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Abstract—In this paper we describe symbolic side-channel
analysis techniques for detecting and quantifying information
leakage, given in terms of Shannon and min-entropy. Measur-
ing the precise leakage is challenging due to the randomness
and noise often present in program executions and side-
channel observations. We account for this noise by introducing
additional (symbolic) program inputs which are interpreted
probabilistically, using symbolic execution with parametrized
model counting. We also explore a sampling approach for
increased scalability. In contrast to typical Monte Carlo tech-
niques, our approach works by sampling symbolic paths, repre-
senting multiple concrete paths, and uses pruning to accelerate
computation and guarantee convergence to the optimal results.
A key novelty of our approach is to provide bounds on the
leakage that are provably under- and over-approximating the
exact leakage. We implemented the techniques in the Symbolic
PathFinder tool and demonstrate them on Java programs.

1. Introduction

Pervasive proliferation of computer systems has in-
creased access to sensitive information, ranging from finan-
cial and medical records of individuals to trade and military
secrets of corporations or countries. It has become critical to
develop tools and techniques to ensure that software systems
that manipulate sensitive data do so in a secure manner. The
confidentiality of secret data is particularly hard to achieve
if an attacker can observe non-functional characteristics of
a program behavior, for instance by measuring execution
times or memory usage. Side-channel attacks [7], [8], [20],
[24] aim to recover secret program data based on this kind
of observations. Side-channel attacks are of grave concern
and they have been shown to pose serious security threats.
For instance, they can recover cryptographic keys from well-
known encryption/decryption algorithms [7] or derive user-
sensitive data from common compression algorithms [20].

In this paper we describe symbolic analysis techniques
for quantifying information leaks in side channels. A key
obstacle in reasoning about side-channel attacks is the
randomness and noise that are often present in program
executions and side-channel measurements. This can come
from “outside” the program, due to measurements made
on noisy hardware platforms or over busy networks, but
can also come from “inside” the program, due to explicit

calls to Random methods in implementations of randomized
algorithms (that are often used in security applications), or
due to the thread scheduler or the garbage collector, which
behave non-deterministically. Furthermore randomness can
be introduced as a countermeasure against attacks, e.g. by
adding random delays to a program to make it difficult for
an adversary to infer secrets based on timing measurements.
Thus, it is important to develop precise side channel analysis
techniques to assess program leakage in the presence of ran-
dom or noisy behavior and to determine if the implemented
countermeasures are indeed effective.

To address this problem, we model both internal and
external noise by creating additional (symbolic) inputs to
the program. Conditions on these inputs are interpreted
probabilistically using a probabilistic extension to symbolic
execution [16]–[18]. The technique uses model counting
over constraints collected with symbolic execution to com-
pute probabilities of different program paths. In this paper,
we adapt the technique to computing Shannon and min-
entropy leakage in the presence of internal and external
randomness (or noise). We further describe optimizations
based on symbolic projection [1] to avoid explicit enu-
meration over secret values. Our analysis is parametrized
by an observation model which allows us to obtain the
side-channel measurements from the execution of program
instructions.

To address the potential scalability issues associated with
symbolic execution and model counting, we also explore
partial exploration techniques that sample the symbolic pro-
gram space to gradually collect symbolic paths. In contrast
to typical Monte Carlo approaches, the techniques sample
over the symbolic paths which represent multiple concrete
paths. Furthermore, each symbolic path needs to be sam-
pled only once and is subsequently pruned, accelerating
the analysis. Our key contribution is to provide concrete
(non-probabilistic) lower and upper bounds on the informa-
tion leakage, for min-entropy and Shannon-Entropy leakage,
based on the partial exploration analysis. The computed
bounds hold for any partial exploration (hence they are
“any-time”), improve with more symbolic samples and are
guaranteed to converge to the exact value of leakage.

There are few existing tools that can cope with noisy ob-
servations. Statistical analysis tools, such as LeakWatch [9],
are often imprecise and require a huge number of samples.
These tools run the program multiple times and use the
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outcome of each execution to get an estimate of the in-
formation channel (joint probabilities) and any function of
it, specifically, leakage values. In contrast to our symbolic
approach, statistical approaches have the advantage that they
can be used in a “black-box” fashion, where no knowledge
of the program or noise distribution is assumed. However,
due to the random nature of sampling, the leakage values
provided by statistical approaches are only approximate,
with no guarantee that they over- or under- approximate
the real leakage, which may lead to many false results
(positive or negative). Furthermore the accuracy measures
such as the confidence intervals provided by e.g. LeakWatch
are still probabilistic, and to get a reliable value for them
one often needs a large amount of samples. In contrast,
our symbolic analysis technique is exact and our estimation
approach reports bounds that are provably under- and over-
estimating the real leakage, while avoiding resampling of
the same (symbolic) path.

We have implemented the exact and partial symbolic
analyses in the Symbolic PathFinder tool [38]. We illustrate
them in the context of Java applications where we show
how to obtain tight bounds on the leakage in the presence
of internal and/or external randomness. Our approach can be
easily adapted to work with other symbolic execution tools,
targeting other programming languages.

Contributions and roadmap.
The main contributions of this work are:

• Introducing a symbolic execution framework for the
analysis of side channels in probabilistic programs
(Sections 4 and 5);

• Combining this symbolic execution analysis with
Barvinok parametrized model counting to optimize the
computation (Section 6);

• Developing a symbolic sampling approach to scale up
the computation, and proving guarantees in terms of
converging concrete upper and lower bounds, both for
Shannon and min-entropy leakage, for our symbolic
sampling algorithms (Section 7);

• Demonstrating the applicability of these techniques
to challenging programs (provided by DARPA) and
exhibiting the merits of our techniques compared with
tools that use standard Monte Carlo techniques; we use
“Leakwatch” [9] for comparison (Section 8).

2. Motivating Example

We illustrate our analysis with the example in Figure 1.
Assume that the sensitive data h is uniformly distributed
over the domain D = {0, 1, 2}, that is:

p(h = 0) = p(h = 1) = p(h = 2) =
1

3

The observable o, which can be for instance the execution
time or the runtime power consumption, has three dis-
tinct values obs1, obs2, and obs3. The instance method

java.util.Random rg = new
Random();

int noise = rg.nextInt(2);
if(noise > 0){
if(h > 0){

obs1;
} else {

obs2;
}

} else{
if(h > 1){

obs1;
} else {

obs3;
}

}

p(o, h)

h p(h) obs1 obs2 obs3

0 1/3 0 1/6 1/6

1 1/3 1/6 0 1/6

2 1/3 1/3 0 0

p(o) 1/2 1/6 1/3

Figure 1: An example Java program and its corresponding
joint probability matrix for (h, o).

nextInt(2) of java.util.Random also returns a uni-
formly distributed value from the set {0, 1}, and thus:

p(noise > 0) = p(¬(noise > 0)) =
1

2
.

From the probability distribution of h and noise, con-
structing the joint probability matrix for (h, o) as in Figure 1
is straightforward. For example (h = 0, o = obs1) cannot
happen, so its probability is 0; (h = 1, o = obs1) can
only happen when h = 1 and noise > 0, hence its
probability is p(h = 1) · p(noise > 0) = 1/3 · 1/2 = 1/6;
p(h = 2, o = obs1) = p(h = 2) = 1/3 because when
h = 2 the observable is obs1 regardless of the noise.

An adversary can learn something about the secret h
by observing o. From this joint probability matrix, one can
quantify this leakage using security metrics such as Shannon
entropy or (Rényi’s) min-entropy, as we will overview later.

3. Background: Symbolic Execution and
Parametrized Model Counting

To analyze side channels, we use symbolic execu-
tion [22]. Symbolic execution is a well known program
analysis technique that executes programs on symbolic in-
puts, representing multiple concrete inputs, and computes
the effects of the program as symbolic expressions over the
inputs. The result of the analysis is a set of symbolic paths,
each with a path condition PC, which is a conjunction of
constraints characterizing the inputs that follow that path.
Path conditions are checked for satisfiability with off-the-
shelf solvers such as Z3 [12] to ensure the symbolic exe-
cution follows only feasible paths. To deal with loops and
recursion, typically a bound is put on the exploration depth.

We use parametrized model counting, specifically
“Barvinok” [1], for computing the leakage of noisy side
channels efficiently. Barvinok [1] provides an efficient
procedure for model counting over linear integer arith-
metic (LIA) constraints. A LIA constraint defines a multi-
dimensional lattice bounded by a convex polytope [11]. The
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complexity of the algorithm does not depend on the actual
size of the variable domains, making it suitable for the anal-
ysis of real programs (albeit limited to linear constraints).

In particular, we use Barvinok’s card operation which
computes the number of elements in a set, or the number
of elements in the image of a domain element of a map [1,
p.12]. The operation is performed exactly and symbolically
and the result is a piecewise quasi-polynomial, i.e., a sub-
division of one or more spaces, with a quasi-polynomial
associated to each cell in the subdivision.

4. Analysis of Noisy Side Channels

Let P (h) denote a program, where h is a high input
(secret value) taken from the set D. In this paper, we assume
the high input (secret) is chosen uniformly from its space.
We also assume that the public program inputs are fixed and
can be hence treated as constants.

We briefly discuss relaxing the assumption of having
a fixed low input in Section 6.3. Assuming a uniform
distribution over the high values is compatible with prac-
tical situations, especially, in the context of cryptographic
protocols, where the high value is the secret key. Also, if
the distribution of the high can be selected, then it should
be generally picked to be uniform, in order to maximize
the uncertainty of an adversary. If the distribution cannot
be picked, then the worst case for leakage (which pertains
to “channel capacity”) is still uniform distribution for the
min-entropy leakage (though not for Shannon entropy).

Suppose an attacker tries to infer some information on
the hidden secret h based on side channel measurements
obtained when running the program. We assume that the
attacker has full knowledge about the implementation of P .
This assumption is justified as our goal is to give bounds
on what side-channel attackers can, in principle, achieve.

Our setting is standard information theory [10]. With a
slight abuse of notation, we use h and o to denote both the
program secrets/output and the random variables represent-
ing them. For simplicity of presentation, we assume we have
only one secret input; however all our results generalize to
vectors of secrets in a straightforward way.

One way to compute the information leakage is based
on Shannon information. Let the observables be the (side-
channel) measurements computed for each path in the pro-
gram and let O = {o1, o2, . . . , om} denote these obser-
vations. Our analysis is parametrized by an observation
function that gives these measurements for different kinds
of side channels, e.g. execution time, number of allocated
bytes, number of sent packets over a network, etc.

By definition, when considering systems whose only in-
put is a confidential value h, Shannon leakage is the mutual
information between the observable and the secret [29]:

LeakageS = I(h; o) = H(o)−H(o|h), (1)

where H(X) is classical Shannon entropy, measuring un-
certainty about a random variable X . Let p(oi) be the

probability of observing oi (i.e. side-channel measurement
in our case). Then, Shannon’s entropy is defined as:

H(o) = −
∑
oi∈O

p(oi) log2 p(oi).

The second term in (1) is the conditional entropy of the
observable given the input and is computed as follows:

H(o|h) =
∑
hj∈D

p(hj)H(o|hj),

where H(o|hj) is the Shannon entropy computed for the
conditional probability of p(o|hj). H(o|h) can be thought
of as the amount of uncertainty about the observable due to
the effect of noise, and we will hence refer to it as “entropy
of noise”. If we consider a deterministic system and without
any noise, then H(o|h) = 0, since there is no uncertainty
about the observable when the inputs are given. Thus the
leakage is simply H(o). In the presence of noise, proba-
bilistic scheduler or garbage collection, H(o|h) > 0, so the
leakage is smaller. Note that there are several equivalent
ways to compute the leakage defined as Shannon mutual
information. Namely:

LeakageS = I(h; o) = H(o)−H(o|h) =
H(o) +H(h)−H(h, o) = H(h)−H(h|o).

where H(h, o) is the joint entropy of random variables h,
o, given as: H(h, o) = −∑

i,j p(hj , oi) log2 p(hj , oi).
Noise may come from outside the program, e.g. due

to measurements made on a noisy hardware platform or
over a busy network, but can also come from inside the
program, e.g. due to explicit calls to java.util.Random
methods. Further, noise can be due to the thread scheduler
or the garbage collector, which behave non-deterministically.
In this paper we internalize all these different kinds of noise.
We introduce an additional input (or inputs) “noise”, denoted
by n, and we compute leakage of noisy programs P (h) by
analyzing programs of the form P (h, n), using probabilistic
symbolic execution [5], [16]. As we shall see, the analysis
needs to be performed with care, and to treat these inputs
differently when computing the conditional entropy.

As an example, consider again the code in Figure 1. We
replace variable noise with an additional input with appro-
priate range (0..1 in this case) such that the probability of
executing each branch of the condition involving this input is
50%, assuming a uniform input distribution. Similarly, for a
multi-threaded program, we introduce symbolic inputs with
appropriate ranges and conditions that execute with each
context switch. Furthermore, noise in external measurements
(e.g. made over a busy network) can be modeled by adding
symbolic inputs and extra conditions that execute at the end
of each program path. For the purpose of this paper, we
assume that the operation modeling the probabilistic noise
is given. In practice, this can be a challenging task requiring
side information and extensive profiling of the system; this
topic is, however, orthogonal to this work.
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4.1. Min-entropy

We also consider the leakage expressed as min-entropy
[40]. Min-entropy leakage measures how much the observa-
tions increase the probability of correctly guessing the secret
in one try. Researchers have argued that to reason in terms
of probability of guessing the secret is in many cases more
natural and appropriate when quantifying leakage.

The leakage expressed as min-entropy (which we will
refer to as min-leakage) is as follows:

LeakageM = log2

(∑
i maxj p(hj , oi)

maxj p(hj)

)
. (2)

As a simple example justifying min-entropy, consider
the following two probability distributions over the secret:

p1 = (1/2, 1/2) , p2 =
(
1/2, 1/21000, . . . , 1/21000

)
.

These distributions have very different Shannon entropies
(for p1, it is 1 bit, while for p2, it is 500.5 bits). However,
they have the same min-entropy which capture that with
probability 1/2, the best guess is correct.

Since both Shannon and min-entropy formulations of
leakage rely on joint probabilities, we will provide an ef-
ficient computation of the joint probabilities as one of the
main objectives of our algorithms.

4.2. Observation models

The analysis is parametrized by an observation model,
which provides measurements for the following:

• execution time: based on a model which maps each
bytecode instruction to a timing observation, the execution
time of a symbolic path is computed as the sum of timing
observations of all instructions along that path.

• memory usage: by monitoring the Java Bytecode in-
structions that allocate memory (e.g., NEW and NEWARRAY),
we can compute the number of heap objects allocated along
a symbolic path. Further, we compute the memory allocated
for the live heap objects along a path.

• network and file communication: the observable is
the number of bytes written to a TCP socket or a file. In
both cases, the writing is done via multiple invocations of
the method write of java.io.OutputStream, which
writes 1 byte to the stream. The listener monitors the
bytecode instruction INVOKEVIRTUAL to check how many
times write is called.

For cases that do not fall into the above categories,
we developed another listener that monitors user-defined
observables. A precise model of e.g. timing measurements
needs to take into account low-level features of the target
platform including processor architecture, pipelining, and
branch prediction. For this paper, we assume that the obser-
vation model is given and consider building precise models
out-of-scope. Furthermore, we do not consider cache side
channels as they are out of scope for our Java project.
However the tool that we use does have its own memory
model that could be adapted for considering cache effects.

5. Computing Probabilities via Symbolic Exe-
cution and Model Counting

In this section, we describe the basics of how symbolic
execution and model counting can be used to compute
probabilities such as p(o). In the next section, we present
an efficient way to extend this method to compute joint
probabilities p(h, o) as well.

For p(o), we adapt the procedure from previous work
that studies noiseless side channels [37]. Specifically, we
assume that the program under analysis, P , is modified to
explicitly add the noise as an extra input. We perform a
symbolic execution over the program P (h, n) where we set
the secret and noise inputs to fresh symbolic values (the
inputs can be vectors) ranging over possibly very large but
finite domains. We further assume that there are no infinite
loops (loops with symbolic conditions will terminate due to
the finite domain assumption).

The result of symbolic execution is a finite set of
(feasible) symbolic paths π1, π2, . . . , πn each with a path
condition (PC1, PC2, . . . , PCn). Let obs(πi) represent the
side-channel measurement along that path according to the
observation function. Thus we assume that each symbolic
path can give only one observable, however, note that dif-
ferent paths may produce the same observable. Our work is
done in the context of a project that targets side channels for
Java programs but our results are applicable to other types of
quantitative flow analysis where this assumption holds. To
simplify the notation, we write obs(PCi) to mean obs(πi).

We group the path conditions that lead to the same
observation oi into clauses, i.e. Ci ≡ ∨

obs(PCj)=oi
PC j .

Each clause characterizes the set of secret and noise values
that lead to the same observation. The procedure called
ComputeConstraints is described below.

Procedure: ComputeConstraints(P (h, n), obs(·))
1 O ← ∅, C ← ∅
2 PC ← SymbolicExecution(P (h, n))
3 foreach PC ∈ PC do
4 O ← O ∪ {obs(PC)}
5 foreach oi ∈ O do
6 Ci ←

∨
obs(PCj)=oi

PC j

7 return C

Assuming a uniform distribution over the secret, the
probability of observing oi is:

p(oi) =
#(Ci)

|D| · |Dn| =

∑
obs(PCj)=oi

#(PC j)

|D| · |Dn| .

Here #(c) denotes the number of solutions of c, i.e.,
possible values satisfying the constraint c, assuming that the
secret and the noise values range over the domains D and
Dn, respectively. This count can be computed with an off-
the-shelf model-counting procedure such as Barvinok [1].
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We use |D| and |Dn| to denote the size of the secret and
noise domains respectively. They can be large but finite.

Example. Consider the example introduced in Section 2.
Running symbolic execution over the program (where both
h and noise n are symbolic) results in four paths but only
in three observables, since two paths lead to the same
observation. As mentioned, we group the path conditions
for the paths that lead to the same observation into a clause
and we apply model counting over the clauses.

p(obs1) =
#(n>0 ∧ h>0) + #(n≤0 ∧ h>1)

|D| · |Dn|
=

|{1, 2}|·#(n>0) + |{2}|·#(n≤0)

|D| · |Dn| =
2·1 + 1·1

3·2 =
1

2

p(obs2) =
#(n>0 ∧ h≤0)

|D| · |Dn| =
|{0}|
3

· #(n>0)

|Dn| =
1

3
· 1
2
=

1

6

p(obs3) =
#(n≤0 ∧ h≤1)

|D| · |Dn| =
|{0, 1}|

3
·#(n≤0)

|Dn| =
2

3
· 1
2
=

1

3

6. Computing Joint Probabilities with Barvinok

Building on the discussion in the previous section, the
joint probability can be computed as:

p(hj , oi)=
#(Ci ∧ h = hj)

|D| · |Dn| .

Recall that clause Ci is the disjunction of all the path
conditions that lead to the same observable oi. We propose
to use Barvinok [1] to decompose the cardinality of the
solution set for each Ci into its projections on the values of
high input h and noise n. As we will demonstrate, this can
be used to obtain efficient computations of the leakage.

To illustrate Barvinok’s functionality, consider the fol-
lowing example, where a clause C is (n > 0 ∧ h >
0) ∨ (n ≤ 0 ∧ h > 1), and the domains for n and h are
[0 . . . 2] and [1 . . . 1000000] respectively. The result returned
automatically by Barvinok is a function FC as follows:

FC(h) =

{
2 if h = 1

3 if 2 ≤ h ≤ 1000000

The result can be interpreted as follows. Given a choice
for h, the number of solutions for C is FC(h). Thus, if
h = 1, clause C has FC(1) = 2 solutions. This is easy to
verify since when h = 1 clause C becomes (n > 0 ∧ 1 >
0) ∨ (n ≤ 0 ∧ 1 > 1) which simplifies to (n > 0), which
has 2 solutions. On the other hand, if h = 2, clause C has
FC(2) = 3 solutions. In fact, for any value of h such that
2 ≤ h ≤ 1000000, there are three solutions satisfying C.
Again this is easy to verify. For example, if h = 2, clause C
becomes (n > 0∧2 > 0)∨(n ≤ 0∧2 > 1) which simplifies
to (n > 0∨n ≤ 0) which is satisfied by any value of noise.
Another observation is that FC gives the number of noise
values that satisfy C for a particular value of h. Thus FC

can be seen as the decomposition of the solution space for
#C with respect to h and n.

More generally, for any clause Ci we can use Barvinok’s
card operation to obtain a counting function FCi

: D → N,

such that FCi
(hj) gives the number of solutions for (Ci ∧

h = hj). We can then compute the joint probabilities as
follows:

Proposition 1. p(hj , oi) =
FCi

(hj)

|D| · |Dn| .

The importance of this proposition is that the use of FCi

is more efficient than the repeated invocation of a model
counting procedure for computing #(Ci∧h = hj) for each
value of hj in D.

Combining the results of the previous and the current
section, we can compute any leakage function based on the
p(h, o) and p(o), including LeakageS and LeakageM, but
also other measures of interest like g-leakage [35].

6.1. Separable constraints

The computation of leakage based on Shannon entropy
can be made more efficient for an interesting special case
where the constraints on the noise n and high input h are
separable. That is, each path condition PC can be written
as φn ∧ φh, i.e., as a conjunction of constraints φn and
φh, where φn is a constraint on noise variable and φh is a
constraint on the secret. This can arise e.g. when the noise
variables are not directly compared to secret values; this
is a common case for noise that models multi-threading,
imprecisions in hardware side-channel measurements, or
defense mechanisms that add some noise to programs’
computations. In our running example from Section 2, e.g.,
PC1 = n > 0∧h > 0. Thus: φn = (n > 0), φh = (h > 0).

For such cases, Barvinok’s card operation generates a
counting function of the following form:

FCi
(h) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N i

1,n h |= ci1,h
N i

2,n h |= ci2,h
...

N i
m,n h |= cim,h

(3)

Here function FCi decomposes the solution space of
#Ci in m components: for each component, the num-
ber of solutions is a constant number, denoted N i

k,n (for
k = 1, . . . ,m), when the secret h satisfies the correspond-
ing condition, denoted cik,h. The function FCi(h) can be

compactly represented by the set of pairs of 〈N i
k,n, c

i
k,h〉

for k = 1, . . . ,m. By construction, we have the following.

#Ci =

m∑
k=1

N i
k,n ·#cik,h.

Note that all cik,h are disjoint and their union defines all

the h values that satisfy Ci; thus the conditions cik,h define
a partition over the secrets satisfying Ci.

Computing Shannon Leakage. Notice that #(Ci ∧ h =
hj) = N i

k,n if hj is a solution to Ci (and further it is

a solution of cik,h), since the projection on h should have
exactly one value, i.e. hj , and it is 0 if hj is not a solution to
Ci. Further, the number of times #(Ci∧h = hj) = N i

k,n is
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exactly #cik,h. Thus we can use the piecewise decomposi-
tion for clause Ci to perform the following simplifications:

∑
j

#(Ci ∧ h = hj)

|D| · |Dn| · log2
#(Ci ∧ h = hj)

|D| · |Dn| =

∑
h|=ci

1,h

N i
1,n

|D| · |Dn| · log2
N i

1,n

|D| · |Dn|

+
∑

h|=ci
2,h

N i
2,n

|D| · |Dn| · log2
N i

2,n

|D| · |Dn|

+ . . .

+
∑

h|=ci
m,h

N i
m,n

|D| · |Dn| · log2
N i

m,n

|D| · |Dn|

=

m∑
k=1

#cik,h · N i
k,n

|D| · |Dn| · log2
N i

k,n

|D| · |Dn| .

Thus, instead of iterating over all possible values of h (index
j) we only need to iterate over the partitions over h (index
k) as computed symbolically by Barvinok. It follows that:

Proposition 2. For Shannon entropy, we can write:

H(h, o) = −
∑
i

∑
k

#cik,h · N i
k,n

|D| · |Dn| · log2
N i

k,n

|D| · |Dn| .

Thus, following H(o|h) = H(h, o)−H(h), we get:

H(o|h)=−
∑
i,k

#cik,h · N i
k,n

|D| · |Dn| · log2
N i

k,n

|D| · |Dn| − log2|D|

= −
∑
i,k

#cik,h · N i
k,n

|D| · |Dn| · log2
N i

k,n

|Dn| .

This proposition directly leads to Algorithm 2 below for
an optimized way to compute the Shannon leakage.

Algorithm 2: ShannonLeakage

1 h ← makeSymbolic(′h′)
2 C ← ComputeConstraints(P (h, n), obs(·))
3 Ho ← 0
4 Ho|h ← 0
5 foreach Ci ∈ C do

6 p(oi) =
#(Ci)

|D| · |Dn|
7 Ho ← Ho − p(oi) log2(p(oi))
8 Si ← BarvH(Ci) /* BarvH: Barvinok

’card’ operation, FCi
(h), as in (3) */

9 foreach 〈Nk, ck〉 ∈ Si do

10 Ho|h ← Ho|h − #ck
|D| · Nk

|Dn| log2
( Nk

|Dn|
)

11 LeakageS ← Ho −Ho|h
12 return LeakageS

Example. Consider our running example again. Recall that
there are four path conditions that lead to three observations.
We therefore have three clauses:

C1 ::= (h > 0 ∧ n > 0) ∨ (h > 1 ∧ n ≤ 0)

C2 ::= h ≤ 0 ∧ n > 0

C3 ::= h ≤ 1 ∧ n ≤ 0

Running Barvinok on the three clauses gives the following:

FC1
(h) =

{
2, h = 2

1, h = 1

FC2
(h) = 1, h = 0

FC3
(h) = 1, 0 ≤ h ≤ 1

Using our notations, S1 = {〈2, h = 2〉, 〈1, h = 1〉} etc.
Thus, H(o|h) = −1×2/6× log2 2/6−1×1/6× log2 1/6−
1× 1/6× log2 1/6− 2× 1/6× log2 1/6− log2 3 = 2/3.

Computing min-entropy leakage. Min-entropy leakage
can be computed in an efficient way in a similar manner,
as provided in Algorithm 3. To see the logic behind the
algorithm, note that within the inner loop, Nk/ (|D| · |Dn|)
for varying k, captures all the joint probabilities p(h, oi) for
the given oi, hence, the result of the inner loop (represented
by variable max) will be maxj(p(hj , oi)).

Algorithm 3: Min-entropy Leakage

1 h ← makeSymbolic(′h′)
2 C ← ComputeConstraint(P (h, n), obs(·))
3 prob ← 0
4 foreach Ci ∈ C do
5 max ← 0
6 Si ← BarvH(Ci) /* BarvH: Barvinok

’card’ operation, FCi
(h), as in (3) */

7 foreach 〈Nk, ck〉 ∈ Si do

8 if max <
Nk

|D| · |Dn| then

9 max ← Nk

|D| · |Dn|
10 prob ← prob+max

11 LeakageM ← log2(prob · |D|)
12 return LeakageM

For our running example, we can compute prob = 2/6+
1/6 + 1/6 = 2/3 giving LeakageM = log2(2/3× 3) = 1.

6.2. Control-flow Side Channels

We discuss a special case of interest, where each ob-
servable is associated with a single path condition and the
constraints on noise and secret are separable. This describes
the so called “control-flow side channels” [2], [34], [39]. In
such cases, the attacker can identify the executed path by ob-
serving the trace of all program counter values, or as shown
recently, all memory access locations during execution.
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As before, we can decompose each path condition PCi

as: φi
n∧φi

h. Since φn and φh are separated, we simply have
#PCi = #φi

n ·#φi
h. Hence:

p(oi) =
#PCi

|D| · |Dn| =
#φi

h ·#φi
n

|D| · |Dn| .

We can use this observation and the calculations for H(o|h)
from the previous sections to simplify the leakage formula:

Proposition 3. When each observable is associated to a
single path condition and the constraints on secret and noise
are separable, we have:

LeakageS = −
∑
i

p(oi) log2
#φi

h

|D| .

The corresponding algorithms are omitted for brevity.

6.3. Leakage Computation in the Presence of Both
High and Low inputs

We now discuss the case when the program depends
not only on the confidential input h but also on the public
input l. In this case the leakage is defined using conditional
mutual information [29], i.e.:

I(h; o|l) = H(o|l)−H(o|h, l)
As before, in the case of deterministic systems the term
H(o|h, l) is 0 and the above reduces to H(o|l). When we
fix a low input, it can be seen as a constant within the
program, and we can then see the program as a system that
only depends on the high input, for which we can use the
leakage formulas we have presented in the previous sections.

We can also treat the public input l symbolically and
apply parametrized model counting and numerical optimiza-
tion to find the low value that maximizes the leakage, in a
manner similar to [36] (that work does not consider noise).
The technical development of such an approach is beyond
the scope of this paper, and we leave it for future work.

7. Symbolic Sampling With Path Pruning

The leakage computations that we have presented can be
computationally expensive as they involve exploring all the
symbolic program paths (up to a user specified bound) and
performing expensive (parametrized) model counting over
the collected path conditions. We describe here alternative
sampling techniques to scale up the computation of leakage.

Instead of an exhaustive symbolic execution, we perform
sampling over the symbolic paths, as follows: A sample
is obtained by performing one symbolic execution run;
whenever a condition depending on a symbolic value is
encountered, the decision of exploring either the then or the
else branch is taken randomly, breaking the tie arbitrarily,
resulting in one symbolic path through the program.

Note that instead of doing Monte Carlo sampling as done
in previous approaches [9], [19] we perform sampling over
the symbolic paths. Each symbolic path represents multiple

concrete paths all following the same control flow in the
program. It is not necessary to sample along the same path
multiple times, since repeated sampling will not result in
new information. We can therefore prune the explored paths,
reducing the search space and accelerating the analysis.

The result of this analysis, after taking multiple samples,
is a subset of the symbolic paths of the program, over which
we can apply the leakage computation. Our goal is to be
able to compute bounds (lower and upper bounds) on the
actual leakage of the program given this partial symbolic
exploration. The approach that we propose is an anytime
analysis, that is, we would like bounds that hold for any
partial exploration of the program, i.e., yield valid bounds
whenever the estimation program is halted.

But first, we make a simpler observation: since the
analysis with pruning always explores new paths, and since
we assume a finite number of paths, it follows that the search
converges to an exhaustive analysis and that precise program
leakage will be computed eventually.

Proposition 4 (Convergence of symbolic sampling with
pruning). If pruning is enabled, then all the symbolic pro-
gram paths are guaranteed to be sampled yielding the
precise leakage computation for the program.

7.1. Anytime Bounds for Leakage

As we mentioned, even with symbolic execution and
Barvinok counting, the process of computing leakage for
a practical program can be long. Especially, each time a
loop is encountered in the program, it can be unwounded a
number of times during symbolic execution resulting in an
impractical number of paths to explore. Symbolic sampling
with path-pruning will explore only a subset of the symbolic
program paths, leading to partial learning of the (side)
channels of the program. In this section, we provide both
upper and lower bounds for the leakage given any partial
sampling of the channel. Both of the bounds monotonically
converge to the actual value of leakage as more sample paths
are examined. These bounds are any-time bounds, in the
following sense: they are guaranteed that at any time that
their computation is halted, the bounds are valid, and the
leakage is sandwiched between them. Furthermore, under
some conditions, our bounds are “tight”, in that, no better
bound exist given the samples so far. In other words, there
exist programs that could generate the samples learned so
far (are consistent with them) and have a leakage that is
exactly equal to one of the bounds.

Let p̂(oi|hj) be the estimated conditional probability of
observable oi given the high value hj after some (but not
all) symbolic paths are sampled. Specifically, p̂(oi|hj) =
#(Ci(hj))/|Dn|, where #(Ci(hj)) represents the number
of noise values that satisfy the clause Ci for the given hj

based on the collected symbolic paths. Compared to the
actual value of p(oi|hj) we have:

p̂(oi|hj) ≤ p(oi|hj), ∀i, j.
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This is because the remaining symbolic paths may only add
to the value of conditional probabilities that are seen so far,
and can never subtract from it.

Note that some of the high inputs as well as some
observables may not have been part of any samples yet.
Let the observables that are seen so far be o1, . . . , ok out
of o1, . . . , om, where k ≤ m. The value of m (the size
of the space of the observables) may not even be known
in advance (before sampling is complete, unlike the size
of the space of the high inputs |D|, which is known even
before sampling begins). Also, keep in mind that p̂(oi|hj)
may not yet constitute proper conditional probabilities, that

is, we can have:
∑k

i=1 p̂(oi|hj) < 1. This is because for
a given hj , there may be some observables that are not
sampled yet, or there may be some contributions to the
sampled observables that are yet to be accounted for. Recall
that the (prior) distribution over the high values is assumed
to be uniform. We can also define p̂(hj , oi) and p̂(oi) to
respectively be the learned joint probability of (hj , oi), and
the probability of output oi, by symbolic sampling so far.
That is:

p̂(hj , oi) =
1

|D| p̂(oi|hj),

p̂(oi) =
1

|D|
∑
j

p̂(oi|hj).

Moreover, let q(hj) be defined as the following:

q(hj) =
1

|D|

(
1−

∑
i

p̂(oi|hj)

)
. (4)

That is, q(hj) can be thought of as the “unaccounted for”
probability for high input hj that is to be learned through
future samples. Note that the value of q(hj) can be measured
given the samples so far. Initially, q(hj) is at 1/|D|, and as
more paths are sampled, its value goes down to zero. Finally,
let Q be the total unexplored probability. That is:

Q =
∑
j

q(hj) = 1−
∑
i,j

p̂(hj , oi) = 1−
∑
i

p̂(oi). (5)

Given this background, we can now present our bounds.

7.2. Upper bounds for side-channel leakage

Proposition 5. Let p̂(o|h) be the learned values of the
(side)-channel of the program resulting from symbolic sam-
pling. Then US as given below is a tight monotonically
decreasing upper-bound for the Shannon leakage:

US = log2 |D| − Ĥ(h|o), where:

Ĥ(h|o) = −
∑
i,j

p̂(hj , oi) log2
p̂(hj , oi)

p̂(oi)
.

Similarly, the following is a tight monotonically decreasing
upper-bound for the min-entropy leakage:

UM = log2

(
|D|

∑
i

max
j

p̂(hj , oi) + |D| ·Q
)
.

Note that before any sampling, the value of the upper-
bound (for both Shannon and min-entropy) is simply
log2 |D|, i.e., H(h), which corresponds to a program that
completely reveals the value of high.

Algorithms 4 and 5 show the implementation of the
proposition for Shannon and min-entropy, respectively.

Algorithm 4: UpperBoundShannon(P (h, n), obs(·))
1 O ← ∅, Q ← 1, U ← log2(|D|)
2 t ← 0 /* counter for path samples */

3 while Q > 0 do
4 t ← t+ 1
5 PC ← sample a new symbolic path
6 o ← obs(PC)

7 π ← #PC

|D| · |Dn|
8 Q ← Q− π
9 if o /∈ O then /* new observable */

10 〈N,φh〉 ← BarvH(PC)
11 p̂[o] ← π
12 u[o] ← −π · log2(#φh)

/* u[oi] = p(oi)H(h|oi) in U =
∑

i u[oi] */

13 U [t] ← U [t− 1] + u[o]
14 O ← O ∪ o
15 C[o] ← PC
16 else /* observable already encountered */

17 U [t] ← U [t− 1]− u[o] /* subtracting

the old u[oi] = p̂(oi)Ĥ(h|oi) as the only

term in U =
∑

i u[oi] that changes. */

18 p̂[o] ← p̂[o] + π
19 C[o] ← C[o] ∨ PC
20 u[o] ← 0 /* computing the new u[o] */

21 foreach 〈Nj , cj〉 ∈ BarvH(C[o]) do

22 pj ← Nj

|D| · |Dn|
23 u[o] ← u[o] + #cj · pj · log2

( pj
p̂[o]

)
24 U [t] ← U [t] + u[o]

25 Prune the symbolic path PC

26 return U

Proof: We provide the proof for a generalized class
of leakages that includes Shannon and min-entropy as spe-
cial cases. Assume the expression for the posterior entropy
H(h|o) can be written as follows:

H(h|o) = η
( ∑

i:p(oi)>0

p(oi)F (p(h|oi))
)
, (6)

where η is an R → R function, and F is a scalar function
over the space of probability distributions and one of the
following two cases holds:

η: increasing, and F : concave; or (7a)

η: decreasing, and F : convex. (7b)

Shannon follows (6) by choosing η to be the
identity function η(x) = x, and F (p(h|oi)) =
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Algorithm 5: UpperBoundMinEnt(P (h, n), obs(·))
1 O ← ∅, Q ← 1, U ← 1
2 t ← 0
3 while Q > 0 do
4 t ← t+ 1
5 PC ← sample a new symbolic path
6 o ← obs(PC)

7 Qnew ← Q− #PC

|D| · |Dn|
8 if o /∈ O then
9 〈N,φh〉 ← BarvH(PC)

10 u[o] ← N

|D| · |Dn| /* u[oi] = maxhj
p̂(hj , oi)

*/

11 U [t] ← U [t− 1] + u[o] + (Qnew −Q)
12 O ← O ∪ o
13 C[o] ← PC
14 else
15 U [t] ← U [t− 1]− u[o]
16 C[o] ← C[o] ∨ PC
17 foreach 〈Nj , cj〉 ∈ BarvH(C[o]) do

18 u[o] ← max

{
u[o],

Nj

|D| · |Dn|
}

19 U [t] ← U [t] + u[o] + (Qnew −Q)

20 Prune the symbolic path PC

21 return log2(|D| · U)

−∑
j p(hj |oi) log2 (p(hj |oi)), which corresponds to (7a).

Posterior min-entropy, − log2 (
∑

i p(oi)maxj (p(hj |oi))),
can be expressed by taking η(x) = − log2(x) and
F (p(h|oi)) = maxj (p(hj |oi)), which complies with (7b).

We can rewrite (6) as H(h|o) = η (K(p(h, o))) , by
introducing the function K as follows:

K(p(h, o)) =
∑

i:p(oi)>0

p(oi)F (p(h|oi)) . (8)

The domain of K can be extended to include any non-
negative p(hj , oi), by naturally defining:

p(oi)=
∑
j

p(hj , oi), p(h|oi)=(p(hj |oi))j=
(
p(hj , oi)

p(oi)

)
j

By (p(hj |oi))j , we mean the R
+|D| vector whose entries are

p(hj |oi) and j = 1, . . . , |D|. Note that whenever p(oi) >
0, the vector p(h|oi) as defined above is still a legitimate
probability distribution for h, because p(hj |oi) ≥ 0 ∀j, and∑

j p(hj |oi) = 1. Hence, p(h|oi) is still in the domain of
F . We prove the proposition using the following lemma:

Lemma 1. For (7a), K is “super-additive”, i.e., for any
p1(h, o) and p2(h, o) on the same space R

+|D| |O|, we have:

K (p1(h, o) + p2(h, o)) ≥ K (p1(h, o)) +K (p2(h, o)) .

For the case (7b), we have “sub-additivity”, i.e., the
inequality of the lemma holds in the opposite direction.

Proof: We provide the proof only for case (7a) for
brevity. First, we show that for α > 0, K(αp(h, o)) =
αK(p(h, o)): Transforming p(h, o) to αp(h, o) transforms
p(oi) =

∑
j p(hj , oi) to

∑
j αp(hj , oi) = αp(oi). On

the other hand, p(hj |oi) = p(hj , oi)/p(oi) transforms to
αp(hj , oi)/(αp(oi)), which is the same as p(hi|oi). Hence:

K(αp(h, o))=
∑

i:αp(oi)>0

αp(oi)F (p(h|oi))=αK(p(h, o)) (9)

Next, following Proposition 1 in [21], we note that K
is concave, i.e., ∀p1(h, o) and p2(h, o) on the same space
R

+|D| |O|, and ∀λ ∈ [0, 1], we have:

K (λp1(h, o) + (1− λ)p2(h, o)) ≥
λK (p1(h, o)) + (1− λ)K (p2(h, o)) .

Now, consider p1(h, o) and p2(h, o) in R
+|D| |O|. Take

a λ ∈ (0, 1). Following concavity of K:

K

(
λ · p1(h, o)

λ
+ (1− λ) · p2(h, o)

1− λ

)
≥ λ ·K

(
p1(h, o)

λ

)
+ (1− λ) ·K

(
p2(h, o)

1− λ

)
The left-hand is simply K(p1(h, o) + p2(h, o)). Using (9),
the right-hand simplifies to K(p1(h, o)) +K(p2(h, o)).

Resuming with the proof of Proposition 5, let us define
q(h, o) as the difference between the true joint probabilities
and the learned ones so far. That is, let:

q(h, o) := p(h, o)− p̂(h, o)

where the difference is performed element-wise (i.e., ∀i, j).
Since any partial symbolic sampling provides an under-
estimation of the joint probabilities, we have p̂(h, o) ≤
p(h, o), or equivalently q(h, o) ≥ 0. Now, because we can
write p(h, o) = p̂(h, o) + q(h, o), where both p̂(h, o) and
q(h, o) are element-wise non-negative, Lemma 1 implies:

K(p(h, o)) ≥ K(p̂(h, o)) +K (q(h, o)) (10)

Referring to the definition of K in (8), for Shannon,
since η is the identity, this inequality reduces to:

H(h|o) ≥ Ĥ(h|o)) +Hq(h|o)
where Hq(h|o) = −∑

h,o q(h, o) log2 (q(h, o)/
∑

h q(h, o)),
which is the familiar posterior Shannon entropy where
q(h, o) ≥ 0 is used in place of p(h, o). It can be easily
shown (using e.g., Jensen’s inequality) that Hq(h|o) ≥ 0.
Referring to the definition of leakage, we thus have:

LeakageS = H(h)−H(h|o) ≤ H(h)− Ĥ(h|o)
Note that H(h) is simply the entropy of the high value,
which for uniform distribution is simply log2(|D|).

For min-entropy, the conditional entropy can be
written as − log2(K(p(h, o))), where K(p(h, o)) =∑

i maxj p(hj , oi), which is a convex function (hence, we
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have case (7b)). Therefore, inequality (10) holds in the
opposite direction:∑

i

max
j

p(hj , oi) ≤
∑
i

max
j

p̂(hj , oi) +
∑
i

max
j

q(hj , oi)

Since, − log2(x) is a decreasing function over x > 0, and
leakage is the difference between prior entropy, log2 |D|,
and posterior entropy, we get:

LeakageM≤ log2

(
|D|
∑
i

max
j

p̂(hj , oi) + |D|
∑
i

max
j

q(hj , oi)

)

The claim in the proposition follows by noting that
the term

∑
i maxj q(hj , oi) can be bounded above by∑

i

∑
j q(hj , oi) =

∑
j q(hj) = Q.

Showing that these upper-bounds are tight is by con-
structing a (side)-channel whose leakage is exactly the
bound. Such channel is constructed by assigning the remain-
ing probability of each high value, q(hi, oj), to a distinct
new observable. Intuitively, this is the maximally leaking
channel among all possible channels that are consistent with
the partially learned channel.

Note that the tightness property in Proposition 5 is under
the assumption that nothing is known in advance about the
size of the observable space |O|. If |O| or an upper-bound
on it is known before sampling, then we may no longer
have tightness, and our upper-bounds can be improved.
For instance, suppose it is known (or can be argued) that
|O| ≤ M for a constant M where M < |D|. Then we know
leakage is less than log2 M which is better than the upper-
bound in the proposition before any sampling, i.e., log2 |D|.

If sampling is done over the symbolic paths obtained
by initializing the high input one at a time, i.e., scanning
the high values concretely while using model counting on
the symbolic noise, then this upper-bound can be improved
(proof omitted for brevity):

Proposition 6. Suppose the number of distinct possible (side
channel) observables is known to be capped at M . When
sampling is done by concrete scanning of the high values
and model counting on the symbolic noise, the following is
also an upper-bound for Shannon Leakage:

U ′
S = min{Ĥ(o)−Q log2

Q

M
, log2 M} − Ĥ(h, o)

+(1−Q) log2 |D|, where:

Ĥ(o) = −
∑
i

p̂(oi) log2 p̂(oi), and

Ĥ(h, o) = −
∑
i,j

p̂(hj , oi) log2 p̂(hj , oi).

7.3. Lower bounds for side-channel leakage

Proposition 7. Let p̂(o|h) be the learned values of the
(side)-channel of the program resulting from symbolic sam-

pling so far. Then LS as given below is an any-time lower-
bound for the Shannon leakage:

LS = log2 |D| − Ĥ(h|o) +
∑
j

q(hj) log2 q(hj)

+ (1−Q) log2(1−Q)

where Ĥ(h|o) is as defined in Proposition 7, and q(hj) and
Q are as defined in (4) and (5), respectively. Moreover, the
following is a monotonically non-decreasing lower-bound
for the min-entropy leakage:

LM = max

(
log2

(
|D|

∑
i

max
j

p̂(hj , oi)

)
, 0

)
At the beginning of sampling, the value of the leakage’s

lower bound for both entropies is zero, which corresponds
to the possibility that the program satisfies non-interference.
Both lower-bounds converge to the real value by the end of
sampling, for min-entropy, monotonically so.

Proof: For min-entropy, the proof is straightforward
by referring to the definition of its leakage in (2) for a
uniform distribution on the secrets, and noting two points:
first, the leakage can never be negative, and second, that the
estimated joint probabilities p̂(h, o) is always a lower bound
for (and can only increase to) the true joint probabilities
p(h, o) using our symbolic sampling.

The rest of the proof concerns Shannon. Recall:

H(h)−H(h|o) = H(h) +
∑
i,j

p(hj , oi) log2

(
p(hj , oi)

p(oi)

)
in which p(h, o) is the true joint probability, and we have:
p(h, o) = p̂(h, o) + q(h, o), where q(h, o) ≥ 0. Hence
−H(h|o) can be written as:∑

i,j

(p̂(hj , oi) + q(hj , oi)) log2

(
p̂(hj , oi) + q(hj , oi)

p̂(oi) + q(oi)

)
Consider the function f(t) = t log2(t). f(t) is convex and
f(0) = 0, therefore, it is super-additive. Hence, we have:∑

i,j

(p̂(hj , oi) + q(hj , oi)) log2

(
p̂(hj , oi) + q(hj , oi)

p̂(oi) + q(oi)

)
≥

∑
i,j

p̂(hj , oi) log2

(
p̂(hj , oi)

p̂(oi) + q(oi)

)
+

∑
i,j

q(hj , oi) log2

(
q(hj , oi)

p̂(oi) + q(oi)

)
(11)

In what follows, we find a tight lower-bound for the right
hand side (and hence, for −H(h|o)) by casting it as an
optimization problem and solve it in closed-form:

min
q(h,o)

{∑
i,j

p̂(hj , oi) log2

(
p̂(hj , oi)

p̂(oi) + q(oi)

)
+

∑
i,j

q(hj , oi) log2

(
q(hj , oi)

p̂(oi) + q(oi)

)}
(12a)
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subject to:

q(hj , oi) ≥ 0, ∀i, ∀j &
∑
i

q(hj , oi) = q(hj), ∀j (12b)

Lemma 2. The following is a closed-form solution for (12):

q∗(hj , oi) = q(hj)
p̂(oi)∑
i′ p̂(oi′)

(13)

The lemma follows by checking that the proposed solu-
tion satisfies the Karush-Khun-Tucker (KKT) conditions for
the convex optimization (12). Details are omitted for brevity.

Next, we will replace the minimizing argument given by
the lemma into the objective function in (12a) as a lower-
bound on −H(h|o). First, (13) gives:

q∗(oi) =
∑
j

q∗(hj , oi) =
∑
j

q(hj)
p̂(oi)∑
i′ p̂(oi′)

= p̂(oi)
Q

1−Q

Hence, (12a) becomes:∑
i,j

p̂(hj , oi) log2

(
p̂(hj , oi)

p̂(oi) + p̂(oi)
Q

1−Q

)

+
∑
i,j

q(hj)
p̂(oi)

1−Q
log2

(
q(hj)

p̂(oi)
1−Q

p̂(oi) + p̂(oi)
Q

1−Q

)

=
∑
i,j

p̂(hj , oi) log2

(
p̂(hj , oi)(1−Q)

p̂(oi)

)
+
∑
i,j

q(hj)
p̂(oi)

1−Q
log2 (q(hj))

=
∑
i,j

p̂(hj , oi) log2

(
p̂(hj , oi)

p̂(oi)

)
+
∑
i,j

p̂(hj , oi) log2 (1−Q)

+
∑
i,j

q(hj)
p̂(oi)

1−Q
log2 (q(hj))

=
∑
i,j

p̂(hj , oi) log2

(
p̂(hj , oi)

p̂(oi)

)
+ (1−Q) log2 (1−Q)

+
∑
j

q(hj) log2 (q(hj))

Referring to the definition of Ĥ(h|o) in Proposition 5,

the first term in the last equation above is −Ĥ(h|o). In

short: −H(h|o) ≥ −Ĥ(h|o) + (1 − Q) log2 (1−Q) +∑
j q(hj) log2 q(hj) which yields:

LeakageS ≥ H(h)− Ĥ(h|o) + (1−Q) log2 (1−Q)+∑
j

q(hj) log2 q(hj)

For uniform prior over high values, H(h) = log2(|D|).
While for a general sampling, these bounds may not be

tight in general, we have the following tightness result:

Proposition 8. When sampling is done by concrete scanning
of the high values and model counting on the symbolic noise,
then the lower bounds in Proposition 7 become tight.

Again, by tightness, we mean the program under con-
sideration can achieve the lower-bound as its leakage, so it
is impossible to improve the lower-bounds.

Proof: For Shannon, the inequality of (11) is satisfied
with equality when for all i, j, either p̂(hj , oi) or q(hj , oi)
is zero. This is exactly the case when sampling is done
by concretely scanning the high value while keeping the
noise symbolic. For min-entropy follows by noting that the
lower-bound in Proposition (7) is exactly achieved for the
legitimate channel described in (13).

Note that when using the above per-input sampling,
the value of q(hj) is either zero (for a sampled input),
or p(h) = 1/|D| (for an unexplored input). Hence, the
term

∑
j q(hj) log2 q(hj) in the expression of Shannon’s

lower-bound simply becomes −Q log2 |D|. When using path
sampling with both high and noise symbolic, this term,
although computable, is not as straightforward to keep track
of. One way to go around this is to use a simpler (albeit
looser) lower-bound by noticing that:∑

j

q(hj) log2 q(hj) ≥ Q log2(Q/D)

with equality occurring only when q(hj) =
(
∑

j q(hj))/|D| = Q/|D| for all j. Using this inequality
gives the overall lower bound as:

L′
S=log2 |D|−Ĥ(h|o)+Q log2

Q

|D| + (1−Q) log2(1−Q) (14)

Hence, compromising on the quality of the lower-bound, we
have something that is now easier to compute.

Confidence Intervals. Our bounds implies that the true
value of the leakage is within the “error” window of
[Lx, Ux], x ∈ {S,M}, which goes to zero. The value of this
error window can be used to stop the sampling once it falls
below a desired threshold. Hence, similar to previous work
on probabilistic analysis [16] but in the strong notion of this
paper, we can define a confidence interval CI x = [Lx, Ux].
Our confidence interval is non-probabilistic, that is, the
actual leakage is guaranteed to be within it, and, in case
of tightness, it cannot be improved.

8. Implementation and Experiments

We implemented the described techniques in the Sym-
bolic PathFinder (SPF) tool, using listeners to monitor the
execution of symbolic paths, collect the constraints, perform
model counting and sampling. We evaluated them on the
following examples, initially provided by DARPA as part
of STAC engagements.

1) CheckSecret, a password-checker that compares a
“guess” with an internally stored password, “secret”
(see Figure 2), encoded as numbers. The program goes
recursively over the elements of an array t of random
boolean variables. The size refers to the length of array
t. Our techniques discovered a timing side-channel
caused by the delays in the code.

2) CRIME, an instance of the CRIME attack (“Compres-
sion Ratio Info-leak Made Easy”) [15]. We analyzed
procedure compress(high.concat(low)),
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1 boolean checkSecret(int guess, int[] t){
return recur(guess, t, t.length - 1);

3 }

5 boolean recur(int guess, int[] t, int index){
if(index == 0 && t[index] == 1){

7 if(guess <= secret){
Thread.sleep(10);

9 }
return guess == secret;

11 } else if(t[index] == 1){
return recur(guess, t, index -1);

13 }
if(guess <= secret){

15 Thread.sleep(10);
}

17 return guess == secret;
}

Figure 2: The CheckSecret example. One of the example
programs that we investigate in Section 8.

which implements string compression using the
Lempel-Ziv (LZ77) algorithm. We studied both
a deterministic and a randomized version: with a
probability p = 3/10, k = 1 bytes are appended to
the compressed string before it is sent. The size here
refers to the the number of characters of high and low
strings (i.e., input lengths, which we kept equal for
simplicity); our techniques discovered a space side
channel, that reveals the secret through the size of the
compressed input.

3) LawDB, a network service application that manages
information about law enforcement personnel. Each
employee’s data is referenced with a unique employee
ID. Standard users are provided operations such as
SEARCH and VIEW to manage information about
employees except for the ones working on confidential
activities. IDs of this particular group of employees
are restricted. The requests handling non-confidential
records are randomly delayed. In this case, “size” indi-
cates the number of IDs in the database. Our techniques
reported a timing channel in the process of handling
a SEARCH request that is caused by additional com-
putation, leading to slower response, when there are
restricted IDs within the requested search range.

4) Collab, a complex application implementing a net-
work service that provides event scheduling. Users can
insert events into the Collab calendar. The events are
organized by their ID in a re-balancing tree structure.
In addition to regular users, Collab also has special
auditors that can insert auditing events for other users.
It is not possible for regular users to obtain auditing
events directly. The application performs logging dur-
ing the maintenance of the balanced tree. A random
number determines how many lines are written to the
log file. Our analysis identified both a timing and a
space channel that reveals the IDs related to a user’s
audits. This is due to the fact that when each node
exceeds a certain number of IDs, the node is split into

two, which results in some extra logging, hence taking
additional time.

8.1. Full Exploration of Symbolic Paths

We first evaluated our exact approach. The results are
summarized in Table 1. For each example, we report the
number of paths (#PC), the Shannon and the min-entropy
leakages, along with the corresponding execution time. To
illustrate the scaling behavior of our approach, we examined
our examples for different size configurations.

For the CRIME example, we ran experiments on both the
deterministic and the randomized versions (columns marked
as CRIME and noisy CRIME): the results show that, as
expected, the randomized version has smaller leakage for
both Shannon and min-entropy measures.

8.2. Symbolic Path Sampling

We also experimented with our sampling approach on
these examples. Figure 3 plots the lower and upper bounds
of Shannon leakage for CRIME as more path samples
(shown in percentage on x axis) are analysed. The plot
shows how all the bounds converge to the exact leakage.
Furthermore, if at any time the exploration is stopped, the
real value of leakage is guaranteed to be between the lower
and upper-bounds. A similar pattern was observed for all
the other examples (see e.g. Figure 5 for CheckSecret).

We observe that many samples are needed for the tight
bound US tight* (given by Proposition 5) to get close to
the real value. If a bound on the number of observables
is known, then a trivial upper-bound on the leakage is
the “capacity” bound, i.e., log2 |O|. This can be improved
using Proposition 6 to an upper-bound that monotonically
decreases to the exact leakage (marked as US using |O|). The
LS tight is as provided by Proposition 7, whose tightness
comes from Proposition 8. Finally, “LS simple” is as per
(14), which is of course not as good as the “LS tight”.

The plots for min-entropy are illustrated in e.g. Figures
6 (see also Fig. 4 for CheckSecret). The plots show how
all the bounds converge to the exact leakage faster than the
Shannon leakage case. Note also that our results can be
used for side channel detection. For example, if the lower
bound for min-entropy leakage is greater than zero, then
that means both min-entropy leakage and Shannon leakage
are greater than zero, hence we can use the lower bound for
min-entropy leakage to detect side channels. Thus, even if
the bound is not tight, it can be very useful in practice.

8.3. Comparison with “Leakwatch”

We also compared our symbolic sampling with a clas-
sical (non-symbolic) Monte-Carlo sampling approach as
implemented by “Leakwatch” [9]. We made the comparison
using CheckSecret; the results are shown in Table 2. The
size of t is fixed at 30, and the “guess” input varies from
10 to 9990. The space of the secret, D, is {0 . . . 10000}.
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CheckSecret CRIME noisy CRIME LawDB Collab

Size 100 150 200 3 4 3 4 200 300

#PC 202 302 402 77 799 154 1598 615 1030 2510

Shannon 0.46757 0.46757 0.46757 0.84290 0.92850 0.43598 0.49412 0.77320 1.14203 0.99712

Time 99 364 943 4 36 5 49 106 404 472

Min-Ent. 0.99930 0.99930 0.99930 0.92850 1.00000 0.76553 0.76553 3.32193 3.32193 1.0000

Time 107 412 920 4 37 5 49 158 388 515

TABLE 1: Computation of Shannon and min-entropy leakages using symbolic execution and model counting by Barvinok,
for our four example case studies. Leakages are measured in bits, times in seconds.

0 20 40 60 80 100
0

2

4

6

8

% input space explored

S
h
a
n
n
o
n
le
a
ka
g
e
es
ti
m
a
te

US tight*
capacity

US using |O|
LeakageS

LS tight
LS simple

Figure 3: Shannon leakage estimates for CRIME (size 3).
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Figure 4: Min-entropy leakage estimates for CRIME(size 3).

“Leakwatch” runs using its default settings. Notice first
that, for this program, the leakage reported by the symbolic
sampling is the real one (the approach coverges quickly);
hence we observe that “Leakwatch” wrt symbolic sampling
can be very imprecise. In particular in four out of thirteen
cases “Leakwatch” wrongly report an absence of leakage:
these false negatives can have serious security consequences,
and could allow an attacker to go unnoticed and, with
repeated runs, obtain the whole password. The second obser-
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Figure 5: CheckSecret’s Shannon leakage estimates
(guess=1000, D = {0, . . . , 10000}, size of t= 10).
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Figure 6: Estimates of CheckSecret’s min-entropy leak-
age (guess=1000, D={0, . . . , 10000}, size of t=30).

vation is the huge difference in analysis time. The symbolic
approach takes on average 6 seconds while “Leakwatch”
takes on average over 15 minutes.
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Guess Values

10 100 300 500 1000 3000 5000 8000 9000 9800 9900 9980 9990

LW
Leak 0 0 0.1098 0.2008 0.3840 0.7954 0.9155 0.6410 0.3858 0.0633 0.0044 0 0

Time 16m29 21m9 21m22 22m1 11m22 11m8 11m54 15m1 11m35 13m27 14m46 20m23 13m16

SPF
Leak 0.0114 0.0806 0.1939 0.2856 0.4676 0.8776 0.9944 0.7145 0.4617 0.1358 0.0761 0.0181 0.0094

Time 6.465 6.524 6.437 6.544 6.384 5.992 6.849 6.956 7.204 7.244 6.955 6.496 7.15

TABLE 2: Comparison of Shannon leakage evaluation for the CheckSecret example (Figure 2) using “Leakwatch” (LW)
and symbolic sampling in SPF. Notice time for Leakwatch is in minutes

.

9. Related Work

Symbolic analysis of side channels has been studied
in [36], [37]. While these works share a similar symbolic
execution platform with our approach, they do not address
probabilistic programs or symbolic sampling.

Another related approach [23] uses symbolic analysis
and Barvinok model counting to quantify information leak-
age. That approach is based on a deductive verification
system (KeY), and is not fully automated, as it requires
user annotations for the KeY proofs. The work applies only
to deterministic programs; it translates source code into a
logical formula over which projection and model counting
are applied; it is not clear how it could be applied to prob-
abilistic programs. They also do not study any sampling.

There have been recent works quantifying leakage using
Monte Carlo sampling, e.g. “Leakwatch” [9] and hybrid
approaches where sampling is only performed under some
conditions, e.g. [19]. However these approaches are based
on standard sampling techniques, they are not symbolic
and hence of a different nature to ours. Also our symbolic
framework allows us to prove stronger theoretical guarantees
compared to previous sampling techniques.

There is a significant literature on side-channel analysis,
for example [3], [7], [8], [13], [24], [25], [31]. Recent
works successfully use abstract interpretation for cache side-
channels analysis [14], [26], [30]. Our approach differs
from these works by using symbolic execution, symbolic
sampling and considering probabilistic behavior.

Probabilistic programs are studied in [28], [32] in the
context of enforcement [32] and synthesis [28] of privacy
policies, where quantification of leakage becomes relevant.
However compared to those works, our focus is on efficient
quantification of leakage of side channels: it is not clear
how those works advance on this problem. The case studies
therein are quite small and even the greedy algorithm Syn-
Grd in [28] relies on computing all observables, which can
be prohibitively costly in practice.

Our lower bounds for min-entropy leakage are similar to
the iterative approach in [4]. However that paper abstracts
information systems into channel matrices whereas we de-
velop a concrete program analysis. Moreover, we consider
both min-entropy and Shannon leakages.

Symbolic execution and sampling are also used in [27]
with proved bounds for Shannon and min-entropy leakages.

However that work considers standard sampling and applies
only to deterministic systems; our bounds are for noisy
systems and symbolic sampling. Noise introduces some
significant technical challenges; also results on standard
sampling do not hold for symbolic sampling, hence these
works complement each other. Another work [33] provides
bounds on information leakage from a sampling analysis,
but it only applies to deterministic systems.

Our symbolic sampling is similar to previous work on
probabilistic symbolic execution [17] which was done in the
context of software safety and reliability. In this paper we
provide novel results that allow us to use the information
collected with symbolic sampling to compute theoretical
lower- and upper- bounds on information leakage.

Conclusion

We presented a symbolic technique for computing leak-
age in noisy side-channels. We also presented a sampling
approach to scale up the technique, and provided upper
and lower bounds to the leakage. Future work involves
investigating model counting procedures for non-linear con-
straints [5], [6] which will allow us to expand the appli-
cability of the presented techniques to e.g. cryptographic
protocols. We also plan to explore distributed versions of
our techniques to further increase scalability.

Acknowledgment. We would like to thank the anonymous
reviewers for their valuable comments. This material is
based on research sponsored by DARPA under agreement
number FA8750-15-2-0087. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

References

[1] Barvinok library. http://garage.kotnet.org/∼skimo/barvinok/.

[2] Giovanni Agosta, Luca Breveglieri, Gerardo Pelosi, and Israel Koren.
Countermeasures against branch target buffer attacks, 2007.

[3] Dakshi Agrawal, Josyula R. Rao, and Pankaj Rohatgi. Multi-channel
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