clauses.

→ attacker(enc(s, (k1, k2)))

→ attacker(enc(k1, k))

→ attacker(enc(k2, k))

attacker(enc(x, k)) → attacker(x)

ProVerif also includes clauses for the attacker, in par-
ticular the ability to concatenate messages and to decrypt.

attacker(x) ∧ attacker(y) → attacker((x, y))

attacker(enc(x, y)) ∧ attacker(y) → attacker(x)

Now the question is whether ProVerif can prove the
secrecy of s ? The answer is no: s is deducible since clauses
do entail attacker(s). Therefore ProVerif finds false attacks
on such examples, and thus fails to prove security.

Continuing our example, instead of querying
attacker(s), we can query attacker(s) ∨ φact where

φact = UAction(x, y) ∧ UAction(x, y′) ∧ y �= y′

where UAction(st,m) is an event added in our protocol that
records that some input rule has received message m at some
(fresh) step st. So process B is enriched with additional
events.

Bact = new st : stamp;
in(c, x);
event(UAction(st, x));
let y = dec(x, k) in
out(c, y)

Note that it does not change its execution (besides the
additional events). The fact that stamp st is fresh guarantees
that UAction(x, y) ∧ UAction(x, y′) ∧ y �= y′ is always
false and therefore attacker(s) ∨ φact actually guarantees
attacker(s).

More generally, querying φ∨ φact instead of φ is sound
as soon as we can guarantee that st is fresh each time
UAction(st, t) is issued. This is formalized and proved in
Section 4.1.

2.2. Private channels

Our transformation on the unicity of an input action may
not be sufficient, in particular in the presence of private
channels.

Continuing the previous example, we can write a process
similar to A, using a private channel as a token.

A′ = new d : channel; (out(d, k)
| in(d, x); out(c, k1)
| in(d, x); out(c, k2)
| out(c, enc(s, (k1, k2))))

A′ emits once on a private channel d. Both keys k1 and k2
can be released but they each require to receive something
on channel d. Therefore the attacker can obtain at most one
of the two keys, which protects the secrecy of s. This is a
mock example for the sake of the presentation but the same
kind of behaviour happens when private channels are used
as tokens, to prevent some action to occur before another
one.

Once again ProVerif is not able to prove secrecy of s,
even with the event annotation presented in Section 2.1 and
φact. This is due to the fact that the input message does
not vary. Here, we need to express that each input may
correspond to at most one output. Therefore, we introduce
fresh identifiers for any input and output. The identifier st
of an output is also sent together with the message. Then
for any input (of identifier st′), the association between st
and st′ is recorded through the event UComm(st′, st). On
our example, this results into the following process.

A′
com = new d : channel; (

new st0 : stamp; out(d, (st0, k))
| new st1 : stamp; in(d, (x1 : stamp, x));

event(UComm(x1, st1)); out(c, k1)
| new st2 : stamp; in(d, (x2 : stamp, x));

event(UComm(x2, st2)); out(c, k2)
| out(c, enc(s, (k1, k2))))

346

V0

d

V1

d

V2

d

V0 V1 V2

st0

d

st1

d

st2

d
VCell(st0, V0)
VCell(st1, V1)
VLink(st0, st1)

VCell(st1, V1)
VCell(st2, V2)
VLink(st1, st2)

Figure 1. Transformation for cells

For any two events event(UComm(st1, st2)) and
event(UComm(st′1, st

′
2), we have st1 = st′1 iff st2 = st′2 (∗).

This means that we can query attacker(s) ∨ φcom for A′
com

instead of querying attacker(s) for A′, where φcom is the
following formula:

(event(UComm(x, y)) ∧ event(UComm(x, z)) ∧ y �= z)

∨ (event(UComm(y, x)) ∧ event(UComm(z, x)) ∧ y �= z)

More generally, querying φ∨φcom instead of φ is sound
as soon as we can guarantee that (∗) holds, provided that
channel d is strongly private, that is (intuitively) a channel
that can never be deduced by the attacker.

2.3. Cells

Another common example of states is the use of cells.
A memory cell d stores a value (true, false, init, a key, etc.)
that evolves with time: the cell contains v0, then v1, then
v2, etc. Two processes may not access a cell at the same
time. The most standard way to model cells in the applied
pi-calculus is through private channels (e.g. in [5]) but of
course, ProVerif very quickly runs into false attacks.

To avoid such false attacks, we can add a stamp st
for each new value of the cell. Then for each process that
may access the cell, it typically reads the value v of the
cell, together with its stamp st, does some computation and
possibly other input/output actions and finally write a new
value v′ to the cell, associated to a new stamp st′. We
annotate such a round of read/process/write actions with
the events VCell(v, st), VCell(v′, st′), and VLink(st, st′), as
illustrated in Figure 1.

If the private channel d behaves indeed as a cell (at
most one output after an input, which can be easily checked
syntactically), then we can prove that

• for any two events event(VLink(st1, st2)) and
event(VLink(st′1, st

′
2) then st1 = st′1 iff st2 = st′2;

• for any two events event(VCell(st1,M)) and
event(VCell(st1, N)) then N = M .

Therefore, we can safely query φ∨φcell instead of φ where
φcell is defined as

(event(VLink(x, y)) ∧ event(VLink(x, z)) ∧ y �= z)

∨ (event(VLink(y, x)) ∧ event(VLink(z, x)) ∧ y �= z)

∨(event(VCell(x, y)) ∧ event(VCell(x, y′)) ∧ y �= y′)

This can greatly help ProVerif to prove security of protocols
with memory cells (e.g. TPM or PKCS#11) as we shall see
in our experimentation section (Section 7). Some protocols
may require the introduction of natural numbers, either
because they make use of counters or because we need to
express more precise relations between old and new values.
This will be presented in Section 5 and 6.

3. ProVerif syntax and semantics

For the sake of readability, we only present parts of the
syntax and semantics of ProVerif that are relevant to our
work. A complete presentation of the syntax and semantics
of ProVerif can be found in [10], [12].

3.1. Syntax

We assume a set V of variables, a set N of names, a set
T of types. By default in ProVerif, types include channel
for channel’s names, bitstring for bitstrings and bool for
booleans. The syntax for terms, expressions, and processes
is displayed in Figure 2.

M, N ::= terms
x variable (x ∈ V)
n name (n ∈ N)
f(M1, . . . ,Mk) applied f ∈ C

D::= expressions
M term
h(D1, . . . , Dk) applied h ∈ C ∪ D
fail failure

P,Q::= processes
0 nil
out(N,M);P output
in(N, x : T);P input
P | Q parallel composition
!P replication
new a : T ;P restriction
let x : T = D in P assignment
if M then P else Q conditional
event(ev(M1, . . . ,Mn));P event
get tbl(x1 : T1, . . . , xn : Tn) suchthat D in P else Q

table lookup
insert tbl(M1, . . . ,Mn);P table insertion

Figure 2. Syntax of the core language of ProVerif.

Terms and expressions. Crytographic primitives are rep-
resented by function symbols, split into two sets of construc-
tors C (e.g. encryption) and destructors D (e.g. decryption)

347

respectively. Terms are built over names, variables, and
constructors and represent actual messages sent over the
network, while expressions may also contain destructors
and represent cryptographic computations. Function sym-
bols are given with their types: g(T1, . . . , Tn) : T means
that the function g takes n arguments as input of types
respectively T1, . . . , Tn and returns a result of type T . A
substitution is a mapping from variables to terms, denoted
{U1/x1, . . . , Un/xn}. The application of a substitution σ to
a term U , denoted Uσ, is obtained by replacing variables
by the corresponding terms and is defined as usual. We only
consider well typed substitutions.

The evaluation of an expression is defined through
rewrite rules. Specifically, each destructor g is associated
with a list of rewrite rules def(g) = [g(Mi,1, . . . ,Mi,n) →
Mi]

k
i=1, over terms. The evaluation of an expression

is as follows: g(D1, . . . , Dn) evaluates to U , denoted
g(D1, . . . , Dn) ⇓ U , when

• ∀i, Di ⇓ Mi, and g is a constructor (g ∈ C) and
U = g(M1, . . . ,Mn); or g is a destructor (g ∈ D)
with def(g) = [g(M ′

i,1, . . . ,M
′
i,n) → M ′

i]
k
i=1 and

there exist a substitution σ and 1 ≤ i ≤ k such that
Mj = M ′

i,jσ, U = M ′
iσ and for all i′ < i, for all σ′,

(M1, . . . ,Mn) �= (Mi′,1, . . . ,Mi′,n)σ
′.

• U = fail otherwise, i.e. the evaluation failed.

Example 1. The standard symmetric encryption primi-
tives can be easily modeled by considering a constructor
enc(bitstring, bitstring) : bitstring in C for encryption and
a destructor dec(bitstring, bitstring) : bitstring in D for
decryption with the following rewrite rule:

def(dec) = [dec(enc(x, y), y) → x].
Similarly, pair and projections are represented by the

constructor pair(bitstring, bitstring) : bitstring ∈ C and the
destructors proji : bitstring : bitstring ∈ D, i ∈ {1, 2}, with
the following rewrite rules:

proj1(pair(x, y)) → x

proj2(pair(x, y)) → y

In ProVerif, the pair operator is actually built in and
pair(m1,m2) is denoted (m1,m2). �

Processes. Most of the syntax of processes used by
ProVerif comes from the applied pi calculus [4]. For in-
stance, the output of a message M on channel N is repre-
sented by out(N,M);P while in(N, x : T);P represents an
input on channel N , stored in variable x. Note that in both
cases, N must have the type channel. Process P | Q models
the parallel composition of P and Q, while !P represents
P replicated an arbitrary number of times. new a : T ;P
generates a fresh name of type T and behaves like P . The
conditional process if M then P else Q executes P if M
is the boolean true and executes Q otherwise. The process
let x : T = D in P else Q evaluates D, stores it in x and
then behaves like P unless the evaluation fails, in which
case it behaves like Q. The process event(M);P is used to
specify security properties: the process emits an event (not
observable by an attacker) to reflect that it reaches some spe-

cific state, with some values, stored in M . Finally, ProVerif
supports user defined tables declared by their name and the
types of their elements, i.e. table tbl(T1, . . . , Tn). The pro-
cess insert tbl(M1, . . . ,Mn);P corresponds to the insertion
in the table tbl of the entry (M1, . . . ,Mn). The process
get tbl(x1 : T1, . . . , xn : Tn) suchthat D in P else Q looks
for an entry (M1, . . . ,Mn) in the table tbl such that Dσ
evaluates to true with σ = {Mi/xi}ni=1. If such an entry
exists then Pσ is executed otherwise Q is executed. Note
that the expression D is required to have the type bool.

The set of free names of a process P is denoted fn(P).
A closed process is a process with no free variables.

Example 2. The processes A and B defined in Sec-
tion 2.1 are processes in the ProVerif syntax, where the
type bitstring has been omitted. The composition of the two
processes can be written

Penc = new k; (new k1; new k2;A | B)

where k, k1, k2 are freshly generated. �
We may use pattern matching to ease readability. For

example, in(c, (x : T,= M));Q represents the process:

in(c, y : bitstring);
let x : T = proj1(y) in
if M = proj2(y) then Q

In the rest of the paper, we will assume that processes are
written without pattern but we will use patterns to define our
transformations for sake of readability. We may also omit
the type bitstring when it is clear from the context.

3.2. Semantics

A configuration E,S,P,Φ is given by a multiset P of
processes, representing the current state of the processes, a
set E = (Npub,Npriv) representing respectively the public
and private names used so far, a set S of elements of
the form (tbl,M1, . . . ,Mn) representing the entries of user
declared tables and finally a substitution Φ representing the
knowledge of the attacker.

The semantics of processes is defined through a reduc-
tion relation → between configuration, defined as expected.
For example, the rule corresponding to the reception of a
message is defined as follows.

(Npub,Npriv),S,P ∪ {{in(N, x : T);P}},Φ →
(Npub,Npriv),S,P ∪ {{P{M/x}}},Φ

if there exist D1, D2 such that fv(D1, D2) ⊆ dom(Φ),
fn(D1, D2) ⊆ Npub, D1Φ ⇓ N , D2Φ ⇓ M and M is
of type T . Intuitively, an attacker may inject any deducible
message on a deducible channel.

A trace is a sequence of reductions between configura-
tions E0,S0,P0,Φ0 → · · · → En,Sn,Pn,Φn.

For the rest of this paper, we will say that a E,P is
a valid initial configuration if P is a well-typed closed
process and E = (Npub,Npriv) is a pair of sets of names
such that Npub ∩ Npriv = ∅ and fn(P) ⊆ Npub. For sake

348

of readability, we will write E,P instead of E, ∅, {{P}}, ∅.
Moreover, we may write a ∈ E instead of a ∈ Npub∪Npriv.

3.3. Security properties

ProVerif is able to verify three different kinds of security
properties, namely secrecy properties, correspondence prop-
erties, and equivalence properties. In this paper, we only fo-
cus on secrecy and correspondence properties (equivalence
properties is left as future work). We provide their formal
definitions in this section.

Definition 1. Let (E,P) be a valid initial configuration.
Let M be a ground term such that fn(M) ⊆ E.

We say that (E,P) preserves the secrecy of M iff
for all traces E,P →∗ (N ′

pub,N ′
priv),S ′,P ′,Φ′, for all

expressions D, if fn(D) ⊆ N ′
pub and fv(D) ⊆ dom(Φ′)

then DΦ′ �⇓ M .

Intuitively, the secrecy of M is preserved if the attacker
is not able to deduce M for any trace of the process P .

Correspondence properties are very useful to express au-
thentication properties such as “if Alice reaches some state
(e.g. finishes her session) then Bob must have engaged a
conversation with her”. Such authentication queries are typ-
ically expressed through events, e.g. event(A) � event(B)
which requires that for all traces tr of the process, if tr has
executed the event A then tr has also executed B. To define
queries formally, we consider facts whose syntax is given
by the following grammar:

F ::= fact
attacker(M) the attacker knows M
event(ev(M1, . . . ,Mn)) the event is executed
M = N equality
M �= N disequality

A correspondence query is a formula of the form.

F �
∨n

i=1

∧mi

j=1 Fi,j

where F is either an attacker or an event fact and the Fi,js
are either event, equality, or disequality facts.

We say that a trace tr = E,S,P,Φ →∗
(N ′

pub,N ′
priv),S ′,P ′,Φ′ executes a ground fact F if

• either F = attacker(M) and there exists D such that
fv(D) ⊆ dom(Φ′), fn(D) ⊆ N ′

pub and DΦ′ ⇓ M ;
• or F = event(ev(M1, . . . ,Mn)) and tr con-

tains a reduction E′′,S ′′,P ′′ ∪ {event(ev(M1, . . . ,
Mn));P},Φ′′ → E′′,S ′′,P ′′ ∪ {P},Φ′′;

• or F = (M = N) (resp F = (M �= N)) and M = N
(resp. M �= N).

Satisfiability of a correspondence query can now be
formally defined.

Definition 2. Let (E,P) be a valid initial configuration.
A correspondence query F �

∨n
i=1

∧mi

j=1 Fi,j holds for
(E,P) iff for all term substitutions σ closing for F , for all
traces tr = E,P →∗ E′,S ′,P ′,Φ′, if tr executes Fσ then
there exist i ∈ {1, . . . , n} and a term substitution σi such

that Fσ = Fσi and for all j ∈ {1, . . . ,mi}, σi is closing
for Fi,j and tr executes Fi,jσj .

Note that in the formula F �
∨n

i=1

∧mi

j=1 Fi,j , the

variables of fv(F) are implicitly quantified universally while
the other ones are implicitly quantified existentially. Given
a correspondence query F � φ and a configuration (E,P),
we write E,P |= F � φ if F � φ holds for (E,P).

Example 3. Continuing Example 2, the secrecy of s is
preserved if ((∅, {s}), Penc) preserves the secrecy of s. The
fact that s is a private name models the fact that s is initially
unknown to the attacker.

Alternatively, we may require that the key received by
the process B is one of the keys sent by A. This can be
expressed by annotating A and B by the following events:

A′ = out(c, enc(s, (k1, k2)));
event(begin(k1)); event(begin(k2));
out(c, enc(k1, k));
out(c, enc(k2, k)); 0

B′ = in(c, x);
let y = dec(x, k) in
out(c, y)
event(end(y)); 0

and requiring the following correspondence property:

event(end(z)) � event(begin(z)). �

Remark 1. In a correspondence query, a fact attacker(M)
represents that the attacker can deduce M . Therefore the se-
crecy of M can actually be modeled by the correspondence
property attacker(M) � false. �

Thanks to the previous remark, it is sufficient to consider
correspondence queries in the rest of the paper.

4. ProVerif with global states

ProVerif is a very efficient tool that has been success-
fully used to analyse many protocols. However, as explained
in Section 2, in case of stateful protocols, the number of false
attacks raises dramatically. Here, we formalize the transfor-
mations sketched in Section 2 and prove their soundness.

In this section, we introduce a new type stamp, used
to model fresh nonces used as stamps. We also introduce
several function symbols for events, implicitly assuming that
these function symbols do no already appear in the protocols
under consideration.

4.1. Unique action

As explained in Section 2.1, ProVerif fails to prove
protocols whose security relies on the fact that some rules
may be used as most once. To avoid these false attacks,
we introduce a new function symbol UAction(bitstring, T) :
bitstring. Then we annotate each input action in(c,m) with
an event UAction(st,m) that records that message m has

349

been received at step st where st is a fresh name. This is
formally defined as follows.

Definition 3. Let P be a process. We denote by [P]act
the process obtained from P by replacing any occurence
of in(N, x : T);Q in P by

new st : stamp; in(N, x : T); event UAction(st, x);Q

where st is a fresh name.

Example 4. Consider B and Bact as defined in Section 2.
We have [B]act = Bact. Then continuing Example 2,
[Penc]act = new k; (new k1; new k2;A | Bact). �

This transformation does not modify the behavior of the
protocol since events do not interfere with the process.

Lemma 1. Let (E,P) be a valid configuration. For all
correspondence queries F � φ,

E,P |= F � φ iff E, [P]act |= F � φ

The freshness of the stamps guarantees the unicity of
each event (for a given stamp).

Lemma 2. Let (E,P) be a valid initial configuration.
For all names st, for all ground terms M1,M2, for all
traces tr = E, [P]act →∗ E′,S ′,P ′,Φ′, if tr executes
event(UAction(st,M1)) and event(UAction(st,M2)) then
M1 = M2.

Let φact = event(UAction(xst, y))∧event(UAction(xst,
z)) ∧ y �= z. It is sound to query φ ∨ φact instead of φ.

Theorem 1. Let (E,P) be a valid initial configuration. Let
F � φ be a correspondance query. We have

E,P |= F � φ if and only if E, [P]act |= F � (φ ∨ φact)

Example 5. Continuing Examples 3 and 4, to show that
((∅, {s}), Penc) preserves the secrecy of s, it is sufficient to
check whether ((∅, {s}), [Penc]act) |= attacker(s) � φact,
thanks to Theorem 1. The most interesting part of this
transformation is that ProVerif can indeed check the latter
property, hence automatically proving that Penc preserves
the secrecy of s. �

The case of private channels, presented in Section 2.2
is handled similarly and formally stated in our technical
report [14].

4.2. Cells

As seen in Section 2.3, secure hardwares typically have
global states: a key is associated with a (mutable) status,
a TPM stores keys and locks values in its registers. There
is no construction in the applied-pi calculus to denote such
global states (neither in most security protocols models).
Instead, the most common way is to encode the storage of
keys using private channels. Therefore, our first task is to
detect when a private channel is used as a cell.

We say that a channel d is a cell w.r.t. a valid config-
uration ((Npub,Npriv), P) if (i) d ∈ Npriv or d is bound

(once) in P ; (ii) d only occurs as first argument of input
or output in P ; (iii) any output (unlock operation) on d is
preceded by an input (lock operation) on d, possibly after
arbitrary many other actions that do not involve d; there
might be at most one exception (one output on d without
an input on d, with no replication), corresponding to the
initialization operation. A more formal definition is provided
in our technical report [14].

Example 6. We consider the protocol of a simplified secu-
rity device, as described in [5]. The configurable hardware
device generates a public key pk(k). Alice encrypts a pair
of secret (sl, sr). Bob can either configure the hardware to
”left” or ”right”. Once the hardware is configured, it will
always decrypt the left or right part of a pair, according to
its setting. The device cannot be reconfigured.

To model this protocol, we consider a private name k
and a private channel d. The process Conf models the setup
of the device:

! in(c, x); in(d, y);
let t : bool = (y = init && (x = left || x = right)) in
if t then out(d, x) else out(d, y)

The process Decrypt models how the device decrypts pairs
of secret depending on its configuration:

! in(c, x);
let (xl, xr) = adec(x, k) in
in(d, y);
if y = left then out(c, xl); out(d, y)
else if y = right then out(c, xr); out(d, y)
else out(d, y)

The complete process Pcell can then modeled as follows:

out(c, pk(k)) |
out(d, init) | cell initialization
Conf | Decrypt |
out(c, aenc((sl, sr), pk(k))) Alice’s role

Then d is a cell w.r.t. (E,Pcell) where E =
({c, left, right, init}, {k, d, sl, sr}). The goal is to prove that
the attacker cannot obtain both sl and sr, which is expressed
by the query: query attacker((sl, sr)).

Due to its overapproximations, ProVerif again fails to
prove the query for Pcell. �

Our key idea is to link the values stored in
cells, using stamps and events VLink(stamp, stamp) and
VCell(stamp, bitstring), as illustrated in Figure 1.

Definition 4. Let (E,P) be a valid configuration and d
be a cell in (E,P). We denote by [P]dcell the process
obtained from P by replacing any subprocess P ′ = in(d, x :
T);C[out(d,M1);Q1, . . . , out(d,Mn);Qn] (where C does
not contain inputs nor outputs on d) by

in(d, (xst : stamp, x : T));
event VCellT (xst, x);
C[Q′

1, . . . , Q
′
n]

where Q′
i is defined as follows:

350

• if Mi = x then Q′
i = out(d, (xst, x));Qi, this corre-

sponds to the case where the value of the cell does not
change so we do not need to annotate this action;

• otherwise
Q′

i = new st : stamp;
event VCellT (st,Mi);
event VLink(xst, st);
out(d, (st,Mi));Qi

Moreover, if P contains a subprocess out(d,M);Q that
is not preceeded by an input on d (initialization case), then
it is replaced by new st : stamp; out(d, (st,M));Q.

Example 7. Continuing Example 6, process [Pcell]
d
cell is:

out(c, pk(k)) |
new st0 : stamp; out(d, (st0, init)) | cell initialization
Conf ′ | Decrypt′ |
out(c, aenc((sl, sr), pk(k))) Alice’s role

where the process Conf ′ is defined as follows:

! in(c, x); in(d, (xst : stamp, y));
event VCell(xst, y);
let t : bool = (y = init && (x = left || x = right)) in
if t then

new st : stamp; event VLink(xst, st); out(d, (st, x))
else out(d, (xst, y))

Note that a new stamp is added only in the then branch
of the condition. Finally the process Decrypt′ is defined as
follows:

! in(c, x);
let (xl, xr) = adec(x, k) in
in(d, (xst : stamp, y));
event VCell(xst, y);
if y = left then out(c, xl); out(d, (xst, y))
else if y = right then out(c, xr); out(d, (xst, y))
else out(d, (xst, y)) �

Following the techniques of the previous transforma-
tions, we can show that it is safe to query φ ∨ φcell on
[P]dcell instead of φ on P , where φcell has been defined in
Section 2.3.

Theorem 2. Let (E,P) be a valid configuration. Let d be
a cell in (E,P). Let F � φ be a correspondence query.
We have:

E,P |= F � φ iff E, [P]dcell |= F � (φ ∨ φcell)

Example 8. Continuing Example 7, ProVerif can prove
that (E, [Pcell]

d
cell) |= attacker((sl, sr)) � φcom. Thanks to

Theorem 2, we deduce (E,Pcell) |= attacker((sl, sr)). �

5. Natural numbers
Our second and main contribution is to enrich ProVerif

with natural numbers together with equalities and inequal-
ities, as well as a limited addition (no addition of two
variables). We adapt ProVerif procedure to cope with in-
equalities, using the simple polynomial time algorithm from
Pratt [31] that converts inequalities between naturals into the
existence of a cycle in a weighted graph.

5.1. Syntax for natural numbers

We consider a new built-in type nat, a public constant
zero of type nat, a public constructor succ(nat) : nat and a
public destructor prev(nat) : nat whose behaviour is defined
by the rewrite rule prev(succ(i)) → i. We write fn(t) to
represent n applications of the function f to t. Therefore, a
natural n is represented by the term succn(zero), an addition
x+ n (with x a variable of type nat) is represented by the
term succn(x). To ease reading, we may write x+n instead
of succn(x). Similarly to the case of projection of pairing in
ProVerif, the subtraction x = y−n is implicitly represented
by the construction let x+ n = y in · · · .

To ensure that a term of type nat is always of the form
succn(zero) or succn(x), we assume that names cannot be
declared with the type nat and that constructor function
symbols cannot be declared with nat as output type. This
ensures that protocols can only create terms of the form
succn(zero). On the other hand, terms forged by the attacker
are also of the expected form since we consider a typed
attacker (only w.r.t. the type nat). In our examples, the mes-
sage format enforces this condition anyway. Note however
that a function may take a nat as input and therefore natural
numbers may be included in messages.

The equality between natural numbers is the equality be-
tween terms of type nat. To define inequalities, we introduce
predicates:

F ::= fact
. . .
p(M1, . . . ,Mn) predicate p

We define two predicates for strict inequality and inequality
respectively:

pred less(nat, nat) pred lesseq(nat, nat)

Their semantics is defined on closed terms of type nat as
expected: less(succn(zero), succm(zero)) = true iff n < m,
and lesseq(succn(zero), succm(zero)) = true iff n ≤ m. We
may write N < M (resp N ≤ M) instead of less(N,M)
(resp lesseq(N,M)).

5.2. Discussion

Instead of defining our own (interpreted) predicates, we
could have relied on an advanced modeling feature imple-
mented in ProVerif: predicates defined by Horn clauses.
Since ProVerif’s internal algorithm already translates a
protocol into Horn clauses, these predicates are a natural
extension to ProVerif calculus. For example, the predicate
lesseq could be modeled by the following Horn clauses:

→ lesseq(zero, x)
→ lesseq(x, succ(x))
lesseq(x, y) && lesseq(y, z) → lesseq(x, y)

However, we cannot express the fact lesseq(x, y) and
lesseq(succ(y), x) cannot hold at the same time. Moreover,
we can neither declare that if lesseq(x, y) and lesseq(y, x)
both hold then x = y.

351

Therefore, it is much more powerful to consider inter-
preted predicates for less and lesseq.

5.3. Extending ProVerif to natural numbers

To soundly extend ProVerif to natural numbers, we
proceed in two steps:

1) First, we implement the algorithm of Pratt [31] for
checking satisfiability of inequalities. Not only we can
decide (in polynomial time) whether a set of inequali-
ties can be satisfied, but we also detect forced equali-
ties. For example, the set of inequalities {x ≤ y+1, y <
x, z ≤ 3} has solutions and any solution is such that
x = y + 1.

2) Second, we refine ProVerif’s procedure in order to
better detect when the queried properties are satisfied.

Other algorithms (e.g. UTVPI [34]) exist in the literature
for solving more complex inequalities like x ≤ y + z + k.
However, such inequalities would require to introduce + as
a true operator (instead of succ) and would require much
more work to obtain a sound and reasonably terminating
saturation procedure.

5.3.1. Solving inequalities. Recall that terms of type nat
are necessarily either n or x+n with n ∈ N and x a variable
of type nat. Following Pratt’s algorithm [31], we associate
to each conjunction φ of inequalities between terms of type
nat a weighted directed graph where an arrow of weight k
between two nodes x and y represents that x ≤ y + k.

Example 9. Consider the conjunction φ = x < y ∧ y <
z ∧ z < t ∧ t ≤ x+ 3. We obtain the following graph.

x y z t

0

−1 −1 −1

3

0 0

00

�
There is a solution if and only if there is no cycle of

negative weight. Moreover, any cycle of weight 0 indicates
forced equalities. This yields a simple (polynomial time)
procedure for solving inequalities.

Proposition 1. There is a polynomial time algorithm
checkeq that given a conjunction φ of inequalities between
terms of type nat returns:

• ⊥ if φ has no solution
• a substitution σ′ such that for all solutions σ of φ, there

exists a substitution δ such that σ = σ′δ.

This proposition follows the intuition of [31] and is
formally proven in our technical report [14].

5.3.2. Refined ProVerif procedure. We need to extend
ProVerif procedure in order to cope with natural numbers.

ProVerif proceeds in two steps. First, given an initial config-
uration (E,P), and a fact F , it internally translates P into a
sound set S of Horn clauses: if F can be executed by P then
there a derivation of F from S. ProVerif then saturates S
until it reaches a fixed point, the set solveE,P (F). We only
need to know that if F can be executed, then one instance
of a clause of solveE,P (F) occured in the derivation of F .

Proposition 2 ([10]). Let (E,P) be a valid initial configu-
ration. Let F be an attacker or an event fact. For any trace
tr = E,P →∗ E′,S ′,P ′,Φ′, for any substitution σ, if tr ex-
ecutes Fσ then there exist a clause H ⇒ C ∈ solveE,P (F)
and a substitution σ′ such that Fσ = Cσ′ and for any fact
F ′ in Hσ, tr executes F ′.

Consider now a query F � φ. Given a clause H ⇒
C ∈ solveE,P (F), ProVerif tries to guarantee that, in case
C may produce Fσ for some σ then φσ is entailed by H .

We further refine this procedure in Algorithm 1.
Correspondence queries are now of the form F �∨n

i=1

∧mi

j=1 Fi,j where the Fi,j are either equality facts (EF),
disequality facts (DF), inequality facts (IF), or other facts
(OF), that is, events or predicates that are not less nor lesseq.
A subquery

∧mi

j=1 Fi,j is specialized if the variables in IF
and DF facts occur in F or in OF facts.

For the sake of the presentation, we assume here that φ
is a specialized sub-query of the form φOF∧φEF∧φDF∧φIF

where φOF (resp. φEF, φDF, φIF) is a conjunction of OF
facts (resp. EF, DF, IF facts). Our procedure verif(H ⇒
C,F � φ) works intuitively as follows.

1) First, we simplify clauses H ⇒ C ∈ solveE,P (F) by
examining the set R of IF facts of H and applying
checkeq.

a) If R has no solution, then H is always false and the
clause H ⇒ C can be removed.

b) Else our algorithm checkeq(R) returns a set of equal-
ities E that must be satisfied by any solution of R.
Thus we consider the simplified clause Hθ ⇒ Cθ
where the equalities of E are satisfied: θ = mgu(E).

2) Then, for any simplified clause H ⇒ C, we match F
with C, that is, we try to write Fσ = C for some σ. If
φσ is not already false, that is σ |= φEF∧φDF, φOFσ ⊆
H , and φIFσ has a solution, then we try to show that φσ
is implied by H . In case φσ is not immediately implied
by H as for the ProVerif procedure, we further refine
the procedure by characterizing what can happen if a
DF or IF fact is not satisfied.

a) For any DF fact M �= N ∈ φDF, we check that
in case the disequality is not satisfied, that is, for
any σ′ such that Mσσ′ = Nσσ′, then the clause
Hσ′ ⇒ Cσ′ already entails the query, by calling
verif(Hσ′ ⇒ Cσ′,F � φ).

b) For any IF fact M < N , we similarly check that
in case the inequality is not satisfied, that is, Nσ ≤
Mσ, then the clause H ⇒ C already entails the
query, by calling verif(H∧Nσ ≤ Mσ ⇒ C,F �
φ); and similarly for an IF fact M ≤ N .

Note that Step 2.a is actually independent from our in-

352

Algorithm 1: Extended verification algorithm.

Function verif(H ⇒ C,F � φ)
Data: A Horn clause H ⇒ C and a query F � φ
Result: A boolean

try
H ′ ⇒ C′ := simplify(H ⇒ C);
if ∃ σ and φOF ∧ φEF ∧ φDF ∧ φIF in F � φ such that Fσ = C′, σ |= φEF ∧ φDF, φOFσ ⊆ H ′ and φIFσ has a solution.

then

foreach M �= N ∈ φDF do
if σ′ = mgu(Mσ,Nσ) and verif(H ′σ′ ⇒ C′σ′,F � φ) = false then return false

foreach M < N ∈ φIF do
if verif(H ′ ∧Nσ ≤ Mσ ⇒ C′, F � φ) = false then return false

foreach M ≤ N ∈ φIF do
if verif(H ′ ∧Nσ < Mσ ⇒ C′,F � φ) = false then return false

return true
else

return verifPV(H ′ ⇒ C′, F � φ) /* We use the original verification procedure of
ProVerif when no specialized query satisfies the conditions. */

with exception False hypothesis
return true

Function simplify(H ⇒ C)
Data: A Horn clause H ⇒ C
Result: Two set of disequality or natural number inequalty facts respectively

R := {M op N ∈ H | op ∈ {<;≤}} /* select the inequality facts in the clause */
if checkeq(R) �= ⊥ then

σ := checkeq(R); /* σ can be the identity */
if for all M �= N ∈ H , σ |= M �= N then return Hσ ⇒ Cσ else raise False hypothesis
/* The condition ensures that the disequality in the hypotheses of the clause are

not trivially false */
else

raise False hypothesis

troduction of natural numbers and is of independent interest.
With its current procedure, ProVerif typically fails to prove
a query of the form E(x) � x = a ∨ x �= a (where E is
some event). This is due to the fact that ProVerif actually
tries to prove E(x) � x = a or E(x) � x �= a. This is no
longer the case with our refined procedure.

Of course, we can show that our new algorithm preserves
the soundness of ProVerif.

Theorem 3. Let (E,P) be a valid initial configuration.
Let F � φ be a correspondence query. If for all H ⇒
C ∈ solveE,P (F), verif(H ⇒ C,F � φ) = true then
E,P |= F � φ.

Thanks to Theorem 3, ProVerif can now soundly analyse
protocols with natural numbers and comparisons.

6. Transformations with natural numbers

Natural numbers are particularly useful when modeling
counters. Counters are used e.g. in security devices (Yu-
bikey [35], CANauth [25]) or payment protocols [15]. There
is no explicit way for expressing counters in ProVerif. The

most natural encoding is to use a private channel that sends
and receives the value of the counter,

Similarly to Section 4, we detect when a channel is
used as a counter and we show how to annotate a process
with events in order to help ProVerif when protocols use
counters.

Formally, we say that d is a counter w.r.t. a valid
configuration (E,P) if d is a cell w.r.t. (E,P) and

• any subprocess out(d,M);Q of P is such that M is a
term of type nat.

• for any subprocess in(d, x : T);C[out(d,M1);Q1, . . . ,
out(d,Mn);Qn] of P (with no input nor output on d in
C), then T = nat and Mj = x+ nj for some nj ∈ N.

Note that our definition enforces that a counter may only
increase. Our definition excludes for example updates of
counters using incoming messages. Actually, the key prop-
erty needed for the soundess of our transformation is the
monocity of each counter. We could therefore relax our
syntactic condition in order to cover more cases.

Example 10. Consider a simple protocol where two agents
A and B may access the same counter d. When A retrieves

353

the value of the counter, she outputs a hash of it with a secret
s and increments the counter. When B receives a message,
he checks whether it corresponds to the hash of the current
value of the counter and the secret s. If yes, B leaks the
secret s. In both cases, B increments the counter. The secret
is never leaked since B may only receive the secret hashed
with old values of the counter.

A and B can be modeled by the following processes.

A = in(d, i : nat); out(c, h(i, s)); out(d, i+ 1)

B = in(d, i : nat); in(c, y);
if y = h(i, s) then

out(c, s); out(d, i+ 1)
else out(d, i+ 1)

The complete protocol is simply:

P = ! A | ! B | out(d, 0) | ! in(d, i : nat); out(d, i)
The last part models that the counter is always available to
both agents. Unsurprisingly, ProVerif cannot prove secrecy.
It also fails even after applying our transformation on cells
because φcell does not convey the information that a counter
may never take twice the same value (this is false in general
for a cell). �

We define a new event Counter(stamp, nat), used to
record each time a counter is updated.

Definition 5. Let (E,P) be a valid initial configuration.
Let d be a counter in (E,P). We denote by [P]dcount the
process P in which we replace any subprocess in(d, x :
nat);C[out(d, x+i1);Q1, . . . , out(d, x+in);Qn] of P (with
no input nor output on d in C), with ij �= 0, by the process

Pi = new st : stamp; in(d, x : nat);
event Counter(st, x);
C[out(d, x+ i1);Q1, . . . , out(d, x+ in);Qn]

Example 11. Continuing Example 10, we have [P]dcount =
! [A]dcount | ! [B]dcount | out(d, 0) | ! in(d, i : nat); out(d, i)
where:

[A]dcount = new st : stamp; in(d, i : nat);
event Counter(st, i);
out(c, h(i, s)); out(d, i+ 1)

[B]dcount = new st′ : stamp; in(d, i : nat);
event Counter(st, i);
in(c, y);
if y = h(i, s) then

out(c, s); out(d, i+ 1)
else out(d, i+ 1) �

Since a counter may never take twice the same value,
we introduce the formula φcount defined as follows:

(event(Counter(x, i)) ∧ event(Counter(x, j)) ∧ i �= j)

∨ (event(Counter(x, i)) ∧ event(Counter(y, i)) ∧ x �= y)

Similarly to Section 4, it is safe to query φ ∨ φcount

instead of φ.

Theorem 4. Let (E,P) be a valid configuration, d a counter
in (E,P), and F � φ a correspondence query. We have:

E,P |= F � φ iff E, [P]dcount |= F � (φ ∨ φcount)

Natural numbers used as counters are also useful to
express finer properties. For example, we may express that
once an element has been added to a table at step i, it cannot
be removed at later steps j > i. We illustrate the issue and
our transformation on an example.

Example 12. Consider a very simple voting protocol which
only aim is to ensure that a server S never registers two votes
for the same voter. The server S stores the names of the
voters who voted already in a table VoterTbl . Moreover, it
locks the table to avoid concurrent accesses. Such a protocol
can be modeled as follows.

in(c, (xa, xv)); // S receives agent’s id and vote.
in(d, x); // S locks the table.
get VoterTbl(= xa) in

out(d, x)
else

insert VoterTbl(xa);
event HasVoted(xa, xv); // The vote is counted.
out(d, x)

The main process is P = ! S | new a; out(d, a) |
! in(d, x); out(d, x) to initiate the lock mechanism.

We wish to prove that the server cannot record two votes
from the same voter, which corresponds to the query φ =
HasVoted(x, y) ∧HasVoted(x, z) � y = z.

Note that if we remove the lock mechanism (that
is, removing all input/output on channel d), the protocol
becomes insecure since the server may emit two events
HasVoted(a, v1), HasVoted(a, v2) for the same voter a
before effectively recording in the table that a has voted.

The security of the protocol relies on the fact that once
an element is stored in a table, it cannot be removed. We an-
notate the protocol with events InTbl(i, t) and NotInTbl(i, t)
which indicate that an element t is (resp. is not) in the table
at step i.

in(c, (xa, xv));
in(d, (i : nat, x));
get V oterTbl(= xa) in

event InTbl(i, xa); out(d, (i+ 1, x))
else

event NotInTbl(i, xa);
event InTbl(i+ 1, xa);
insert V oterTbl(xa);
event HasVoted(xa, xv);
out(d, (i+ 1, x))

Once an element is in the table, it cannot disappear. That
is, the following formula is always false:

φtable = InTbl(i, t) ∧ NotInTbl(j, t) ∧ i ≤ j

Therefore it is safe to query φ ∨ φtable instead of φ. �
The full definition of our transformation, together with

a more general property φtable can be found in our technical
report [14].

354

7. Implementation

We implemented our tranformations in a frontend
GSVerif that takes as input a standard ProVerif file. The
user should simply specify which channels should be con-
sidered for our transformation, by indicating the keyword
precise. Note that this does not change the semantics
of the corresponding channels. Then GSVerif tries to auto-
matically detect whether precise channels can be seen as a
cell, a counter, or a lock for a table, and applies the most
precise available transformation. By default, it uses φact for
a public channel and φcom for a (strongly) private one. Then
it remains to run ProVerif on the resulting file. Note that
this transformation is always immediate (less than 1 ms). As
described in Section 5, we consider the enhanced version of
ProVerif for natural numbers and disjunctions.

7.1. Experiments

We conducted an extensive study of existing tools, based
on process algebra, for security protocols with global states
(SAPIC [27], StatVerif [5], SetPi [13]), on the available
protocols of the literature, as well as our own illustrative
examples. Given that SetPi fails on many simple examples,
we did not model our two large, time-consuming, examples:
mobile EMV [15] and Scytl’s voting protocol [16]. We also
tested ProVerif itself since it does prove some properties
when they do not rely strongly on global states. We failed
to use the recent tool AIF-ω [30]. Direct encoding of our
protocols in AIF-ω unfortunately trigger false attacks. Each
protocol requires manual adaptations to guide the tool.
For example, for the one-dec protocol (Example 2), the
authors of [30] kindly provided us with a file where the
recommended adaptation for the general decryption oracle
enc(x, k) → x is to identify when the key k is used for
encryption and manually derive a set of simpler rules. The
resulting protocol can then be proved secure. We leave
(manual) adaptations of the other protocols for future work.

All our experiments are reported in Figure 3. We ran the
different tools on a 10-core Intel 3.1 GHz Xeon with 50Gb
of RAM. We stopped each experiment after 24h.

Methodology. For all the examples, we started from the
proposed model(s) in the literature, that we adapted to the
other tools. For GSVerif, a direct translation into ProVerif
syntax was sufficient, showing that our tool can accomodate
various styles of modeling. The only exceptions are the
illustrative (and invented) examples presented throughout
the paper, as well as the TPM protocol. The original model
of the TPM protocol [20] was written directly in Horn
clauses, too far from the process algebra dialects of the
considered tools. Thus we chose to re-write a fresh model
for the TPM.

GSVerif combined with ProVerif can prove all the pro-
tocols in our benchmarks in a very efficient way. The two
exceptions are Yubikey and CANauth for which we had to
add intermediate properties to help ProVerif, as discussed
in the next section. Similarly, when SAPIC or Tamarin
fail to automatically prove security, it is possible to enter

manually some lemmas or even enter the interactive mode.
The corresponding proofs are indicated with the sign in
Figure 3 with a reference to the corresponding paper.

StatVerif can only handle a finite number of states,
typically 1 or 2. Therefore, for most of our examples, we
also consider a version of the protocol with only one or
two cells. For example, two cells for the security device
(Example 6) means exactly two devices. In some cases (e.g.
mobile EMV [15]), even a single regular session of the
protocol involves 4 different states. In that case, we consider
the minimal possible number of states. Of course, we also
run our experiments without limiting the number of agents
(and therefore of states), in order to explore the other tools.

Given that Tamarin (with or without Sapic) is not always
automatic, we first looked for existing security proofs in
the literature. For protocols that already have a security
proof (possibly with lemmas), we did not try to do better
than the original authors of the proof. For protocols without
existing security proofs, we ran Sapic only, as it is based
on process algebra, which eases the translation w.r.t. the
other considered tools. However, this does not mean that an
automatic proof in Tamarin is not possible.

Since not all tools support natural numbers, we some-
times had to replace the comparison j < i (the counter is
“fresh”) by j = i+1 (the server only accepts if the counter
has been incremented exactly by one). This corresponds to
our simplified versions of Yubikey, EMV, and CANauth.
In some cases, we even had to replace counters by nonces
(indicated by ! �).

Our experiments yield the first fully automatic proof of a
security API [27] and a payment protocol [15]. Not only an
automatic analysis discharge the user from any interaction
with the tool but the modeling task, at least on our examples,
was simple. For example, the original model and proof in
Tamarin of mobile EMV [15] required about a couple of
months of work while its translation in GSVerif lasted a
couple of days.

7.2. Attacks

We discovered two attacks. First the Key Registration
protocol, as described in [13], is actually flawed. This simple
protocol aims at revoking public keys: the attacker should
not learn a private key unless the corresponding public
key has been revoked by the server. However, an attacker
may fake the acknowledgment of the server and therefore
trigger an agent to reveal her key while the server has not
registered the revocation. This attack was not detected by
the authors because SetPi actually assesses that the protocol
is secure while it is not. The attack has been reported and
acknowledged by the authors of [13].

Second, we found a flaw in the mobile payment pro-
tocol proposed in [15]. The attack relies on the fact
that the protocol uses two hmac hmac(Kpay, s) and
hmac(Kpay, (merchand, price, s)) that can be confused.
This attack was not detected by the authors because the
message format in their model prevents the attack but a
different format (pairs done left first instead of right first)

355

Protocol Model’s origin # cells ProVerif StatVerif SAPIC/Tamarin Set-Pi GSVerif
one-dec (Ex. 2 ‡)

invented

0 � FA � FA 2s � FA �< 1s
one-dec, table variant 0 � FA � FA � 7s � FA �< 1s

private-channel (Sec. 2.2) 0 � FA � FA � 2s � FA �< 1s

counter (Example 10)
∞ � FA — ! �10s — �< 1s
2 � FA � time ! �24s � time �< 1s

voting (Example 12)
∞ � FA � FA � 3s — �< 1s
2 � FA � FA � 7s �< 1s �< 1s

TPM-enveloppe [20]
Horn clause [20]

Tamarin [28]

∞ � FA —
� memory 1m50s [28]

— �< 1s
2 � FA � time — �< 1s

TPM-bitlocker [20] 1 �< 1s �< 1s � memory — �< 1s

TPM-toy [20]
∞ � FA —

� memory 3s [28]
— �< 1s

2 � FA � time — �< 1s

Key registration [13] Set-Pi [13]
∞ �< 1s �< 1s � 11s �< 1s [28] — �< 1s
2 �< 1s �< 1s � 1m2s � bug �< 1s

Yubikey [35]
SAPIC [27]
Set-Pi [13]

∞ � FA —
interactive [27], [28]

— < 1s

Yubikey simplified
∞ � FA — — �< 1s
2 � FA � time ! �< 1s �< 1s

Secure device [5]
StatVerif [5]
SAPIC [27]

∞ � FA — 24s [27] < 1s [28] — �< 1s
SAPIC [27] 2 � FA �< 1s 2m4s [27] ! �< 1s �< 1s

PKCS#11 [27] SAPIC [27] ∞ �< 1s �< 1s 23m13s [27] — �< 1s
Security-API [27] SAPIC [27] ∞ � FA — 2m42s [27] � FA �< 1s

CANauth [25], [13]
Set-Pi [13]

∞ � FA — � memory — < 1s
CANauth simplified 2 � FA � time � memory ! �< 1s �< 1s

Garay-Mackenzie [24] StatVerif [5]
∞ � FA — � 25s �< 1s [28] — �< 1s
1 � FA � 3s � 51s � FA �< 1s

Mobile EMV [15] Tamarin [15]
∞ � FA — �< 1s
4 � FA � time 1m26s [15] �< 1s

Scytl Voting System [16] ProVerif [9] 1 � FA � FA � 9s � 10s

� Automatic proof ! �Counters abstracted by nonces manual proofs with lemmas or interactive mode

� False attacks (FA), computation time >24h (time), memory used >50Gb (memory) — protocol out of scope

‡ with a fresh nonce to avoid trivial attacks when replicated

Figure 3. Experiments: protocols with global states

would enable the attack. Again, the attack has been reported
and acknowledged by the authors of [15].

8. Beyond GSVerif

Our experiments (Figure 3) show that, in some cases, our
frontend GSVerif fails to automatically prove security. Inter-
estingly, we can still prove security by querying additional
properties. This somehow adds some flavour of interactivity
in ProVerif. The idea is very simple: instead of querying
φ, it is always safe to query ψ and φ ∨ ¬ψ. This may
be sufficient for ProVerif to conclude. Sometimes, we may
need an induction. So we may simply query ψ(0), as well
as ψ(n) ⇒ ψ(n + 1). If both properties hold, it is safe to
query φ ∨ ∃n.¬ψ(n) instead of φ.

We illustrate this approach with the Yubikey proto-
col [35]. Yubikey is a small simple device, designed to
authenticate users with some web services. A user shall
simply press a button to be authenticated. More specifically,
a Yubikey device owns some public identifier pid, a secret
id sid, and a secret AES key k, shared with the server.
Moreover, the Yubikey device also uses a counter tc. Every
time the button is pressed, the device generates a one-time
password based on k, sid, the current value of the counter
tc, as well as some random values nonce and npr. The
Yubikey authentication server checks whether the one-time

password enc((sid, tc, npr), k) contains a counter value tc
that is strictly bigger than the previously received value,
stored in a counter otc. If the checks succeed, the server
grants access to the user.

This protocol can be modeled by the process PY ubi:

PY ubi = ! new k; new pid; new sid; new dusr; new dsrv;
(out(dsrv, (0, (sid, k, 0))) | out(dusr, 1) |
out(c, pid) | !Psrv | !Pusr)

where Pserv and Pusr are the processes of the server
and user respectively. The process out(dsrv, (0, (sid, k, 0)))
models the initialization of the cell (or internal memory) of
the server and the process out(dusr, 1) represents the initial-
ization of the counter of the user. Note that the content of
the server’s cell is a pair of a natural number and some tuple
also containing a natural number. The latter represents the
latest counter value seen by the server. The former is used
to record each time that the server grants authentication.

The processes Pusr and Pusr are defined as follows.

Pusr = in(dusr, tc : nat);
new nonce; new npr;
event YubiPress(pid, sid, k, tc);
out(c, (pid, nonce, enc((sid, tc, npr), k);
out(dusr, tc+ 1)

356

Psrv = in(c, (= pid, xnc, y))
in(dsrv, (i : nat, (= sid,= k, otc : nat));
let (= sid, tc : nat, npr) = dec(y, k) in

if otc < tc then
event Login(pid, k, i+ 1, tc);
out(dsrv, (i+ 1, (sid, k, tc)))

else out(dsrv, (i, (sid, k, otc)))
else out(dsrv, (i, (sid, k, otc)))

The protocol should ensure that each successful login
was triggered by a user (pressing the Yubikey button) and
that no replay attacks are possible. These two properties are
respectively expressed as follows.

Login(pid, k, i, tc)) � YubiPress(pid, sid, k, tc)

φnoreplay = Login(pid, k, i, tc)) ∧ Login(pid, k, j, tc)) � i = j

Whereas ProVerif can prove the first property without any
help, it fails to prove the second property φnoreplay.

So we introduce a stronger security property ψ(i):

Login(pid, k, i, tc)) ∧ Login(pid, k, i′, tc′) ∧ i′ ≤ i

� (i = i′ ∧ tc = tc′) ∨ tc′ < tc

This property can be proved by induction on i as follows.

Login(pid, k, i+ 1, tc) ∧ Login(pid, k, i′, tc′) �
i′ > i+ 1 ∨ (i′ = i+ 1 ∧ tc = tc′) ∨ tc′ < tc

∨ [j ≤ i ∧ Login(pid, k, j, y) ∧ Login(pid, k, j′, y′)
∧ j′ ≤ j ∧ (j �= j′ ∨ y �= y′) ∧ y ≤ y′]

The two first lines of this property correspond to ψ(i + 1)
while the two last lines correspond to ¬ψ(i).

Combined with our frontent GSVerif, ProVerif can auto-
matically prove ψ(0), ψ(i) ⇒ ψ(i+1), and φnoreplay∨¬ψ(i).
We easily conclude that φnoreplay is guaranteed.
The CANauth protocol [25] is proved by manually adapting
the transformations corresponding to φcell and φcom.

9. Conclusion and discussion

We devise a simple, generic, and rather powerful ap-
proach that extends the popular tool ProVerif to global
states. Maybe surprisingly, writing heavier queries actually
helps ProVerif to conclude, thanks to its internal algorithm.
We provide several sound transformations that cover private
channels, cells, counters, and tables. Some of our transfor-
mations are quite specific (e.g. on cells). They will work
only on protocols where the values of the cells increase. For
examples where cells could decrease as well, we believe
that it would be necessary to design new invariants with
corresponding transformations. One interest of our approach
is its flexibility, as exemplified in Section 8 on the Yubikey
and CANauth protocols. One can easily adapt the approach
to add a flavour of interactivity in ProVerif. Moreover,
our transformations themselves are modular: each proof is
independent from the other ones and quite simple. It is
easy to add a new transformation and prove its soundness.

However, the resulting, more complex, model may yield
termination issue. For an integration in ProVerif, we envision
a first pass with the original algorithm and, in a second
step, only when the original algorithm could not prove the
protocol, an automatic detection of precise channels and the
application of our extension.

Adding natural numbers required to improve how
ProVerif decides whether a query is satisfied. We believe
that we could use similar ideas to revisit ProVerif’s satu-
ration algorithm itself by detecting earlier when a clause
H ⇒ C can be removed (e.g. when H does not satisfy
inequalities between naturals or our properties). We expect
that this should improve ProVerif in terms of efficiency. In
this paper, we assume a typed attacker only w.r.t. the type
nat. We plan to relax this condition and adapt the procedure
to retrieve soundness even if the adversary may send a term
that is not of the form succn(zero) where a nat is expected.
We also plan to detect when the attacker is forced to comply
with the type, in which case we could use finer properties
(as it is done here).

Our introduction of natural numbers is sufficient for
protocols with counters and tables. However, addition re-
mains limited since two variables may not be added. As a
future work, we plan to explore how to integrate a more
general theory of addition into ProVerif, relying on more
sophisticated algorithms on constraints on natural numbers.

The only protocol that we fail to address is the avionic
protocol [11] as it requires to prove an injective property.
We plan to explore how to (soundly) improve the treatment
of disequalities for injective queries in ProVerif, as we did
for non injective queries. We also plan to study whether
GSVerif can scale up to protocol suites such as TLS1.3.

We considered correspondence and secrecy properties.
Extending our approach to equivalence is not straightfor-
ward since, in ProVerif, (diff-)equivalence is directly en-
coded into processes. As future work, we plan to explore
how to convey formula such as φact, φcell, . . . to the satura-
tion procedure of ProVerif.

Acknowledgements. We would like to thank Jannik Dreier,
Steve Kremer, Eike Ritter, Sebastian Mödersheim, and
Alessandro Bruni for their interactions and helpful guidance
for using their tools. We are also grateful to Bruno Blanchet
for his advices and comments when modifying ProVerif.

This work has been partially supported by the European
Research Council (ERC) under the European Unions Hori-
zon 2020 research (grant agreement No 645865-SPOOC)
and by the ANR project TECAP (ANR-17-CE39-0004-01).

References

[1] Tamarin Manual. https://tamarin-prover.github.io/manual/.

[2] Trusted Computing Group. TPM Specification version 1.2. Parts 13,
revision 103, 2007.

[3] GSVerif. https://sites.google.com/site/globalstatesverif/, Jan. 2018.

[4] M. Abadi and C. Fournet. Mobile values, new names, and secure
communication. In Proc. of the 28th ACM Symposium on Principles
of Programming Languages (POPL’01), pages 104–115, 2001.

357

[5] M. Arapinis, J. Phillips, E. Ritter, and M. Ryan. Statverif: Verification
of stateful processes. Journal of Computer Security, 22(5):743–821,
2014.

[6] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna,
J. Cuellar, P. Hankes Drielsma, P.-C. Héam, O. Kouchnarenko,
J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA
Tool for the automated validation of internet security protocols and
applications. In K. Etessami and S. Rajamani, editors, 17th In-
ternational Conference on Computer Aided Verification, CAV’2005,
volume 3576 of Lecture Notes in Computer Science, pages 281–285,
Edinburgh, Scotland, 2005. Springer.

[7] C. Bansal, K. Bhargavan, and S. Maffeis. Discovering concrete
attacks on website authorization by formal analysis. In 25th IEEE
Computer Security Foundations Symposium (CSF’12), 2012.

[8] K. Bhargavan, R. Corin, C. Fournet, and E. Zalinescu. Cryptograph-
ically verified implementations for tls. In 15th ACM Conference on
Computer and Communications Security (CCS’08), pages 459–468,
2008.

[9] B. Blanchet. An automatic security protocol verifier based on
resolution theorem proving (invited tutorial). In 20th International
Conference on Automated Deduction (CADE-20), Tallinn, Estonia,
July 2005.

[10] B. Blanchet. Modeling and verifying security protocols with the
applied pi calculus and ProVerif. Foundations and Trends in Privacy
and Security, 1(1–2):1–135, Oct. 2016.

[11] B. Blanchet. Symbolic and computational mechanized verification
of the arinc823 avionic protocols. In 30th IEEE Computer Security
Foundations Symposium (CSF’17), pages 68–82. IEEE, 2017.

[12] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre. Proverif 1.97:
Automatic cryptographic protocol verifier, user manual and tutorial,
2017.

[13] A. Bruni, S. Moedersheim, F. Nielson, and H. R. Nielson. Set-pi:
Set membership p-calculus. In 28th Computer Security Foundations
Symposium (CSF 2015). IEEE, 2015.

[14] V. Cheval, V. Cortier, and M. Turuani. A little more conversation,
a little less action, a lot more satisfaction: Global states in Proverif.
Research report, Inria Nancy - Grand Est, Apr. 2018. https://hal.inria.
fr/hal-01774803.

[15] V. Cortier, A. Filipiak, J. Florent, S. Gharout, and J. Traoré. De-
signing and proving an emv-compliant payment protocol for mobile
devices. In 2nd IEEE European Symposium on Security and Privacy
(EuroSP’17), pages 467–480, 2017.

[16] V. Cortier, D. Galindo, and M. Turuani. A formal analysis of the
neuchâtel e-voting protocol. In 3rd IEEE European Symposium on
Security and Privacy (EuroSP’18), London, UK, April 2018.

[17] V. Cortier and C. Wiedling. A formal analysis of the norwegian
e-voting protocol. Journal of Computer Security, 25(15777):21–57,
2017.

[18] C. Cremers. The Scyther Tool: Verification, falsification, and anal-
ysis of security protocols. In Computer Aided Verification, 20th
International Conference, CAV 2008, Princeton, USA, Proc., volume
5123/2008 of Lecture Notes in Computer Science, pages 414–418.
Springer, 2008.

[19] S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type prop-
erties of electronic voting protocols. Journal of Computer Security,
17(4):435–487, 2009.

[20] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel. Formal analysis of
protocols based on TPM state registers. In Proceedings of the 24th
IEEE Computer Security Foundations Symposium (CSF’11), pages
66–82. IEEE Computer Society Press, June 2011.

[21] S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based in-
ference system for the NRL protocol analyzer and its meta-logical
properties. Theoretical Computer Science, 367(1-2):162–202, 2006.

[22] D. Galindo, S. Guasch, and J. Puiggali. 2015 Neuchâtel’s Cast-as-
Intended Verification Mechanism. In 5th International Conference,
(VoteID 2015), pages 3–18, 2015.

[23] J. A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic
contract signing. In 19th Annual International Cryptology Conference
on Advances in Cryptology (CRYPTO’99), pages 449–466. Springer-
Verlag, 1999.

[24] J. A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-Free Optimistic
Contract Signing, pages 449–466. Springer, 1999.

[25] A. V. Herrewege, D. Singelee, and I. Verbauwhede. CANAuth-A
simple, backward compatible broadcast authentication protocol for
CAN bus. In Proceedings of ECRYPT, 2011.

[26] N. Kobeissi, K. Bhargavan, and B. Blanchet. Automated verification
for secure messaging protocols and their implementations: A sym-
bolic and computational approach. In 2nd IEEE European Symposium
on Security and Privacy (EuroS&P’17), pages 435–450, 2017.

[27] S. Kremer and R. Künnemann. Automated analysis of security
protocols with global state. Journal of Computer Security, 24(5):583–
616, 2016.

[28] S. Meier. Advancing automated security protocol verification. PhD
thesis, ETH Zurich, 2013.

[29] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The TAMARIN
prover for the symbolic analysis of security protocols. In Springer,
editor, International Conference on Computer Aided Verification
(CAV’13), pages 696–701, 2013.

[30] S. Moedersheim and A. Bruni. Aif-omega: Set-based protocol ab-
straction with countable families. In 5th Conference on Principles of
Security and Trust (POST’16), 2016.

[31] V. R. Pratt. Two easy theories whose combination is hard. Technical
report, 1977.

[32] RSA Security Inc. PKCS #11: Cryptographic Token Interface Stan-
dard, v2.20 edition, 2004.

[33] B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated analysis
of Diffie-Hellman protocols and advanced security properties. In
S. Chong, editor, 25th IEEE Computer Security Foundations Sym-
posium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012, pages
78–94. IEEE, 2012.

[34] A. Schutt and P. J. Stuckey. Incremental satisfiability and implication
for UTVPI constraints. INFORMS Journal on Computing, 22(4):514–
527, 2010.

[35] Yubico AB. The YubiKey Manual - Usage, configuration and intro-
duction of basic concepts (Version 2.2), 2010.

358

