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Abstract—Local differential privacy (LPD) is a distributed
variant of differential privacy (DP) in which the obfuscation of
the sensitive information is done at the level of the individual
records, and in general it is used to sanitize data that are
collected for statistical purposes. LPD has the advantage it
does not need to assume a trusted third party. On the other
hand LDP in general requires more noise than DP to achieve
the same level of protection, with negative consequences on
the utility. In practice, utility becomes acceptable only on very
large collections of data, and this is the reason why LDP is
especially successful among big companies such as Apple and
Google, which can count on a huge number of users. In this
paper, we propose a variant of LDP suitable for metric spaces,
such as location data or energy consumption data, and we
show that it provides a much better utility for the same level
of privacy.

Keywords-Local differential privacy, dX -privacy, Kan-
torovich lifting.

I. INTRODUCTION

With the ever-increasing use of internet-connected de-

vices, such as computers, IoT appliances (smart meters,

home monitoring devices), and GPS-enabled equipments

(mobile phones, in-car navigation systems), personal data

are collected in larger and larger amounts, and then stored

and manipulated for the most diverse purposes. For example,

the web browsing history can be used for profiling the user

and sending him targeted publicity. Power-consumption data

from smart meters can be analyzed to extract typical daily

consumption patterns in households [1], or to identify the

right customers to target for demand response programs [2].

Location data can be used to find the most frequented public

areas (for instance, to deploy hotspots) [3], or to provide

traffic information [4].

Undeniably, the Big Data technology provides enormous

benefits to individuals and society, ranging from helping the

scientific progress to improving the quality of service. On

the other hand, however, the collection and manipulation

of personal data raises alarming privacy issues. Not only

the experts, but also the population at large are becoming

increasingly aware of the risks, due to the repeated cases

of violations and leaks that keep appearing on the news. It

is particularly disturbing when personal data are collected

without the user’s consent, or even awareness. For instance,

in 2011 it was discovered that the iPhone was storing

and collecting location data about the user, syncing them

with iTunes and transmitting them to Apple, all without

the user’s knowledge [5]. More recently, the Guardian has

revealed, on the basis of the documents provided by Edward

Snowden, that the NSA and the GCHQ have been using

certain smartphone apps, such as the wildly popular Angry

Birds game, to collect users’ private information such as age,

gender and location [6], again without the users’ knowledge.

Another related problem is that users often do not have

the possibility to control the precision and the amount of

personal information that is being exposed. For instance the

Tinder application was found sharing the exact latitude and

longitude co-ordinates of users as well as their birth dates

and Facebook IDs [7], and even after the initial problem

was fixed, it was still sharing more accurate location data

than intended, as users could be located to within 100

feet of their present location [8]. The leakage of precise
personal information is particularly problematic, especially

when considering that various kinds of personal data from

different sources can be linked and aggregated into a user

profile [9], [10], and can fall in the hands of malicious

parties.

Until recently, the most popular and used data sanitization

technique was anonymization (removal of names) or slightly

more sophisticated variants like k-anonymity [11] ensuring

indistinguishability within groups of at least k people, and

�-diversity, ensuring a variety of values for the sensitive data

within the same group [12]. Unfortunately, these techniques

have been proved unable to provide an acceptable level of

protection, as several works have shown that individuals in

anonymized datasets can be re-identified with high accuracy,

and their personal information exposed (see for istance [13],

[14]).

In the meanwhile, differential privacy (DP), has emerged

and imposed itself as a convincing alternative to anonymity.

Together with its distributed version local differential pri-
vacy, it represents the cutting-edge of research on privacy

protection.

DP was developed in the area of statistical databases, and

it aims at protecting the individuals’ data while allowing to

make public the aggregate information [15]. This is obtained
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by adding controlled noise to the query outcome, in such a

way that the data of a single individual will have a negligible

impact on the reported answer. More precisely, let M be

a (noisy) mechanism for answering a certain query on a

generic database D, and let P [M(D) ∈ S] denote the

probability that the answer given by M to the query, on

D, is in the (measurable) set of values S. We say that

M is ε-differentially private if for every pairs of adjacent
databases D and D′ (i.e., differing only for the value of

a single individual), and for every measurable set S, we

have P [M(D) ∈ S] ≤ eε · P [M(D′) ∈ S]. DP has two

important advantages with respect to other approaches: (a)

it is independent from the side-information of the adversary,

thus a differentially-private mechanism can be designed

without taking into account the context in which it will

have to operate, and (b) it is compositional, i.e., if we

combine the information that we obtain by querying two

differentially-private mechanisms, the resulting mechanism

is also differentially-private. Furthermore, (c) differentially-

private mechanisms usually provide a good trade-off be-

tween utility and privacy, i.e., they preserve the privacy of

the individuals without destroying the utility of the collective

data.

Local differential privacy (LDP) is a distributed variant

of differential privacy in which users obfuscate their per-

sonal data by themselves, before sending them to the data

collector [16]. Technically, an obfuscation mechanism M is

locally differentially private with privacy level ε if for every

pair of input values x, x′ ∈ X (the set of possible values

for the data of a generic user), and for every measurable

set S, we have P [M(x) ∈ S] ≤ eε · P [M(x′) ∈ S]. The

idea is that the user provides M(x) to the data collector,

and not x. In this way, the data collector can only gather,

stock and analyze the obfuscated data. Based on these he

can infer statistics (e.g., histograms, or heavy hitters [17])

of the original data. LPD implies DP on the collected data,

and has the same advantages of independence from the side-

information and compositionality. Furthermore, with respect

to the centralized model, it has the further advantages that

(a) each user can choose the level of privacy he wishes, (b)

it does not need to assume a trusted third party, and (c) since

all stored records are individually-sanitized , there is no risk

of privacy breaches due to malicious attacks. LDP is having

a considerable impact, specially after large companies such

as Apple and Google have started to adopt it for collecting

the data of their customers for statistical purposes [18].

The disadvantage of LDP is that it can spoil substantially

the utility of the data. Even in those cases where the trade-off

with utility is most favorable, namely the statistical appli-

cations, it is usually necessary to have a huge collection of

data in order for the statistics to be significant. Fortunately,

however, the data domains are often equipped with structures

that could be exploited to improve utility. In these notes, we

focus on data domains that are provided with a notion of

distance. This is the case, for instance, of location data,

energy consumption in smart meters, age and weight in

medical records, etc. Usually, when these data are collected

for statistical purposes, the accuracy of the distribution is

measured also with respect to the same notion of distance. In

such scenarios, we argue that the trade-off between privacy
and utility can be greatly improved by exploiting the concept
of approximation intrinsic in metrics.

Following this intuition, we propose a variant of lo-

cal differential privacy based on the notion of dX -privacy

intoduced in [19]. An obfuscation mechanism M is ε · dX -

private if for every pair of input values x, x′ ∈ X , and

for every measurable set S, we have P [M(x) ∈ S] ≤
eε·dX(x,x′) · P [M(x′) ∈ S]. In other words, dX -privacy

relaxes the privacy requirement by allowing two data to

become more and more distinguishable as their distance

increases. Thus, it allows the adversary to infer some ap-

proximate information about the true value, but it does not

allow him to infer the exact true value. As explained in [19],

dX -privacy can be implemented by using an extended notion

of Laplacian noise, or of geometric noise.

The original motivation for the notion of dX -privacy was

for real-time punctual applications. In particular, the instance

of dX -privacy in which dX is the geographical distance has

been used in the context of location privacy, under the name

of geo-indistinguishability, to protect the location of the user

during the interaction with location-based services (LBSs)

[20], [21]. These are services that provide the user with

certain desired information which depends on the location

communicated by the user, like for instance points of interest

(POI) near the location. The idea is that the user does not

need to communicate his exact coordinates, an approximate

location should suffice to obtain the requested information

without too much degradation of the quality of service.

Geo-indistinguishability has been quite successful, and

its implementation via the Laplacian mechanism has been

adopted as the basis or as a component of several tools

and frameworks for location privacy, including: LP-Guardian

[22], LP-Doctor [23], STAC [24], Location Guard [25],

and the SpatialVision QGIS plugin [26]. Here, we want to

show that geo-indistinguishability, and more in general dX -

privacy, can also be used to protect privacy when collecting

data for statistical purposes, and that if the statistics are

distance-sensitive, then dX -privacy preserves the utility of

the data better than the standard LDP methods.

In the rest of these notes, we will discuss the improve-

ment on trade-off utility-privacy compared to standard LDP

methods, and show some experimental results based on the

Gowalla dataset [27], [28]. For simplicity we will restrict

the analysis to the case of discrete metric spaces. We will

consider, in particular, the mechanisms of K-ary Random-

ized Response (K-RR) [29] for LPD, and the (discretized)

Laplacian and geometric mechanisms for dX -privacy.

These notes are meant to stimulate the discussion on the
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issue of utility in LDP. The interested reader can find the

technical details in the report version of this paper [30].

II. UTILITY

We consider a notion of utility suitable for statistical

applications. The scenario is the following: let X (the

universe) be a set of secrets, endowed with a notion of

distance dX , and let DX be the set of distributions on X .

Let D be an unsanitized dataset on X , namely a multiset of

elements of X (i.e., an histogram), determining a distribution

π ∈ DX . Assume that each individual element x in D
gets sanitized by injection of noise, thus producing a noisy

dataset D̂. From D̂ we then try to reconstruct the distribution

π as well as we can, assuming that we only know D̂ and

the mechanism M for noise injection.

In order to reconstruct as precisely as possible the original

π, we propose to use the Expectation-Maximization (EM)

method [31], also known as Iterative Bayesian Update,

which iteratively estimates the distribution until convergence

to a fixed point. The feature of this method is that the

final estimate (converged value) is equal to the Maximum

Likelihood estimate in the probability simplex, and it is

shown in [31] that it significantly outperforms the other

known techniques like the matrix inversion method.

Let π̂ ∈ DX be the output of the EM method. Intu-

itively, the utility loss with respect to the original database

should reflect the expected difference between the statistical
properties based on the noisy data and those based on the
real data. To formalize the notion of expectation, we can

regard M, in abstract terms, as a device that inputs π and

output a set of possible distributions π̂1, π̂2, . . . π̂i . . ., each

with a certain probability p1, p2, . . . pi . . .. In other words,

M can be seen as a transformation that associates to each

π a function Δ which assigns a probability mass to every

distribution, i.e, Δ(π̂i) = pi. This type of functions Δ are

called hyperdistributions in [32], [33]. Note that also π can

be seen as a hyperdistribution: it is the function that assigns

1 to π, and we will denote it by [π].
Concerning the difference between statistical properties:

in very general terms, we can represent a statistical property

as a functions f : DX → R, where R is the set of reals. We

want to capture as many f ’s as possible, but it is reasonable

to assume that the difference between f(π) and f(π′)
must be bound by the distance between the distributions

π and π′, for some “reasonable” notion of distance dDX . In

other words, we want to avoid that negligible differences

on the distributions may produce unbound differences in

the statistics. For this reason, we restrict the statistics of

interest, F ⊆ (DX → R), to be the set of 1-Lipshitz1

functions with respect to dDX . Hence, F = {f : DX →
1The requirement of 1-Lipshitz is not really essential, it could be k-

Lipshitz for an arbitrary k. The important constraint is that the difference
on the statistics is bound in some uniform way by the difference on the
distributions.

R | f is 1-Lipshitz w.r.t. dDX }. Finally, since we want to

abstract from the peculiarity of any particular statistics, we

will consider the maximum difference induced by the noise

on all the statistics in F. Summarizing, we can define the

utility loss as:

UL(M, π, dDX ) = max
f∈F

|
∑
π̂

Δ(π̂)f(π̂)− f(π) | (1)

where Δ = M(π). It is worth noting that the rhs of

this definition is the distance between Δ and [π] obtained

as the Kantorovich lifting of dDX , which we will denote

as K(dDX )(Δ, [π]). Following the same intuition, we can

define the distance dDX as the Kantorovich lifting of dX , thus

establishing a link with the ground distance on the domain

of secrets.

III. TUNING PRIVACY

The notions of LDP and of dX -privacy both depend on

privacy parameters ε’s, but these ε’s do not represent the

same level of privacy in the two definitions. They are not

even of the same type: the ε in LDP is a pure number, while

the ε in dX -privacy is the converse of a distance. Therefore,

in order to compare the utility of an LDP mechanism M

with that of a dX -private mechanism M′, we have first to

tune their privacy parameters so to ensure that M and M′

provide the same privacy protection. To this end, we consider

the notion of location privacy proposed in [34], defined as

expected distance between the reported location and the real

location. 2 Generalizing to dX -privacy, we require that M

and M′ give the same expected distance between x ∈ D and

the corresponding reported datum. Namely:

∑
x,y∈X π(x)P [M(x) = y]dX (x, y)

=
Ed
=∑

x,y∈X π(x)P [M′(x) = y]dX (x, y)

(2)

where Ed represents the desired level of protection, ex-

pressed in terms of the expected distance of the reported

location from the real one.

IV. THE MECHANISMS

We now recall the definition of the K-ary RR mecha-

nism [29], representative of LPD, and the Laplacian and

geometric mechanisms, representative of dX -privacy.

2The definition in [34] also takes into account the knowledge of the
prior, and the possibility to remap the reported location in the most most
likely one according to the additional information provided by the prior.
In our case, we want a definition that does not depend on the knowledge
of the prior (since π is supposed to be unknown), and without the prior
information, for the mechanisms we consider, the most likely location is
always the reported one. Hence we do not need remapping.
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A. The Laplacian mechanism

The Laplacian mechanism ML is used when (X , dX ) is a

continuous metric space. Given a real location x, it reports a

location y with a probability density function (pdf) defined

as:

dPx(y) = λL e−ε·dX (x,y)

where λL is a normalization factor.

In case we want to work in a discrete setting, we can

first discretize the metric space by partitioning X into cells

and defining the distance between two cells as the dX
between the centers of the cells. Then we can discretize

the mechanism by defining the probability of a cell C as

the probability mass obtained by the integration of the pdf

over C.

B. The geometric mechanism

The geometric mechanism MG is used when (X , dX ) is

a discrete metric space. It is defined similarly to Laplacian

mechanism, with the exception that now x and y represent

discrete locations, and we have a (discrete) probability

distribution rather than a pdf:

P [MG(x) = y] = λG e−ε·dX (x,y)

where λG is a normalization factor.

If (X , dX ) is the result of a discretization of a continuous

metric space, then the discretized laplacian is very similar,

but not identical to the geometric mechanism.

V. THE K-RR MECHANISM

The K-RR mechanism, aka flat mechanism, MF is one

of the simplest LPD mechanisms. The idea is that the result

of the sanitization is a bit more likely to be the true value

x than any other value in the domain (taken individually),

and that on the other values the probability is distributed

uniformly :

P [MF (x) = y] =

⎧⎨
⎩

eε

|X|−1+eε if y = x

1
|X|−1+eε if y �= x

In [29], the k-RR mechanism has been shown to be

optimal in the low privacy regime for a large class of

information theoretic utility functions.

VI. EXPERIMENTAL RESULTS

In this section we compare the utility of the privacy

mechanisms MF , MG and the (discretized) ML introduced

in previous section, using a distribution derived from the

Gowalla dataset, which contains location data (check-ins)

relative to a certain population of users.

We consider an area of 4.5 Km × 4.5 Km in Paris,

centered in 5 Boulevard de Sébastopol, near Le Halles. We

discretize that area by considering a grid of 30×30 cells, so

that every cell is 150 m ×150 m, see Figure 1. These cells

Figure 1. The area of Paris considered for evaluating the utility of the
three mechanisms.

represent the elements of X , and the distance dX is defined

as the geographic distance between the centers of the cells.

We consider 750 check-ins from Gowalla in this area,

selected randomly, and we consider the multiset D obtained

by counting the number of check-ins in each cell. Let π be

the corresponding distribution.

We now tune the privacy parameters of MF , MG and

ML so that the expected distance Ed of the reported

location from the real one is the same for all of them (cfr.

Requirement (2)). We set Ed to be 3 times the size of a cell,

namely 450 m. The values of ε that we derive are: 8.24797
for MF , 0.00398441 for MG, and 0.00404249 for ML.

In order to compute the utility loss for these three mech-

anisms, we use the well-known fact that the Kantorovich

distance is equal to the earth mover’s distance (EMD)

also known as the Wasserstein metric. Namely, we can

equivalently rewrite (1) as

UL(M, π, dDX ) = min
α

∑
π̂∈dom(Δ)

α(π̂, π)dDX (π̂, π) (3)

where Δ = M, α ranges on the couplings that have as

marginals Δ and [π], and dDX = K(dX ). In conclusion, to

determine the utility loss we need to compute the expectation

of the Kantorovich distance between the reported location

and the real location. We have done it for an increasing

sequence of dataset ∅ ⊆ D1 ⊆ D2 ⊆ . . . ⊆ Dn ⊆ . . . ⊆ D
constructed incrementally by adding each time 10 elements

from the 750 check-ins, selected randomly, until all of them

are inserted. The results are reported in Figure 2.

As we can see from this figure, the geometric and the

discretized Laplacian have similar utility, and perform much

better (in terms of utility) than the flat mechanism. In fact,

if we consider statistics that are somehow coherent with the

ground distance dX , then the fact that the geometric and the

discretized Laplacian tend to assign a negligible probability

to locations that are far away from the real one means that

those locations do not significantly contribute to the loss of
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Figure 2. The utility loss for an increasing sequence of datasets taken from
the Gowalla check-ins in the area illustrated in Figure 1. The numbers in
the horizontal axis represent the number of check-ins × 10. The numbers
in the vertical axis represent the distance, expressed in meters.

utility. In contrast, the flat mechanism treats in the same

way all locations, independently from their distance from

the real one. Consequently there are several locations that

are far away and still carry a significant probability mass,

thus taking a heavy toll on the utility.

Furthermore, we can see that the utility loss of the Flat

mechanisms, although showing a tendency to diminish as

the numbers of check-ins increases, it does so very slowly.

Finally, at the beginning (for less than 2000 check-ins) the

behavior of the flat mechanism is extremely unstable. This

is due again to the fact that the reported locations tend to

be scattered in the whole area with high probability, which

determine high fluctuations especially at the beginning when

the data are few, as the addition of new data can cause a big

change in the distributions.

VII. CONCLUSION

We have advocated the use of dX -privacy to protect

privacy when data are collected for statistical purposes on

domains of secrets endowed with a notion of distance, argu-

ing that in such context dX -privacy offers a better trade-off

between privacy and utility than traditional LPD methods.

We have confirmed this claim by performing experimental

evaluations of the utility of dX -private mechanisms and LPD

ones on real location data from the Gowalla dataset. The

results show that the gap in terms of utility (for the same

level of privacy) is actually quite significant.
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