
The Complexity of Monitoring Hyperproperties

Borzoo Bonakdarpour
Department of Computer Science

Iowa State University, USA

Email: borzoo@iastate.edu

Bernd Finkbeiner
Reactive Systems Group

Saarland University, Germany

Email: finkbeiner@cs.uni-saarland.de

Abstract—We study the runtime verification of hyperproper-
ties, expressed in the temporal logic HyperLTL, as a means to
inspect a system with respect to security polices. Runtime moni-
tors for hyperproperties analyze trace logs that are organized by
common prefixes in the form of a tree-shaped Kripke structure,
or are organized both by common prefixes and by common
suffixes in the form of an acyclic Kripke structure. Unlike runtime
verification techniques for trace properties, where the monitor
tracks the state of the specification but usually does not need
to store traces, a monitor for hyperproperties repeatedly model
checks the growing Kripke structure. This calls for a rigorous
complexity analysis of the model checking problem over tree-
shaped and acyclic Kripke structures.

We show that for trees, the complexity in the size of the
Kripke structure is L-complete independently of the number
of quantifier alternations in the HyperLTL formula. For acyclic
Kripke structures, the complexity is PSPACE-complete (in the
level of the polynomial hierarchy that corresponds to the number
of quantifier alternations). The combined complexity in the size of
the Kripke structure and the length of the HyperLTL formula is
PSPACE-complete for both trees and acyclic Kripke structures,
and is as low as NC for the relevant case of trees and alternation-
free HyperLTL formulas. Thus, the size and shape of both the
Kripke structure and the formula have significant impact on the
complexity of the model checking problem.

I. INTRODUCTION

Most security properties related to confidentiality and infor-
mation flow cannot be formulated as trace properties because
they relate multiple computations. For example, observational
determinism [1] is satisfied if on every pair of computation
traces where the observable inputs are the same, also the
observable outputs are the same. This class of secure infor-
mation flow policies has been characterized in a set-theoretic
framework called hyperproperties [2]. Hyperproperties can be
expressed in the temporal logic HyperLTL [3], which extends
the linear-time temporal logic (LTL) [4] with trace quantifiers
and trace variables. Suppose, for example, that the observable
input to a system is the atomic proposition i and the output is
the atomic proposition o. Observational determinism can then
be expressed as the HyperLTL formula

ϕobs = ∀π. ∀π′. (iπ ⇔ iπ′) ⇒ (oπ ⇔ oπ′),

where is the usual “globally” operator of temporal logic: if
two traces π and π′ agree globally on i, then they must also
globally agree on o.

Runtime verification is a technique that inspects the health
of a system by evaluating execution traces collected at run
time. Existing runtime verification techniques (e.g., [5]–[8])

{a}

{a}

{b}

{c}

{a}

{c}

{b} {c}

{a}

{a}

{b} {b}

{a} {a}

(a) Set of linear
traces.

{a}

{a}

{b}

{c}

{a}

{c}

{b} {c}

{a}

{a}

(b) Equivalent
tree-shaped Kripke
structure.

{a}

{a}{b}

{b}

{c}

{a}

(c) Equivalent
acyclic Kripke
structure.

Fig. 1: A trace log example and its assembly into space-
efficient tree-shaped and acyclic Kripke structures.

evaluate a linear finite trace t against a formula ϕ expressed
in a trace-based language such as LTL or regular expressions.
Monitors for trace-based languages typically do not need to
record traces that are already evaluated. By contrast, a monitor
for hyperproperties must store a set T of traces seen so far
and repeatedly check this growing set against the specification
(cf. [9]–[11]). For example, to monitor observational determin-
ism ϕobs, the monitor has to examine every existing pair of
traces at all times and, hence, has to keep the pairs that are
already evaluated in a trace log. These trace logs may be in
the form of a simple linear collection of the traces seen so
far or, for space efficiency, organized by common prefixes and
assembled into a tree-shaped Kripke structure or by common
prefixes as well as suffixes assembled into an acyclic Kripke
structure (see Fig. 1). Moreover, as a runtime monitor for
hyperproperties observes the execution traces while new traces
(say T ′) are produced by the running system over time, the
monitor has to evaluate ϕ with respect to T ∪ T ′ due to
inter-trace assertions in ϕ. Over time, the size of the Kripke
structure that represents T ∪ T ′ may grow and its shape may
change. Thus, a fundamental research question is to study the
complexity of the model checking problem for HyperLTL as
the trace log grows over time. For LTL, the complexity of
the model checking problem for restricted Kripke structures
is known [12]. In particular, the model checking problem
is PSPACE-hard (in the size of the formula) only if there
exists a strongly connected component with two distinct cycles.
For acyclic Kripke structures, the model checking problem
is in coNP. If, additionally, the verification problem can be

162

2018 IEEE 31st Computer Security Foundations Symposium

© 2018, Borzoo Bonakdarpour. Under license to IEEE.
DOI 10.1109/CSF.2018.00019

decomposed into a polynomial number of finite path checking
problems, for example, if the Kripke structure is a tree or
a directed graph with constant depth, then the complexity
reduces further to NC. Prior to our work, the complexity of
the model checking problem for hyperproperties over restricted
Kripke structures was an open question.

A. Contributions

With this motivation, we study, in this paper, the impact
of structural constraints on the complexity of the model
checking problem for HyperLTL. As mentioned earlier, we are
interested in Kripke structures that are tree-shaped or acyclic
as two appropriate shapes to store execution trace logs. With
respect to the HyperLTL formula, we are interested in the
impact of the quantifier structure. Tables I and II summa-
rize our new complexity results, contrasted with the known
results for general Kripke structures [3], [13], [14], related
to the equivalent model checking problem. Table I shows the
complexity of the model checking problem in terms of the
size of the Kripke structure alone. This system complexity is
often the most relevant complexity in practice, because the
system tends to be much larger than the specification. This
is in particular true in runtime verification, where the Kripke
structure that records the traces seen so far grows over time,
while the temporal formula remains the same. Table II shows
the combined complexity in the full input, consisting of both
the Kripke structure and the HyperLTL formula. Our results
show that the shape of the Kripke structure plays a crucial role
in the complexity of the model checking problem:

• Trees. For trees, the complexity in the size of
the Kripke structure is L-complete independently of
the number of quantifier alternations. The combined
complexity in the size of the Kripke structure and
the length of the HyperLTL formula is PSPACE-
complete (in the level of the polynomial hierarchy that
corresponds to the number of quantifier alternations)
and is as low as NC for alternation-free fragment as
well formulas of the form ∃∀ and ∀∃.

• Acyclic graphs. For acyclic Kripke structures, the
complexity is NL-complete for the alternation-free
fragment and is PSPACE-complete for alternating for-
mulas (in the level of the polynomial hierarchy that
corresponds to the number of quantifier alternations).
The combined complexity in the size of the Kripke
structure and the length of the HyperLTL formula is
also PSPACE-complete in the level of the polynomial
hierarchy that corresponds to the number of quantifier
alternations.

B. Significance of Contributions

The significance of our results is multifold:

• Our results are in sharp contrast to the undecidability
result of [15] and the non-elementary complexity
of [3], which has commonly been interpreted as sug-
gesting that only the alternation-free fragment is worth
considering in practical settings. Our results show that
there is a lot that can be done for hyperproperties with
alternations without exceeding PSPACE.

• An important observation from Tables I and II is
the impact of the shape of the Kripke structure and
type of formula on the complexity. For example, the
HyperLTL formula for Goguen and Meseguer’s non-
interference policy [16] is alternation-free for deter-
ministic systems, while the same policy in a non-
deterministic setting is of the form ∀∀∃.ψ, hence, one
alternation. This changes the complexity from NL-
complete to coNP-complete in acyclic graphs, while
it remains L-complete for trees. This shows that there
are trade offs, both in the choice of the shape of the
trace logs and in the formula that represents the policy,
with signficant practical implications. We will present
a more detailed motivating example on these trade offs
in Section III.

• As discussed in [10], [11], monitoring hyperproperties
may depend on the entire set of traces seen so far.
This implies that a dependency on the total length and
number of the traces is unavoidable. Having said that,
our L-completeness result for monitoring trees shows
that the dependency in the total length is actually only
logarithmic. Also, if the complexity is measured in the
length of the traces and the formula, our PSPACE-
completeness result shows that monitoring can be
accomplished with a linear number of instances of the
incremental traces.

• Our results are also of interest in the context of classic
model checking. In the restricted Kripke structures,
leaves in trees and acyclic graphs are defined to have
self-loops, which encode infinite traces. Our results
thus have two applications: (1) classic model checking
of restricted Kripke structures with infinite traces, and
(2) runtime verification of a collected or evolving
set of finite traces. Tree-shape and acyclic Kripke
structures often occur as the natural representation
of the state space of some protocols. For example,
certain security protocols, such as authentication and
session-based protocols (e.g., TLS, SSL, SIP) go
through a finite sequence of phases, resulting in an
acyclic Kripke structure. The advantage of model
checking restricted structures is particularly strong
for HyperLTL formulas with many quantifier alterna-
tions: while the model checking problem over general
Kripke structures cannot be solved by any elementary
recursive function [3], [13], [14], the model checking
problem for trees and acyclic graphs is in PSPACE.
The complexity in the size of a tree-shaped Kripke
structure is even just L-complete.

In a nutshell, we believe that the results in this paper provide
the fundamental understanding of the runtime verification
problem for secure information flow and pave the way for fur-
ther research on efficient and scalable monitoring techniques.

Organization: The remainder of this paper is organized
as follows. In Section II, we review Kripke structures and
HyperLTL. We present a detailed motivating example in Sec-
tion III. Section IV presents our results on the complexity
of HyperLTL model checking in the size of the Kripke
structure. Section V presents the results on the complexity in
the combined input consisting of both the Kripke structure and

163

This paper

Tree Acyclic General

∀+/∃+

(Theorem 1)

NL-complete
(Theorem 2)

NL-complete [13]

∃+∀+/∀+∃+ L-complete NP/coNP-complete

(T
he

or
em

3)

PSPACE-complete [3]

(∀∗∃∗)∗

Πp
k-complete

(k−1)-EXPSPACE-complete [14]

Σp
k-complete

PSPACE-complete
(Corollary 1)

NONELEMENTARY [3]

TABLE I: Complexity of the HyperLTL model checking problem in the size of the Kripke structure, where k is the number of
quantifier alternations in (∀∗∃∗)∗.

This paper

Tree Acyclic General

∃k/∀k NC
(Theorem 4) NP/coNP-complete

(T
he

or
em

7) PSPACE-complete [13]

∃+/∀+ NP/coNP-complete
(Theorem 6)

∃∀/∀∃ NC
(Theorem 5)

Σp
2/Π

p
2-complete EXPSPACE-complete [3]

(∀∗∃∗)∗

Πp
k+1-complete

(T
he

or
em

s
6,

7)

k-EXPSPACE-complete [3]

Σp
k+1-complete

PSPACE-complete
(Corollaries 2,3)

NONELEMENTARY [3]

TABLE II: Complexity of the HyperLTL model checking problem in the combined input, consisting of the Kripke structure and
the HyperLTL formula, where k is the number of quantifier alternations in (∀∗∃∗)∗.

the HyperLTL formula. We discuss related work in Section VI.
Finally, we make concluding remarks in Section VII.

II. PRELIMINARIES

We begin with a quick review of Kripke structures and
HyperLTL.

A. Kripke Structures

Let AP be a finite set of atomic propositions and Σ = 2AP

be the alphabet. A letter is an element of Σ. A trace t over
alphabet Σ is an infinite sequence of letters in Σω:

t = t(0)t(1)t(2) · · · .

Definition 1: A Kripke structure is a tuple

K = 〈S, sinit , δ, L〉,
where

• S is a finite set of states;

• sinit ∈ S is the initial state;

• δ ⊆ S × S is a transition relation, and

• L : S → Σ is a labeling function on the states of K.

We require that for each s ∈ S, there exists s′ ∈ S, such that
(s, s′) ∈ δ.

For example, in Fig. 2, we have that L(sinit) =
{a}, L(s3) = {b}, etc. The size of the Kripke structure is
the number of its states. The directed graph F = 〈S, δ〉 is
called the Kripke frame of the Kripke structure K. A loop in
F is a finite sequence s0s1 · · · sn, such that (si, si+1) ∈ δ,
for all 0 ≤ i < n, and (sn, s0) ∈ δ. We call a Kripke frame
acyclic, if the only loops are self-loops on terminal states, i.e.,
on states that have no other outgoing transition. See Fig. 2 for
an example. Since Definition 1 does not allow terminal states,

164

{a}
sinit

{a}
s1

{b}
s2

{b}
s3

Fig. 2: Example of an acyclic Kripke structure (with self-loops
at otherwise terminal states).

we only consider acyclic Kripke structures with such added
self-loops.

We call a Kripke frame tree-shaped, or, in short, a tree, if
every state s has a unique state s′ with (s′, s) ∈ δ, except for
the root node, which has no predecessor, and the leaf nodes,
which, again because of Definition 1, additionally have a self-
loop but no other outgoing transitions.

A path of a Kripke structure is an infinite sequence of states

s(0)s(1) · · · ∈ Sω,

such that:

• s(0) = sinit , and

• (s(i), s(i+ 1)) ∈ δ, for all i ≥ 0.

A trace of a Kripke structure is a trace t(0)t(1)t(2) · · · ∈ Σω

such that there exists a path s(0)s(1) · · · ∈ Sω with t(i) =
L(s(i)) for all i ≥ 0. We denote by Traces(K, s) the set of all
traces of K with paths that start in state s ∈ S.

In the context of monitoring, we assume that traces of a
system under inspection are given as a tree-shaped or acyclic
Kripke structure. These type of Kripke frames are obviously
more space efficient than a set of linear traces, because trees
allow us to organize the traces according to common prefixes
and acyclic graphs according to both common prefixes and
common suffixes.

B. HyperLTL

HyperLTL [3] is a temporal logic for expressing hyperprop-
erties. A hyperproperty [2] is a set of sets of execution traces.
HyperLTL generalizes LTL by allowing explicit quantification
over multiple execution traces simultaneously. The set of
HyperLTL formulas is defined inductively by the following
grammar:

ϕ ::= ∃π.ϕ | ∀π.ϕ | φ
φ ::= true | aπ | ¬φ | φ ∨ φ | φ U φ | φ

where a ∈ AP is an atomic proposition and π is a trace
variable from an infinite supply of variables V . The Boolean
connectives ¬ and ∨ have the usual meaning, U is the
temporal until operator and is the temporal next operator.
We also consider the usual derived Boolean connectives, such
as ∧, ⇒, and ⇔, and the derived temporal operators eventually

ϕ ≡ true U ϕ, globally ϕ ≡ ¬ ¬ϕ, and weak until:
ϕW ψ ≡ (ϕ U ψ) ∨ ϕ. The quantified formulas ∃π and ∀π

are read as ‘along some trace π’ and ‘along all traces π’,
respectively. A sentence is a closed formula, i.e., the formula
that has no free trace variables. A formula with only universal
or only existential quantifiers is called alternation-free. Such
formulas have alternation depth 0. The alternation depth of
formulas with both existential and universal quantifiers is the
number of alternations from existential to universal quantifiers
and from universal to existential quantifiers.

The semantics of HyperLTL is defined with respect to
a trace assignment, a partial mapping Π: V → Σω . The
assignment with empty domain is denoted by Π∅. Given a trace
assignment Π, a trace variable π, and a trace t, we denote by
Π[π → t] the assignment that coincides with Π everywhere
but at π, which is mapped to t. Furthermore, Π[j,∞] denotes
the assignment mapping each trace π in Π’s domain to

Π(π)(j)Π(π)(j + 1)Π(π)(j + 2) · · · .

The satisfaction of a HyperLTL formula ϕ over a trace
assignment Π and a set T of traces, denoted by T,Π |= ϕ,
is defined as follows:

T,Π |= aπ iff a ∈ Π(π)(0),

T,Π |= ¬φ iff T,Π �|= φ,

T,Π |= φ1 ∨ φ2 iff T,Π |= φ1 or T,Π |= φ2,

T,Π |= φ iff T,Π[1,∞] |= φ,

T,Π |= φ1 U φ2 iff ∃i ≥ 0 : T,Π[i,∞] |= φ2 ∧

∀j ∈ [0, i) : T,Π[j,∞] |= φ1,

T,Π |= ∃π. ϕ iff ∃t ∈ T : T,Π[π → t] |= ϕ,

T,Π |= ∀π. ϕ iff ∀t ∈ T : T,Π[π → t] |= ϕ.

We say that a set T of traces satisfies a sentence ϕ,
denoted by T |= ϕ, if T,Π∅ |= ϕ. A Kripke structure
K = 〈S, sinit , δ, L〉 satisfies a HyperLTL formula ϕ, denoted
by K |= ϕ, iff Traces(K, sinit) |= ϕ.

Example. Consider the HyperLTL formula

ϕ = ∀π1.∀π2. aπ1
U bπ2

and the Kripke structure in Fig. 2. The Kripke structure
does not satisfy ϕ. For example, the trace assignment Π
that assigns to π1 the trace {a}{b}ω and to π2 the trace
{a}{a}{b}ω does not satisfy aπ1 U bπ2 .

165

Standard linear-time temporal logic (LTL) is the fragment
of HyperLTL with a single quantifier. Typically, the quantifier
is universal and is left implicit, i.e., the LTL formula ϕ =
∀π. ψ is written as ψ with the index π omitted from all atomic
propositions. We say that a trace t satisfies an LTL formula ϕ,
denoted by t |= ϕ, if {t} |= ϕ.

We note that although our focus in this paper is on
runtime verification (hence, a finite number of finite traces),
for simplicity and without loss of generality, we use the infinite
semantics of HyperLTL. To this end, we assume that the
leaves of Kripke frames have self-loops that corresponds to
the “stuttering” semantics of finite-trace temporal logics.

III. MOTIVATING EXAMPLE

A. EDAS Conference Manager Bug

We demonstrate the importance of the problem under
investigation in this paper with a real-life information leak
encountered by the first author while using the EDAS Con-
ference Management System1. Fig. 3 shows an anonymized
screenshot of the EDAS web interface [9]. The color-coded
table displays the status of submitted papers by the user:
accepted (green), rejected (orange), withdrawn (grey), and
pending (yellow). Now, consider the well-known Goguen and
Meseguer’s non-interference (GMNI) security policy [16] for
deterministic systems, where a low-privileged user (in this
case, the author) should not be able to acquire any information
about the activities (if any) of the high-privileged user (in this
case, the conference PC chair). The HyperLTL formula for this
policy in the context of our example is the following:

ϕGMNI = ∀π.∀π′.
(

(dec = λ)π′ ∧ (decπ �= decπ′)
)

⇒(
sesπ ⇔ sesπ′

)
where high input variable dec for a submission, ranging
over {acc, rej, undec}, contains the internal decision of the
conference chair for the submission and low output proposition
ses represents whether or not the submission is assigned to a
session for presentation. By abuse of notation, we denote the
value of variable dec in the associated state of trace π by decπ .
Finally, λ denotes an arbitrary dummy value for the dec.

The web interface exhibits the following blunt violation of
GMNI, i.e., the author can learn the internal decision of the
chair, while the status of the paper is pending. The first two
rows show the status of two papers submitted to a conference
after their notification (i.e., values sent on the low-observable
channel): the first paper is accepted while the second is
rejected. The last two rows show two other papers submitted to
a different conference whose status are pending at the time the
screenshot is taken. Although the authors should not be able to
infer the internal decision making activities (i.e., high inputs)
of the conference chair before the notification, this table leaks
these activities as follows. When the chair sets dec = acc, the
paper is supposed to be assigned to a session in the technical
program, while a rejected paper (i.e., dec = rej) does not
need to be assigned to a session. Now, by comparing the
rows, one can observe that their ‘Session’ column have the
same value (i.e., ‘not yet assigned’). Likewise, the second and

1http://www.edas.info

the last rows have an empty ‘Session’ column. This simply
means that the table reveals the internal status of the fourth
and last papers as accepted and rejected, respectively, although
their external status are pending. More specifically, in formula
ϕGMNI, if π′ and π are instantiated by the last two yellow
rows, respectively, then purging dec by λ in π′ will result
in different ses observations, which clearly is a violation of
non-interference through the four independent executions to
generate the HTML table rows2.

B. The Need for Runtime Monitoring

The above example illustrates how a security policy can
easily be violated due to a careless implementation, where the
value of high variable dec flows in the publicly-observable
variable ses , although the chair did not take any inappropriate
action that directly violates the security policy. This example
demonstrates the need for designing techniques for monitoring
the functional as well as security aspects of systems such as an
online conference manager to inspect their health at run time
or through periodic offline trace log analysis.

A key step in deploying any type of verification is identi-
fying the specification of the system in terms of a formula.
For our conference manager system, we now identify the
specification in a sequence of steps starting from a simple
formula, which is evolved into more complex ones:

• If the specification is only concerned with monitoring
non-interference in deterministic executions, then for-
mula ϕGMNI suffices. In this case, according to Table I,
the complexity of monitoring a tree-shaped (respec-
tively, acyclic) trace log is L-complete (respectively,
NL-complete) in the size of the log.

• Next, let us imagine, the generation of the HTML re-
port is accomplished by a set of concurrent threads. In
this case, we need to refine ϕGMNI to obtain a stronger
notion of confidentiality known as the Generalized
Non-interference (GNI) [17], which permits nondeter-
minism in the behavior, but stipulates that low-security
outputs may not be altered by the injection of high-
security inputs:

ϕGNI = ∀π.∀π′.∃π′′. (decπ = decπ′′) ∧
(sesπ′ ⇔ sesπ′′)

The trace π′′ is an interleaving of the high inputs trace
π and the low outputs of the trace π′. In this case,
according to Table I, the complexity of monitoring
a tree-shaped (respectively, acyclic) trace log is L-
complete (respectively, coNP-complete) in the size of
the log. As can be seen, in case of asyclic trace logs,
there is a significant jump in the complexity hierarchy
of monitoring.

• As mentioned earlier, the EDAS information leak was
due to an implementation bug, rather than by a mistake
by the chair. For the designer of the conference
management system, this is an important distinction:

◦ Information leaks caused by an incorrect im-
plementation should be fixed by eliminating
the bug in the implementation, and

2We note that EDAS has fixed this bug after we brought it to their attention.

166

Fig. 3: EDAS conference management website’s information leak.

◦ Information leaks caused by the user could be
fixed by educating the user or by improving
the user interface, for example by issuing an
explicit warning, or might not even need fixing
if the information leak was intentional.

In the next step, we will further refine the specification
to only refer to information leaks that are due to errors
in the implementation, ignoring information leaks that
are caused by the conference chair. For this purpose,
we specify that a trace π1 is OK (from the system
implementation’s point of view) even if π1 results in
a leak, as long as there exists a trace π2, representing a
different interaction of the chair with the system, that
avoids the leak. In order to prevent trivial alternatives,
such as “do nothing”, we only consider alternative user
behaviors that would accomplish the same objectives.
Now, suppose that for two traces π1 and π2, the pred-
icate obj (π1, π2) indicates that π1 and π2 accomplish
the same functional objectives, e.g.,

obj (π1, π2) =(
(dec = acc)π1

⇒ (dec = acc)π2

)
∧(

(dec = rej)π1 ⇒ (dec = rej)π2

)

i.e., if π1 prescribes that a paper is accepted (respec-
tively, rejected), then the same decision is made for
the paper in π2 as well. Then, our refined property is

expressed by the following HyperLTL formula:

ϕref = ∀π1.∃π2.∀π3.∃π4. obj(π1, π2) ∧
(decπ4

= decπ2
) ∧

(sesπ4
⇔ sesπ3

)

The formula (with three quantifier alternations) ex-
presses noninterference with the modification that
the universally quantified trace π1 is replaced by
a existentially quantified trace π2 that satisfies the
same objectives. According to Table I, the complexity
of monitoring the refined property in a tree-shaped
(respectively, acyclic) trace log is L-complete (respec-
tively, Πp

4-complete) in the size of the Kripke structure.
If we did not allow non-determinism, which translates
to removing the innermost existential quantifier and,
hence, one less alternation in the formula quanti-
fiers, the complexities would be L-complete and Πp

3-
complete, respectively.

As can be seen in this example, the choice of the shape of
the Kripke structure and the HyperLTL formula play a crucial
role in the complexity of the model checking problem. This
observation motivates rigorously investigating the complexity
of RV for tree-shaped and acyclic Kripke structures. Our
findings, summarized in Tables I and II, are presented in detail
in Sections IV and V, respectively.

IV. SYSTEM COMPLEXITY

In this section, we analyze the complexity of the model
checking problem in the size of the Kripke structure. We use

167

the following notation to distinguish the different variations of
the problem:

MC[Fragment, Frame Type],

where

• MC is the model checking problem, i.e., the problem to
determine whether or not K |= ϕ, where K is a Kripke
structure and ϕ is a closed HyperLTL formula;

• Fragment is one of the following for ϕ:

◦ AF-HyperLTL refers to the alternation-free frag-
ment of HyperLTL (i.e., ∃+ψ or ∀+ψ);

◦ (EA)k-HyperLTL, for k ≥ 0, denotes the frag-
ment with k alternations and a lead existential
quantifier, where k = 0 means an alternation-
free formula with only existential quantifiers;

◦ (AE)k-HyperLTL, for k ≥ 0, denotes the frag-
ment with k alternations and a lead universal
quantifier, where k = 0 means an alternation-
free formula with only universal quantifiers,

◦ HyperLTL is the full logic HyperLTL, and

• Frame Type is either tree, acyclic, or general.

A. Tree-shaped Graphs

Our first result is that the model checking problem for tree-
shaped Kripke structures is L-complete in the size of the Kripke
structures. This result is particularly interesting, as system trace
logs are very often stored as a set of traces grouped by common
prefixes.

Theorem 1: MC[HyperLTL, tree] is L-complete in the size
of the Kripke structure.

Proof: For the upper bound, we note that the number of
traces in a tree is bounded by the number of states, i.e., the
size of the Kripke structure. The model checking algorithm
maintains for each trace variable a counter on the number of
traces, i.e., a logarithmic number of bits in size of the Kripke
structure. To evaluate the inner LTL subformula, determine,
in a backwards fashion, whether a subformula holds for a
particular trace position. We need two counters on the length
of the trace (corresponding to the variables i and j in the
semantics of Until) for each Until subformula. Since the length
of the trace is again bounded by the number of states, again
a logarithmic number of bits will suffice. (Note that, since
we are only interested in the complexity in the size of the
Kripke structure, we consider the number of subformulas to
be constant.)

The lower bound follows from the L-hardness of
ORD [18]. ORD is the graph-reachability problem for directed
line graphs. Graph reachability from s to t can be expressed
with the formula ∃π. (sπ ∧ tπ).

B. Acyclic Graphs

We now turn to acyclic graphs. Acyclic Kripke structures
are interesting in two contexts: (1) efficient storage of system
trace logs in runtime verification, grouping the traces according
to common prefixes and common suffixes, and (2) analyzing

certain security protocols, in particular authentication algo-
rithms, which often consist of sequences of phases with no
repetitions or loops. Such applications result in acyclic Kripke
structures. We develop results for three different fragments
of HyperLTL: (1) the alternation-free fragment (Theorem 2),
the bounded-alternation fragment (Theorem 3), and (3) full
HyperLTL (Corollary 1).

1) Alternation-free Formulas:

Theorem 2: MC[AF-HyperLTL, acyclic] is NL-complete in
the size of the Kripke structure.

Proof: For the upper bound, we consider the case that the
HyperLTL formula is existential, i.e., it is of the form

∃π1 . . . ∃πk. ϕ,

where ϕ does not contain any trace quantifiers. For the case
that the formula is universal, i.e., it is of the form

∀π1 . . . ∀πk. ϕ,

we check the formula ∃π1 . . . ∃πk.¬ϕ and report the comple-
mented result.

We consider the self-composition of the Kripke struc-
ture. Let K = 〈S, sinit , δ, L〉 be a Kripke structure,
and let ∃π1 . . . ∃πk. ϕ be an existential HyperLTL formula.
The self-composition of K is the Kripke structure K′ =
〈Sk, skinit , δ

′, L′〉, where

Sk =

k times︷ ︸︸ ︷
S × S × · · · × S

skinit =

k times︷ ︸︸ ︷
(sinit , sinit , . . . , sinit)

δ′ =
{(

(s1, . . . , sk), (s
′
1, . . . , s

′
k)
) | ∀i ∈ [1, k] : (si, s

′
i) ∈ δ

}
L′(s1, . . . , sk) =

{
ai | ∃i ∈ [1, k] : a ∈ L(si)

}
.

It is easy to see that the self-composition of an acyclic Kripke
structure is again acyclic.

For the HyperLTL formula ∃π1 . . . ∃πk. ϕ, let ϕ′ be the
same as inner LTL formula ϕ, where every indexed proposition
aπi

, for some i ∈ [1, k], is replaced by the atomic proposition
ai. Now, the Kripke structure K satisfies ∃π1 . . . ∃πk. ϕ, iff
there is a path in the self-composition K′, such that the
corresponding trace satisfies ϕ′. Since the Kripke structure is
acyclic, the length of the traces is bounded by the number of
states of the Kripke structure. We can, therefore, nondetermin-
istically guess the trace that satisfies ϕ′, using a counter with
a logarithmic number of bits in the number of states of K.

The lower bound follows from the NL-hardness of the
graph-reachability problem for ordered graphs [19]. Ordered
graphs are acyclic graphs with a vertex numbering that is
a topological sorting of the vertices. As in the proof of
Theorem 1, we express graph reachability from s to t with
the formula ∃π. (sπ ∧ tπ).

2) Formulas with Bounded Alternation Depth:

Next, we consider formulas where the number of quantifier
alternations is bounded by a constant k. We show that changing

168

the frame structure from a tree to an acyclic graph results in
significant increase in complexity (see Table I).

Theorem 3: MC[(EA)k-HyperLTL, acyclic] is Σp
k-complete

in the size of the Kripke structure. MC[(AE)k-HyperLTL, acyclic]
is Πp

k-complete in the size of the Kripke structure.

Proof: We show membership in Σp
k and Πp

k, respectively,
by induction over k. According to Theorem 2, the model
checking problem for k = 0, where the formula is alternation-
free, is solvable in polynomial time. For k+1 quantifier alter-
nations, suppose that the first quantifier is existential. Since the
Kripke structure is acyclic, the length of the traces is bounded
by the number of states. We can thus nondeterministically
guess the existentially quantified traces in polynomial time
and then verify the correctness of the guess, by the induction
hypothesis, in Πp

k. Hence, the model checking problem for k+1
is in Σp

k+1. Likewise, if the first quantifier is universal, we uni-
versally guess the universally quantified traces in polynomial
time and verify the correctness of the guess, by the induction
hypothesis, in Σp

k. Hence, the problem of determining K |= ϕ
for k + 1 alternations in ϕ is in Πp

k+1.

For the lower bound, we show that the model checking
problem for HyperLTL formula with k alternations is Σp

k-hard
and Πp

k-hard, respectively, via a reduction from the quantified
Boolean formula (QBF) satisfiability problem [20]:

Given is a set of Boolean variables,
{x1, x2, . . . , xn}, and a quantified Boolean formula

y = Q1x1.Q1x2 . . .Qn−1xn−1.Qnxn.(y1 ∧ y2 ∧· · ·∧ ym)

where each Qi ∈ {∀, ∃} (i ∈ [1, n]) and each clause
yj (j ∈ [1,m]) is a disjunction of three literals
(3CNF). Is y true?

If y is restricted to at most k alternations of quantifiers, then
QBF satisfiability is complete for Σp

k+1 if Q1 = ∃, and for Πp
k

if Q1 = ∀. We note that in the given instance of the QBF
problem:

• The clauses may have more than three literals, but
three is sufficient of our purpose;

• The inner Boolean formula has to be in conjunctive
normal form in order for our reduction to work;

• Without loss of generality, the variables in the literals
of the same clause are different (this can be achieved
by a simple pre-processing of the formula), and

• If the formula has k alternations, then it has k + 1
alternation depths. For example, formula

∀x1.∃x2.(x1 ∨ ¬x2)

has one alternation, but two alternation depths: one for
∀x1 and the second for ∃x2. By d(xi), we mean the
alternation depth of Boolean variable xi.

We now present a mapping from an arbitrary instance
of QBF with k alternations and where Q1 = ∃ to the
model checking problem of an acyclic Kripke structure and
a HyperLTL formula with k quantifier alternations. Then, we
show that the Kripke structure satisfies the HyperLTL formula

if and only if the answer to the QBF problem is affirmative.
Figures 4 and 5 show an example.

Kripke structure K = 〈S, sinit , δ, L〉:
• (Atomic propositions AP) For each alternation depth

d ∈ [1, k + 1], we include an atomic proposition qd.
We furthermore include three atomic propositions: c is
used to mark the clauses, p is used to force clauses to
become true if a Boolean variable appears in a clause,
and proposition p̄ is used to force clauses to become
true if the negation of a Boolean variable appears in
a clause in our reduction. Thus,

AP =
{
c, p, p̄

} ∪ {
qd | d ∈ [1, k + 1]

}
.

• (Set of states S) We now identify the members of S:

◦ First, we include an initial state sinit and
a state r0. Then, for each clause yj , where
j ∈ [1,m], we include a state rj , labeled by
proposition c.

◦ For each clause yj , where j ∈ [1,m], we
introduce the following 2n states:{

vji , u
j
i | i ∈ [1, n]

}
.

Each state vji is labeled with propositions
qd(xi), and with p if xi is a literal in yj , or
with p̄ if ¬xi is a literal in yj .

◦ For each Boolean variable xi, where i ∈ [1, n],
we include three states si, s̄i, and ŝi. Each state
si (respectively, s̄i) is labeled by p and qd(xi)

(respectively, p̄ and qd(xi)).

Thus,

S =
{
sinit

} ∪ {
rj | j ∈ [0,m]

} ∪{
vji , u

j
i , si, s̄i, ŝi | i ∈ [1, n] ∧ j ∈ [1,m]

}
.

• (Transition relation δ) We now identify the members
of δ:

◦ We include a transition (sinit , rj), for each j ∈
[0,m].

◦ We add transitions (rj , v
j
1) for each j ∈ [1,m].

◦ For each i ∈ [1, n] and j ∈ [1,m], we include

transitions (vji , u
j
i). For each i ∈ [1, n) and

j ∈ [1,m], we include transitions (uj
i , v

j
i+1).◦ For each i ∈ [1, n], we include transitions

(si, ŝi) and (s̄i, ŝi). For each i ∈ [1, n), we
include transitions (ŝi, si+1) and (ŝi, s̄i+1).

◦ We include two transitions (r0, s1) and
(r0, s̄1).

◦ Finally, we include self-loops (ŝn, ŝn) and
(uj

n, u
j
n), for each j ∈ [1,m].

Thus,

δ =
{
(sinit , rj), (rj , v

j
1), (u

j
n, u

j
n) | j ∈ [0,m]

} ∪{
(r0, s1), (r0, s̄1)

} ∪{
(vji , u

j
i) | i ∈ [1, n] ∧ j ∈ [1,m]

} ∪{
(uj

i , v
j
i+1) | i ∈ [1, n) ∧ j ∈ [1,m]

} ∪{
(si, ŝi), (s̄i, ŝi) | i ∈ [1, n]

} ∪{
(ŝi, si+1), (ŝi, s̄i+1) | i ∈ [1, n)

}
.

169

}} }}

y4 =y3 =
(¬x1 ∨ x2 ∨ ¬x4) (¬x3 ∨ x4 ∨ ¬x5) (x1 ∨ x4 ∨ x5)(x1 ∨ ¬x2 ∨ x3)

u1
3 u4

3u2
3 u3

3

u1
5 u4

5u2
5 u3

5

u1
4 u4

4u2
4 u3

4

{c} {c} {c} {c}

{q1, p̄}

u1
1 u2

1 u3
1 u4

1

u1
2 u2

2 u3
2 u4

2

s̄1

s̄3

ŝ1

ŝ3

ŝ2

ŝ5

ŝ4

s̄2

s3

s2

s1

s5

s4 s̄4

s̄5

r0

{q1, p}

{q4, p} {q4, p̄}

{q3, p̄}{q3, p}

{q3, p} {q3, p̄}

{q2, p̄}{q2, p}

{q1, p̄}

sinit

πd traces π′ traces

{q1, p}

{q2, p}{q2, p̄}

{q3, p} {q3}

{q3, p̄}{q3}

{q4} {q4}

{q3, p}

{q3, p̄}

{q2}

{q1}

{q4, p}

{q3, p}

{q3}

{q2}

{q1, p}v11 v21 v31 v41

v12 v22 v32 v42

v14

v15 v25

v24

v33

v45

v43v23

v34

v13

v35

r4

y2 =y1 =

v44

r1 r2 r3

{q4, p̄}

Fig. 4: Mapping quantified Boolean formula y = ∃x1.∀x2.∃x3.∃x4.∀x5.(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x3 ∨ x4 ∨
¬x5) ∧ (x1 ∨ x4 ∨ x5) to an instance of MC[(EA)k-HyperLTL, acyclic].

HyperLTL formula: The HyperLTL formula in our mapping
is the following:

ϕmap = ∃πk+1.∀πk · · · ∃π2.∀π1.∀π′.

(∧
d∈{1,3,...,k} ¬cπd

∧ cπ′

)
⇒

(∧
d∈{2,4,...,k+1} ¬cπd

∧

[∨
d∈[1,k+1]

((
qdπd

⇔ qdπ′
)∧

(
(pπ′ ∧ pπd

) ∨ (p̄π′ ∧ p̄πd
)
))])

Note that the formula has k alternations. Intuitively, this
formula expresses the following: for all the (clause) traces that
are universally quantified (i.e., the left side of the implication),
there exist (clause) traces, where either p or p̄ eventually
matches its counterpart position in any trace π′. The matching
positions identify the assignments of Boolean variables in the
corresponding clauses that make the QBF instance true.

We now show that the given quantified Boolean formula

T

T

T

TT

T

T

F

F

F

F F

T T T

x3

x2

x3

x5 x5

x4x4

x1

Fig. 5: Model for the QBF instance in Fig. 4.

is true if and only if the Kripke structure obtained by our
mapping satisfies the HyperLTL formula ϕmap .

(⇒) Suppose that y is true. Then, there is an instanti-
ation of existentially quantified variables for each
value of universally quantified variables, such that
each clause yj , where j ∈ [1,m] becomes true
(see Fig. 5 for an example). We now use these in-
stantiations to instantiate each ∃πxd

in HyperLTL
formula ϕmap , where d ∈ {2, 4, . . . , k + 1} as
follows. For each existentially quantified variable
xi, where i ∈ [1, n], in depth d ∈ [1, k + 1], if
xi = true, we instantiate πd with a trace that
includes state si. Otherwise, the trace will include
state s̄i. We now show that this trace instantiation

170

evaluates formula ϕmap to true. Observe that the
left side of the implication in the formula is
basically distinguishing traces (i.e., clause traces
π′, where c holds and traces corresponding to
universal variables, where ¬ c is true). Since
each yj is true, for any instantiation of universal
quantifiers, there is at least one literal in yj that is
true. If this literal is of the form xi, then we have
xi = true and trace πd will include si, which
is labeled by p and qd. Hence, the values of p
(respectively, qd), in both πd and π′ instantiated
by trace

sinitrjv
j
1 · · ·uj

n

are eventually equal. If the literal in yj is of
the form ¬xi, then xi = false and, hence,
some trace πd will include s̄i. Again, the values
of p̄ (respectively, qd), in both πd and π′ are
eventually equal. Finally, since all clauses are true,
all traces π′ reach a state where the right side of
the implication becomes true.

(⇐) Suppose our mapped Kripke structure satisfies the
HyperLTL formula ϕmap . This means that for
each trace π′ of the form

sinitrjv
j
1 · · ·uj

n,

there exists a state uj
i , where the values of qd

and either p or p̄ are eventually equal to their
counterparts in some trace πd. If this trace is exis-
tentially quantified and includes si, then we assign
xi = true for the preceding quantifications. If the
trace includes s̄i, then xi = false. Observe that
since in no state p and p̄ are simultaneously true
and no trace includes both si and s̄i, variable xi

will have only one truth value. This way, a model
similar to Fig. 5 can be constructed. Similar to the
forward direction, it is straightforward to see that
this valuation makes every clause yj of the QBF
instance true.
To establish the hardness for HyperLTL formu-
las where the first quantifier is universal, we
analogously map an instance of QBF with k
alternations and where Q1 = ∀ to the model
checking problem of an acyclic Kripke structure
and a HyperLTL formula that also begins with a
universal quantifier. This time, the HyperLTL for-
mula has k+1 quantifier alternations, because the
inner-most quantifier is universal. We have thus
reduced a Πp

k+1-hard problem to the model check-
ing problem for HyperLTL formulas with k + 1
quantifier alternations where the first quantifier is
universal. Hence, the model checking problem for
formulas with k quantifier alternations where the
first quantifier is universal is Πp

k-hard.

An important case of Theorem 3 are formulas with a single
quantifier alternation, i.e., k = 1. This class of formulas
contains, for example, generalized noninference [21], which
can be expressed as a ∀∃ and generalized non-interference [17],
which can be expressed as a ∀∀∃ HyperLTL formula [3].

According to the polynomial hierarchy, the model checking
problem for acyclic graphs is NP-complete for formulas of
the form ∃+∀+ψ and coNP-complete for formulas of the form
∀+∃+ψ.

It is worth noting that the special case of a single quantifier
alternation consisting of a single existential and a single
universal quantifier is already NP/coNP-complete for acyclic
graphs, but still in L for trees. The intuitive reason is the
repeated-diamonds structure in Fig. 4, which is possible in
acyclic graphs, but not in trees. This structure allows us to
select multiple Boolean values with a single trace quantifier.

Finally, Theorem 3 implies that the model checking prob-
lem for acyclic Kripke structures and HyperLTL formulas with
an arbitrary number of quantifiers is in PSPACE. Moreover, its
proof of lower bound shows that the problem is at least as hard
as QBF, making it PSPACE-hard.

Corollary 1: MC[HyperLTL, acyclic] is PSPACE-complete
in the size of the Kripke structure.

V. COMBINED COMPLEXITY

We now analyze the complexity of the model checking
problem in the size of the combined input, consisting of both
the Kripke structure and the HyperLTL formula. Again, we
separately focus on trees and acyclic graphs.

A. Trees

For tree-shaped Kripke structures, we first show that model
checking is efficiently parallelizable for two fragments: (1)
the alternation-free fragment (Theorem 4), and (2) formulas
with one alternation consisting of a single universal and a
single existential quantifier (Theorem 5). We denote (2) as
(AE/EA)-HyperLTL. As we already noted, this model check-
ing problem is particularly interesting because its complexity
is significantly different for trees and acyclic graphs. This is
again true for the combined complexity, which is in NC for
trees, but Σp

2-complete or Πp
2-complete, depending on whether

the leading quantifier is existential or universal, for acyclic
graphs.

Theorem 4: MC[(A/E)k-HyperLTL, tree] is in NC.

Proof: A decision problem is in NC, if there exists a
parallel algorithm that runs in time O(logc n) with O(nc′)
processors for some constants c and c′.

To verify an alternation-free formula with k quantifiers, we
consider all combinations of k traces in the Kripke structure.
Since k is a constant and the number of traces is bounded by
the number of states of the tree, there is only a polynomial
number of combinations. The evaluation of an individual
combination corresponds to the evaluation of an LTL formula
over a single trace, which can be done in NC [22]. We evaluate
all combinations in parallel.

For universal quantifiers, we then compute the conjunction
over these results by evaluating a binary tree of conjunctions.
The height of the tree is logarithmic in the number of com-
binations. Using a linear number of processors, the evaluation
therefore is done in logarithmic time. Likewise, for existential

171

quantifiers, we compute the disjunction over the results by
evaluating a binary tree of disjunctions.

Theorem 5: MC[(AE/EA)-HyperLTL, tree] is in NC.

Proof: Analogously to the proof of Theorem 4, we
consider all pairs of traces in the Kripke structure. Since the
number of traces is bounded by the number of states of the
tree, the number of pairs is polynomial. The evaluation of an
individual pair corresponds to the evaluation of an LTL formula
over a single trace, which can be done in NC [22]. We evaluate
all pairs in parallel. If the formula is of the form ∀∃, we then
need to evaluate the conjunction over all first elements of the
pair, and the disjunction over all second elements. This can
be done by a binary tree, where the upper part consists of
conjunctions and the lower part consists of disjunctions. The
height of the tree is logarithmic in the number of pairs. Using
a linear number of processors, the evaluation is therefore done
in logarithmic time. Likewise, if the formula is of the form
∃∀, we compute the disjunction over the results by evaluating
a binary tree, where the upper part consists of disjunctions and
the lower part of conjunctions.

Theorem 6: MC[(EA/AE)k-HyperLTL, tree] is Σp
k+1-

complete in the combined size of the Kripke structure and
the formula, if the leading quantifier is existential and is
Πp

k+1-complete if the leading quantifier is universal.

Proof: Matching upper bounds are provided in the proof
of Theorem 7 in the next subsection for the more general
case of acyclic graphs. We now show that the model checking
problem is Σp

k-hard (respectively, Πp
k-hard) via a reduction from

QBF satisfiability, where the leading quantifier is existential
(respectively, universal). In contrast to the proof of Theorem 3,
we do not assume a specific form of the Boolean formula.

Let the quantified Boolean formula consist of Boolean
variables {x1, x2, . . . , xn}, and a formula with k alternations

y = Q1x1.Q1x2 . . .Qn−1xn−1.Qnxn. ϕ

where each Qi ∈ {∀, ∃} (i ∈ [1, n]) and ϕ is an arbitrary
Boolean formula over variables {x1, . . . , xn}. Satisfiability for
QBF formulas of this type is complete for Σp

k+1 if Q1 = ∃,
and for Πp

k+1 if Q1 = ∀.

We reduce the satisfiability problem for a quantified
Boolean formula to the model checking problem for a Hy-
perLTL formula with the same quantifier structure.

• Kripke structure K = 〈S, sinit , δ, L〉. We use
the simple Kripke structure shown in Fig. 6, which
contains two traces {}{x}ω and {}{}ω .

• HyperLTL formula. The HyperLTL formula in our
mapping is the following:

Q1π1.Q1π2 . . .Qn−1πn−1.Qnπn. ϕ
′ (1)

where ϕ′ is constructed from ϕ by replacing every
occurrence of a variable xi in the Boolean formula
with xπi

in the HyperLTL formula.

The given formula is true if and only if the Kripke structure
obtained by our mapping satisfies HyperLTL formula (1).
We translate every assignment to the trace quantifiers to a
corresponding assignment of the Boolean variables, and vice

s1s0 {x}

sinit

Fig. 6: Kripke structure in the proof of Theorem 6.

versa, as follows: Assigning the trace {}{x}ω to πi means that
xi is set to true, and assigning the trace {}{}ω to πi means
that xi is set to false.

Corollary 2: MC[HyperLTL, tree] is PSPACE-complete.

B. Acyclic Kripke Structures

For HyperLTL formulas with bounded quantifier alterna-
tion, trees and acyclic graphs have the same model checking
complexity (except for the special case of exactly one universal
and one existential quantifier). We match the lower bounds for
trees from Theorem 6 with upper bounds for acyclic graphs.

Theorem 7: MC[(EA/AE)k-HyperLTL, acyclic] is Σp
k+1-

complete in the combined size of the Kripke structure
and the formula, if the leading quantifier is existential and
Πp

k+1-complete if the leading quantifier is universal.

Proof: We show membership in Σp
k+1 and Πp

k+1, respec-
tively, by induction over k. For the base case, k = 0, where
the formula is alternation-free, the model checking problem
can be solved in NP and co-NP, respectively, as follows.
If the quantifiers are existential, we can nondeterministically
guess a combination of the traces and verify the correctness
of the guess in polynomial time, as the length of each trace is
bounded by the number of states. Likewise, if the quantifiers
are universal, we can universally guess a combination of the
traces and verify the correctness of the guess in polynomial
time.

For k + 1 quantifier alternations, suppose that the first
quantifier is existential. Since the Kripke structure is acyclic,
the length of the traces is bounded by the number of states. We
can thus nondeterministically guess the existentially quantified
traces in polynomial time and verify the correctness of the
guess, by the induction hypothesis, in Πp

k+1. Hence, the model
checking problem for k + 1 is in Σp

k+2. Likewise, if the first
quantifier is universal, we universally guess the universally
quantified traces in polynomial time and verify the correctness
of the guess, by the induction hypothesis, in Σp

k+1. Hence, the
model checking problem for k + 1 is in Πp

k+2.

Together with the lower bounds for trees in Theorem 6, we
obtain Σp

k+1/Π
p
k+1-completeness for k quantifier alternations.

Corollary 3: MC[HyperLTL, acyclic] is PSPACE-complete.

VI. RELATED WORK

Model checking algorithms for HyperLTL were introduced
in [13]. The satisfiability problem for HyperLTL was shown

172

to be decidable for the ∃∗∀∗ fragment [15]. Runtime verifi-
cation algorithms for HyperLTL include both automata-based
algorithms [9], [11] and rewriting-based algorithms [10]. Hy-
perLTL is also supported by a growing set of tools, including
the model checker MCHyper [13], and the decision procedure
EAHyper [23], and the runtime monitoring tool RVHyper [24].

A study of the impact of structural restrictions on the com-
plexity of the model checking problem, similar to this paper,
has been carried out for LTL [12]. The LTL model checking
problem is PSPACE-hard if there exists a strongly connected
component with two distinct cycles in the Kripke structure. If
no such component exists, then the model checking problem
is in coNP. For the special case of finite paths and trees, the
LTL model checking problem is in NC, or, more precisely, in
AC1(logDCFL) [22], [25].

VII. CONCLUSION

We have developed a detailed and fundamental classifi-
cation of the complexity of the model checking problem for
hyperproperties expressed in HyperLTL over trace logs that
are stored as tree-shaped or acyclic Kripke structures. The
complexity analysis is a crucial step for the development of
runtime monitors, because in runtime verification methods for
hyperproperties, the traces generated over time by the running
system have to be stored into a growing data structure. This is a
fundamental difference to monitoring techniques for standard
trace properties, where the traces are evaluated individually
and the monitors are usually memoryless.

We showed that for trees, the model checking complexity
in the size of the Kripke structure is L-complete independently
of the number of quantifier alternations. For acyclic Kripke
structures, the complexity is in PSPACE (in the level of
the polynomial hierarchy that corresponds to the number of
quantifier alternations). The combined complexity in the size
of the Kripke structure and the length of the HyperLTL formula
is in PSPACE for both trees and acyclic Kripke structures, and
is as low as NC for the relevant case of trees and alternation-
free HyperLTL formulas.

These results highlight two crucial design choices for
monitoring algorithms:

• The substantial differences between the complexities
reported in Tables I and II, in particular the contrast to
the non-elementary complexity of the model checking
problem for general graphs, are intriguing. These
results suggest that non-exhaustive techniques such as
runtime verification, that work on restricted structures,
may have a significant complexity advantage over
static verification.

• In the context of runtime verification, our results in
Tables I and II clearly show the tradeoffs in deploying
runtime verification technology in practice. First, note
that for runtime verification, the size of the formula
is expected to remain constant and, hence, what
matters is the size of the Kripke structure. Tables I
shows that the model checking complexity remains
the same for trees, while it grows significantly for
acyclic structures. This justifies careful space vs. time
considerations in practical settings.

Our study raises many open questions for future work. An
immediate question left unanswered in this paper is the precise
complexity for trees and alternation-free HyperLTL formulas
within NC. Next, it would be interesting to determine the
complexity of the verification problem for further restricted
structures such as flat graphs, i.e., graphs that have no nested
cycles. Also, there are many extensions of HyperLTL, such
as the branching-time logic HyperCTL∗ [3] and the first-order
extension FOHLTL [26]. It would be very interesting to see if
the differences we observed for HyperLTL carry over to these
much more expressive logics. And, finally, we are currently
working on designing runtime verification techniques that can
reuse the result of past verification steps as the size of the
Kripke structure grows.

Acknowledgements: This work was partially supported
by Canada NSERC Discovery Grant 418396-2012, by NSERC
Strategic Grants 430575-2012 and 463324-2014, by the Ger-
man Research Foundation (DFG) as part of the Collaborative
Research Center “Methods and Tools for Understanding and
Controlling Privacy” (SFB 1223), and by the European Re-
search Council (ERC) Grant OSARES (No. 683300).

REFERENCES

[1] S. Zdancewic and A. C. Myers, “Observational determinism for con-
current program security,” in Proceedings of the 16th IEEE Computer
Security Foundations Workshop (CSFW), 2003, p. 29.

[2] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[3] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez, “Temporal logics for hyperproperties,” in Proceedings
of the 3rd Conference on Principles of Security and Trust (POST), 2014,
pp. 265–284.

[4] A. Pnueli, “The temporal logic of programs,” in Symposium on Foun-
dations of Computer Science (FOCS), 1977, pp. 46–57.

[5] D. Giannakopoulou and K. Havelund, “Automata-Based Verification
of Temporal Properties on Running Programs,” in Automated Software
Engineering (ASE), 2001, pp. 412–416.

[6] M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky, “Monitoring,
Checking, and Steering of Real-Time Systems,” Electronic. Notes in
Theoretical Computer Science, vol. 70, no. 4, 2002.

[7] B. Finkbeiner and L. Kuhtz, “Monitor circuits for LTL with bounded
and unbounded future,” in Runtime Verification, 2009, pp. 60–75.

[8] A. Bauer, M. Leucker, and C. Schallhart, “Runtime Verification for
LTL and TLTL,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 20, no. 4, pp. 14:1–14:64, 2011.

[9] S. Agrawal and B. Bonakdarpour, “Runtime verification of k-safety hy-
perproperties in HyperLTL,” in Proceedings of the IEEE 29th Computer
Security Foundations (CSF), 2016, pp. 239–252.

[10] N. Brett, U. Siddique, and B. Bonakdarpour, “Rewriting-based runtime
verification for alternation-free HyperLTL,” in Proceedings of the 23rd
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2017, pp. 77–93.

[11] B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup, “Monitoring
hyperproperties,” in Proceedings of the 17th International Conference
on Runtime Verification, 2017, pp. 190–207.

[12] L. Kuhtz and B. Finkbeiner, “Weak kripke structures and LTL,” in
Proceedings of the 22nd International Conference on Concurrency
Theory (CONCUR), 2011, pp. 419–433.

[13] B. Finkbeiner, M. N. Rabe, and C. Sánchez, “Algorithms for model
checking HyperLTL and HyperCTL*,” in Proceedings of the 27th
International Conference on Computer Aided Verification (CAV), 2015,
pp. 30–48.

[14] M. N. Rabe, “A temporal logic approach to information-flow control,”
Ph.D. dissertation, Saarland University, 2016.

173

[15] B. Finkbeiner and C. Hahn, “Deciding hyperproperties,” in Proceedings
of the 27th International Conference on Concurrency Theory (CON-
CUR), 2016, pp. 13:1–13:14.

[16] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in Proceedings of the IEEE Symposium on Security and Privacy (S &
P), 1982, pp. 11–20.

[17] D. McCullough, “Noninterference and the composability of security
properties,” in Proceedings of the 1988 IEEE Symposium on Security
and Privacy (S & P), 1988, pp. 177–186.

[18] K. Etessami, “Counting quantifiers, successor relations, and logarithmic
space,” Journal of Compuer and System Sciences, vol. 54, no. 3, pp.
400–411, 1997.

[19] T. Lengauer and K. Wagner, “The correlation between the complexities
of the nonhierarchical and hierarchical versions of graph problems,”
Journal of Computer and System Sciences, vol. 44, no. 1, pp. 63
– 93, 1992. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0022000092900043

[20] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York: W. H. Freeman, 1979.

[21] J. McLean, “A general theory of composition for trace sets closed under
selective interleaving functions,” in Proceedings of the IEEE Symposium
on Security and Privacy (S & P), Apr. 1994, pp. 79–93.

[22] L. Kuhtz and B. Finkbeiner, “LTL path checking is efficiently par-
allelizable,” in Proceedings of the 36th International Colloquium on
Automata, Languages and Programming (ICALP 2009), 2009, pp. 235–
246.

[23] B. Finkbeiner, C. Hahn, and M. Stenger, “EAHyper: Satisfiability, im-
plication, and equivalence checking of hyperproperties,” in Proceedings
of the 29th International Conference on Computer Aided Verification
(CAV), 2017, pp. 564–570.

[24] B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup, “RVHyper: A
runtime verification tool for temporal hyperproperties,” in Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
2018, pp. 194–200.

[25] L. Kuhtz, “Model checking finite paths and trees,” Ph.D. dissertation,
Saarland University, 2010.

[26] B. Finkbeiner, C. Müller, H. Seidl, and E. Zalinescu, “Verifying Security
Policies in Multi-agent Workflows with Loops,” in Proceedings of
the 15th ACM Conference on Computer and Communications Security
(CCS), 2017, pp. 633–645.

174

