
Inductive Invariants for Noninterference in
Multi-agent Workflows

Christian Müller
Technische Universität München

Email: christian.mueller@in.tum.de

Helmut Seidl
Technische Universität München

Email: seidl@in.tum.de

Eugen Zălinescu
Technische Universität München

Email: eugen.zalinescu@in.tum.de

Abstract—Our goal is to certify absence of information leaks in
multi-agent workflows, such as conference management systems
like EASYCHAIR. These workflows can be executed by any
number of agents some of which may form coalitions against
the system. Therefore, checking noninterference is a challenging
problem. Our paper offers two main contributions: First, a
technique is provided to translate noninterference (in presence
of various agent capabilities and declassification conditions)
into universally quantified invariants of an instrumented new
workflow program. Second, general techniques are developed for
checking and inferring universally quantified inductive invariants
for workflow programs. In particular, a large class of workflows
is identified where inductiveness of invariants is decidable, as well
as a smaller, still useful class of workflows where the weakest
inductive universal invariant implying the desired invariant, is
effectively computable. The new algorithms are implemented and
applied to certify noninterference for workflows arising from
conference management systems.

Index Terms—multi-agent workflows; non-interference; ab-
stract interpretation; inductive invariants

I. INTRODUCTION

A multi-agent system, e.g., for the management of a confer-

ence, may be used by any number of agents, while at the same

time posing non-trivial restrictions to the flow of information.

A challenging problem therefore is to certify noninterference

— independently of the number of participating agents. Work-

flows, as presented in [11], [10], describe a language for multi-

agent systems in which agent interactions are structured in

stages and recorded by relations, with each stage expressed as

a block of guarded updates to relations. For instance, one stage

of a conference management workflow could be specified by

the following workflow block:

forall x, y, p, r may.
Assign(x, p) ∧ Review(y, p, r) → Read += (x, p, r)

which states that each PC member x may decide to read (or not

to read) the review r of the paper p, given that x is assigned

to p and some PC member y has provided the review for p.

In such a system, a security breach occurs if an agent

obtains information that she is not entitled to know, like a

PC member obtaining reviews on papers she is in conflict

with. The absence of information leaks is best expressed as

a noninterference-like property — a property on two traces,

roughly stating that from the point of view of any single agent,

there is no observable difference between two executions of the

workflow that differ in their secret information, as long as the

behavior of the other participating agents is reasonable (oth-

erwise the property specification allows for spurious attacks).

In [11], it is argued that reasonable behavior means that the

decisions or choices of an agent can only reveal information

the agent has actually observed. Such agents are called causal.
This causality assumption, while preventing false negatives,

still allows agents to form coalitions. Indeed, knowledge of

confidential information can be transmitted by agents via

the side channel of adapting their observable behaviors. A

stronger assumption on the agent behavior, also introduced

in [11], is that she acts stubbornly: stubborn agents show

the same behavior (in the two executions) independently of

their knowledge. They thus can propagate information about

confidential data to other agents only directly.

Besides the specification of the abilities of the participat-

ing agents, realistic noninterference properties for workflows

also require a specification of declassification conditions, as

sensitive information will be revealed to some agents and

considered secret for others.

To formalize such complex security properties, which en-

compass the assumptions on the agent behavior and the

declassification conditions, both [11] and [10] use a first-

order extension of HyperLTL [6]. In [10], the semantics of

workflows as well as noninterference properties are translated

into sorted FOLTL. Quite general forms of noninterference

could be proven decidable for the restricted class of non-
omitting workflows by means of a translation into a decidable

fragment of sorted FOLTL.

Here, a workflow is non-omitting if all occurring guards are

quantifier-free, and every modification of a predicate always

contains all involved agents explicitly. Many practically useful

workflows, though, are omitting, like the example workflow

block shown above, where y does not occur in the tuple

(x, p, r) to be inserted into the relation for Read . In general,

statements which use auxiliary variables for expressing guards,

naturally introduce omission. A simple and common example

is a statement that expresses the transitive closure R of some

relation E:

forall x, y, z. E(x, y) ∧R(y, z) → R+= (x, z)

We note here that this block can be equivalently rewritten as

forall x, z. ∃y.E(x, y) ∧R(y, z) → R+= (x, z).

247

2018 IEEE 31st Computer Security Foundations Symposium

© 2018, Christian Müller. Under license to IEEE.
DOI 10.1109/CSF.2018.00025

However, the resulting workflow is still omitting as the guard

is not quantifier-free.

Therefore, the results from [10], while encouraging, can

only be a first step. In [10], however, it has also been shown

that already for non-omitting workflows and an unbounded

number of causal agents, noninterference with declassification

is undecidable, while for omitting workflows undecidability

already occurs for the simplest agent model, namely, for

stubborn agents. In that sense, the results of [10] are tight.

In this article, we nonetheless aim at lifting the non-omission

restriction, and thus provide practical methods for analyzing

general workflows with unboundedly many agents, causal or

stubborn. Due to the undecidability results of [10], however,

any verification approach is necessarily incomplete and/or

introduces further restrictions. We therefore concentrate on

noninterference (instead of temporal hyper-properties) with de-

classification depending on the current state only, and consider

proofs using universally quantified formulas only.

The key observation behind our approach is that, for pairs

of execution traces complying with the assumptions on agent

behavior and with the declassification conditions, the spec-

ification of noninterference boils down to checking that all

observations of a particular agent coincide on the two traces.

That is, indistinguishability of such traces can be cast as a

universal invariant, i.e., a mapping from program points of

the workflow to universally quantified formulas. Therefore, in

contrast to [11], [10], we propose in this paper not to include

the assumptions on agent behavior and declassification into

the specification of noninterference. Instead, we transform the

given workflow w so that the resulting workflow now tracks

pairs of execution traces of w that comply both with the

assumptions on agents and declassification. Proving that the

workflow satisfies an invariant can then be done by providing a

strengthening of the invariant which is inductive. We find that

it is decidable whether an assignment of formulas to the nodes

of a control flow graph of the resulting workflow is inductive

or not — whenever all formulas in question are universal, and

the weakest precondition calculation for each control flow edge

only introduces non-nested occurrences of quantifiers. This

provides us with a means for proving noninterference with

declassification for omitting workflows.

Checking an assignment for being inductive, is one thing;

inferring an inductive invariant which is sufficiently strong

for proving the given assignment, is another. The latter can be

cast as finding a solution to a constraint system for weakest

preconditions of the invariant to be verified [7]. Even if only

universal properties are of concern, the underlying lattice

for solving that constraint system has infinitely descending

chains — implying that fixpoint iteration may not terminate.

Based on an abstraction technique for formulas possibly con-

taining existential quantification, and second-order quantifier

elimination, we identify non-trivial cases where the fixpoint

iteration can be proven to terminate and then return the weakest
inductive invariant, i.e., the inductive invariant making the

least assumptions on the program states. An implementation

of our method demonstrates that the approach is able to deal

with more general workflows while still being faster than

the implementation provided for [10] — whenever that is

applicable.

The paper is organized as follows. After a brief recap of

the workflow model and a formalization of noninterference

in Section II, we present our transformation to encode agent

model as well as declassification into an ordinary workflow

in Section III. By this transformation, checking of nonin-

terference can be reduced to checking a universal invariant.

Section IV therefore considers universal invariants and proves

that for these, inductiveness is decidable. Section V presents a

method for inferring inductive invariants. This method relies

on abstract interpretation techniques for first-order formulas

and proves optimality under mild assumptions — given that

fixpoint iteration for an appropriate constraint system termi-

nates. In detail, termination is treated in Section VI where a

termination proof is presented for a natural syntactic restriction

of workflows. In Section VII the application of the given

techniques for proving noninterference is wrapped up. In

particular, it is shown that checking noninterference for a

bounded number of causal agents is not more difficult than

checking of universal invariants of workflows. Section VIII

then presents an implementation and experimental results.

II. NONINTERFERENCE FOR WORKFLOWS

A. Workflows

We fix a finite set R of relation symbols. We also fix

a set V of first-order variables and a subset X ⊆ V of

variables occurring freely in the specification. These can be

considered as constants from the universe to be interpreted.

The set R is the disjoint union of the subsets Rwf , Ro ,

and Rc . Relations in Rwf may be updated by the workflow at

each step. Relations in Ro are provided by the environment —

they can only be queried and are therefore called oracles. They

may contain confidential data and come with a declassification
condition (as detailed later in this section). The relations in Rc ,

on the other hand are not explicitly mentioned in the workflow.

These represent the decisions taken by agents participating in

the workflow and are therefore called choices. We follow the

convention that agent capabilities are specified via the first

components of tuples. Concretely, an agent a can observe

all tuples of workflow relations that mention her in the first

component (i.e. all tuples of the form (a, b̄) that satisfy some

R ∈ Rwf). Also, an agent chooses all tuples of the choice

predicates C ∈ Rc that mention her in the first component.

A workflow w is defined by the grammar given in Fig. 1,

where xi, yi range over variables in V , R ranges over predicate

symbols in Rwf , and ϕ ranges over first-order formulas, pos-

sibly containing equality, with relation symbols in Rwf �Ro .

The basic constructs are statements, which represent the si-

multaneous updates of relations. As updates we only consider

guarded additions or deletions of individual tuples, simulta-

neously executed for all values of the occurring variables.

Sequences of statements are grouped into blocks. Their forall
prefix lists the variables over which the simultaneous updates

range. By convention, the first variable in the list refers to the

248

agent executing the block. The key word may indicates that

the agent in the first component of the tuple may choose to

participate in the execution of the block or desist. Technically,

this means for the semantics of these blocks, that the literal

C(x̄) is added to each guard occurring in the block (x̄ being

the sequence of variables listed in the forall prefix, C a choice

predicate of appropriate arity). Finally on the top-level, blocks

are organized by sequencing, alternatives, and loops, where a

particular execution is meant to be determined by external

decisions (in case of a conference management system, e.g.,

by deadlines or the PC chair).
For the syntax and semantics of the first-order formulas

serving as guards, we refer to standard textbooks such as [9].

For a statement ϕ → R±= ȳ, we require that |ȳ| matches R’s

arity. The formula ϕ as well as the sequence ȳ = (y1, . . . , yl)
may contain variables not in x̄, where x̄ = (x1, . . . , xk) is the

sequence of variables appearing in the forall construct of the

surrounding block. These variables not in x̄ are assumed to be

in X , i.e., global constants of the workflow.
In the following, we introduce further restrictions not im-

posed in [10] — these are mild restrictions that do not exclude

any of our current examples. We assume that each R ∈ Rwf

is updated at most once in a block (i.e., it occurs at most once

in a statement of block b on the right-hand side of →). We

also assume that oracles are queried only in non-may blocks,

and in each block that queries an oracle, the same oracle is

queried. Furthermore each guard querying an oracle O is of

the form ϕ′ ∧ Ox̄ for some formula ϕ′, where the sequence

of variables x̄ coincides with the block’s quantified variables

(i.e. the block is of the form forall x̄. stmts). This restriction

is mainly used to simplify arguments later in the paper —

in Appendix A. we provide a transformation that can be

used to transform any given workflow into one that fits these

constraints for oracle usage.

w ::= ε | block w′ | loop {w′ } w′′ |
choose {w1} or {w2} w′

block ::= forall x1, . . . , xk. stmts
| forall x1, . . . , xk may. stmts

stmts ::= ε | stmt; stmts
stmt ::= ϕ → R+= (y1, . . . , yl)

| ϕ → R−= (y1, . . . , yl)

Figure 1. Definition of a workflow w

For completeness, we recall the definition of non-omitting

workflows, a critical assumption imposed in [10], but not here.

A workflow is called non-omitting iff for each block of the

form forall x̄ [may] stmts , and for each of its statements

ϕ → R±= ȳ in a block, we have that ϕ is quantifier-free and

each variable in x̄ also appears in ȳ.

Example 1. The workflow

forall x1, x2. may true → R+= (x2, c, x1)

is non-omitting (when c is a constant), whereas the workflow

forall x1, x2. may R(x2) → S −= (x1, c)

is omitting, since x2 is not mentioned in the tuple (x1, c) that
is removed from S.

% PC members may declare conflicts
(b1) forall x, p may. true → Conf += (x, p)

% PC members are assigned to papers
(b2) forall x, p may.¬Conf(x, p) → Assign += (x, p)

% PC members write reviews for papers
(b3) forall x, p, r.

Assign(x, p) ∧O(x, p, r) → Review += (x, p, r)
% PC members discuss about the papers
loop {

% PC members read all other reviews
(b4) forall x, y, p, r.

Assign(x, p) ∧ Review(y, p, r) → Read += (x, p, r)
% PC members can rethink their reviews

(b5) forall x, p, r may.
Assign(x, p) → Review += (x, p, r) }

Figure 2. EASYCHAIR-like workflow.

Example 2. As a running example, we use a similar workflow
as in [10], given in Fig. 2. The workflow models the paper
reviewing and review updating of EasyChair. In this workflow,
all PC members are agents. In a first step, they can declare
that they have a conflict of interest with some of the papers.
Then, papers are assigned to reviewers as long as they have
not declared a conflict with the respective papers. Reviewers
are then required to write an initial review of their assigned
papers. Afterwards, the discussion phase starts. Here, all
reviewers of a paper are shown all the reviews other people
wrote for the same paper. They can then alter their review
based on the information they have seen. This discussion phase
continues for multiple turns until the PC chair ends the phase.

We emphasize that the corresponding workflow from [10]
is non-omitting, while this workflow is omitting, because in
block (b4) the variable y does not occur in the symbolic
tuple (x, p, r), which represents the concrete tuples that are
added to the Read relation.

B. Semantics

We give the semantics of workflows in terms of (symbolic)

transition systems based on control flow graphs (CFGs). The

CFG for the workflow in Fig. 2 is given in Fig. 3. The control

flow graph of a workflow consists of:

• a finite set V of control points or nodes including u0, ut ∈
V as initial and terminal node, respectively;

• a finite set of edges E where each edge in E is of the

form (u, β, v) where u, v ∈ V are the start and end nodes

of the edge, and β is a sequence of blocks (usually just

one). We remark that β can also be an empty sequence

of blocks, in which case we also denote it by nop.

We assume that each node has at least one outgoing edge.

In particular, the terminal node has (ut , nop, ut) as single

249

u0 u1 u2 u3 u4 ut
b1 b2 b3

b4

b5

nop
nop

Figure 3. CFG of the workflow in Example 2.

outgoing edge. This convention is used to encode a finite

(terminated) execution of the workflow by an infinite trace,

where the last workflow state is stuttered. Any infinite path

through the graph represents thus an execution of the workflow

where the attained states are changed according to the labels

of the traversed edges. In the following, we view a workflow w
as given by such a control flow graph.

Consider a fixed universe U and a valuation ρ : X → U of

the constants. Assume that the set Rc contains a relation sym-

bol Cb for every may block b of the form forall x̄may. stmts;

Cb’s arity is |x̄|. Then a state s is a first-order structure

which interprets the symbols in R as relations (of right arities)

over U . The state s is initial, iff all predicates in Rwf are

empty. This means that s, ρ |= ϕ0 where ϕ0 is the conjunction

of all formulas ∀z̄.¬Rz̄, for R ∈ Rwf . The notation s, ν |= ψ
for a structure s over U , a valuation ν, and a first-order

formula ψ will be used throughout this paper to denote that

formula ψ holds in the structure s where each free variable

in ψ is interpreted according to ν. We often write Rz̄ for R(z̄).
Now assume that the execution of the workflow has reached

some control point u in state s, and an edge (u, β, u′). Let

nextβ denote the relation consisting of all pairs (s, s′) so that

s′ can be reached from s by successively executing the blocks

in β. In order to define this relation, we first consider a single

block b. For b, we introduce the substitution θb of atomic

predicates in Rwf which is defined as follows. Assume first

that b is a may block of the form forall x̄ may. stmts. Then,

for each R ∈ Rwf , we define

θb(Rz̄) :=

⎧⎨
⎩
Rz̄ if (a)

Rz̄ ∨ ∃x̄. ϕ ∧ Cbx̄ ∧ (z̄
.
= ȳ) if (b)

Rz̄ ∧ ¬
(
∃x̄. ϕ ∧ Cbx̄ ∧ (z̄

.
= ȳ)

)
if (c)

where the conditions (a-c) are: (a) R is not updated, (b) ȳ is

added to R, (c) ȳ is deleted from R; and it is assumed that

x̄ ∩ z̄ = ∅ and that the statement in stmts that updates R (if

any) has the form ϕ → R±= ȳ. The definition of θb when b
is a non-may block is similar, except that the Cbx̄ conjuncts

are omitted.

For a sequence β = b1 . . . bh consisting of the blocks

b1, . . . , bh, θβ = θb1 ◦ . . . ◦ θbh is the composition of the

substitutions θbi for the blocks bi in β. (θβ is the identity when

β is empty.) Then (s, s′) ∈ nextβ iff each relation R ∈ Rwf

in s′ consists of all tuples ā so that s, ρ[z̄
→ ā] |= θβ(Rz̄),
where ρ[z̄
→ ā] is the valuation which extends ρ by assigning

to each variable in the sequence z̄ the corresponding value

in the sequence ā. The interpretations of the predicates of

Ro ∪Rc in s and s′ are unrelated.

As variables in ȳ either occur in x̄ or in X , we remark

that the formulas θb(Rz̄) can be simplified by removing the

equalities zi
.
= yi, and replacing zi with the constant a if yi =

a ∈ X and replacing xj with zi and removing the existential

quantification on xj if yi = xj for some j.

Example 3. For the block b

forall x1, x2, x3 may. P (x1, x2) → R+= (x3, a, x1),

we have
θb(R(z1, z2, c))

= R(z1, z2, c) ∨ ∃x1, x2, x3. P (x1, x2)∧
Cb(x1, x2, x3) ∧ z1

.
= x3 ∧ z2

.
= a ∧ c

.
= x1

≡ R(z1, a, c) ∨ ∃x2. P (c, x2) ∧ Cb(c, x2, z1)

For non-omitting workflows, the existential quantification dis-

appears completely by using the given simplification.

A trace of the workflow (now given by its CFG) is an

infinite sequence

τ = (u0, s0, β0), (u1, s1, β1), . . .

where s0 is an initial state, and for each i ≥ 0, (ui, βi, ui+1)
is a control flow edge where (si, si+1) ∈ nextβi

. The control

flow path (u0, β0), (u1, β1), . . . and the sequence of states

s0, s1, . . . of the trace τ is denoted by π(τ) and σ(τ),
respectively. We use FOLTL to describe trace properties of

workflows. We refer, e.g., to [10] for the definition of FOLTL.

For a sequence of structures s̄ = s0s1 . . . over the same

universe U , a valuation ν over U , and an FOLTL formula

ψ, we use the notation s̄, ν |= ψ if ψ holds for s̄ when the

free variables in ψ are interpreted by means of ν. For ψ with

free variables in X , we write w |= ψ if σ(τ), ρ |= ψ, for each

trace τ of w.

C. Noninterference

Noninterference is best formulated as a 2-hyperproperty [6],

that is, a property of pairs of traces. In our application, the

sequence of edges traversed by an execution of the workflow is

determined externally, i.e., independent of any oracle or choice

predicate. For instance in case of a conference management

system, it is up to the PC chair to decide when a particular

stage is complete and which next stage to execute. This means

that we are only interested in 2-hyperproperties where the

considered two traces follow the same control flow path, but

may differ in the sequences of attained states. This restriction

has also been imposed in [11], [10].

Consider traces τ = (u0, s0, β0), (u1, s1, β1), . . . and

τ ′ = (u0, s
′
0, β0), (u1, s

′
1, β1), . . . of the workflow w which

agree in their control flow paths, i.e., π(τ) = π(τ ′).
Then we can combine these into the sequence τ ⊗ τ ′ =
(u0, 〈s0, s′0〉, β0), (u1, 〈s1, s′1〉, β1), In order to reason

about the pairs of states attained in τ ⊗ τ ′, we introduce

a copy R′ = {R′ | R ∈ R} of the predicates in R and

assume that the states s′i are expressed by means of the

predicates in R′. Thus, we can combine each pair 〈si, s′i〉
of first-order structures into a single structure si ⊗ s′i over

R∪R′. The sequence s0⊗s′0, s1⊗s′1, . . . is also referred to as

σ(τ⊗τ ′). Given an FOLTL formula ψ over R ∪ R′, we write

w |=2 ψ if σ(τ ⊗ τ ′), ρ |= ψ for each pair of traces τ, τ ′ with

250

π(τ) = π(τ ′). We thus use FOLTL to specify trace properties,

as well as 2-hyperproperties such as noninterference.

Following [11], [10], noninterference is expressed from

the point of view of a single (but arbitrary) agent, and the

notions of high/low inputs/outputs from the standard defini-

tion of noninterference [13] are interpreted with respect to

this agent. Furthermore, the property is parameterized by an

assumption, called agent model, on the behavior of agents,

and by a declassification condition, which specifies when

and what information can be legitimately exposed. Therefore,

Noninterference with Declassification and Agent model (NDA)

is expressed by the FOLTL formula

agent_model → ∀a.
(
G eqOracles(a)

)
→

(
G eqObs(a)

)

where G is the LTL “globally” operator. The property states

that for any two traces, under a given agent model, for every

agent a, the noninterference property holds iff agent a is never

able to observe a difference between two executions that differ

only in the (non-declassified) inputs from the oracles:

eqObs(a) :=
∧

R∈Rwf

(
∀z̄. Raz̄ ↔ R′az̄

)

eqOracles(a) :=
∧

O∈Ro
∀z̄.

(
declassO(a, z̄) → (O z̄ ↔ O ′z̄)

)

For each oracle predicate O , the formula declassO(a, z̄) using

predicates from R (not from R′) encodes a declassification

condition that specifies which tuples from O can be made

visible to a without causing a security breach. For our running

example, we use declassO(a, x, p, r) := ¬Conf(a, p).

D. Agent Model

For any agent, we consider two kinds of possible behav-

ior. One agent either stubbornly makes the same choices,

independently of its observations; or its choices may depend

on previous observations, i.e., it acts causally. These two

behaviors are captured by the following formulas, respectively.

stubborn(a) := G eqChoices(a)

causal(a) := eqChoices(a)W¬eqObs(a)

where

eqChoices(a) :=
∧

C∈Rc

(
∀z̄.Caz̄ ↔ C′az̄

)

and W denotes the “weak until” LTL operator. Note that

any stubborn agent is also a causal one, thus the causality

assumption allows for more behaviors. Therefore, the most

general agent model is when each agent is causal, while the

most restrictive model is when each agent is stubborn. In [10],

it has been shown that checking NDA for an unbounded

number of causal agents is undecidable.

We thus assume that the agent_model formula from the

formalization of NDA can be instantiated with one of the

following formulas:

agent_model (c,k) := ∃a1, . . . , ak.
(∧k

i=1 causal(ai)
)
∧(

∀a. (∧k
i=1 a �= ai) → stubborn(a)

)
agent_model (c) := ∀a.causal(a)

where k ≥ 0. Note that agent_model (c,0) ≡ ∀a.stubborn(a).
We denote this formula by agent_model (s).

III. ENCODING AGENT MODELS AND DECLASSIFICATION

The key issue of NDA is to verify that only the same

observations are possible — on every trace satisfying the given

sanity requirements. Instead of formalizing these requirements

by means of temporal logic formulas, we introduce a fresh

agent variable a and transform the workflow w in such a

way that the resulting workflow, for any agent value of a,

simultaneously computes the states attained at two traces

sharing the same control flow path, and additionally enforces

the sanity requirements for a on these states. NDA then

amounts to verifying a universal invariant of the transformed

workflow. Next, we instantiate this idea for causal agents.
Assume we are given a workflow w (via its CFG), and

a variable a, corresponding to the agent of concern for

noninterference. We then construct a new workflow T (c)
a w

as follows. Let R′ denote the set of primed predicates R′

corresponding to the predicates R used by w. For a first-

order formula ϕ with predicates from R, let [ϕ]′ denote the

formula obtained from ϕ by replacing each predicate R ∈ R
with the corresponding predicate R′ in R′. Then each edge

(u, β, v) of w gives rise to one edge (u, T (c)
a β, v) in T (c)

a w

where the transformation T (c)
a on sequences of blocks is

the concatenation of the transformations of the individual

blocks b in β. For a given block b, the transformation T (c)
a b

is the sequence b1b2β
′, where b1, b2 represent transformations

of b that handle the updates to workflow relations, while the

sequence β′ of blocks handles the causality assumption. To

define b1, b2, β
′, we make a case distinction depending on the

type of the block b, i.e. whether or not it is a may-block, and

if not, whether or not it queries an oracle. If b is non-may
block, then β′ is the empty sequence.

Parallel Updates. For a non-may block b that does not contain

a query to an oracle, the transformed workflow will simply

contain updates to both copies of the relation. In this case, b1 is

equal to b and b2 is obtained from b by replacing every update

ϕ → R += z̄ by the update [ϕ]′ → R′ += z̄, and likewise,

every update ϕ → R−= z̄ by the update [ϕ]′ → R′ −= z̄.

Declassification. For non-may blocks that query an oracle, the

transformed workflow needs to simulate the semantics of the

declassification conditions. Thus, the blocks b1, b2 are may-

blocks, where the predicates Cb1 , Cb2 serve as the possibly

distinct versions of the oracle on the two simulated traces.

Assume b is of the form forall x̄. stmts and contains a query

to the oracle O . Then block b1 equals forall x̄may. stmts1
where the sequence stmts1 is obtained from stmts by adding

two new updates for every update ϕ∧O x̄ → R+= ȳ in stmts:

ϕ → R+= ȳ
[ϕ]′ ∧ declassO(a, x̄) → R′ += ȳ

Moreover, b2 equals forall x̄may. stmts2 where the sequence

stmts2 is obtained from stmts by adding one new update for

every update ϕ ∧O x̄ → R+= ȳ in stmts:

[ϕ]′ ∧ ¬declassO(a, x̄) → R′ += ȳ

251

This ensures that if declassification holds, then the updates to

R and R′ use the same predicate Cb1 , and otherwise they use

distinct ones (i.e. Cb1 and Cb2). In both b1 and b2, updates that

query the oracle, but remove tuples, are treated analogously.

Causality. The remaining case is when b is of the form

forall x, ȳ may. stmts . As agents are causal, they may make

different choices when executing such blocks, provided that

they have already observed a difference in the considered

traces. (In non-may blocks, no choices are made.) Therefore,

in order to capture causality, we introduce a new unary

predicate Informed(x), which is used to record all agents x
that have already made observations depending on secret

information — so their choices can diverge. Causality then

states that the corresponding choice relations must be the

equal for x whenever ¬Informed(x) holds. We will use the

predicates Cb1 , Cb2 to encode this conditional equivalence. In

case the choice relations should be equal, both updates will

only use Cb1 . Thus, blocks b1, b2 are obtained from b in the

following way: For each update ϕ → R+= z̄ in b, the block

b1 contains the two updates

ϕ → R+= z̄
[ϕ]′ ∧ ¬Informed(x) → R′ += z̄

and b2 contains the update

[ϕ]′ ∧ Informed(x) → R′ += z̄

Removals ϕ → R−= z̄ are handled analogously. Finally, the

sequence β′ of blocks specifies how the Informed relation is

updated. Namely, for every statement ϕ → R += (x, ȳ) or

ϕ → R −= (x, ȳ), the sequence β′ contains a corresponding

block that handles the updates to the Informed relation:

forall x, ȳ. R x ȳ �↔ R′ x ȳ → Informed += (x)

Example 4. Consider the block

forall x, p, r may. Assign(x, p) → Review += (x, p, r)

Then the transformation results in the blocks

forall x, p, r may.
Assign(x, p) → Review += (x, p, r)
Assign′(x, p) ∧ ¬Informed(x) → Review′ += (x, p, r)

forall x, p, r may.
Assign′(x, p) ∧ Informed(x) → Review′ += (x, p, r)

forall x, p, r.
Review(x, p, r) �↔ Review′(x, p, r) → Informed += (x)

The fact that the two updates to Review′ are split into two
blocks captures the semantics of causality. If x is informed,
the update will be done by the second block, and thus use
Cb2 — a (possibly) different predicate than the one used for
the update of Review. If not, the update will be done by the
first block and use the same Cb1 predicate that is used for the
update of Review.

The transformation for stubborn agents, denoted T (s)
a w, is

similar. It consists only of the first two cases of the transfor-

mation for causal agents. For completeness, it is described in

Appendix B.

The transformed workflow T (c)
a w (or T (s)

a w) captures all

pairs of traces of w that satisfy the causal (or stubborn) agent

model together with declassification, relative to a.

Theorem 1. Let w be a workflow. Then for each m ∈
{s, c} and for every FOLTL formula ψ using predicates from
Rwf ∪ R′

wf possibly mentioning a, the following statements
are equivalent:

• w |=2 agent_model (m) → ∀a.
(
G eqOracles(a)

)
→ ψ(a)

• T (m)
a w |= ψ(a)

The proof is by establishing a simulation relation between

states s ⊗ s′ attained during a pair of traces of w satisfying

agent_model (m) ∧ G eqOracles(a), and states s̄ attained dur-

ing a corresponding trace of T (m)
a w.

IV. VERIFICATION OF INVARIANTS

We have now transformed NDA into a universal invariant on

the transformed workflow. In following sections we will now

focus on the problem of proving that a universal invariant

holds for a given workflow. In this section, we show that

for any given universal invariant, we can prove or disprove

inductiveness.

We let ∃∗FOL, ∀∗FOL, ∃∗∀∗FOL, and ∀∗∃∗FOL denote the

fragments of first-order logic (FOL) consisting of those for-

mulas whose prenex normal form equivalent has the quantifier

prefix of the respective form.

We call a workflow w guard-restricted iff for each of its

statements ϕ → R±= ū, the FOL formula ϕ is in the ∃∗FOL

fragment. Guard-restrictedness will not affect the correctness

of our methods. For workflows that are not guard-restricted,

however, our methods will be incomplete. It is called leveled
if each predicate can be assigned a level in N so that (1) the

levels of all predicates updated in a block b agree, and (2) the

level of R is less than the level of S whenever R occurs in the

guard of an update to S. Intuitively, leveledness restricts how

information flows from one predicate into another so that only

predicates from lower levels may affect predicates on higher

levels. Absence of leveledness, though, will not affect the

correctness of our proposed methods. It rather will serve as one

ingredient for a sufficient condition under which termination

of our inference procedure can be guaranteed. In particular,

the workflow from Fig. 2 is guard-restricted and leveled.

We remark that leveledness is a real restriction only in

strongly connected components. For straight-line parts of

the workflow, each update of a relation R that (in)-directly

depends on R itself can be replaced by an update to a fresh

relation R′ that will be used to replace R in the following

blocks.

Weakest Preconditions. Let w be a workflow and let ψ be

any FOL formula with predicate symbols from Rwf . For a

block b, we define the weakest precondition of ψ for b, denoted

WP[[b]](ψ) by ∀Ab.(θbψ) where Ab is a second-order variable.

If b is a may block, then Ab is chosen as Cb. If b queries the

oracle O , then Ab = O. Otherwise, we may choose Ab as any

predicate symbol from Rc , as then ∀Ab.(θbψ) is equivalent to

252

θbψ. The transformation WP[[b]] for blocks is readily extended

to sequence β of blocks bh . . . b1 by

WP[[β]](ψ) = WP[[bh]](. . .WP[[b1]](ψ) . . .)
= ∀Aβ .(θβ ψ)

where Aβ is the sequence Abh , . . . , Ab1 of second-order

variables corresponding to the blocks in β. The next lemma

formalizes the intuition behind the WP[[·]] function.

Lemma 1. Let ρ be a valuation of the first-order variables
in X , let β be a sequence of blocks, and let s, s′ be states so
that (s, s′) ∈ nextβ . Then s′, ρ |= ψ iff s, ρ |= WP[[β]](ψ).

It is particularly convenient when for all sequences β label-

ing edges in the workflow w, WP[[β]] introduces no alternating

first-order quantifiers. In this case, we call w edge-uniform.

Edge-uniformity is, e.g., granted whenever the workflow is

guard-restricted and has at most one block per edge (which

is naturally provided by the standard representation of the

workflow as a control flow graph). 1 Edge-uniformity is also

preserved by the transformations introduced in Section III

(Assuming that all declassification conditions are in ∃∗FOL).

Therefore, it is a reasonable assumption in our context. A

workflow is then called uniform if it is edge-uniform and

also within each strongly connected component of w, every

modified relation is either only modified by +=, or only by

−=. Intuitively, uniformity implies that predicates will change

only monotonically inside loops. Again, this restriction will

not affect the correctness of our methods, but rather form the

second ingredient of our sufficient condition for termination

of the inference algorithm. The workflow from Fig. 2 is both

edge-uniform and uniform.

Invariants. An invariant is an assignment Φ which maps

each program point u of the workflow to a first-order formula

Φ[u] over predicates in Rwf with free variables from X . An

invariant Φ is universal if each formula Φ[u] is in ∀∗FOL. It

is valid if Φ[u] holds whenever program point u is reached

on a trace starting in (u0, s0) for some initial state s0, i.e.,

s0, ρ |= ϕ0. The invariant Φ of w is inductive iff for every

edge (u, β, v) of the workflow, Φ[u] → WP[[β]](Φ[v]) holds.

Then an inductive invariant Ψ is valid iff ϕ0 → Ψ[u0] holds.

Theorem 2. Let w be an edge-uniform workflow and Φ
a universal invariant. It is decidable whether or not Φ is
inductive and ϕ0 → Φ[u0] holds.

We remark that the restriction to edge-uniform workflows

can be lifted by means of the abstraction techniques provided

in the next section — leading to an incomplete verification

method for universal invariants on unrestricted workflows.

Proof. Equivalently, we check whether ϕ0∧¬Φ[u0] as well as

Φ[u]∧¬WP[[β]](Φ[v]) are unsatisfiable, for each edge (u, β, v)
of the workflow. We focus on the latter formula, as the other

case is similar. Since w is edge-uniform and Φ[v] is a universal

1A scenario where there is more than one block per edge corresponds to
the situation where we are interested in properties only at specific program
points.

formula, WP[[β]](Φ[v]) is of the form ∀Aβ .∀ȳ.ψ where ψ
has only existential first-order quantifiers, i.e., is contained in

∃∗FOL. Therefore, ¬WP[[β]](Φ[v]) is given by

∃Aβ .∃ȳ.¬ψ

where ¬ψ is in ∀∗FOL. Since the only second-order quantifiers

in Φ[u] ∧ ¬WP[[β]](Φ[v]) are the existential quantifiers for

the variables in Aβ , satisfibility of this formula is equiv-

alent with satisfiability of a first order-formula consisting

of two conjuncts, one in ∀∗FOL (namely, Φ[u]) and the

other in ∃∗∀∗FOL. So its unsatisfiability can be effectively

checked [5].

V. INFERRING INDUCTIVE INVARIANTS

Unfortunately, not every invariant is naturally inductive.

Thus, in this section we show how to compute a strengthening

of a given universal invariant that is inductive.

Assume that we want to verify an assignment Ψ0 of program

points to assertions for an arbitrary workflow w, i.e., verify that

Ψ0[u] holds whenever the program point u of the workflow w
is reached. Such a certificate can be obtained from an inductive

invariant Ψ of w so that

(a) Ψ[u] → Ψ0[u] for all program points u; and

(b) ϕ0 → Ψ[u0] for the start point u0 of w.

In case that Ψ0[u] = ψ for all u, we then have verified that

Gψ holds for the given workflow w. The required inductive

invariant Ψ (if it exists) may be complicated and not easy to

guess. As in the last section, we restrict ourselves to universal
inductive invariants using predicates of the workflow only.

This means that we are interested in the refined question:

Can the assignment Ψ0 be certified by a universal inductive

invariant?

In light of requirement (b), it thus suffices to determine

the weakest universal inductive invariant Ψ̄ satisfying require-

ment (a). Given that this invariant exists and is computable,

then the assignment Ψ0 can be certified by means of a

universal inductive invariant iff ϕ0 → Ψ̄[u0].

In order to determine Ψ̄, we put up the constraint system C:

X[u] → Ψ0[u] (1)

X[u] → WP[[β]](X[v]) if (u, β, v) is an edge of w (2)

where the unknown X[u] represents the potential formula

assigned to program point u. By definition, any assignment X
satisfying all constraints (2) is inductive where property (a)

for X is expressed by the additional constraint (1). The set

of universal formulas (modulo semantic equivalence) forms a

lattice, when implication is seen as the ordering relation �.

W.r.t. this ordering, the greatest and least elements � and ⊥
are represented by the formulas true and false, respectively.

Likewise, the greatest lower bound of a finite set of formulas

is given by their conjunction. The lattice is, however, not

a complete lattice, i.e., not all sets of formulas necessarily

have a greatest lower bound. In particular, it may have infinite

253

decreasing chains — at least if there are two or more binary

predicates E and T . To see this, consider the formulas

ck = (E(x0, x1) ∧ . . . ∧ E(xk−1, xk)) → T (x0, xk)

ϕk = ∀x0, . . . , xk. c0 ∧ . . . ∧ ck

for k ≥ 1. Then all formulas ϕk are pairwise inequivalent,

while at the same time ϕk+1 → ϕk for all k ≥ 1 holds.

In general, it is thus not guaranteed that a greatest solution

(corresponding to the weakest inductive invariant) exists. In

order to come up with practical means for solving system C
at least in some cases, we consider two useful constructions,

namely an abstraction technique of existential (first-order)

quantifiers, and an algorithm for eliminating second-order

universal quantifiers. These two techniques will allow us to

further simplify the right-hand sides in the constraints of C.

A. Approximating First-Order Existential Quantification

Consider a sequence of blocks β occurring in an edge label

of the workflow w. Then the substitution θβ may introduce

fresh existential as well as fresh universal quantifiers. Since we

are interested in universal inductive invariants only, our goal is

to systematically remove the occurring existential quantifiers.

We find:

Theorem 3. For every formula ψ with free variables from X ,
a formula ψ� can be constructed using universal quantification
only so that the following two properties are satisfied:
(1) ψ� → ψ;
(2) If ψ is in ∀∗∃∗FOL, then ϕ → ψ� holds for every universal

formula ϕ with free variables from X such that ϕ → ψ.

In light of the second statement of Theorem 3, the formula

ψ� can be seen as the uniquely determined weakest strength-

ening of formulas ψ in ∀∗∃∗FOL to a universal formula. The

formula ψ� is called the universal abstraction of ψ.

Proof. W.l.o.g., let us assume that ψ is in negation normal

form (i.e., using conjunction and disjunction as only boolean

connectives, and negation only applied to atomic propositions),

and that nested universally bound variables are distinct.

We proceed by induction on the structure of ψ. For that, we

introduce a transformation [.]�X′ on subformulas of ψ, for a

set X ′ of variables intended to be those free variables in the

current subformula which are universally quantified in ψ. Then

ψ� is defined as [ψ]�X . The transformation [.]�X′ is defined as

follows:

[∀x.ψ′]�X′ = ∀x.[ψ′]�X′∪{x}
[∃y.ψ′]�X′ =

∨
x∈X′ [ψ′]�X′ [x/y]

[ψ1 ∨ ψ2]
�
X′ = [ψ1]

�
X′ ∨ [ψ2]

�
X′

[ψ1 ∧ ψ2]
�
X′ = [ψ1]

�
X′ ∧ [ψ2]

�
X′

[ψ′]�X′ = ψ′ otherwise

We claim that ψ� implies ψ. For that, we prove for each

finite subset X ′ of variables X ′ and each subformula ψ′, that

[ψ′]�X′ → ψ holds. The proof is by induction on the structure

of ψ′. The only interesting case is when ψ′ is of the form

∃y. ψ′′. By induction hypothesis, [ψ′′]�X′ → ψ′′ holds. Thus,

also [ψ′′]�X′ [x/y] → ∃y. ψ′′ holds for each x ∈ X ′. From that

the claim follows for ψ′.
For statement (2), consider any formula ϕ with

ϕ → ψ. Then ϕ ∧ ¬ψ is unsatisfiable. Let ψ equal

∀x1, . . . , xr.∃y1, . . . , ys.ψ′ with ψ′ quantifier-free. Then

∃x1 . . . xr. (ϕ ∧ ∀y1 . . . ys.¬ψ′)

must be unsatisfiable. Since that formula is equisatisfiable with

∃x1 . . . xr. (ϕ ∧∧r
i1=1 . . .

∧r
is=1 ¬ψ′[xi1/y1, . . . , xis/ys])

this implies that also ϕ∧¬(ψ�) is unsatisfiable. Consequently,

ϕ → ψ� holds.

Applying Theorem 3 to our setting, we find:

Corollary 1. Assume that β is a sequence of blocks so
that WP[[β]](ψ′) is of the form ∀Ah, . . . , A1.ψ

′′ for some
formula ψ′′ in ∀∗∃∗FOL. Then ψ → WP[[β]](ψ′) iff ψ →
∀Ah, . . . , A1.(ψ

′′)� holds.

Proof. It suffices to prove that ψ ∧ψ′′ is unsatisfiable iff ψ ∧
(ψ′′)� is unsatisfiable. That, however, follows from Theorem 3.

We remark that the abstraction function (. . .)� commutes with

substitutions.

Lemma 2. Let ψ, ϕ be formulas, R a predicate of arity r,
and x̄ the sequence of variables x1 . . . xr. Let θ1, θ2 denote
the substitutions Rx̄
→ Rx̄ ∨ ϕ and Rx̄
→ Rx̄ ∧ ¬ϕ. Then
the following holds:

1) (θ1ψ)
� = (θ1(ψ

�))�;
2) (θ2ψ)

� = (θ2(ψ
�))�.

When universal invariants are of concern, Lemma 2 implies

that it does not make a difference whether we abstract first

and apply substitutions later, or postpone the abstraction to

the very end.

We remark that the given technique for strengthening formu-

las with existential quantifiers by means of universal formulas

only, can be applied to prove a given universal invariant

inductive — irrespective of whether the workflow is edge-

uniform or not.

B. Eliminating Second-Order Universal Quantification

Now consider a sequence of blocks β occurring in an

edge label of the workflow w, which is either a may block

or queries an oracle. Then the weakest precondition WP[[β]]
introduces universal quantification over some predicates Aβ ,

not mentioned by the workflow and thus also not mentioned

by any of the formulas assigned to program points u or v.

In the following, we provide a method for eliminating such

second-order quantifications.

Fact 1. The clause

∀A. Az̄1 ∨ . . . ∨Az̄r ∨ ¬Az̄′1 ∨ . . . ∨ ¬Az̄′s (3)

254

for sequences z̄i, z̄
′
j of variables is equivalent to

r∨
i=1

s∨
j=1

z̄i
.
= z̄′j (4)

where the equality between sequences of variables equals the
conjunction of the equalities between corresponding variables.

Proof. Let us fix some values for the occurring first-order

variables. First assume that the formula (4) holds (w.r.t. that

variable assignment). Then there are some i, j so that the

conjunction of equalities z̄i
.
= z̄′j holds. Then Az̄i ∨ ¬Az̄′j is

equivalent to true for every predicate A. Therefore, formula

(3) holds as well. For the reverse implication, assume that (4)

does not hold for the given variable assignment. Then for all

i, j, the sequences zi, z
′
j are different. Then some predicate

A exists so that Az̄i is false for all i, and Az̄′j is true for

all j. For that particular predicate A and the given variable

assignment, the clause Az̄1 ∨ . . .∨Az̄r ∨¬Az̄′1 ∨ . . .∨¬A′z̄′s
is false. Therefore, formula (3) evaluates to false as well, thus

proving the reverse implication.

Universal quantification generally satisfies the following laws:

∀A. ϕ1 ∧ ϕ2 = (∀A.ϕ1) ∧ (∀A.ϕ2) (5)

∀A. ϕ1 ∨ ϕ2 = ϕ1 ∨ (∀A. ϕ2) if A does not occur in ϕ1 (6)

Therefore, Fact 1 gives rise to an effective second-order

quantifier elimination.

Theorem 4. Assume that ψ is a quantifier-free formula. Then
a quantifier-free formula ψ′ can be constructed so that ψ′ ↔
∀A.ψ holds.

Proof. Assume, w.l.o.g., that ψ is in conjunctive normal form.

Since universal quantification distributes over conjunctions,

we may apply quantifier elimination to each clause c of ψ
separately. Any given clause c can be written as c1∨ c2 where

c1 does not contain occurrences of A and c2 collects all literals

with predicate A. Then ∀A. c is equivalent to c1 ∨ c′2 where

c′2 is determined from c2 according to Fact 1. This completes

the construction.

The proposed procedure for second-order quantifier elimina-

tion is not new (Isabelle, e.g., easily verifies Fact 1). Implicitly,

our procedure can be considered as a particular instance of the

SCAN algorithm [12], [14].
Let ψ be quantifier-free and in conjunctive normal form. A

predicate A covers another predicate A′ in ψ if the following

two properties are met by all clauses c of ψ:

1) Whenever c has a literal A′z̄, then c also has a literal Az̄;

2) Whenever c is of the form c′ ∨ ¬A′z̄, then c′ ∨ ¬Az̄ is

also a clause of ψ.

Lemma 3. Let A,A′ be two predicates in ψ so that A covers
A′. Let ψ′ be obtained from ψ by removing all literals A′z̄ and
all clauses containing ¬A′z̄. Then ∀A,A′. ψ is equivalent to
∀A. ψ′.

Proof. The idea is that all conjunctions of equalities z̄
.
= z̄′

introduced into clauses by removal of universal quantification

over A′ are already introduced by universal quantification

over A.

C. The Fixpoint Iteration

In light of the constructions from the last two subsections,

we introduce the abstracted constraint system C� consisting of

the constraints:

X[u] → Ψ0[u]
X[u] → ∀Aβ(θβX[v])� if (u, β, v) is an edge of w

According to our assumptions, Ψ0[u] is a universal formula us-

ing the predicates from the workflow w only. By applying the

abstraction of existentials, followed by second-order quantifier

elimination, each evaluation of a right-hand side of C� on a

given assignment X returns a universal first-order formula. For

h ≥ 0, let X(h) denote the assignment of program points to

formulas which is attained after h rounds of fixpoint iteration,

i.e., X(0)[u] = Ψ0[u], and for h > 0,

X(h)[u] = Ψ0[u]∧
∧

{∀Aβ . (θβ(X
(h−1)[v]))� | (u, β, v) edge}

For a block b, let θ
(j)
b denote the substitution corresponding

to b where the predicate variable Ab is substituted with the

predicate Aj (of appropriate arity). Moreover, let Π(h)[u, v]
denote the set of sequences of blocks occurring on paths of

length at most h starting from u and reaching v. Then we have

Lemma 4. For every h ≥ 0 and every program point u,

X(h)[u] =
∧

{∀Am . . . A1.(θ
(m)
bm

. . . (θ
(1)
b1

Ψ0[v]) . . .)
� |

bm . . . b1 ∈ Π(h)[u, v]} (7)

Proof. The proof is by induction on h. For h = 0, Π(0)[u, u]
consists of ε only, and Π(0)[u, v] = ∅ for u �= v. Since

X(0)[u] = Ψ0[u], the claim follows. Now assume that the

assertion is true for h− 1. We have the sequence of equalities

given in Figure 4, where equality (∗) follows by distributivity

of substitutions and (. . .)� with ∧ and compatibility of (. . .)�

with substitutions.

Lemma 4 assures that after h rounds of fixpoint iteration, a

formula at u is attained which is the weakest universal pre-

condition of Ψ0 w.r.t. paths of length at most h. Furthermore,

due to Theorem 4, all second-order quantifiers therein can

be eliminated. Thus, the only reason why fixpoint iteration

for constraint system C� may not terminate, is that an ever

growing number of first-order universally quantified variables

is introduced. We obtain:

Theorem 5. Assume that w is a workflow, and Ψ0 is an
initial assignment of program points to universal formulas
using predicates from w only. Assume further that during the
fixpoint iteration for the constraint system C� only finitely many
universally quantified first-order variables are introduced.
Then the iteration terminates with an assignment Ψ such that
the following holds:
(1) Ψ is a universal inductive invariant of w with Ψ[u] →

Ψ0[u] for all program points u of w.

255

X(h)[u] = Ψ0[u] ∧
∧{∀Ab1 . . . Abμ .(θb1(. . . (θbμ X(h−1)[u′]) . . .))� | (u, b1 . . . bμ, u′) edge}

= Ψ0[u] ∧
∧{∀A1 . . . Aμ.(θ

(1)
b1

(. . . (θ
(μ)
bμ

X(h−1)[u′]) . . .))� | (u, b1 . . . bμ, u′) edge}
= Ψ0[u] ∧

∧{∀A1 . . . Aμ.(θ
(1)
b1

(. . . (θ
(μ)
bμ

∧{∀A1 . . . Am.(θ
(1)
bμ+1

(. . . (θ
(m)
bμ+m

Ψ0[v]) . . .))
� |

bμ+1 . . . bμ+m ∈ Π(h−1)[u′, v]}) . . .))� | (u, b1 . . . bμ, u′) edge} by IH

= Ψ0[u] ∧
∧{∀A1 . . . Aμ.(θ

(1)
b1

(. . . (θ
(μ)
bμ

∧{∀Aμ+1 . . . Aμ+m.(θ
(μ+1)
bμ+1

(. . . (θ
(μ+m)
bμ+m

Ψ0[v]) . . .))
� |

bμ+1 . . . bμ+m ∈ Π(h−1)[u′, v]}) . . .))� | (u, b1 . . . bμ, u′) edge}
= Ψ0[u] ∧

∧{∀A1 . . . Aμ+m.(θ
(1)
b1

(. . . (θ
(μ+m)
bμ+m

Ψ0[v]) . . .))
� |

bμ+1 . . . bμ+m ∈ Π(h−1)[u′, v], (u, b1 . . . bμ, u′) edge} (∗)
= Ψ0[u] ∧

∧{∀A1 . . . Aμ+m.(θ
(1)
b1

(. . . (θ
(μ+m)
bμ+m

Ψ0[v]) . . .))
� | b1 . . . bμ+m ∈ Π(h)[u, v]}

Figure 4. Equalities used in the proof of Lemma 4.

(2) If w is guard-restricted, then Ψ is the weakest assignment
with property (1).

Still, it is desirable to have widely applicable structural con-

ditions which are sufficient for guaranteeing termination of

fixpoint iteration.

VI. TERMINATION

In this section we show that fixpoint iteration for the

constraint system C� terminates for workflows which are both

uniform and leveled. Intuitively, this sufficient condition means

that inside strongly connected components of the control flow

graph for w, each predicate either only increases or only

decreases, and no guard of such a modification of a predicate

R, directly or indirectly depends on R itself.

Termination of fixpoint iteration even for uniform and leveled

workflows is by no means trivial, as each application of the

weakest precondition operator may introduce further univer-

sally quantified variables. Here is our main technical theorem.

Theorem 6. Assume that the workflow w is uniform and
leveled, and Ψ0 is an initial assignment of program points to
universal formulas using predicates of w only. Then there is
a weakest universal inductive invariant Ψ with Ψ[u] → Ψ0[u]
for all program points of w. Moreover, Ψ can be effectively
computed.

Proof. Every inductive invariant Ψ′ so that Ψ′[u] → Ψ0[u] for

all program points u, is a solution of the constraint system C�.

By Lemma 4, the formula X(h) is equivalent to a con-

junction of formulas ∀Ah′ . . . A1.((θh′ ◦ . . . ◦ θ1)Ψ0[v])
�. By

Theorem 7, each such formula is equivalent to a similar

formula, where the number of applied substitutions is bounded

by some fixed number M . Up to logical equivalence, there are

only finitely many of such formulas. Accordingly, for each

program point u and each h ≥ 0, there are only finitely

many possible values for X(h)[u]. Therefore, for some h ≥ 0,

X(h+1)[u] ↔ X(h)[u] for all program points u. In that case,

X(h) represents the greatest solution of C� and therefore is the

desired weakest inductive invariant.

Theorem 6 does not require the workflow w to be guard-

restricted. In case that w makes use of arbitrary first-order

quantification in guards, the algorithm still is guaranteed to

terminate. However, it will terminate with some universal

inductive invariant — not necessarily the weakest.

Assume that the set of predicates Rwf comes together with

an assignment of levels. Assume further that we are given

a finite set B of blocks b, each of which gives rise to a

substitution θb of a subset of predicates which are all of the

same level i. In that case, we say that i is the level of b.
Let Θ denote the set of all these substitutions. For i ≥ 1, let

Ai denote a sequence of fresh distinct predicate names. For

a sequence β = bh . . . b1 of blocks, let θβ = θh ◦ . . . ◦ θ1
where θi is obtained from the substitution θbi for block bi by

replacing the predicate Abi (if present) with Ai.

Theorem 7. Let m be the maximal number of distinct substi-
tutions in Θ. Furthermore, let r denote the number of levels of
predicates in Rwf . Assume that ψ is a first-order formula with
predicates from Rwf . Assume that θβ = θh ◦ . . . ◦ θ1 is a se-
quence of substitutions corresponding to a sequence of blocks
β of length h. Then there is a sub-sequence θ′ = θj1 ◦ . . .◦θjl
of θβ with l < (1 + m

r)
r such that the following equivalence

holds.

∀A1 . . . As. (θβψ)
� ≡ ∀Aj1 . . . Ajl . (θ

′ψ)� (8)

The proof is based on the observation that the substitution

corresponding to the same block b may produce only finitely

often new contributions to the composition — at least, if the

corresponding second-order quantifiers are later eliminated.

The full proof can be found in Appendix C.

VII. APPLICATION TO NONINTERFERENCE

As a warm-up, let us consider stubborn agents only. Assume

that the guard-restricted workflow w is uniform and leveled.

Then the same is true for the transformed workflow T (s)
a w

which takes care of stubbornness of agents and declassifica-

tion relative to a. Accordingly, we obtain as applications of

Theorem 6:

Theorem 8. Consider a workflow w which is uniform and
leveled, and assume that all agents participating in w are
stubborn. Assume furthermore that all declassification predi-
cates declassO(a, x̄) are quantifier-free. Let a be some agent
variable and Ψ0 an assignment of the nodes of w to universal

256

formulas using predicates from Rwf ∪R′
wf and free variables

from {a} ∪ X . Then

(1) T (s)
a w is again uniform and leveled.

(2) A universal inductive invariant Ψ of T (s)
a w can be effec-

tively constructed so that Ψ[u] → Ψ0[u] for all program
points u.

(3) If w is guard-restricted then the invariant Ψ from (2) can
be chosen as the weakest universal invariant with that
property.

Corollary 2. For a given workflow w which is uniform
and leveled, it is decidable whether there exists a universal
invariant that implies NDA of w for agent_model (s).

We would like to apply the same strategy to certify noninter-

ference also for causal agents. Again assume that the workflow

w is uniform and leveled. The workflow T (c)
a w then, however,

is no longer leveled. This is due to the auxiliary informedness

predicate Informed introduced by T (c)
a . That predicate is

queried at the update of every predicate R′, R ∈ Rwf , and

likewise its update is guarded by formulas which also depend

on R′. Still, we then can apply the given fixpoint iteration —

which, however, is no longer guaranteed to terminate. Thus,

we obtain an incomplete method to certify non-interference for

agent model agent_model (c). The potential non-termination,

however, does not come as a surprise as noninterference in

general is undecidable for an unbounded number of causal

agents [10]. Interestingly, the situation is different when only

a fixed bounded number of agents behaves causally, while all

others behave stubbornly.

Assume that at most k ≥ 0 behave causally, while all other

agents are stubborn. Our goal is again to modify the workflow

in order to take care of the agent model and declassification.

In case of at most k causal agents, the informedness predicate

may receive only finitely many values. That finite value

therefore can be encoded into the program points of the

transformed workflow. Updates to informedness then show up

as guards as last actions at a control flow edge. These thus

now have the form (u, βg, v) for some first-order formula g —

with the intended semantics that the edge can only be taken if

the state s attained after executing the blocks in β, satisfies g,

i.e., s, ρ |= g. Accordingly, the weakest precondition operator

for g is defined by WP[[g]](ψ) = ¬g ∨ ψ.

Let y1, . . . , yk denote a sequence of k distinct fresh vari-

ables. Consider a block b of w, of an edge (u, β, v) of w. For

simplicity, we assume that b is the only block at this edge, i.e.,

β = b. Let Y, Y ′ ⊆ {y1, . . . , yk}, Y ⊆ Y ′, denote the subsets

of agents which are informed before and after executing the

block b, respectively.

First, assume that b is not a may block. Then T (c)
Y,Y ′b is

defined analogously to T (c)b — with the major difference that

now a guard gY,Y ′ is introduced to take care of the required

update of informedness. Thus, T (c)
Y,Y ′b = βgY,Y ′ where the

sequence of (one or two) blocks β is defined analogously to

the corresponding blocks in T (c), and the guard gY,Y ′ is the

conjunction of formulas

yj ∈ Y ∨ ∃ z̄.Ryj z̄ �↔ R′yj z̄

for all yj ∈ Y ′ and predicates R updated in the block b. Here,

the expression yj ∈ Y is a shortcut for
∨

yi∈Y yj
.
= yi.

Now assume that b is of the form forall x, x̄′. may stmts.

Then T (c)
Y,Y ′b = b1b2gY,Y ′ where the blocks bi, with i ∈ {1, 2},

are of the form forallx, x̄′. may stmtsi where for every update

ϕ → R+= z̄ of stmts, stmts1 has the statements

ϕ → R+= z̄
[ϕ]′ ∧ (x �∈ Y) → R′ += z̄

and stmts2 has the statement

[ϕ]′ ∧ (x ∈ Y) → R′ += z̄

An update ϕ → T−=z̄ is treated analogously. Here, the guard

gY,Y ′ is defined identically as for non-may blocks.

The new workflow T (c,k)w then consists of all control flow

edges

(〈u, Y 〉, T (c)
Y,Y ′β, 〈u, Y ′〉)

for edges (u, β, v) of w and Y, Y ′ ⊆ {y1, . . . , yk} with

Y ⊆ Y ′. The size of the resulting workflow has increased by

a factor of 2k. All occurrences of the predicate Informed , on

the other hand, have disappeared — implying that T (c,k)w
is leveled whenever w is leveled. Moreover, all guards g
occurring in T (c,k)w are contained in ∃∗FOL, implying that

the transformation preserves edge-uniformity. The correctness

of the transformation can be proven along the same lines as

Theorem 1. Theorem 6 can still be applied, since the only

guards introduced inside strongly connected components are

of the form gY,Y — and thus always equivalent to true.

Therefore, we finally obtain:

Theorem 9. Consider a workflow w which is uniform and
leveled, and assume that k ≥ 0 of the agents participating
in w are causal, while all other agents are stubborn. Assume
furthermore that all declassification predicates declassO(a, x̄)
are quantifier-free. Then for some agent variable a and an
assignment Ψ0 of universal formulas using predicates from
Rwf ∪R′

wf and free variables from {a} ∪ X to the nodes of
w, the following holds.

(1) T (c,k)
a w is again uniform and leveled.

(2) A universal inductive invariant Ψ of T (c,k)
a w can be

effectively constructed so that Ψ[u] → Ψ0[u] for all
program points u.

(3) If w is guard-restricted, the invariant Ψ from (2) can
be chosen as the weakest universal invariant with that
property.

Corollary 3. For every k ≥ 0 and a given workflow w which is
uniform and leveled, it is decidable whether there exists a uni-
versal invariant that implies NDA of w for agent_model (c,k).

257

VIII. EXPERIMENTAL EVALUATION

We have implemented our approach into the tool NIWO-
invariants. The source code together with all examples can

be found on the authors’ website . As input the tool takes

the specification of a workflow together with declassification

conditions and the agent model where we consider all stubborn

or all causal agents only. It then encodes agent model and

declassification conditions into the workflow and solves the

corresponding constraint system C�. The resulting verifica-

tion conditions in ∃∗∀∗FOL are then strengthened further by

replacing equalities with false. This allows to encode the

syntactically occurring literals as propositional variables and

thus reduce the verification conditions to boolean satisfiability

problems. These are then checked by Z3 [8].

Experiments. We used several variations of a conference

management system to showcase the properties of our ap-

proach. Conference_linear is the motivating example used in

[11]. It is a simpler version of the workflow from Example 2,

which does not use loops, and already exhibits an attack for

causal agents. Thus, no invariant exists that proves NDA when

considering causal agents. Conference_linear_fixed is the fixed

version presented by the authors. It is a naturally omitting
workflow, which could not be dealt with automatically by

previous work. It can now be proven safe by our tool. Confer-
ence_omitting is the omitting workflow from Example 2. Our

implementation proves it safe for stubborn agents. It cannot

be proven safe for causal agents, as there is a possible attack.

Conference_omitting_fixed is a modification which excludes

the given attack. This example is again omitting, and so could

not be dealt with automatically so far. Our tool is able to prove

it safe. Conference_nonomitting is the motivating example

used in [10]. It is an non-omitting variant of Example 2, and

accordingly less realistic. It also exhibits an attack for causal

agents, but can be proven safe for stubborn ones. All these

workflows except the fixed versions, are uniform and leveled.

Results. Our tool is able to prove safe all examples that do

not exhibit attacks. Interestingly, even though termination is

not guaranteed for causal agents or for non-leveled workflows,

our tool still terminated on all examples we considered.

The results of the experiments are shown in Fig. 5. The

first columns give workflow type (omitting/non-omitting), the

size of the workflow (the number of blocks the workflow

consists of, not counting choice and loop constructs), and the

considered agent model. The result is marked as valid iff our

tool could find a strengthened universal inductive invariant

that implies NDA and it is marked as invalid otherwise.

The number of strengthenings (column #Str.) is the maximal

number of updates of assertions at program points. The size of

the largest/average assertion (columns Max./Avg. inv.) is the

number of nodes in the formulas’ abstract syntax trees. The

last column reports the time (in milliseconds) for checking

validity (averaged over 10 runs).

All experiments were carried out on a desktop machine

using an Intel i7-3820 clocked at 3.60 GHz with 15.7 GiB

of RAM and running Debian. As expected of a modern

satisfiability solver, Z3 was able to check the satisfiability

of our formulas easily even though the size of the resulting

boolean formula is exponential in the maximum universal

quantifiers per block and the number of strengthenings needed.

For stubborn agents, all examples terminated after at most

2.5 seconds. For causal agents, the number of strengthenings

increased and invariants became significantly larger. Still, all

examples terminated within at most 22 seconds.

Comparison to other tools. The only tool for automatic

workflow verification we are aware of is NIWO, described in

[10]. It implements a procedure to verify NDA by compiling

it to an equisatisfiable LTL formula to be checked by an off-

the-shelf LTL satisfiability solver. As it is not able to deal with

omitting workflows, it can only be applied to a more restricted

class of workflows. It is also not able to deal with the agent

model where all agents are causal, but only applicable to a

fixed number of causal agents. In contrast, our tool is able

to find a universal invariant that implies NDA. In addition,

our tool is faster than NIWO on all examples they can both

be applied to. While NIWO takes several seconds to several

minutes to solve even comparatively simple examples, our tool

handled all examples in a fraction of the time.

IX. RELATED WORK

The work closest to ours is [10], which we have already

discussed in the introduction and throughout the paper. The

workflow model for web-based systems that we use has been

introduced in [11]. That workflow language did not have a

loop construct and it thus enabled a bounded model check-

ing approach for verification. Generally, there is a growing

interest in verifying infinite-state or parametric systems via

a formalization in first-order logic. One such attempt is the

programming language Ivy [20], which has been used to

model and check a variety of parameterized systems, for

instance the Paxos protocol [19]. Ivy is similar to the workflow

language considered here in that its only data structure are

finite relations. As in our work, the language restricts its

statements in such a way that checking whether universal

invariants are inductive reduces to checking the satisfiability

of an ∃∗∀∗FOL formula. However, in contrast to our work, Ivy

restricts the control flow to a single loop. Furthermore, there

is no attempt to infer invariants. Another recent verification

approach is present in the VeriCon system [2], which has

been proposed for describing and verifying the semantics of

controllers in software-defined networks. The semantics of

the underlying language is also specified, as in our work, in

terms of relations. However, as detailed in [10], the semantics

in [2] and that of workflows differ and cannot easily simulate

one another. Network invariants are checked with Z3 and

iteratively strengthened if they are not inductive — without

providing termination guarantees.

First-order transition systems have also been used in other

domains, such as AI, where an application is to model reach-

ability problems that arise in robot planning. For instance,

258

Name Type Size Model Result #Str. Max. inv. Avg. inv. Time

Conference_linear non-omitting 4 stubborn valid 3 179 75 338 ms

Conference_linear non-omitting 4 causal invalid 3 1670 562 1537 ms

Conference_linear_fixed omitting 5 stubborn valid 4 247 84 322 ms

Conference_linear_fixed omitting 5 causal valid 4 4285 1107 2352 ms

Conference_omitting omitting 6 stubborn valid 5 220 81 347 ms

Conference_omitting omitting 6 causal invalid 7 2615 1066 2924 ms

Conference_omitting_fixed omitting 7 stubborn valid 6 709 202 1059 ms

Conference_omitting_fixed omitting 7 causal valid 8 9226 2132 5450 ms

Conference_nonomitting non-omitting 4 stubborn valid 5 585 195 2170 ms

Conference_nonomitting non-omitting 4 causal invalid 9 60359 19781 21488 ms

Figure 5. Experimental Results

GOLOG [16] is a programming language based on first-

order language designed for representing dynamically chang-

ing systems. A GOLOG program specifies the behavior of the

agents in the system. The program is then evaluated with a

theorem prover, and thus assertions made in the program can

be checked for validity. The problem of inferring inductive

invariants in first-order transition systems is more challenging

that of invariant checking, and has received less attention in

the context of first-order transitions systems. [18] considers

precisely this problem, for certain classes of transition systems

for which the transition relation is given by formulas in the

∃∗∀∗FOL fragment together with a background theory. The

authors show, in particular, that inferring universal induc-

tive invariants is decidable when the transition relation is

expressed by formulas with unary predicates and a single

binary predicate restricted by the background theory of singly-

linked-lists. The same problem becomes undecidable when the

binary symbol is not restricted by a background theory. In

our work, the termination argument relies on also imposing

certain constraints on the structure of the transition system (in

particular, workflows are leveled), rather than on the formulas

alone.

Business processes are another type of multi-agent workflow

systems in which agents perform activities in a predefined

flow. In contrast to the workflows considered here, where

workflow steps are executed synchronously by a set of agents,

in business processes activities are executed asynchronously.

Information flow in business processes has been considered,

e.g., in [3], which uses the MASK framework for possibilistic

information flow security [17] to manually prove the absence

of information leaks. Concrete workflow systems, such as

conference management systems [15], [1], or a social media

platform [4], have recently been proposed and analyzed. In

contrast to these works, which focus on the verification of

one specific system, we propose a verification approach for

arbitrary workflows.

X. CONCLUSION

The goal of this paper was to provide methods for verifying

complex NDA properties in practically relevant workflows. We

proceeded in two steps. First, we simplified NDA by encoding

execution of two traces together with both the agent model and

declassification into the workflow. For verifying the simplified

property, we then relied on inductive universal invariants of the

resulting workflows. For checking inductiveness as well as for

inferring inductive invariants, we found it useful to abstract
arbitrary formulas by universal formulas. We also applied a

complete method for second-order quantifier elimination. For

a non-trivial class of workflows, we thus succeeded to compute

the best, i.e., weakest universal invariant which is inductive.

We practically evaluated these methods on example workflows,

which formalize non-trivial aspects of conference management

systems. On these examples, our algorithms turned out to be

surprisingly fast. It remains open whether one can extend

the class of workflows for which best inductive universal

invariants can be inferred. Also, more experimentation is

required to better evaluate how well the proposed methods

work in practice. It would also be interesting to search for

further agent models possibly occurring in practice.

Acknowledgments.: This work was partially supported by

the German Research Foundation (DFG) under the project

“SpAGAT” (grant no. FI 936/2-1) in the priority program “Re-

liably Secure Software Systems - RS3” and in the doctorate

program “Program and Model Analysis - PUMA” (no. 1480).

REFERENCES

[1] Arapinis, M., Bursuc, S., Ryan, M.: Privacy supporting cloud computing:
Confichair, a case study. In: Proc. POST 2012. pp. 89–108. Springer
Verlag (2012)

[2] Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv,
M., Schapira, M., Valadarsky, A.: Vericon: towards verifying controller
programs in software-defined networks. In: Proc. of the ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI
2014). pp. 282–293. ACM (2014)

[3] Bauereiß, T., Hutter, D.: Information flow control for workflow man-
agement systems. it - Information Technology 56(6), 294–299 (2014)

[4] Bauereiß, T., Pesenti Gritti, A., Popescu, A., Raimondi, F.: Cosmedis: A
distributed social media platform with formally verified confidentiality
guarantees. In: IEEE Symposium on Security and Privacy, SP 2017. pp.
729–748. IEEE Computer Society (2017)

[5] Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem.
Perspectives in Mathematical Logic, Springer (1997)

[6] Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer
Security 18(6), 1157–1210 (2010)

[7] Cousot, P., Cousot, R., Mauborgne, L.: Logical abstract domains and
interpretations. In: The Future of Software Engineering. pp. 48–71.
Springer (2011)

259

[8] De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems. pp.
337–340. Springer (2008)

[9] Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press,
San Diego, CA, USA (1972)

[10] Finkbeiner, B., Müller, C., Seidl, H., Zălinescu, E.: Verifying security
policies in multi-agent workflows with loops. In: 15th ACM Conf. on
Computer and Communications Security (CCS’17). pp. 633–645. ACM
Press (2017)

[11] Finkbeiner, B., Seidl, H., Müller, C.: Specifying and verifying secrecy
in workflows with arbitrarily many agents. In: Proc. of the 14th Int.
Symposium on Automated Technology for Verification and Analysis
(ATVA 2016). Lecture Notes in Computer Science, vol. 9938, pp. 157–
173 (2016)

[12] Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order
predicate logic. In: Proc. of the 3rd Int. Conf. on Principles of Knowl-
edge Representation and Reasoning (KR’92). pp. 425–435. Morgan
Kaufmann (1992)

[13] Goguen, J.A., Meseguer, J.: Security policies and security models. In:
Proc. of the IEEE Symposium on Security and Privacy. pp. 11–20 (1982)

[14] Goranko, V., Hustadt, U., Schmidt, R.A., Vakarelov, D.: SCAN is
complete for all sahlqvist formulae. In: Relational and Kleene-Algebraic
Methods in Computer Science: 7th Int. Seminar on Relational Methods
in Computer Science and 2nd Int. Workshop on Applications of Kleene
Algebra. Lecture Notes in Computer Science, vol. 3051, pp. 149–162.
Springer (2004)

[15] Kanav, S., Lammich, P., Popescu, A.: A conference management system
with verified document confidentiality. In: Proc. of the 26th Int. Conf. on
Computer Aided Verification (CAV 2014). pp. 167–183. Springer Verlag
(2014)

[16] Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog:
A logic programming language for dynamic domains. The Journal of
Logic Programming 31(1), 59 – 83 (1997)

[17] Mantel, H.: Possibilistic Definitions of Security – An Assembly Kit.
In: Proc. of the 13th IEEE Computer Security Foundations Workshop
(CSFW). pp. 185–199. IEEE Computer Society (July 3–5 2000)

[18] Padon, O., Immerman, N., Shoham, S., Karbyshev, A., Sagiv, M.: De-
cidability of inferring inductive invariants. In: Proc. of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016. pp. 217–231. ACM (2016)

[19] Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable
reasoning about distributed protocols. PACMPL 1(OOPSLA), 108:1–
108:31 (2017)

[20] Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy:
safety verification by interactive generalization. In: Proc. of the 37th
ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation, PLDI 2016. pp. 614–630 (2016)

APPENDIX A

TRANSFORMATION FOR ORACLES

In Section I, we introduced the restriction that oracles are

only queried in non-may blocks, i.e., blocks of the form

forall x̄. stmts which additionally satisfy:

1) Every statement in stmts makes use of the same oracle;

2) Each guard querying an oracle O is of the form ϕ′∧Ox̄,

i.e., the sequence of arguments of O coincides with the

block’s quantified variables.

Here, we will show how to transform any given workflow to

adhere to this restriction.

Intuitively, the idea is to introduce for each oracle O, an

auxiliary predicate RO in Rwf in which the relation of O
is stored for use in the next block. The predicate RO can

then be set before its use by means of a single non-may
block comprising of a single statement, and reset to the empty

relation afterwards. The problem with this construction is

that, according to our definition of observable tuples, each

tuple (a1, . . . , ak) of the oracle would become known to the

agent a1. If this flow of information is undesirable, it can

be avoided by introducing an extra first component to the

auxiliary predicate RO and fill it with some constant c.
The most natural way to exclude this constant from the

agents of the system, is to introduce sorts into the model as

well as into the logic (see [10] for details). Then the constant

could simply be assigned a non-agent sort.

Alternatively, the declassification condition could be used

to explicitly allow flows of information to this constant and

fix the agent model for c to stubborn.

Example 5. Assume we are given a workflow that contains
the block:

forall x, y, z may.
R(x, z) ∨ ¬O1(x) → S += (x, z)

O2(y, z) → T += (x, y, z)

It will be transformed to the following sequence of blocks:

forall x. O1(x) → RO1 += (c, x)

forall y, z. O2(y, z) → RO2 += (c, y, z)

forall x, y, z may.
R(x, z) ∨ ¬RO1(c, x) → S += (x, z)

RO2(c, y, z) → T += (x, y, z)

forall x. true → RO1 −= (c, x)

forall y, z. true → RO2 −= (c, y, z)

where the declassification predicates declassOi
(a) are up-

dated to the extended predicates

declassOi(a) ∨ (a = c)

This transformation only adds non-omitting blocks. So if the

initial workflow was non-omitting, the transformed workflow

will be non-omitting as well. The same holds for edge-

uniformity as well as leveledness — all RO are fresh and

information only flows from O to RO. However, uniformity

is not preserved, since tuples are both added to and subtracted

from RO.

APPENDIX B

TRANSFORMATION FOR STUBBORN AGENTS

For completeness, we also detail the transformation T (s)
a . It

transforms the given workflow to compute all pairs of traces

that satisfy declassification where all participating agents act

stubbornly, i.e. according to agent_model (s).
Given a workflow w (via its CFG) and an agent variable

a, we construct a new workflow T (s)
a w as follows. Let R̄ =

R∪R′ denote the set of predicates R used by w extended by

the corresponding distinct primed predicates R′. For a first-

order formula ϕ with predicates from R, let [ϕ]′ denote the

formula obtained from ϕ by replacing each predicate R ∈ R
with the corresponding predicate R′ in R′. Then each edge

(u, β, v) of w gives rise to one edge (u, T (s)
a β, v) in T (s)

a w

where the transformation T (s)
a on sequences of blocks is the

260

concatenation of the transformations of the individual blocks b
in β. It is defined as follows.

Case 1. b does not contain a query to an oracle. In this case,

T (s)
a b is obtained from b by adding to every update ϕ →

R += z̄, the update [ϕ]′ → R′ += z̄, and likewise, for every

update ϕ → R−= z̄, the update [ϕ]′ → R′ −= z̄. As a result,

the same predicate Cb is used for both updates (in case of

may) and stubbornness is enforced.

Case 2. b is of the form forall x̄. stmts and contains a query to

the oracle O . W.l.o.g., we may assume that each statement in

stmts queries O . In order to simulate declassification, we set

T (s)
a b = b1b2 for may blocks b1, b2 where the predicates Cb1 ,

Cb2 serve as the possibly distinct versions of the oracle on the

two simulated traces. The block b1 equals forall x̄.may stmts1
where the sequence stmts1 is obtained from stmts by collecting

for every update ϕ∧O x̄ → R+= ȳ in stmts, the two updates:

ϕ → R+= ȳ
[ϕ]′ ∧ declassO(a, x̄) → R′ += ȳ

Updates that query the oracle, but remove tuples, are treated

analogously. We note that the parameter a of the declassi-

fication formula declass, is considered as a constant in the

workflow T (s)
a w.

Moreover, b2 equals forall x̄.may stmts2 where the se-

quence stmts2 is obtained from stmts by collecting for every

update ϕ ∧O(x̄) → R+= ȳ in stmts, the update:

[ϕ]′ ∧ ¬declassO(a, x̄) → R′ += ȳ

Again, updates that query the oracle, but remove tuples, are

treated analogously.

Example 6. Consider the block

forall x, p, r. Assign(x, p)∧O(x, p, r) → Review += (x, p, r)

Then the transformation results in the following two blocks:

forall x, p, r may.
Assign(x, p) → Review += (x, p, r)
Assign′(x, p) ∧ (¬Conf(a, p) ∨ ¬Conf′(a, p))

→ Review′ += (x, p, r)
forall x, p, r may.

Assign′(x, p) ∧ (Conf(a, p) ∧ Conf′(a, p))
→ Review′ += (x, p, r)

The workflow T (s)
a w captures all pairs of traces of w that

satisfy the assumptions of stubbornness and declassification.

APPENDIX C

PROOF OF THEOREM 7
Theorem 7. Let m be the maximal number of distinct substi-
tutions in Θ. Furthermore, let r denote the number of levels of
predicates in Rwf . Assume that ψ is a first-order formula with
predicates from Rwf . Assume that θβ = θh ◦ . . . ◦ θ1 is a se-
quence of substitutions corresponding to a sequence of blocks
β of length h. Then there is a sub-sequence θ′ = θj1 ◦ . . .◦θjl
of θβ with l < (1 + m

r)
r such that the following equivalence

holds.

∀A1 . . . As. (θβψ)
� ≡ ∀Aj1 . . . Ajl . (θ

′ψ)� (8)

Proof. The proof is based on the observation that the sub-

stitution corresponding to the same block b may produce

only finitely often new contributions to the composition —

at least, if the corresponding second-order quantifiers are later

eliminated.

Assume that θ′ is a subsequence of θ of minimal length

so that (8) holds. W.l.o.g., we assume that each predicate can

be assigned a distinct level 1 < . . . < r so that for each

block b, all updated predicates in that block receive the same

level. Let mi ≥ 1 denote the number of substitutions in Θ of

the predicates with level i, and B[i] the maximal number of

occurrences of substitutions θjλ in θ′ substituting predicates

of level at most i.
We claim that for each i = 0, . . . , r, B[i] ≤ (m1 +1) · . . . ·

(mi + 1)− 1 holds. In particular, B[0] = 0.

Consider a level i ≥ 1. First we claim that θ′ does not

contain two occurrences of substitutions corresponding to

the same block of level i so that inbetween there are only

substitutions corresponding to blocks of the same level or

higher.

Assume for a contradiction, this were not the case, i.e., there

are jλ < jλ′ so that θjλ and θjλ′ both are obtained from θb
for some block b. Let θ′′ denote the substitution where θjλ′
has been removed. Let ψ′ denote the negation normal form

of the formula which is obtained by applying the substitution

θ′ to ψ, and ψ′′ the negation normal form of θ′′ψ. Then ψ′

is obtained from ψ′′ by replacing some positive literals Ajλ z̄
with the disjunction Ajλ z̄ ∨Ajλ′ z̄, and some negative literals

¬Ajλ z̄ with the conjunction ¬Ajλ z̄∧¬Ajλ′ z̄. The same holds

true after abstraction of existentials and bringing into prenex

normal form. In particular, both formulas result in the same

quantifier prefix. Now consider the corresponding conjunctive

normal forms ∀x.∧S′ and ∀x.∧S′′ of the resulting formulas

(where S′ and S′′ are the corresponding sets of clauses) which

are obtained by exhaustively applying the distributivity laws.

Then the following properties hold:

1) If Ajλ′ z̄ occurs in a clause of S′, then also Ajλ z̄; and

2) If c′ ∨ ¬Ajλ′ z̄ is a clause of S′, then also c′ ∨ ¬Ajλ z̄;

and

3) S′′ is obtained from S′ by dropping all positive occur-

rences of the predicate Ajλ′ z̄ and by removing all clauses

containing negative occurrences of Ajλ′ z̄.

Thus, Ajλ dominates Ajλ′ in the conjunctive normal form of

(θ′ψ)�. From that it follows that θjλ′ can be removed without

changing the equivalence (8) — which leads to a contradiction.

Now assume that B[i − 1] is the maximal length of the

subsequence of substitutions of the i−1 least predicates in θ′,
and b is a block at level i. Then a substitution corresponding

to b can occur at most B[i − 1] + 1 times. We conclude that

the maximal number B[i] of substitutions of at level at most

i can be bounded by

B[i] ≤ (B[i− 1] + 1) ·mi +B[i− 1]
< (B[i− 1] + 1) · (mi + 1)
= (m1 + 1) · . . . · (mi−1 + 1) · (mi + 1)

— what we wanted to prove.

261

