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Abstract—Software-based countermeasures provide effective
mitigation against side-channel attacks, often with minimal ef-
ficiency and deployment overheads. Their effectiveness is often
amenable to rigorous analysis: specifically, several popular coun-
termeasures can be formalized as information flow policies, and
correct implementation of the countermeasures can be verified
with state-of-the-art analysis and verification techniques. How-
ever, in absence of further justification, the guarantees only hold
for the language (source, target, or intermediate representation)
on which the analysis is performed.

We consider the problem of preserving side-channel counter-
measures by compilation for cryptographic “constant-time”, a
popular countermeasure against cache-based timing attacks. We
present a general method, based on the notion of constant-time-
simulation, for proving that a compilation pass preserves the
constant-time countermeasure. Using the Coq proof assistant, we
verify the correctness of our method and of several representative
instantiations.

I. INTRODUCTION

Side-channel attacks are physical attacks in which malicious

parties extract confidential and otherwise protected data from

observing the physical behavior of systems. Side-channel

attacks are also among the most effective attack vectors

against cryptographic implementations, as witnessed by an

impressive stream of side-channel attacks against prominent

cryptographic libraries. Many of these attacks fall under the

general class of timing-based attacks, i.e. they exploit the

execution time of programs. In their simplest form, timing-

based side-channel attacks only use very elementary facts about

execution time [20], [12]: for instance, branching on secrets

may leak confidential information, as the two branches may

have different execution times. Further instances of these attacks

include [2], [1]. However, advanced forms of timing-based

side-channel attacks also exploit facts about the underlying

architecture. Notably, cache-based timing attacks exploit the

latency between cache hits and cache misses. Cache-based

timing attacks have been used repeatedly to retrieve almost

instantly cryptographic keys from implementations of AES

and other libraries—see for example [9], [28], [31], [17],

[23], [32], [16]. Similarly, data timing channels exploit the

timing variability of specific operations—i.e. operations whose

execution time depends on their arguments [24].

Numerous countermeasures have been developed in response

to these attacks. Hardware-based countermeasures propose

solutions based on modifications of the micro-architecture,

e.g. providing hardware support for AES instructions, or

making caches security-sensitive. These countermeasures are

effective, but their deployment may be problematic. In contrast,

software-based countermeasures propose solutions that can be

implemented at language level, including secure programming

guidelines and program transformations which automatically en-

force these guidelines. Popular software-based countermeasures

against timing-based side-channel attacks include the program

counter [25] and the constant-time1 [9] policies. The former

requires that the control-flow of programs does not depend

on secrets, and provides effective protection against attacks

that exploit secret-dependent control-flow, whereas the latter

additionally requires that the sequence of memory accesses

does not depend on secrets, and provides an effective protection

against cache-based timing attacks.
Software-based countermeasures are easy to deploy; fur-

thermore, they can be supported by rigorous enforcement

methods. Specifically, the prevailing approach for software-

based countermeasures is to give a formal definition, often in

the form of an information flow policy w.r.t. an instrumented

semantics that records information leakage. Broadly speaking,

the policies state that two executions started in related states

(from an attacker’s point of view) yield equivalent leakage.

These policies can then be verified formally using type systems,

static analyses, or SMT-based methods. Formally verifying that

software-based countermeasures are correctly implemented is

particularly important, given the ease of introducing subtle

bugs, even for expert programmers.
However, and perhaps surprisingly, very little work has

considered the problem of carrying software-based countermea-

sures along the compilation chain. As a result, developers of

cryptographic libraries are faced with the following dilemma

whenever implementing a software-based countermeasure:

• implement and verify their countermeasure at target level,

with significant productivity costs, because of the complexity

to reason about low-level code;

• implement and verify their countermeasure at source-level

and trust the compiler to preserve the countermeasure.

Sadly, none of the options is satisfactory.

1The terminology “constant-time” is well established in the cryptographic
community, but may be confusing for a broader audience, so we shall often
(but not always) use the expression “cryptographic constant-time” to minimize
risks of confusion.
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To address this problem, we propose a general method

for proving that cryptographic constant-time is preserved by

compilation. Our method is based on constant-time-simulation

(CT-simulation), which adapts to our problem the usual notion

of simulation from compiler verification. As for simulations,

CT-simulations come in several flavours (lockstep, manysteps,

and general); each of them establishes preservation of constant-

time. Crucially, preservation proofs are modular: compiler

correctness is assumed, and does not need to be re-established.

This allows for a neat separation of concerns and incremental

proofs (e.g. first prove compiler correctness, then preservation

of constant-time), and eases future applications of our method

to existing verified compilers. We prove the correctness of

our framework and demonstrate its usefulness by deriving

preservation of cryptographic constant-time for a representative

set of compiler optimizations. Our proofs are formally verified

using the Coq proof assistant.2

Overall, our work lays previously missing theoretical founda-

tions for preservation of cryptographic constant-time, a popular

software-based side-channel countermeasures by compilation.

Summary of contributions: The main technical contributions

of the paper include:

• we provide a general method to prove preservation of

cryptographic constant-time by compilation;

• we study common classes of compilation passes and prove

that they preserve cryptographic constant-time;

• we provide mechanized proofs of correctness of our method,

and of the instantiations to specific optimizations.

II. CRYPTOGRAPHIC CONSTANT-TIME

Timing attacks are common and very efficient methods to

break cryptographic schemes. The most famous one is certainly

the attack on the square-and-multiply algorithm used in modular

exponentiation. The algorithm that should compute xk mod p
can be implemented as follows (in pseudo-code):

r = 1;
for(i = base - 1; 0 <= i; --i) {

r = (r * r) mod p;
if ((k >> i) & 1) r = (r * x) mod p;

}

At each iteration r contains the value of xk/2i , each loop

iteration squares r and if the bit at i is 1 then r is multiplied by

x. If an attacker can measure the time taken by each iteration

of the loop, it can distinguish between the iteration where

the tested bit of k is 0 or 1. A solution to fix the problem is

to systematically execute the second multiplication and then

correct the value of r using a conditional move.

for(i = base - 1; 0 <= i; --i) {
r = (r * r) mod p;
r’ = (r * x) mod p;
r = ((k >> i) & 1) ? r’ : r;

}

2The whole development is available at https://sites.google.com/view/
ctpreservation

The last instruction can be implemented using a linear

combination if the architecture does not provide a constant-time

cmov instruction. Importantly, the modified implementations

are secure in the program counter model, i.e. their control flow

does not depend on secrets.

However, program counter security does not always suffice to

protect implementations, as monitoring of shared resources can

be exploited by a malicious party to recover information. For

instance, cache attacks exploit the latency between cache misses

and cache hits to observe whether memory accesses have been

performed. Early examples of cache attacks were demonstrated

by Percival [28] on an OpenSSL implementation of RSA,

and by Bernstein [9] and Osvik, Shamir and Tromer [31] on

implementations of AES based on lookup tables.

One popular solution is then to require that memory

accesses, as well as control-flow, should not depend of secret

data. This policy, known as “constant-time” policy in the

cryptography literature, has become a de facto standard for

cryptographic implementations—as well as the terminology,

which is somewhat misleading, as no explicit reasoning about

execution time is involved in the formal definition of constant-

time program. Recently, Barthe et al [5] show that constant-

time implementations are protected against cache attacks in an

idealized model of virtualization.

This is not to say that the notion of cryptographic constant-

time is an absolute guarantee against side-channel attacks.

For instance, elementary operations such as multiplication

and division are not constant-time on many popular architec-

tures. Worse, recent attacks exploit speculative execution to

retrieve confidential information from constant-time implemen-

tations [19]. However, the constant-time policy remains a useful

guideline for writing secure implementations.

In this paper, we study the impact of compiler optimizations

on the constant-time policy. It is well-known that compilers

may turn source programs that satisfy cryptographic constant-

time into target programs that are not constant-time. For a

concrete example, consider the code snippet:

int mask = -b;
x = (y & mask) | (x & ~mask);

This snippet, which has the same effect as move instruction

(x = b?y : x), is trivially constant-time. Unfortunately the

clang compiler version 5.0 using flags -O2 -m32 -march=i686
compiles it into assembly code equivalent to if (b) x = y.

More generally, a classical example of program where the

constant-time policy is broken by compilation is string equality.

String equality is generally implemented by a library function

and it is generally viewed as a non-leaking function at source

level; however, it can be compiled to a loop which early exits

when two bytes differ. Thus, the low-level program may reveal

the first position where the two input bitstrings differ, and

hence is not constant-time—assuming that the bitstrings are

secret.

Lazy operations are another good example where branching

instructions may be introduced during compilation. For exam-

ple, in x = f(k) && g(z) might be compiled into x = f(k); if x then
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x = g(z); thus a branching on a secret may appear and the final

program may not be constant-time.

For a more recent example, Kaufmann et al. [18] build a

timing attack against an implementation of the scalar product

on an elliptic curve that is constant-time (assuming that

the 64-bit multiplication does not leak information about its

operands). Indeed, in that setting, the compiler optimizes the

multiplications so that they run faster on small values, resulting

in an information leak.

III. PROBLEM STATEMENT

A. Observational non-interference

We focus on programs that carry an explicit notion of leakage.

In our setting, leakage is modelled as lists of atomic leakages.

We let L denote the list of atomic leakages, and use · to denote

concatenation of lists. We also use [a] to denote the list with

a single element a, and ε to denote the empty list.

We model the behavior of programs using an instrumented

operational semantics given by labelled transitions of the form

a
t−→ a′, where a and a′ are states and t is the leakage associated

to the one step execution from a to a′. We shall sometimes

write a → a′ when t is irrelevant.

We assume that the semantics is deterministic, i.e., for all

a, a1, a2 ∈ S and t1, t2 ∈ L,

(a
t1−→ a1 ∧ a

t2−→ a2) =⇒ (a1 = a2 ∧ t1 = t2).

The assumption of deterministic semantics simplifies the formal

treatment, and is fully compatible with the intended application

domain—in particular, all recent languages for writing high-

speed cryptographic software have a deterministic semantics.

We define multi-step execution a
t−→+ a′ by the clauses:

a
ε−→+ a

a
t−→ a′ a′ t′−→+ a′′

a
t·t′−−→+ a′′

We also define n-step execution similarly:

a
ε−→0 a

a
t−→ a′ a′ t′−→n a′′

a
t·t′−−→n+1 a′′

.

Observational non-inteference is defined for complete exe-

cutions. Therefore, we must introduce notions of initial and

final states.

Final states are modelled by a distinguished subset Sf of

final states, such that a
t−→ a′ implies a /∈ Sf . The converse

may fail, i.e. a /∈ Sf does not imply the existence of a state a′

and leakage t such that a
t−→ a′. We write a ⇓t iff there exists

a final state a′ ∈ Sf such that a
t−→+ a′.

In view to instantiate our general framework to a standard

imperative language, where all the initial states of program P
are of the form {ρ, P}, where ρ is an environment, we assume

given a type I of input parameters and we see a program P as

a function mapping input parameters to initial states. Therefore

the set of initial states of program P is defined as P (I). It is

important to note that the set I of inputs shall be shared by

all languages involved in the compilation chain considered in

this paper.

We next define the notion of observationally non-interfering

program.

Definition 1 (Observationally non-interfering program). A

program P is observationally non-interfering w.r.t. a binary

relation φ on states, written P |= ONI(φ), iff for all states

a, a′ ∈ P (I) and b, b′ ∈ S and t, t′ ∈ L and n ∈ N,

a
t−→n b ∧ a′ t′−→n b′ ∧ φ a a′ =⇒

t = t′ ∧ (b ∈ Sf ⇐⇒ b′ ∈ Sf ).

Our notion of observational non-inteference entails a weaker

but more intuitive termination-insensitive notion. Specifically,

if P is observationally non-interfering w.r.t. a relation φ, then

for all states a, a′ ∈ P (I) and t, t′ ∈ L,

a ⇓t ∧ a′ ⇓t′ ∧ φ a a′ =⇒ t = t′.

B. Secure compilation

For convenience, we restrict our attention to safe programs.

Definition 2 (Safety). We say that a state a is safe, written

safe(a), iff a ∈ Sf or there exists a ∈ S such that a → a′. We

say that a program P is safe iff for every a ∈ P (I), for every

a′ ∈ S such that a
t−→+ a′, a′ is safe.

The problem addressed in this paper is an instance of secure

compilation.

Definition 3 (Security-preserving compiler). Assume given

source and target languages, and let φ and φ′ be binary relations

on source and target states. Let �·� be a compiler from source

to target programs. �·� is security-preserving for (φ, φ′) iff for

every program P :

P |= ONI(φ) ∧ safe(P )
?

=⇒ �P � |= ONI(φ′)

C. Discussion

A naive strategy for proving the implication would be to

show that leakage is preserved by compilation, i.e. source

executions with leakage t is compiled to target executions with

equal leakage t. Such a strategy can be implemented using

an adaptation of the standard notion of simulation, which we

describe in the next section.

However, this strategy fails for most optimizations—and

moreover, source and target languages do not even need to

support the same notion of leakage. The failure of the naive

strategy forces us to consider an alternative strategy inspired

from unwinding lemmas, a standard technique for proving that

programs satisfy an information flow policies.

Informally, unwinding lemmas are parametrized by an

unwinding relation and come in two flavours: locally preserves
unwinding lemmas show that one-step executions started in

two states related by the unwinding relation yield states that

are related by the unwinding relation, and step-consistent
unwinding lemmas show that under some conditions, one-step

execution yields a state related to the original state, i.e. a → a′

implies that a and a′ are related by the unwinding relation.

Step-consistent unwinding lemmas are used for reasoning about
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e ::= x | n | e o e | a[e]
c ::= skip | x = e | a[e] = e | c; c | if e c c | loop c e c

where x ranges over variables, a ranges over arrays and e
ranges over expressions.

Fig. 1: Minimal language

diverging control flow, i.e. when programs branch on secrets,

and are not required when executions have the same control

flow. Our method considers only the case of locally preserves
unwinding lemmas, and provide sufficient conditions for the

unwinding relation and equality of leakage to be preserved by

compilation. This suffices for the observational non-interference

policies studied in this article.

It is certainly possible to extend our method to provide a

counterpart to step-preserving unwinding lemmas. However, it

remains an open question whether the general framework could

still be instantiated to a broad class of program optimizations.

IV. SETTING

In this section we instantiate observational non-interference

to a specific language and leakage model.

A. Programming language

Usually, compilers use many intermediate languages during

the compilation. Some transformations go from one language

to another, while others stay within the same language. While

our methodology applies to transformations with different input

and output languages, for the sake of simplicity, we try to share

as much as possible the input and output language. The only

transformation where the language changes is the linearization

where the input language is a structured language while the

output is a list of basic instructions with jumps.

For most of the transformations, we consider a minimal

imperative language shown in Figure 1. The type of input

parameters is the set of environments. The language features

a loop construct of the form loop c1 e c2. The additional

generality of the construct (over while loops) mildly simplifies

the presentation of some optimizations. For clarity of exposition,

only constant or binary operators are considered for building

expressions.

B. Environments and semantics of expressions

An environment ρ is a pair (ρv, ρa), where ρv is a partial

map from the set X of variables to integers, and ρa is a partial

map from A×Z, where A is the set of arrays, to integers, i.e.

ρv : X ⇀ Z and ρa : A× Z ⇀ Z.

Constants are interpreted as integers. The interpretation of a

binary operator o is given by a pair of functions (o, o) of type

Z×Z → Z and Z×Z → L, modelling functional behavior and

leakage respectively. We allow the first function to be partial.

As usual, we model partial functions using a distinguished

value ⊥ for undefined and assume that errors propagate.

The interpretation [e]ρ and leakage leak(e, ρ) of an expres-

sion e in an environment ρ are elements of Z and L respectively.

Figure 2 defines the functions formally. The evaluation of

variables and constants generates no leakage; for operators, the

leakage corresponds to the leakage of subexpressions and the

specific leakage of the operation o [e1]ρ [e2]ρ. Note that, as

for other operators, the definition of leakage for array access

is parametrized by a leakage function λa : A× Z → L.

C. States and semantics of commands

States are pairs of the form {c, ρ} where c is a command

and ρ is an environment. We use s.cmd and s.env to denote the

first and second components of a state. We define initial and

final states to be respectively of the form {P, ρ} and {skip, ρ},

where ρ ranges over environments.

The instrumented semantics of commands is modelled by

statements of the form {c, ρ} t−→ {c′, ρ′}, and is parametrized

by constants λskip, λloop ∈ L, functions λv : X × Z → L,

and λif : Z → L. We use the standard notation ·{· ← ·} for

updating environments.

The semantics is standard, except for the semantics of

loops, and the definition of the leakage. The loop command

loop c1 e c2 first executes c1 (unconditionally, as the do-while
command), then evaluates e: if e evaluates to true (i.e. [e]ρ 
= 0)

the command c2 is executed and the loop command is evaluated

w.r.t. the updated environment (as in the while-do), else if e
evaluates to false (i.e. [e]ρ = 0) the command terminates

immediately.

The leakage of a command is the leakage of the expressions

evaluated during the execution of the command plus a specific

leakage. For array assignment, the specific leakage depends of

the address λa(a, [e1]ρ). For conditional, the leakage depends

of the branch taken.

The following lemma establishes that the instrumented

semantics is deterministic, as required by our setting.

Lemma 1. For all states a, b, b′, if a t−→ b and a
t′−→ b′, then

b = b′ and t = t′.

D. Leakage models

We list several observation policies (all but the last one have

been considered in the literature), and succinctly describe for

each of them the leakage model; Figure 3 summarizes the main

leakage models.

• step-counting policy: the number of execution steps is

leaked—modelled as the length of a list over the unit type

(whose element is noted •);

• program counter policy: control flow is leaked. Leakage is a

list of boolean values containing all guards evaluated during

this execution;

• memory obliviousness: memory accesses are leaked. Leakage

is a list of memory addresses accessed during this execution

(but not their value);

• constant-time policy: control flow and memory addresses

are leaked. It combines the program counter and memory

obliviousness policies. Leakage is an heterogeneous list of

booleans and addresses. In all examples in this paper, we
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[n]ρ = n [x]ρ = ρv(x) leak(n, ρ) = ε leak(x, ρ) = ε

[a[e]]ρ = ρa(a, [e]ρ) leak(a[e], ρ) = leak(e, ρ) · λa(a, [e]ρ)

[e1 o e2]ρ = o [e1]ρ [e2]ρ leak(e1 o e2, ρ) = leak(e1, ρ) · leak(e2, ρ) · o [e1]ρ [e2]ρ

{x = e, ρ} leak(e,ρ)·λv(x,[e]ρ)−−−−−−−−−−−→ {skip, ρ{x ← [e]ρ}}
{a[e1] = e2, ρ} leak(e1,ρ)·leak(e2,ρ)·λa(a,[e1]ρ)−−−−−−−−−−−−−−−−−−−→ {skip, ρ{a[[e1]ρ] ← [e2]ρ}}
{if e c1 c2, ρ} leak(e,ρ)·λif([e]ρ)−−−−−−−−−−→ {c1, ρ} if [e]ρ 
= 0

{if e c1 c2, ρ} leak(e,ρ)·λif([e]ρ)−−−−−−−−−−→ {c2, ρ} if [e]ρ = 0

{skip; c2, ρ} λskip−−→ {c2, ρ}
{loop c1 e c2, ρ} λloop−−→ {c1; if e (c2; loop c1 e c2) skip, ρ}

{c1, ρ} t−→ {c′1, ρ′}
{c1; c2, ρ} t−→ {c′1; c2, ρ′}

Fig. 2: Instrumented semantics of the while language

use the non-cancelling variant (see below) of this leakage

model;

• cost obliviousness: execution cost is leaked. Leakage is a

list of numbers, representing the cost of each instruction;

• size-respecting policy: size of operands is leaked for specific

operators, e.g. division. Leakage is a list of sizes, taken

from a finite set size;

• constant-time policy with size: control flow, memory ad-

dresses, and size of operands are leaked. Leakage is an

heterogeneous list of booleans, addresses, and sizes.

In all these cases, we require that leakage is equal in two traces

that start from related states. One can weaken these policies in

multiple ways, for instance by requiring equality of the overall

execution cost (obtained by summing the execution cost of

each individual instruction), or by requiring that the difference

of leakage at each individual step (or the global leakage) does

not exceed a given upper bound.

Definition 4. A program P is cryptographic constant-time

w.r.t. φ iff it is observationally non-interfering w.r.t. φ in the

constant-time leakage model.

E. Non-cancellation of leakage

Our main results are based on the assumption that leakage

is non-cancelling. Informally, non-cancellation states that the

leakage of an execution uniquely determines the leakage of all

its individual steps, and that the equality of the leakages of

two executions entails the pairwise equality of the leakages of

each of their steps.

It turns out that some leakage models from Figure 3 do not

satisfy the non-cancelling condition. However, in some cases,

one can easily define alternative leakage models that verify the

non-cancelling condition, and which yield equivalent notions

of non-interference. For instance, the program counter and

constant-time policies can be made non-cancelling by replacing

ε leakages by a leakage [•], where • is a distinguished element,

to record that one execution step has been performed.

Step-counting:

Atomic leakages: {•}
λskip = λloop = λa(a, z) = λv(v, z) = λif(z) = [•]

Program counter:

Atomic leakages: B

λskip = λloop = λa(a, z) = λv(x, z) = ε λif(z) = [z 
= 0]

Memory obliviousness:

Atomic leakages: X + (A×N)

λskip = λloop = λif(z) = ε
λa(a, z) = [(a, z)] λv(x, z) = [x]

Constant-time:

Atomic leakages: B+ (A× Z)

λskip = λloop = ε λif(z) = [z 
= 0]
λa(a, z) = [(a, z)] λv(x, z) = [x]

Size non-interference:

L � size

λskip = λloop = λa(a, z) = λv(x, z) = λif(z) = ε

Cost obliviousness:

Atomic leakages: N

λskip = λloop = λa(a, z) = λv(v, z) = λif(z) = ε

In the first two models only commands leak. In the last two

models only expressions leak.

Fig. 3: Leakage models

F. Relations on initial states

The relations φ considered in the literature generally rep-

resent low equivalence, and are defined relative to a security

lattice and a security environment. We consider a lattice

with two security levels: H , or high, for secret and L, or

low, for public. Then, a security environment is a mapping

from variables and arrays to security levels. Finally, two
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environments ρ and ρ′ are low equivalent w.r.t. a security

environment Γ iff they map public variables and arrays to the

same values, i.e. ρv(x) = ρ′v(x) for all variables x such that

Γ(x) = L and ρa(a, i) = ρ′a(a, i) for all arrays a such that

Γ(a) = L and every i ∈ N.

V. LOCKSTEP CONSTANT-TIME SIMULATIONS

We present a simple method for proving preservation

of cryptographic constant-time, corresponding to lockstep

simulations. Moreover, we instantiate our method to constant

folding and spilling. Refinements of the method to manysteps

and general simulations are provided in the next sections.

A. Framework

We start by recalling the standard notion of simulation from

compiler verification. In the simplest (lockstep) setting, one

requires that the simulation relation relates one step of execution

of a source program S with one step execution of its compiled

version C, as shown in Figure 4a, in which black represents

the hypotheses and red the conclusions. The horizontal arrows

represent one step execution of S from state a to state b, and

one step execution of C from state α to state β. The relation

· ≈ · relates execution states of the source and of the target

program.

Definition 5 (Lockstep simulation). ≈ is a lockstep simulation
when:

• for every source step a → b, and every target state α such

that a ≈ α, there exist a target state β and a target execution

step α → β such that end states are related: b ≈ β;

• for every input parameter i, we have S(i) ≈ C(i);
• for all source and target states b and β such that b ≈ β, we

have b is a final source state iff β is a final target state.

The following lemma follows from the assumption that all

our languages have a deterministic semantics.

Lemma 2. Assume that ≈ is a simulation. Then for all target
execution step α → β and safe source state a such that a ≈ α,
there exists a source execution step a → b such that b ≈ β.

Our method is based on constant-time simulations, a new

proof technique adapted from the simulation technique in

compiler verification. Whereas simulations are proved by 2-

dimensional diagram chasing, constant-time simulations are

proved by 3-dimensional diagram chasing. Figure 4b illustrates

the definition of constant-time simulation, for the lockstep

case. It introduces relations · ≡S · and · ≡C · between source

and target states, depicted with a triple line in the diagram.

Horizontal arrows represent one step executions (as before),

but we now consider two executions at source level and two

executions at target level.

Definition 6 (Lockstep CT-simulation). (≡S ,≡C) is a lockstep

CT-simulation with respect to ≈ iff

• For all source steps a
t−→ b and a′ t−→ b′ such that a ≡S a′

and for every pair of target steps α
τ−→ β and α′ τ ′

−→ β′

such that a ≈ α and a′ ≈ α′ and α ≡C α′ and b ≈ β and

b′ ≈ β′, we have b ≡S b′ and β ≡C β′ and τ = τ ′;
• For every pair of input parameters i, i′ s.t. φ i i′, we have

S(i) ≡S S(i′) and C(i) ≡C C(i′).

The notion of constant-time simulation is tailored to make the

· ≡ · relation stable by reduction, and to yield preservation of

the constant-time policy. This is captured by the next theorem,

where φ is the relation on input parameters —it is useful to

think about φ as low-equivalence between memories—and ≡S

and ≡C are two relations on source and target states–it is useful

to think about ≡S and ≡C as equivalence of code pointer, i.e.

the two states point to the same instruction.

Theorem 1 (Preservation of constant-time policy). Let S be a
safe source program and C be the target program obtained by
compilation. If S is constant-time w.r.t. φ then C is constant-
time w.r.t. φ, provided the following holds:
1) ≈ is a lockstep simulation;
2) (≡S ,≡C) is lockstep CT-simulation w.r.t. ≈.

Proof sketch. Consider two target executions

α1
τ1−→ . . . . . .

τm−−→ αm+1 α′
1

τ ′
1−→ . . . . . .

τ ′
n−→ α′

n+1

starting in related states, i.e. φ α1 α′
1, and such that αm+1 and

α′
n+1 are final states. We must show that m = n and τi = τ ′i

for every 1 ≤ i ≤ n. By safety of S and 1) and Lemma 2,

there exist source executions

a1
t1−→ . . . . . .

tm−−→ am+1 a′1
t′1−→ . . . . . .

t′n−→ a′n+1

such that φ a1 a′1 and ai ≈ αi for every 1 ≤ i ≤ m+ 1 and

a′i ≈ α′
i for every 1 ≤ i ≤ n+ 1. Moreover, by 1) am+1 and

a′n+1 are final states, and by 2) α1 ≡C α′
1 and a1 ≡S a′1.

By the constant-time property of S, m = n and ti = t′i for

every 1 ≤ i ≤ n. We next reason by induction on i, applying

2) to conclude that αi ≡C α′
i and ai ≡S a′i and τi = τ ′i , as

desired.

Theorem 1 reduces proving constant-time of preservation to

proving the existence of a simulation ≈ and a constant-time

simulation (≡S ,≡C) relative to ≈. Furthermore, both goals

can be proved independently. This separation of concerns limits

the proof effort and support modular proofs. In particular, when

the compiler is already proved correct (by showing a simulation

≈), one only needs to show that there exists a constant-time

simulation w.r.t. ≈.

B. Examples

1) Constant folding: We illustrate the general scheme

for proving preservation of the constant-time policy, taking

constant folding as example. This simple optimization searches

for constant expressions and replaces them by their value

in the program text. Technically, constant folding traverses

the program and replaces expressions op e1 e2 by simpler

expressions if e1 or e2 evaluate to distinguished constants.

The simplification rules for multiplication work as follows:

if both subexpressions compile to known values n1 and n2
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Fig. 4: Lockstep simulations

respectively, the compilation is the constant n1×n2; otherwise,

if one of the arguments compiles to the constant 1 then the

result is the compilation of the other. The most interesting case

is if one of the argument compiles to 0. In this case, the result

is the constant 0 (independently of the other argument).

We use the lockstep simulation technique to prove that

constant-folding preserves the constant-time policy. Our first

step is to prove that the constant-folding satisfies the lockstep

diagram for simulation. To this end, we consider the relation

a ≈ α is defined by

�a.cmd� = α.cmd ∧ a.env = α.env.

Lemma 3. The relation ≈ is lockstep simulation invariant.

The proof of this lemma is based on the fact that if an

expression e has a semantics in a given environment ρ (i.e.

[e]ρ = n) then its compilation has the same semantics, [�e�]ρ =
n.

Our next step is to prove that the transformation satisfies

the lockstep diagram for constant-time simulation. To this end,

we use for the ≡ relations the equality of commands a
c≡ a′

defined by a.cmd = a′.cmd.

Lemma 4. (
c≡,

c≡) is a lockstep CT-simulation w.r.t. ≈.

The proof of this lemma is based on the fact that if

an expression e has a (instrumented) semantics in both

environments and the leakages coincide (i.e. [e]ρ = n and

[e]ρ′ = n′ and leak(e, ρ) = leak(e, ρ′)), then the compilation

of e generates the same leakage in both environments, i.e.

leak(�e�, ρ) = leak(�e�, ρ′).

It follows that constant folding preserves the constant-time

property.

Theorem 2. Constant-folding preserves the constant-time
policy.

2) Register allocation and spilling: Register allocation is a

compilation pass that maps an unbounded set of variables into

a finite set of registers. In order to preserve the semantics of

programs, it is often necessary that the target program stores

the value of some variables on the stack, effectively turning

variable accesses into memory accesses. Formally, register

allocation produces for every program point a mapping from

program variables to registers or stack variables (interpreted as

an integer denoting the relative position in the stack). Finding

optimal assignments that minimize register spilling is a hard

problem, and is commonly solved using translation validation.

Specifically, computing the assignment is performed by an

external program, and a verified checker verifies that the

assignment is compatible with the semantics of programs.

Formally, we use a distinguished array that is not used in the

source program to model the stack. We let σ be the assignment

output by register allocation: it maps each source variable to

either a variable or a position in the stack array.

Proving the correctness of register allocation is relatively

easy. The proof relies the correctness of the liveness analysis

which underlies register allocation. Preservation of the constant-

time policy is more interesting, because spilling introduces

new memory reads and writes. The crucial observation is that

the addresses leaked by spilling do not depend on the memory,

since they are at a constant offset relative to the top of the

stack. Thus, the proof of the CT-simulation diagram does not

pose any specific difficulties. For both proofs, we use a ≈ α
defined by

�a.cmd� = α.cmd ∧ ∀x. a.env(x) = α.env(σ(x)).

Theorem 3. ≈ is lockstep simulation invariant. (
c≡,

c≡) is a
lockstep CT-simulation relative to ≈. Variable spilling preserves
the constant-time policy.

Remark 1. Following [4], our formalization separates register

allocation in two steps. The first step performs some form

of variable renaming and defines for every program point a

mapping from source variables to target variables. The second

step performs spilling, and defines a single, global, mapping

from variables to variables or stack variables. Furthermore, the

mapping must be the identity for variables that are mapped to

variables.

This proof can be extended to a more complex language

with function calls and a stack pointer. The difficulty here is

that a stack address will not be a constant k but relative to the

top of the stack stk+ k. Then, when proving preservation of

constant-time we have to show that introduced leaks are equal

in two different executions, i.e. stk1 + k = stk2 + k where

stki correspond to the value of the stack pointer in execution i.
So we have to ensure equality of stack pointers. This can be

done by a small modification of the ≡ predicate of the target

language, so that it imposes equality of commands and of stack

pointers. Since the value of the stack pointer only depends

on the control flow of the program and that preservation of

constant-time already requires equality of the control flow,

establishing equality of stack pointers adds no difficulty.

VI. MANYSTEPS CONSTANT-TIME SIMULATIONS

The requirement of lockstep execution is often too strong in

practice. For illustrative purposes, consider the nonsensical

transformation that replaces every atomic instruction i by

skip; i. Every single execution step of the source program will

correspond to two execution steps of the target program (so it
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Fig. 5: Manysteps simulations

does not correspond to the lockstep simulation). There exist

alternative notions of simulations which relax the requirement

on lockstep executions by allowing more than one step of

execution (i.e. manysteps), as shown on Figure 5a. We show

that an equivalent relaxation exists for CT-simulations.

A. Framework

Recall that the constant-time simulation diagram considers

two instances of the simulation diagram. It is not enough to

simply consider two pairs of traces satisfying the previous

diagram. To understand how this is an issue, assume a

compilation pass (similar to our add skip transformation) that

transforms the fictitious program “�: GOTO �” into “�: NOP;

GOTO �”. Every two steps of target execution returns to the

same state. A simulation relation will necessarily relate the

source state to some target state α, and given the hypotheses

of the constant-time simulation diagram (a ≈ α, a → a, and

α →+ α) it is generally not possible to tell how many loop

iterations separate the two occurrences of the target state α
(hence to prove that any two such target executions have the

same length).

To overcome this issue, the simulation diagram is refined to

predict how many steps of the target will correspond to each

step of the source. This information is usually implicit in the

simulation proof; we only make it explicit to be used in the

constant-time simulation diagram.

Formally, we introduce a function num-steps(a, α) which,

assuming that a and α are two reachable states related by

the simulation relation, predicts how many steps of the target

semantics are to be run starting from α to close the manysteps

simulation diagram.

Definition 7 (Manysteps simulation). ≈ is a manysteps

simulation w.r.t. num-steps when:

• for all source steps a −→ b, and every target state α such

that a ≈ α, there exist a target state β and target execution

α −→n β, where n = num-steps(a, α), such that end states

are related: b ≈ β;

• for every input parameter i, we have S(i) ≈ C(i);
• for all source and target states b and β such that b ≈ β, we

have b is a final source state iff β is a final target state.

Given such a simulation diagram, it is possible to build the

constant-time simulation diagram that universally quantifies

over two instances of this diagram, as depicted on Figure 5b.

The diagram reads as follows.

Definition 8 (Manysteps CT-diagram). A pair of relations (≡S ,

≡C ) is a manysteps CT-simulation w.r.t. ≈ and num-steps iff

the following holds: for all a, a′, b, b′, α, α′, β, β′, t, τ, τ ′

such that

• initial states are related a ≡S a′ and α ≡C α′;
• a

t−→ b and a′ t−→ b′;
• α

τ−→n β and α′ τ ′
−→n′

β′ where n = num-steps(a, α) and

n′ = num-steps(a′, α′);
• the simulation relation holds a ≈ α, a′ ≈ α′, b ≈ β, and

b′ ≈ β′

we have

• equality of leakage τ = τ ′ and n = n′,
• final states are related b ≡S b′ and β ≡C β′.

This definition, together with a condition on initial states,

enable us to define the manysteps constant-time simulation.

Definition 9 (Manysteps CT-simulation). A pair of relations

(≡S , ≡C) is a manysteps CT-simulation relative to ≈ w.r.t.
num-steps when:

1) (≡S ,≡C) satisfy the manysteps CT-diagram w.r.t. ≈ and

num-steps;

2) for every pair of input parameters i, i′ s.t. φ i i′, we have

S(i) ≡S S(i′) and C(i) ≡C C(i′).

Theorem 4 (Constant-time preservation from manysteps

CT-simulation). Let S be a safe source program and C be the
target program obtained by compilation. If S is constant-time
w.r.t. φ then C is constant-time w.r.t. φ, provided the following
holds, for a given num-steps function that is strictly positive:
1) ≈ is a manysteps-simulation w.r.t. num-steps;
2) (≡S , ≡C ) is a manysteps CT-simulation relative to ≈ w.r.t.

num-steps.

B. Example: Expression flattening

The flattening of expressions models the transformation to a

3-address code format: each expression is split into a sequence

of assignments and a final expression such that at most one

operator appears in each expression. This actually fixes the

evaluation order of the sub-expressions. Since the evaluation

of an expression is done, after transformation, in several steps,

the leakage corresponding to an expression is spread among

the leakages of these steps.

The transformed program may use additional variables to

store the values of some sub-expressions. Therefore, the set of

program variables is extended with names for such temporary

values.

The procedure that flattens an expression e is written F (e):
it returns a pair (p, e′) where p is a prefix command and e′

an expression such that the evaluation of p followed by the

evaluation of e′ yields the same value as the evaluation of e;

moreover, the evaluation of p only modifies fresh temporary

variables. The transformation �·� of a program applies F to

each expression e occurring in that program and inserts the
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corresponding prefix just before, as follows—we note (p, e′) =
F (e):

�x = e� = p;x = e′

�if e c1 c2� = p; if e′ �c1� �c2�
�loop c1 e c2� = loop (�c1�; p) e

′ �c2�

Note here that the loop structure of our language conveniently

allows not to duplicate the sequence p, as arbitrary instructions

can be executed before the loop guard.

The correctness of this transformation states that the source

and compiled programs agree on the values of the non-

temporary variables. To this end, the relation a ≈ α between

states is defined as follows:

�a.cmd� = α.cmd ∧ ∀x, a.env(x) = α.env(x)

where x denotes a original program variable (i.e. not a

temporary variable introduced by the compilation). The target

command is the result of the compilation of the source

command and the source and target memories agree on the

values of the non-temporary variables.

To show that this relation is a simulation, we must predict the

number of target steps corresponding to each source step. For

each states a and α, we define num-steps(a, α) as 1+n, where

n is the length of the prefix of the expression that is evaluated

during the step starting in a (if any). By construction, this

function is strictly positive. To prove that this pass preserves

constant-time, we build a manysteps CT-simulation diagram.

Theorem 5. The relation ≈ is a manysteps simulation w.r.t.
num-steps. (

c≡,
c≡) is a manysteps CT-simulation relative to ≈

w.r.t. num-steps. Expression flattening preserves the constant-
time policy.

The main argument is that if two evaluations of an expression

in two environments produce the same leakage, then the

evaluations after flattening also produce the same leakage.

Notice that this transformation may choose any evaluation

strategy for the expressions, and that needs not be related

to the order that appears in the definition of the leakage of

expressions.

VII. GENERAL CONSTANT-TIME SIMULATIONS

A. Framework

In this section, we relax the condition of CT-simulations

by allowing the number num-steps to be zero or positive. In

addition, we strengthen the assumption of CT-simulation so

that one can use that the full source program (and not only

the current step) is constant-time. Formally, the definition of

the manysteps CT-diagram is complemented with additional

hypotheses: initial source states a and a′ are reachable in S
and are a constant-time pair of states3; initial target states α
and α′ are reachable in C. Finally, we relax the condition

on final states in the simulation: when the source execution

3Reachable from two states that are related by φ through two executions
which produce the same leakage.

aSf �

α β ∈ Cf

a′Sf �

α′ β ′ ∈ Cf
n

n′≈ ≈
≈ ≈

τ

τ

Fig. 6: Final CT-diagram

terminates the target execution is allowed to take a few more

steps.

To allow num-steps to be zero, the simulation diagram

features an additional constraint: there should be no infinite

sequence of source steps that are simulated by an empty

sequence of target steps (all source states in the sequence

being in relation with a single one target state). This constraint

is usually formalized by means of a measure of source states

which strictly decreases whenever the corresponding target

state stutters.

Definition 10 (General simulation). Given a relation ≈ be-

tween source and target states, a function |·| from source states

to natural numbers4, and a function num-steps from pairs of

source and target states to natural numbers; we say that ≈ is

a general simulation w.r.t. |·| and num-steps when:

• for every source step a → b and every target state α such

that a ≈ α, there exist a target state β and a target execution

α −→n β where n = num-steps(a, α) such that end states

are related: b ≈ β;

• for every source step a → b and every target state α such

that a ≈ α and num-steps(a, α) = 0, the measure of the

source state strictly decreases: |a| > |b|;
• for every final source state a and every target state α such

that a ≈ α, there exist a final target state β and a target

execution α −→n β where n = num-steps(a, α) such that

end states are related: a ≈ β.

To allow the target execution to terminate after the source

execution, we introduce the following variant of the CT-

simulation, depicted on Figure 6.

Definition 11 (Final CT-diagram). A pair of relations (≡S , ≡C )

satisfy the final constant-time diagram w.r.t. ≈ and num-steps
when the following holds: for all a, a′, α, α′, β, β′, τ , τ ′ such

that:

• initial states are related a ≡S a′, α ≡C α′;
• initial source states are final a, a′ ∈ Sf ;

• there are two target executions α
τ−→n β and α′ τ ′

−→n′
β′

where n = num-steps(a, α) and n′ = num-steps(a′, α′);
• the simulation relation holds a ≈ α, a′ ≈ α′, a ≈ β, and

a′ ≈ β′

we have

• equality of leakage τ = τ ′ and n = n′;

4Any ordered set satisfying the ascending chain condition would be suitable.
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• end states are related and final β ≡C β′, β, β′ ∈ Cf .

Definition 12 (General CT-simulation). Given a relation ≈, a

function | · |, and a function num-steps as above, we say that

the pair of relations (≡S ,≡C) is a (general) CT-simulation
when:

1) (≡S ,≡C) satisfy the manysteps CT-diagram w.r.t. ≈ and

num-steps;

2) for every pair of input parameters i, i′ s.t. φ i i′, we have

S(i) ≡S S(i′) and C(i) ≡C C(i′);
3) for all related source states a ≡S a′, none or both of them

are final: a ∈ Sf ⇐⇒ a′ ∈ Sf ;

4) (≡S ,≡C) satisfy the final CT-diagram w.r.t. ≈ and

num-steps.

Theorem 6 (Constant-time preservation from general CT-sim-

ulation). Let S be a safe source program and C be the target
program obtained by compilation. If S is constant-time w.r.t. φ
then C is constant-time w.r.t. φ, provided the following holds,
for given num-steps and |·| functions:
1) ≈ is a general simulation w.r.t. |·| and num-steps;
2) (≡S ,≡C) is a general CT-simulation w.r.t. ≈, |·|,

and num-steps.

Remark 2. In the Coq formalization, we use slightly more

convenient definitions in which more hypotheses are available:

all considered states are reachable, initial source states (a and

a′) are a constant-time pair of states. This enables proofs to

be more modular.

Remark 3. The final CT-diagram is not strictly necessary.

However, it is a very convenient tool to simplify simulation

relations. Without this additional diagram, the simulation

relation needs special cases to explain the last steps at the

end of the target executions, introducing disjunctions and many

extra cases in the proofs. This is similar to, e.g., the lock-step

diagram: it is subsumed by the general diagram but much more

convenient to use, when possible.

B. Examples

1) Dead branch elimination: In this section, we present a

transformation that we designed for the purpose of illustration:

a more general and less artificial version will be discussed in

the following section. This transformation removes conditional

branches whose conditions are trivially false. More precisely,

the compilation function �·� is defined as depicted on Figure 7.

Assignments are kept unchanged; the if instructions whose

conditions are trivially false (i.e., the literal 0 is used as

guard) are replaced by their else branch (recursively compiled);

similarly, loop instructions whose guard is false are removed:

only the first part of the loop body is kept (recursively

compiled).

To justify the correctness of this transformation, we define a

relation a ≈ α between source state a and target state α as: α =
{�a.cmd�, a.env}; the target command is the compilation of the

source command, and both states have the same environment.

Interestingly, this transformation may remove execution steps:

the ones corresponding to the evaluation of the trivially false

�if 0 c1 c2� = �c2�

�if b c1 c2� = if b �c1� �c2� if b 
= 0

�loop c1 0 c2� = �c1�

�loop c1 b c2� = loop �c1� b �c2� if b 
= 0

Fig. 7: Removal of trivial (false) branches

conditions and the unfolding of the removed loops. Therefore,

the · ≈ · relation does not satisfy the lockstep simulation

diagram; it satisfies however the more general simulation

diagram. To that end, we define the num-steps function as 1

for all states excepted if the current instruction is a conditional

on false (if or loop), we also define a measure |a| of source

execution states by taking the full size of a.cmd. Therefore,

this measure strictly decreases when the target takes no step.

Theorem 7. ≈ is general simulation invariant. (
c≡,

c≡) is a
general CT-simulation relative to ≈, num-steps and |·|. Dead
branch elimination preserves the constant-time policy.

2) Constant propagation: A slightly more interesting variant

of the previous transformation is constant propagation: a static

analysis prior to the compilation pass infers at each program

point which variables hold a statically known constant value;

then using this information, each expression can be simplified

(as in the constant folding transformation described in § V-B1)

and the branches that are trivial after this simplification can

be removed.

This transformation, as many other common compilation

passes, relies on the availability of a flow-sensitive analysis

result: some information must be attached to every program

point. As usual, since our language has no explicit program

points, we enrich its syntax with annotations. More precisely,

each instruction gets one annotation, except the loop which gets

two: one that is valid at the beginning of each loop iteration,

and one that is valid when evaluating the loop guard. The

small-step semantics, when executing a loop, introduces an

if and a loop. The annotations to put on the next iteration

may depend on the purpose of these annotations; therefore,

the semantics is parametrized by a annot-step function which

describes how to compute the annotations of a loop at the next

iteration, yielding the following rule for the execution of the

loop instruction (decorated letters k figure the annotations):

{loopk1

k2
c1 b c2, ρ} → {c1; ifk2 b (c2; loop

k′
1

k′
2
c1 b c2) skip, ρ}

where (k′1, k
′
2) = annot-step(k1, k2).

In this particular case of constant propagation, we assume

that the source program is annotated with partial mappings

from variables to constant values (integers). Those annotations

are generated by a first pass of analysis and are certified

independently. Given this information, the compilation may

simplify expressions, remove if whose guard is trivial, and

remove loops whose guard is false.
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However, the compilation only transforms constructs that

syntactically appear in the program source code and does

not operate on the constructs that are in the execution state

as a result of the semantic execution of the program. In

particular, the compilation will not transform a trivial if that

results from the execution of a loop whose guard is trivially

true. More generally, a compilation pass may apply different

transformations to similar pieces of code depending on some

heuristic, and these heuristics should be irrelevant to the

correctness argument. To overcome this issue we reuse the

annotation facility to be able to statically determine how each

source instruction is transformed. The compiler generates

two programs: an annotated version of the source5 and its

compiled version. The compiler adds a boolean flag to the

source to tell whether a branch is eliminated or not. Therefore,

trivial branches that only appear during the execution and are

not visible to the compiler will not have this flag set and

the num-steps function can predict that the corresponding

execution step is preserved. The flag part of k2 is false

indicating that the if is preserved; the annot-step function

is the identity. The num-steps function is defined following

the same idea of the previous example. As well, to prove

that execution does not stutter for ever we use the size of the

command. The ≈ predicate ensures equality of environments

and that the target code come from the compilation of the

source taking into account the flags.

Theorem 8. ≈ is general simulation invariant. (
c≡,

c≡) is
a general CT-simulation relative to ≈, num-steps and |·|.
Constant-propagation preserves the constant-time policy.

c1 ∼ c′1 c2 ∼ c′2
loop0 c1 b c2 ∼ loop c′1 b c′2

c1 ∼ c′1 c2 ∼ c′2 loopn c1 b c2 ∼ c′

loopn+1 c1 b c2 ∼ c′1; if b (c′2; c′) skip

Fig. 8: Specification of loop peeling

3) Loop peeling: Loop peeling is an optimization that unrolls

the first iterations of loops. It is a good example where annot-
step is not the identity function but counts the number of loop

iterations.

How many iterations are actually peeled may depend on

heuristics which should not be visible in the correctness proof

(nor in the simulation argument). In this case, instead of proving

one particular compilation scheme, we define a relation between

source and target commands that captures various possible

ways to perform the transformation. This relation is written

∼ and defined on Figure 8. Each source loop instruction is

annotated with a number stating how many iterations of this

loop are peeled. For these annotations to remain consistent

5This output source program is proved equivalent to the original program
up to annotation.

�x = e� = x = e

�if b c1 c2� = jnz b n2; �c2�; goto n1; �c1�

// where n2 = |�c2�|+ 2 and n1 = |�c1�|+ 1

�loop c1 b c2� = goto n2; �c2�; �c1�; jnz b n

// where n2 = |�c2�|+ 1 and n = −|�c2�; �c1�|

Fig. 9: Linearization

during the execution, this counter is decremented on each

iteration: formally, annot-step(n, a) = (max(0, n− 1), a).
For this transformation, the ≈ predicate is equality of

environments and ∼ of commands. The num-steps function

is equal to 1, except on loop with a non-zero annotation for

which it is 0. The |·| function is the number of nested loop in

the first instruction.

Theorem 9. ≈ is simulation invariant. (
c≡,

c≡) is a CT-
simulation relative to ≈, num-steps and |·|. Loop peeling
preserves the constant-time policy.

4) Linearization: Linearization transforms programs into

lists of instructions with explicit labels. The linear language

features (only) two instructions: assignment “x = e” of the

value of an expression e to a l-value x; and conditional

branching “jnz b n”, which continues execution at (relative)

position n when expression b evaluates to a non-zero value or

falls through the next instruction otherwise. When the condition

is syntactically 1, we simply write “goto n”. In this language, a

program is a list of instructions, and execution starts at position

zero, i.e., at the beginning of said list. The execution state is a

triple made of the program counter, the current environment,

and the whole program.

In the language, the leakage of a step corresponds to the

leakage of the expressions and the value of the next program

point. This is analogous to leaking the boolean value of

conditional jumps.

The transformation �·� from the structured language from

previous sections to linear is described in Figure 9. It introduces

forward jumps at the end of else branches (to bypass the

corresponding then branches) and at the beginning of loops (to

bypass the second body before the first iteration). These jumps

do not correspond to any particular instruction in the source.

To define the ≈ relation for the correctness proof, we always

allow the target execution to perform (any number of) such

jumps. The technical difficulty of the proof comes from the

fact that each source instruction will be in relation with many

target instructions, some of them correspond to the compilation

of the original instruction but some of them come from its

context; breaking the locality of the proof.

Moreover, there may be a final sequence of jumps at the end

of the target execution. This implies that the target execution

may be delayed a little bit after the source execution finished.

This is why we use the additional diagram for final states in

the CT-simulation. Furthermore, since in the linear language
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the full program is part of the running state and never changes,

it is convenient to show this invariant once and for all. This is

where the reachability hypotheses are useful.

To establish the CT-simulation, we introduce a relation
L≡

between states that claims that the program point is the same.

The proof of the CT-diagram follows without surprises. The

technicalities due to the change in representation (from a

structured language to an unstructured one) are dealt with

using the same lemmas as for the correctness proof.

The num-steps function is defined as the number of forward

jump from the current target program counter, plus 1 if the

current source instruction is not a loop. The |·| function is the

number of nested loops in the first source instruction.

Theorem 10. The relation ≈ is a simulation w.r.t. num-steps.
(

c≡,
L≡) is a CT-simulation relative to ≈ w.r.t. num-steps and

|·|. Linearization preserves the constant-time policy.

5) Common branches factorization: In these last two sec-

tions, we consider a new kind of transformation where the

order of evaluation of expressions/instructions is changed. The

first transformation consists in factorizing the common prefix

of conditional branches. In other terms, the transformation

will replace a statement of the form if e (h; c1) (h; c2) by

h; if e c1 c2, when the evaluation of e is not affected by the

evaluation of h. This allows to reduce the size of the code.

To prove the correctness, we need to establish the general

simulation for a given relation ≈. When the if instruction on e
is executed in the source program, the h instructions should

be first executed in the target program before executing the

conditional on e. Similarly, when the h instructions are executed

in the source program, they have been already executed in the

target program, so nothing should be done. For the correctness

of the compiler the difficulty is that the environments of the

source program and of the target program are desynchronised

at some point. For CT-simulation the difficulty is that leaks

of h will appear in the target trace before they appear in the

source. In particular the trace t corresponding to the leak of

the if e does not contain the leaks of h, so we should be able

to prove that the leaks of h will be equal in both evaluations

because the source program in constant-time.

The notion of simulation used for this transformation a ≈ α
is defined by:

∃h, a.cmd
h∼ α.cmd ∧ {h, a.env} →∗ {skip, α.env}.

The predicate c
h∼ c′ is presented Figure 10. Morally c is the

code of the source program, c′ of the target program, and h is

the sequence of instructions which have been already executed

in the target program but are still to be executed in the source.

The notion of simulation requires that the evaluation of h in

the source environment terminates on the target environment.

When h = skip we omit it.

If h is skip, the rules (omitted in the figure) say that the

predicate ∼ is structural. To simplify the proof, we assume that

source program is annotated with numbers. For assignments

and loops, the number indicates the value of the num-steps

c1
h∼ c′1 c2

h∼ c′2 terminating(h)
write(h) ∩ read(e) = ∅

if|h|+1 e c1 c2 ∼ h; if e c′1 c′2

c
h∼ c′

i0; c
i;h∼ c′

Fig. 10: ≈ predicate for common branches factorization

function needed by the simulation. For conditional, if the

number is not 0, it corresponds to the number of instructions

which have been factorized out by the compiler. The code of

each branch should be related by
h∼, h should be terminating6

and should not modify the variables read by e (this ensures

that the evaluation of e can swap with the evaluation of h).

If h is not skip, see the last rule, it means that the target

program has already executed h and the source program should

catch up with the target. This means that the source evaluation

step corresponds to no execution step in the target program;

this is why the annotation in the source is 0.

The num-steps function cannot be fully inferred statically

(i.e., at compile time), because h may contain conditionals and

so the number of steps to execute depends on the execution

environment and of which branches are taken. It is not a

problem with our proof technique since the num-steps function

is parametrized by the source and the target states. The

termination condition ensures that the evaluation of h will

terminate in a finite number of steps7. The |·| function is the

size of the source instruction.

Theorem 11. ≈ is general simulation with w.r.t. |·| and
num-steps . (

c≡,
c≡) is a general CT-simulation relative to ≈.

Common branches factorization preserves the constant-time
policy.

6) Switching instructions: Switching instructions of a pro-

gram is a very common optimization. It can be used together

with common branches to improve its efficiency, but its most

common use is for instruction scheduling. It is a typical example

of transformation that depends on heuristics (which can be

different for each target architecture) which should not be

visible in the correctness proof. To that end, we simply prove

a checker taking a source program and a target program and

returns true if they are equal up to a valid permutation inside

basic blocks (list of assignments), but the control-flow is still

the same. The notion of valid permutation should ensure that

the semantic of the program is unchanged. For example, c1; c2
can be transformed into c2; c1 if variables read and written

by c2 are not written by c1 (and vice versa), furthermore

both instructions should terminate8. To be able to define the

≈ relation we encounter the same difficulty as for common

branches factorization: the source and target states are not

6Our formalization requires that h is a sequence of assignments and
conditionals. It would be possible to support loops for which the compiler is
able to prove termination.

7Without that condition it is not clear that the correctness of the compiler
can be expressed/proved using a small step simulation diagram.

8Termination of c1 is needed to ensure preservation of constant-time.
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c
h1;h2∼ c′ swap(i, h1)

i0; c
h1;i;h2∼ c′

c
h1;h2∼ c′ swap(i, h1;h2)

i|h2|; c h1∼ h2; i; c
′

Fig. 11: ≈ predicate for switching instructions

synchronized. Figure 11 defines the ∼ predicate used to define

≈. As for common branches factorization it is parametrized

by a code h representing instructions already executed in the

target and that remain to be executed in the source. Intuitively,

c
h∼ c′ should be interpreted has c is a valid permutation of

h; c′. Some rules (not shown) allow to perform transformation

under context, the two presented rules define the permutation.

The predicate swap ensures that the two instructions can be

safely swapped without changing the semantic of the program.

The num-steps function return directly the annotation of the

current instruction, the |·| is the size of the instruction.

Theorem 12. ≈ is a general simulation w.r.t. num-steps and |·|.
(

c≡,
c≡) is a CT-simulation relative to ≈. Switching instructions

preserves the constant-time policy.

VIII. TOWARDS REALISTIC COMPILERS

A natural target for future work is to apply our methods to

existing verified compilers. Although our work is carried for

a rather simple language, we are confident that our selection

of optimizations covers the main difficulties that can appear

when proving preservation of the constant-time policy for full-

fledged compilers. We discuss the case of the Jasmin and

CompCert compilers. The discussion is summarized in Table II

and Table I.

A. Jasmin

Jasmin [4] is a framework for building high speed and

high assurance cryptographic software, using state-of-the-art

methods from software verification and certified compilation.

In the intended workflow, applications developed within this

framework are written in the Jasmin programming language,

which features a carefully chosen combination of high-level

features (structured control flow such as loops), low-level

abstractions (generic pseudo-assembly) and platform-specific

instructions. Programs in the Jasmin language thus retain

the familiar flavour of source programs and do not require

programmers to develop their applications in less familiar and

more restrictive languages—e.g. languages that do not have

full support for loops. Jasmin programs are compiled into x64
assembly using the Jasmin compiler. The Jasmin compiler is

proved correct relative to big-step semantics of source and

assembly programs.

Preservation of the constant-time policy by compilation is

discussed explicitly by Almeida et al. [4] who provide an

informal argument for the Jasmin compiler. We believe that

our method provides the means to make their proof formal.

Concretely, Figure 12 displays the compilation chain for Jasmin
programs. Table II gathers all compilation passes, indicating

Programmed in CamlCertified in Coq

Jasminsource

Jasmin

Jasmin

Jasmin

Jasmin-low

Jasmin-lin

Asm

Parser, typechecker, simplifier

Inlining, unrolling

Stack sharing Linear scan

Lowering, reg. array exp.

Reg./stack alloc., lin. Linear scan

JasminCertified Compiler

Fig. 12: Jasmin architecture [4].

for each of them how they relate to optimizations studied in

this paper. On this account, we are confident that most of the

compilation passes from Jasmin could be proved to preserve

constant-time. However, the big-step semantics currently used

for Jasmin remains a technical hurdle towards this goal.

B. CompCert

CompCert [22] is a verified, moderately optimizing, compiler

for C. From a high-level perspective, CompCert compiles

C programs to RTL (Register Transfer Language) programs,

where programs are represented by their control-flow graphs

and are optimized using dataflow analyses, and then to assembly

programs, modelled as lists of low-level instructions operat-

ing over machine registers and memory locations. However,

CompCert actually uses a dozen intermediate languages, each

of which is defined by a formal small-step semantics that

model normal termination, divergence, abnormal termination

and undefined behaviors (such as out-of-bounds array accesses).

CompCert comes with a semantics preservation theorem that

is obtained from the correctness of each of the compiler passes.

Table I summarizes the passes of the CompCert compiler,

indicating for each of them how they relate to optimizations

studied in this paper.

Known issues with preservation of the constant-time policy

by CompCert include the conversion between integers and

floating points, which may introduce conditional branches that

are not explicit present in the source program [11], and the

compilation of specific 64-bits operations on 32-bits platforms9.

C. Other languages

We believe that our methodology should also apply to higher-

level languages like Java; nonetheless, compilation passes that

are specific to these languages – implementation of high-

level abstractions, specific optimizations – may require specific

arguments, hence further investigation.

9Xavier Leroy, personal communication
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TABLE I: CompCert compilation passes

name comment

SimplExpr Fixes the evaluation order; before this pass, the
semantics is non-deterministic; the notion of
constant-time is not well defined for the source
program.

SimplLocals This step removes leakage; it is similar to our
“register allocation” with trivial cases only.

C#minor gen. Similar to our “constant folding”.
Cminor gen. Allocates local variables to the stack; similar to our

“spilling” pass.
Selection Similar to our “constant folding”.
RTL gen. Combines our “expression flattening” and

“linearization” passes.
Tailcall This pass reorders the behavior of a return instruction

before the behavior of a call instruction; it thus has a
lot in common with our passes which reorder
instructions.

Inlining These four passes change the leakage in a
deterministic fashion, as in our “spilling” pass; they
may change the control-flow (call-stack, program
counter) and the concrete memory addresses.

Renumber
Unusedglob
CleanupLabels
Constprop, CSE Similar to our “constant folding” pass.
Deadcode This pass removes some instructions; showing

ct-preservation is a simple instance of the general
CT-simulations.

Allocation Similar to our “spilling” pass.
Tunneling Part of our “linearization” pass covers this

transformation.
Linearize Similar to our “linearization” pass.
Stacking Similar to our “spilling” pass.
ASM gen. the leakage model may change, as in our

“linearization” pass.

TABLE II: Jasmin compilation passes

name comment

Inlining Changes the control-flow (hence the leakage)
in a deterministic fashion.

Unused functions Preserves leakage.
Loop unrolling Similar to our “loop peeling”.
Alloc inline assgn Preserves leakage.
Constant propagation Combines our “constant folding” and “dead

branch elimination” passes.
Dead code elimination This pass removes some instructions; showing

ct-preservation is a simple instance of the
general CT-simulations.

Share stack var. Preserves leakage.
Array init. This is a special case of “dead code

elimination” above.
Reg. array expansion Preserves leakage.
Lowering Similar to our “expression flattening”.
Reg. allocation Preserves leakage (as there is no spilling).
Stack allocation Similar to our “spilling”.
Linearization Similar to our “linearization”.
ASM generation Preserves leakage.

D. Using a compiler preserving the constant-time policy

In order to get a target program that is proved to comply

with the constant-time policy using a compiler that is proved

to preserve this property, it is required to first prove that the

source program is safe (i.e., free of undefined behaviours) and

constant-time. Moreover, the precise definition of the constant-

time policy, i.e., the leakage model, should be the same for both

proofs: the proof that the source program is constant-time; and

the proof that the compiler preserves the constant-time property.

In this respect, there is a tension between what to expose as

libraries (which must be verified as part of the source program)

and what to treat as programming language constructs (which

must be correctly implemented during compilation). Providing

many constant-time primitives makes it easier to write constant-

time programs at the source-level but makes harder the tasks

of implementing and verifying a compiler which provides

constant-time implementation of these primitives.

For instance, should a 64-bit shift operator be a constant-

time primitive? In such case, a source-level program could

safely use it, even on sensitive inputs; but the implementation

of the compiler should carefully enforce that property on all

architectures —even on 32-bit architectures without such a

primitive readily available— lest it should not be constant-time

preserving. Otherwise, this operator could be declared as non-

constant-time at the source level, shifting the burden towards

the users of the source programming language.

Again, preserving the constant-time policy is not a property

of a compiler alone: it also depends on the particular leakage

models of the source and target languages and libraries.

IX. RELATED WORK

Secure compilation is an active area of research in program-

ming languages and cryptography. For the sake of focus, we

concentrate on work that specifically addresses cryptographic

constant-time and exclude from our discussion of other broad

areas of research, including observational non-interference for

other leakage models, quantitative analysis of side-channels,

new computation paradigms (that can potentially protect against

side-channel attacks), such as ORAM or hardware-protected

mechanisms.

Many recent works address the challenge of verifying

constant-time implementations formally, using established meth-

ods such as type systems, abstract interpretation and deductive

verification. These methods are applied to source programs [10],

assembly programs [6], or intermediate representations (e.g.

LLVM IR) [3], [30]. These works do not address the problem

of policy-preserving compilation—see however the informal

discussion in [3]. Independently, preservation of the constant-

time policy by compilation is mentioned in [29], in the context

of a translation from λow* to C* preserves constant-time.

Cauligi et al. [13] develop a domain specific language and a

compiler that generates constant-time code, and use automated

verification tools to check that the generated code is constant-

time. Barthe et al. [7] develop a general method for result-

preserving compilation, and use their method to improve the

precision of a constant-time analysis at intermediate level.

However, their work focuses on preserving the results of alias

analyses and does not study preservation of the constant-time

policy.

Other works have considered preservation of specific infor-

mation flow policies by compilation. Barthe et al. [8] define

an information flow type system for a concurrent programming

language and prove that typable programs are compiled

into non-interfering assembly programs, under reasonable

assumptions on the scheduler. Laud [21] and Fournet and
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Rezk [15] define information flow type systems for a core

imperative language, and prove that programs are compiled into

cryptographically secure implementations. Murray et al. [26]

prove preservation of value-dependent noninterference for a

concurrent imperative language. Their proof uses coupling

invariants, which are related to CT-simulations. However, they

do not explicitly address the problem of preserving 2-properties

by standard compilation passes.

D’Silva and coworkers [14] argue that a compiler correctness

proof, done using “source-level” semantics, cannot capture

the preservation of security properties. However, we show

that there is no need for a “machine-level” semantics for

the source language to show that a compiler preserves some

security properties. To show that a programming discipline like

constant-time yields some security properties on a particular

platform indeed requires a precise semantics in which said

security properties can be expressed. Nonetheless, to show that

compliance with such a discipline is preserved by compilation

does not necessarily require, as we have described, to do a

proof on the machine-level semantics.

Logical relations and full abstraction are two important tools

that are widely used for reasoning about compiler correctness.

These are broad notions that could potentially be instantiated

or adjusted to reason about preservation of the constant-time

property. However, there is no general result about logical

relations from which our results would follow. Moreover, there

have been concerns about full abstraction as a foundation for

secure compilation. In particular, Patrignani and Garg [27]

explore preservation of hyperproperties as an alternative to

full abstraction. However, the criterion which they use for

secure compilation, that they call trace-preserving compilation,

is overly strong for proving preservation of the constant-time

property by optimizing compilers. As we have shown in many

examples of this paper, optimizations do not preserve leakage

traces (in other words, traces that are preserved by optimizing

compilers are not detailed enough to model attackers that

monitor side-channels).

X. CONCLUSION

We have developed a general method for proving preservation

by compilation of cryptographic constant-time, a popular

software-based side-channel countermeasure against cache-

based timing attacks, and provided instantiations to repre-

sentative compiler optimizations. In our experience, proving

preservation of constant-time policy is sometimes simpler than

proving correctness of the transformation.

Additionally, we have formalized both the general methods

and their instantiations using the Coq proof assistant. The

overall development is over 8,000 lines of Coq code. The

proofs of optimizations range from 250-300 lines (constant

propagation and spilling) to 750-800 lines (code motion and

expression flattening).

Future work includes proving preservation of constant-time

policy for more realistic compilers and broadening the scope

of our methods to other security notions that can be expressed

as observational non-interference policies.
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