
Symbolic security of garbled circuits

Baiyu Li∗, Daniele Micciancio∗
∗University of California, San Diego, USA

E-mail: {baiyu,daniele}@cs.ucsd.edu

Abstract—We present the first computationally sound symbolic
analysis of Yao’s garbled circuit construction for secure two party
computation. Our results include an extension of the symbolic
language for cryptographic expressions from previous work
on computationally sound symbolic analysis, and a soundness
theorem for this extended language. We then demonstrate how
the extended language can be used to formally specify not only
the garbled circuit construction, but also the formal (symbolic)
simulator required by the definition of security. The correctness
of the simulation is proved in a purely syntactical way, within
the symbolic model of cryptography, and then translated into
a concrete computational indistinguishability statement via our
general computational soundness theorem. We also implement
our symbolic security framework and the garbling scheme in
Haskell, and our experiment shows that the symbolic analysis
performs well and can be done within several seconds even for
large circuits that are useful for real world applications.

I. INTRODUCTION

Secure computation protocols [1]–[4], showing that any

function can be evaluated by two or more distrustful parties

in a secure way, are a cornerstone of cryptography, and one

of the most complex security problems ever envisioned and

solved by cryptographers. The complexity of designing and

analyzing (general) secure computation protocols stems in

good part from the fact that they require the construction of

not just a single security application, but of an entire class

of applications, each described by a function specified in a

(low level, but still general purpose) computational model, e.g.,

that of arbitrary Boolean circuits. So, in a sense, protocols

for secure computation problems are not individual security

applications, but compilers to translate specifications (e.g.,

circuits to be computed) to secure solutions, often to be

validated with respect to a strong simulation-based definition

of security. In fact, much work on the implementation of secure

computation (e.g., see [5]–[8]) takes the form of compilers

and execution engines. In this paper, we focus on the two

party secure computation problem and Yao’s garbled circuits

[1], [2], the first, and still most popular (in its many variants)

solution to this problem. Even disregarding implementation

issues, it is indicative of the complexity of this problem, that

the first proof of security for Yao’s garbled circuit construction

[9] appeared approximately 30 years after the protocol was

originally proposed [1], [2].

Following a line of research initiated by Abadi and Rogaway

[10], we consider the possibility of simplifying and formaliz-

ing the design and analysis of secure (two-party) computation

protocols using a hybrid approach, consisting of the following

steps:

∙ Setting up a symbolic execution model, which provides a

simple language to describe (and analyze) cryptographic

computations without all the details and complications of

concrete (complexity based) computational models.

∙ Proving a general computational soundness result, show-

ing that what can be proved symbolically in this abstract

model of computation, also holds true when the symbolic

language is instantiated with computational cryptographic

functions satisfying standard (computational) notions of

security.

∙ Prove that the protocol is secure in a purely sym-

bolic/syntactical way, i.e., within the abstract model.

∙ Conclude, via the computational soundness theorem, that

the standard implementation of the protocol (using a

concrete, computational instantiation of the cryptographic

primitives) satisfies the computational indistinguishabil-

ity security properties expected by cryptographers, and

demanded by actual applications.

The usefulness and viability of this computationally sound

symbolic approach to security analysis has been investigated

and demonstrated in a number of papers. Previous work

includes foundational results [10]–[12], and applications to a

number of different settings, like key distribution protocols

[13]–[15], access control in XML databases [16], password

guessing attacks [17], and more.

The goal of this paper is to demonstrate the applicability

of this attractive methodology to the analysis of secure com-

putation protocols, and, specifically, Yao’s protocol for secure

two party computation. Perhaps surprisingly, we are able to

show that a very simple extension of symbolic cryptography

languages already considered in the past are sufficient to both

model and analyze this type of protocols. While we focus

on Yao’s protocol in one of its simplest variants, we believe

that there is a general lesson to be learned: computationally

sound symbolic analysis can be a powerful tool to manage the

complexity of high level cryptographic applications.

We believe that the use of these methods is not limited

to the mechanic validation of protocols that are seemingly

too complex to be checked by hand, but it can actually help

to carry out the security analysis at a sufficiently high (still

precise and computationally meaningful) level of abstraction,

so that formal proofs can be validated (and, most importantly,

understood) by humans. Further extensions of the language

and techniques described in this paper may also offer a basis

to study optimizations and extensions of Yao’s basic protocol,

and, perhaps, even the construction of verified optimizing

compilers for secure computation that translate between dif-

147

2018 IEEE 31st Computer Security Foundations Symposium

© 2018, Baiyu Li. Under license to IEEE.
DOI 10.1109/CSF.2018.00018

ferent variants of cryptographic constructions, while at the

same time checking that the transformations preserve both

functionality and security.

a) Contributions and Technical Overview: As outlined

above, our goal is to describe Yao’s garbled circuits by simple

“symbolic” cryptographic expressions, e.g., expressions of the

form ⦃(𝖪1,⦃𝖪2⦄𝖪1
)⦄𝖪3

, representing the encryption under key

𝖪3 of a pair, consisting of a key 𝖪1 and a random message 𝖪2
encrypted under 𝖪1. Here we are using the compact notation⦃𝑚⦄𝑘, quite common in symbolic cryptography, to represent

the encryption of 𝑚 under 𝑘. (In this introduction we appeal

on the reader’s intuition to interpret the meaning of symbolic

expressions, and refer to Section II for formal definitions.) It is

important to note that expressions like 𝐸 = ⦃(𝖪1,⦃𝖪2⦄𝖪1
)⦄𝖪3

do not represent the result of running a set of encryption

algorithms, but they are purely syntactical objects, and can be

manipulated as such. Of course, expressions like these can also

be mapped to probability distributions over bit-strings, once an

appropriate encryption scheme has been chosen to implement⦃⋅⦄𝑘, and random values are chosen for all the 𝖪𝑖 symbols

used in the expression. The resulting distribution is what an

real adversary would see when the protocol is implemented

and executed in practice.

A simple language of this type was suggested in the pio-

neering work of Abadi and Rogaway [10], which also showed

how to map these expressions to symbolic patterns that capture

the adversary’s view or knowledge of the computation. E.g.,

the expression 𝐸 described above could be mapped to the

pattern ⦃□⦄, representing the fact that the adversary can tell

this is a cipher-text, but nothing else because it does not

know the encrypting key 𝖪3. More realistically, this expression

could be mapped to the pattern ⦃⦇𝕂,⦃𝕂⦄⦈⦄𝖪3
to capture the

fact that the standard notion of encryption does not hide the

size of the message being encrypted (and, thereby, it may

reveal information on the “structure” or “shape” ⦇𝕂,⦃𝕂⦄⦈
of the payload,) and may also reveal partial information

about the encryption key 𝖪3. (Protecting the identity of

the recipient key 𝖪3 is an extra security feature, typically

called “anonymous encryption”.) Abadi and Rogaway [10]

also proved a computational soundness result, showing that

the symbolic notion of equivalence induced by these patterns

(i.e., two expressions are equivalent if they map to the same

symbolic pattern, possibly up to variable renaming), matches

precisely the notion of computational indistinguishability (i.e.,

the probability distributions generated by the two expressions

cannot be told apart by any efficient adversary), provided a

certain technical condition of encryption cycles is met.

In this work, we follow the approach of [12], which allows

to bypass the key-cycles technicality by using a co-inductive

definition of symbolic adversarial knowledge. The language of

[10], [12] allows to use only (arbitrarily nested) encryption,

but it has been extended in [18] to provide a computation-

ally sound treatment of pseudorandom generators. As a first

contribution of this work, we further extend the language

(and computational soundness results) of [10], [12], [18]

allows to include also randomly chosen bits, and a controlled-

swap operation 𝜋[𝑏](𝑒0, 𝑒1) that randomly permutes {𝑒0, 𝑒1}
depending on the value of the (randomly chosen) bit 𝑏. (This

is described in Section II.)

Next, we show how this simple extended language is enough

to express Yao’s garbling procedure in a purely symbolic way.

This requires to describe a method to map arbitrary circuits

to symbolic expressions, rather than simply providing a single

expression or sequence of expressions (as used, for example,

in a multi-step protocol.) In turn, this requires a good way

to handle arbitrary circuits within symbolic computations.

The way circuits are typically formalized (as an unstructured

list of gates and wires, similar to representing a graph by

unstructured sets of nodes and edges) is not very convenient.

As a second contribution of this work, we propose an inductive

method and syntax to describe circuits, where larger circuits

are built in a modular way from smaller ones, starting from

the basic case of single gates. (For simplicity, we consider

only two types of gates: a NAND gate mapping two Boolean

inputs to one output, and a “duplicate” gate mapping a single

input to two identical outputs.) This modular description of

circuits supports both the formal definition of circuit mapping

functions, and associated proofs of security, by structural
induction. We remark that this circuit description language

is by no means new, and it is strongly inspired by similar

ideas used in modern high level programming languages, like

Hughes’ arrows [19], [20].

As a disclaimer, we should note that the arrow syntax used

in this paper is a good match for the mathematical definition of

circuits, and it is a convenient formalism to specify and analyze

circuit-manipulating programs (like compilers for secure com-

putation), but it is not necessarily intended as a user friendly

method to specify computations. But alternative syntax to

describe circuit/arrow computations in a programmer friendly

way exist [21], [22], it can be automatically translated into

the mathematical (inductive) arrows notation, and it is readily

found implemented in mainstream programming languages

like Haskell to structure complex software libraries, like graph-

ical user interfaces, robotics applications, hardware description

languages, and more. So, we will not be concerned on the

usability of the arrow notation to directly specify application

circuits, and refer the interested reader to the programming

language literature for more information.

What is more relevant, in the context of this paper, is that we

are able to use our extended language for symbolic cryptog-

raphy, and the structural arrow-like formalization of circuits,

to give a formal, yet conceptually simple description of

∙ Yao’s circuit garbling procedure,

∙ a symbolic simulator, used to prove the security of Yao’s

construction, and

∙ a detailed, formal proof showing that the output of Yao’s

garbling and the output of the simulator, are symbolically

equivalent, i.e., they map to equivalent symbolic patterns.

We remark that all these definitions and proofs are purely

symbolic, and they work by induction on the structure of

the circuits, reducing the security analysis to the verifica-

tion of a small number of base cases and inductive steps.

148

It follows from our computational soundness theorem that,

when implemented using standard cryptographic primitives,

the resulting construction achieves the standard security notion

of computational indistinguishability used in cryptography.

It is important to note that the connection between symbolic

security, and computational security is not established at the

level of garbled circuits, but it is proved in the context of

a general soundness theorem for a generic, simple language

of cryptographic expressions. The language is designed to be

powerful enough to express garbled circuits and the associated

simulation procedure, but it is otherwise independent of the

specific circuit garbling problem. We believe that this greatly

simplifies and elucidates both the computational soundness

result (which is proved for a simple, application independent

language,) and the application to garbled circuits (which is

described and analyzed in a purely symbolic manner.)

b) Other related work: Since the detailed security proof

of garbled circuits in [9], there have been many studies on

various security properties of garbled circuits. For a recent

summary see for example [23]. The security notion used in [9]

is sometimes called selective security, in which an adversary

must choose an input before the circuit is provided to the

simulator. A more useful notion in practice is adaptive secu-
rity, in which a simulator must be able to return a simulated

garbled circuit back to the adversary given only the circuit,

and the adversary can adaptively choose an input value after

seeing the garbled circuit. There is a number of works that

explore adaptive security of garbled circuits, for example [24]–

[26]. Jafargholi and Wichs [27] showed that Yao’s original

construction of garbled circuits is already adaptively secure

with a security loss of 2𝑂(𝑑), where 𝑑 is the circuit depth, and

this result has been further generalized in [28]. As a first step

toward the symbolic modeling of garbling schemes, in this

paper, we focus on selective security.

Adaptive security in general can be solved by using the

“erasure” approach [29] or by assuming non-standard primi-

tives such as non-committing encryption [30]. In the symbolic

setting, adaptive security with standard assumptions was con-

sidered in the past in the context of symmetric-key encryption

protocols [14]. That approach can be adapted to our symbolic

model to deal with adaptive security of garbled circuits. But

such extension may require a non-trivial amount of work and

is beyond the scope of the current paper, so we leave it for

future study.

Machine-checked proofs have been developed for cryp-

tographic systems through several computer-aided verifica-

tion tools such as CryptoVerif [31], CertiCrypt [32], Easy-

Crypt [33], and so on. These tools apply formal methods in

conjunction with cryptography-specific constructions, and they

impose rigorous proof styles. In a recent work [34], Almeida

et. al. formalized Yao’s secure function evaluation protocol

in which the circuit garbling scheme is a central compo-

nent, and, among many things, it then devised a machine-

checked selective security proof of the garbling scheme using

EasyCrypt (with customized extensions to allow using hybrid

arguments and simulation-based proofs). Comparing to our

work, the construction and the security goal of the garbling

scheme in their work is similar, but their mechanized proofs

argue computational security directly in the logic system of

EasyCrypt, which are different from the symbolic style proofs

in our work.

c) Paper organization: The rest of the paper is organized

as follows. In Section II we provide formal definitions for

symbolic cryptography, background on computational sound-

ness, and our extended symbolic language (and computational

soundness theorem) to describe garbled circuits. Our inductive

method to define circuits is presented in Section III. In Sec-

tion IV, we use our language of symbolic cryptography and the

structural definition of circuits, to give a formal description of

Yao’s circuit garbling procedure. Section V contains the main

results of the paper, with the description of a symbolic sim-

ulator, and a formal proof that it is (symbolically) equivalent

to real garbled circuit computations. Computational security

of garbled circuits, as described in this paper, automatically

follows from the general soundness results given in Section II.

In Section VI, we report our implementation of the symbolic

garbling procedure and the simulator, and we provide some

experimental results on automated testings performed against

our implementation. We conclude our paper in Section VII.

All the omitted proofs can be found in the full version [35].

II. PRELIMINARIES

In this section we introduce basic notation used by symbolic

and computational cryptography. For a positive integer 𝑛, we

write [𝑛] = {1,… , 𝑛}. We use the bit 0 for the Boolean value

false, and 1 for true. For 𝑛 ≥ 1, {0, 1}𝑛 is the set of all Boolean

vectors of length 𝑛. We can concatenate two Boolean vectors

𝑥 ∈ {0, 1}𝑛 and 𝑦 ∈ {0, 1}𝑚 to obtain 𝑥𝑦 ∈ {0, 1}𝑛+𝑚. For

any 𝑥 ∈ {0, 1}𝑛, we can think 𝑥 as a concatenation of 𝑛 bits,

written as 𝑥 = 𝑥1⋯ 𝑥𝑛, where 𝑥1,… , 𝑥𝑛 ∈ {0, 1}. For any

𝑥, 𝑦 ∈ {0, 1}, the NAND function 𝑥↑𝑦 = ¬(𝑥∧𝑦) maps 𝑥 and

𝑦 to 0 if and only if both 𝑥 and 𝑦 are 1.

A. Symbolic cryptography
Our symbolic cryptographic expressions extend those de-

fined in [18] with random bits and a swap operation, which

we need to model garbled circuits. Informally, symbolic

expressions are built from random keys and (possibly ran-

dom) bits, using a symmetric encryption scheme, a (length

doubling) pseudorandom generator, a pairing (concatenation)

operation, and the (random) permutation of pairs. Just as

in computational cryptography it is convenient to group bit-

strings according to their length, in symbolic cryptography

it is customary to classify expressions according to their

shape, which captures the expression size in a representation

independent way. The set of possible shapes for a symbolic

expression is defined by the grammar:

𝐒𝐡𝐚𝐩𝐞→ 𝔹 ∣ 𝕂 ∣ ⦇𝐒𝐡𝐚𝐩𝐞,𝐒𝐡𝐚𝐩𝐞⦈ ∣ ⦃𝐒𝐡𝐚𝐩𝐞⦄
representing the shapes of bits, keys, pairs (of two sub-

expressions of arbitrary shape), and encryptions (of messages

of arbitrary shape), respectively. For example ⦇𝕂,⦃𝔹⦄⦈ is the

149

shape of a pair consisting of a key and the encryption of a

single bit message. Let 𝐁 = {𝖡𝑖 ∣ 𝑖 = 1, 2,…} be a set of

atomic bit symbols, and 𝐊 = {𝖪𝑖 ∣ 𝑖 = 1, 2,…} a set of atomic

key symbols, representing independent uniformly random bits

and independent uniformly random keys, respectively. For any

shape 𝑠 ∈ 𝐒𝐡𝐚𝐩𝐞, we define a corresponding set of expressions

of shape 𝑠 (denoted 𝐄𝐱𝐩(𝑠)) according to the grammar rules:

𝐄𝐱𝐩(𝔹) → 0 ∣ 1 ∣ 𝖡𝑖 ∣ ¬𝐄𝐱𝐩(𝔹)
𝐄𝐱𝐩(𝕂) → 𝖪𝑖 ∣ 𝖦0(𝐄𝐱𝐩(𝕂)) ∣ 𝖦1(𝐄𝐱𝐩(𝕂))

𝐄𝐱𝐩(⦃𝑠⦄) → ⦃𝐄𝐱𝐩(𝑠)⦄𝐄𝐱𝐩(𝕂)
𝐄𝐱𝐩(⦇𝑠, 𝑡⦈) → (𝐄𝐱𝐩(𝑠),𝐄𝐱𝐩(𝑡))
𝐄𝐱𝐩(⦇𝑠, 𝑠⦈) → 𝜋[𝐄𝐱𝐩(𝔹)](𝐄𝐱𝐩(𝑠),𝐄𝐱𝐩(𝑠)).

where 𝑠, 𝑡 range over 𝐒𝐡𝐚𝐩𝐞, 𝖡𝑖 ranges over 𝐁, and 𝖪𝑖 ranges

over 𝐊. Most symbols are self explanatory: ¬𝑏 represents

the logical negation of bit 𝑏, (𝖦0(𝑘),𝖦1(𝑘)) represents the

output of a length doubling pseudorandom generator on seed

𝑘 (with 𝖦0(𝑘) the first half of the output, and 𝖦1(𝑘) the second

half,) ⦃𝑒⦄𝑘 is the encryption of 𝑒 under key 𝑘, (𝑒0, 𝑒1) is

the ordered pair with sub-expressions 𝑒0 and 𝑒1, and for any

bit 𝑏 and expressions 𝑒0, 𝑒1 of the same shape, 𝜋[𝑏](𝑒0, 𝑒1)
represents the pair (𝑒0, 𝑒1) with the two components swapped if

𝑏 = 1. For example, ⦃𝖦0(𝖪1)⦄𝖦1(𝖪1) represents the encryption

of the first half 𝖦0(𝖪1) of a pseudorandom string (obtained

by applying the pseudorandom generator on seed 𝖪1,) en-

crypted under the second half of the pseudorandom string,

while 𝜋[𝖡1](𝖦0(𝖪1),𝖦1(𝖪1)) represents a pseudorandom string

(output by the pseudorandom generator on seed 𝖪1), with

the first and second half of the string permuted (swapped)

at random depending on the value of the (random) bit 𝖡1.

Note that we can iteratively apply the pseudorandom gen-

erator on a key expression 𝑘 to obtain expressions such as

𝖦𝑏1
(𝖦𝑏2

(⋯ (𝖦𝑏𝑛
(𝑘)))) for 𝑛 ≥ 0 and 𝑏1, 𝑏2,… , 𝑏𝑛 ∈ {0, 1}.

Such expressions are abbreviated as 𝖦𝑏1𝑏2…𝑏𝑛
(𝑘). Let 𝜀 denote

the empty bit-string, and let {0, 1}∗ denote the set of all bit-

strings. For any set 𝑆 ⊆ 𝐄𝐱𝐩(𝕂), we define the sets

𝖦∗(𝑆) = {𝖦𝑤(𝑘) ∣ 𝑘 ∈ 𝑆,𝑤 ∈ {0, 1}∗}
𝖦+(𝑆) = {𝖦𝑤(𝑘) ∣ 𝑘 ∈ 𝑆,𝑤 ∈ {0, 1}∗, 𝑤 ≠ 𝜀}

obtained by applying the (first or second half of the) pseudo-

random generator zero (resp. one) or more times to a key in 𝑆.

So, for example, 𝖦∗(𝐊) = 𝐄𝐱𝐩(𝕂) is the set of all (random or

pseudorandom) keys. For convenience, we write 𝐊∗ for 𝖦∗(𝐊)
and 𝐊+ for 𝖦+(𝐊). If 𝑆 = {𝑘} is a singleton set, we usually

write 𝖦+(𝑘) and 𝖦∗(𝑘) instead of 𝖦+({𝑘}) and 𝖦∗({𝑘}).
Patterns are extensions of expressions that include the

construct ⦃𝑠⦄𝐄𝐱𝐩(𝕂) to represent the encryption of an unknown

expression of shape 𝑠. The pattern ⦃𝑠⦄𝐄𝐱𝐩(𝕂) has shape ⦃𝑠⦄.

Formally, patterns are defined by a grammar with variables

𝐏𝐚𝐭(𝑠) indexed by 𝑠 ∈ 𝐒𝐡𝐚𝐩𝐞, and the same set of rules as

those given for 𝐄𝐱𝐩(𝑠), with the addition of one more rule

𝐏𝐚𝐭(⦃𝑠⦄) → ⦃𝑠⦄𝐄𝐱𝐩(𝕂).
𝐏𝐚𝐭(𝑠) is the set of all patterns of shape 𝑠, and 𝐏𝐚𝐭 is the set

of all patterns (of any shape). Notice that 𝐏𝐚𝐭(𝔹) = 𝐄𝐱𝐩(𝔹)

and 𝐏𝐚𝐭(𝕂) = 𝐄𝐱𝐩(𝕂) because only encryption gives raise to

nontrivial patterns.

d) Computational evaluation: Throughout this paper we

let 𝜅 be the security parameter for cryptographic primitives in

the computational setting. For simplicity, all keys are assumed

to have length 𝜅. We use 𝗇𝖾𝗀𝗅(𝜅) to denote an arbitrary

negligible function of 𝜅, i.e., 𝗇𝖾𝗀𝗅(𝜅) < 1∕𝜅𝑐 for any constant

𝑐 > 0 and sufficiently large 𝜅. To instantiate our symbolic

framework, we assume the existence of a length-doubling

pseudorandom generator  and an IND-CPA secure symmetric

encryption scheme ( ,) with keys of length 𝜅.

Definition 1 (Pseudorandom generator). A deterministic func-
tion  ∶ {0, 1}𝜅 → {0, 1}2𝜅 is a secure length-doubling
pseudorandom generator if it can be computed in polynomial
time and, for any PPT distinguisher  we have||||| Pr

𝑠←{0,1}2𝜅
{(𝑠) = 1} − Pr

𝑟←{0,1}𝜅
{(𝖦(𝑟)) = 1}

||||| ≤ 𝗇𝖾𝗀𝗅(𝜅).

For any symmetric encryption scheme ( ,) and 𝑏 ∈
{0, 1}, the left-right encryption oracle  ,𝑏 first samples a

uniformly random key 𝑘 ← {0, 1}𝜅 , and then it answers

any encryption query of the form (𝑚0, 𝑚1) with a ciphertext

(𝑘, 𝑚𝑏), where 𝑚0 and 𝑚1 are of the same length.

Definition 2 (IND-CPA secure symmetric encryption scheme).
A pair of PPT algorithms ( ,) is an IND-CPA secure sym-
metric encryption scheme with key length 𝜅 if the followings
hold:

∙ Correctness: For any 𝑘 ∈ {0, 1}𝜅 and 𝑚 ∈ {0, 1}∗,
Pr{(𝑘, (𝑘, 𝑚)) = 𝑚} = 1;

∙ Security: For any PPT distinguisher ,|||Pr{ ,0 (1𝜅) = 1} − Pr{ ,1 (1𝜅) = 1}||| ≤ 𝗇𝖾𝗀𝗅(𝜅),

where the probability is over the random choices of .

We assume that the size of a cipher-text (𝑘, 𝑚) is a function

of the size of the input 𝑚, i.e., if two messages have the same

length, then their encryption also have the same length. We

do not make any special assumption on the encoding of pairs

(𝑒0, 𝑒1), except that 𝑒0 and 𝑒1 can be recovered from (𝑒0, 𝑒1),
and that the size of (𝑒0, 𝑒1) depends only on the size of 𝑒0 and

the size of 𝑒1. For any 𝑥 ∈ {0, 1}𝜅 , let 0(𝑥) and 1(𝑥) be the

first and second halves of the bit-string (𝑥), so that (𝑥) =
0(𝑥)1(𝑥). Let 𝜎 be a function mapping 𝐁 to {0, 1}, and 𝐊
to {0, 1}𝜅 . We can extend 𝜎 to map any symbolic expression

to a distribution on bit-strings as follows:

𝜎(0) = 0, 𝜎(1) = 1,
𝜎(𝖦0(𝑘)) = 0(𝜎(𝑘)), 𝜎(¬𝑏) = 1 − (𝜎(𝑏)),
𝜎(𝖦1(𝑘)) = 1(𝜎(𝑘)), 𝜎(⦃𝑒⦄𝑘) = (𝜎(𝑘), 𝜎(𝑒)),
𝜎((𝑒0, 𝑒1)) = (𝜎(𝑒0), 𝜎(𝑒1)),

𝜎(𝜋[𝑏](𝑒0, 𝑒1)) =
{

(𝜎(𝑒0), 𝜎(𝑒1)) if 𝜎(𝑏) = 0
(𝜎(𝑒1), 𝜎(𝑒0)) if 𝜎(𝑏) = 1

where 𝑘 ∈ 𝐄𝐱𝐩(𝕂), and 𝑏 ∈ 𝐄𝐱𝐩(𝔹). The computational

evaluation �𝑒� of an expression 𝑒 is defined as the probability

150

distribution obtained by first choosing a uniformly random key

and bit assignment 𝜎, and then picking a sample from 𝜎(𝑒).1
It is easy to check (by induction) that any two expressions of

the same shape evaluate to bit-strings of the same length.

Lemma 1. For any shape 𝑠, all strings in �𝐄𝐱𝐩(𝑠)� have the
same bit-length.

Using this property, we can associate a bit-length to any

shape 𝑠 as the bit-length |𝑠| of any string in the set �𝐄𝐱𝐩(𝑠)�,

and extend the evaluation of expressions to evaluation of

patterns by defining

𝜎(⦃𝑠⦄𝑘) = (𝜎(𝑘), 0|𝑠|).
e) Independence of pseudorandom keys: The following

definitions are given in [18] to provide a (computationally

sound) treatment of symbolic pseudorandom generators. For

any two keys 𝑘1, 𝑘2 ∈ 𝐊∗, if 𝑘2 ∈ 𝖦∗(𝑘1) then we say that 𝑘1
yields 𝑘2, and denote this as 𝑘1 ⪯ 𝑘2, meaning that 𝑘2 can be

obtained from 𝑘1 by repeated application of the pseudorandom

generator. By 𝑘1 ≺ 𝑘2 we mean that 𝑘1 ⪯ 𝑘2 and 𝑘1 ≠ 𝑘2.

We say that 𝑘1 and 𝑘2 are independent if neither 𝑘1 ⪯ 𝑘2 nor

𝑘2 ⪯ 𝑘1. The keys {𝑘1,… , 𝑘𝑛} form an independent set if 𝑘𝑖
and 𝑘𝑗 are independent for all 𝑖 ≠ 𝑗. The root of any set of keys

𝑆 is 𝐑𝐨𝐨𝐭𝐬(𝑆) = 𝑆⧵𝖦+(𝑆). Thus 𝑆 is independent if and only

if 𝑆 = 𝐑𝐨𝐨𝐭𝐬(𝑆). We recall the following theorem from [18]

which shows that independent symbolic keys correspond to

(computational) pseudorandom bit-strings.

Theorem 1 ([18, Theorem 1]). Let 𝑘1,… , 𝑘𝑛 ∈ 𝐊∗ be a se-
quence of symbolic keys. Then for any secure length-doubling
pseudorandom generator , the following two conditions are
equivalent:

1) The keys 𝑘1,… , 𝑘𝑛 are symbolically independent (i.e.,
𝑘𝑖 ⪯ 𝑘𝑗 if and only if 𝑖 = 𝑗).

2) The probability distribution �𝑘1,… , 𝑘𝑛� is compu-
tationally indistinguishable from �𝑟1,… , 𝑟𝑛� where
𝑟1,… , 𝑟𝑛 ∈ 𝐊 are distinct atomic key symbols.

f) Equivalence and Renaming of patterns: We consider

patterns up to simple operations that do not change the

probability distributions associated to them. First, let ≡ be the

smallest congruence relation on 𝐏𝐚𝐭 such that

¬0 ≡ 1 𝜋[0](𝑒0, 𝑒1) ≡ (𝑒0, 𝑒1)
¬1 ≡ 0 𝜋[1](𝑒0, 𝑒1) ≡ (𝑒1, 𝑒0)

¬(¬𝑏) ≡ 𝑏 𝜋[¬𝑏](𝑒0, 𝑒1) ≡ 𝜋[𝑏](𝑒1, 𝑒0)

for all 𝑒0, 𝑒1 ∈ 𝐏𝐚𝐭(𝑠), and 𝑏 ∈ 𝐏𝐚𝐭(𝔹). It should be clear

from the computational interpretation of 𝜋[𝑏] and ¬𝑏 that

for any two equivalent patterns 𝑒0 ≡ 𝑒1 and any assignment

𝜎, the probability distributions 𝜎(𝑒0) and 𝜎(𝑒1) are identical.

Similarly, we define a random bit renaming as a function

𝛼𝐵 ∶ 𝐁→ {𝑏,¬𝑏 ∣ 𝑏 ∈ 𝐁} such that its projection 𝛼′
𝐵
∶ 𝐁 → 𝐁

(defined by the condition 𝛼𝐵(𝑏) ∈ {𝛼′
𝐵
(𝑏),¬𝛼′

𝐵
(𝑏)}) is a

1Notice that, even for fixed 𝜎 and 𝑒, the image 𝜎(𝑒) is a probability
distribution because it involves the use of a probabilistic encryption scheme  .

bijection on 𝐁. Random bit renamings are extended to patterns

𝛼𝐵 ∶ 𝐏𝐚𝐭(𝑠) → 𝐏𝐚𝐭(𝑠) in the obvious way, and it is easy to

check that for any pattern 𝑒 ∈ 𝐏𝐚𝐭(𝑠) and assignment 𝜎, the

distributions 𝜎(𝑒) and 𝜎(𝛼𝐵(𝑒)) are identical.

For keys, we consider a form of renaming that may change

the distribution associated to an expression or pattern, but in

a computationally indistinguishable way. Following [18], we

define a pseudorandom key renaming as a mapping 𝛼𝐾 ∶ 𝑆 →
𝐊∗ on 𝑆 ⊆ 𝐊∗ that preserves 𝖦, i.e.,

𝖦𝑤(𝑘1) = 𝑘2 ⟺ 𝖦𝑤(𝛼𝐾 (𝑘1)) = 𝛼𝐾 (𝑘2)

for all 𝑤 ∈ {0, 1}∗ and 𝑘1, 𝑘2 ∈ 𝑆. We restate some useful

properties of key renamings proved in [18]:

1) [18, Lemma 1] Any pseudorandom key renaming

𝛼𝐾 ∶ 𝑆 → 𝐊∗ is a bijection from 𝑆 to 𝛼𝐾 (𝑆). Moreover,

𝑆 is independent if and only if 𝛼𝐾 (𝑆) is independent.

2) [18, Lemma 2] Any pseudorandom key renaming 𝛼𝐾
with domain 𝑆 can be uniquely extended to a pseu-

dorandom key renaming 𝛼̄𝐾 with domain 𝖦∗(𝑆). In

particular, any pseudorandom key renaming can be

uniquely specified as an extension 𝛼̄𝐾 of a bijection

𝛼𝐾 ∶ 𝐴 → 𝐵 between independent sets 𝐴 = 𝐑𝐨𝐨𝐭𝐬(𝑆)
and 𝐵 = 𝛼𝐾 (𝐴).

3) [18, Lemma 5] For any pseudorandom key renaming

𝛼𝐾 ∶ 𝑆 → 𝐊∗ and set of keys 𝐴 ⊆ 𝑆, 𝛼𝐾 (𝐑𝐨𝐨𝐭𝐬(𝐴)) =
𝐑𝐨𝐨𝐭𝐬(𝛼𝐾 (𝐴)).

Pseudorandom key renamings 𝛼𝐾 can also be extended to

patterns 𝛼𝐾 ∶ 𝐏𝐚𝐭(𝑠) → 𝐏𝐚𝐭(𝑠) in the obvious way, and while

the distributions 𝜎(𝑒) and 𝜎(𝛼𝐾 (𝑒)) may, in general be different,

they are always computationally indistinguishable.

The following lemma is an easy consequence of Theorem 1,

and, despite the fact that we use a larger class of expressions,

the proof is virtually identical to that of [18, Corollary 1].

Lemma 2. For any pattern 𝑒 and pseudorandom key renaming
𝛼𝐾 , the distributions �𝑒� and �𝛼𝐾 (𝑒)� are computationally
indistinguishable.

We refer to a pair of mappings 𝛼 = (𝛼𝐵, 𝛼𝐾) (consisting of

a random bit renaming 𝛼𝐵 and a pseudorandom key renaming

𝛼𝐾) as a pseudorandom renaming, or simply a renaming.

For any pattern 𝑒 ∈ 𝐏𝐚𝐭(𝑠), we write 𝛼(𝑒) = 𝛼𝐾 (𝛼𝐵(𝑒)) =
𝛼𝐵(𝛼𝐾 (𝑒)) for the result of applying the renamings to the

pattern 𝑒.2 Two patterns 𝑒0 and 𝑒1 are equivalent up to
renaming, denoted as 𝑒0 ≈ 𝑒1, if there exists a renaming

𝛼 = (𝛼𝐵, 𝛼𝐾) such that 𝑒0 ≡ 𝛼(𝑒1). When we want to

emphasize the renaming 𝛼, we write 𝑒0 ≈𝛼 𝑒1. It follows

from the previous statements that patterns that are equivalent

up to renaming evaluate to probability distributions that are

computationally indistinguishable.

g) Pattern computation: Following [12], the mapping

from expressions to patterns is defined by two functions:

∙ A function 𝐩(𝑒, 𝑆) mapping an expression (or pattern) 𝑒

and set of keys 𝑆 ⊆ 𝐊∗ to the pattern representing the

2Notice that the mappings 𝛼𝐵 and 𝛼𝐾 commute, so they can be applied in
any order.

151

𝐩(𝑏, 𝑆) = 𝑏 𝐩((𝑒0, 𝑒1), 𝑆) = (𝐩(𝑒0, 𝑆),𝐩(𝑒1, 𝑆))
𝐩(𝑘, 𝑆) = 𝑘 𝐩(𝜋[𝑏](𝑒, 𝑒0), 𝑆) = 𝜋[𝑏](𝐩(𝑒, 𝑆),𝐩(𝑒0, 𝑆))

𝐩(⦃𝑠⦄𝑘, 𝑆) = ⦃𝑠⦄𝑘 𝐩(⦃𝑒⦄𝑘, 𝑆) =
{ ⦃𝐩(𝑒, 𝑆)⦄𝑘 if 𝑘 ∈ 𝑆⦃𝑠⦄𝑘 if 𝑘 ∉ 𝑆

Fig. 1. The pattern function 𝐩 ∶ 𝐏𝐚𝐭 × ℘(𝐏𝐚𝐭(𝕂)) → 𝐏𝐚𝐭, defined for all
𝑏 ∈ 𝐄𝐱𝐩(𝔹), 𝑘 ∈ 𝐄𝐱𝐩(𝕂), 𝑒, 𝑒0 ∈ 𝐄𝐱𝐩(𝑠), 𝑒1 ∈ 𝐄𝐱𝐩(𝑡)

𝐊𝐞𝐲𝐬(𝑏) = ∅ 𝐊𝐞𝐲𝐬(⦃𝑒⦄𝑘) = {𝑘} ∪𝐊𝐞𝐲𝐬(𝑒)
𝐊𝐞𝐲𝐬(𝑘) = {𝑘} 𝐊𝐞𝐲𝐬(⦃𝑠⦄𝑘) = {𝑘}
𝐊𝐞𝐲𝐬((𝑒0, 𝑒1)) = 𝐊𝐞𝐲𝐬(𝑒0) ∪𝐊𝐞𝐲𝐬(𝑒1)
𝐊𝐞𝐲𝐬(𝜋[𝑏](𝑒0, 𝑒1)) = 𝐊𝐞𝐲𝐬(𝑒0) ∪𝐊𝐞𝐲𝐬(𝑒1)
𝐏𝐚𝐫𝐭𝐬(𝑏) = {𝑏} 𝐏𝐚𝐫𝐭𝐬(⦃𝑒⦄𝑘) = {⦃𝑒⦄𝑘} ∪ 𝐏𝐚𝐫𝐭𝐬(𝑒)
𝐏𝐚𝐫𝐭𝐬(𝑘) = {𝑘} 𝐏𝐚𝐫𝐭𝐬(⦃𝑠⦄𝑘) = {⦃𝑠⦄𝑘}
𝐏𝐚𝐫𝐭𝐬((𝑒0, 𝑒1)) = {(𝑒0, 𝑒1)} ∪ 𝐏𝐚𝐫𝐭𝐬(𝑒0) ∪ 𝐏𝐚𝐫𝐭𝐬(𝑒1)
𝐏𝐚𝐫𝐭𝐬(𝜋[𝑏](𝑒0, 𝑒1)) = {𝜋[𝑏](𝑒0, 𝑒1)} ∪ 𝐏𝐚𝐫𝐭𝐬((𝑒0, 𝑒1))

Fig. 2. The definition of the keys and parts of a sub-expression. As usual
𝑏 ∈ 𝐄𝐱𝐩(𝔹), 𝑘 ∈ 𝐄𝐱𝐩(𝕂).

view of 𝑒 to an adversary that can decrypt under (all and

only) the keys in 𝑆.

∙ A function 𝐫(𝑝) mapping a pattern 𝑝 to a corresponding

set of keys, which may be recoverable by an adversary

that sees all the parts of 𝑝.

The definition of these functions is virtually identical to the

one given in [18] for expressions with pseudorandom keys,

extended with an additional case for our “controlled swap”

expressions. Informally, 𝐩(𝑒, 𝑆) replaces all subexpressions of

𝑒 of the form ⦃𝑒′⦄𝑘 for some 𝑘 ∉ 𝑆 and 𝑒′ ∈ 𝐏𝐚𝐭(𝑠), with

the pattern ⦃𝑠⦄𝑘. The formal definition is given in Fig. 1.

The formal definition of 𝐫 is more technical, and uses the

auxiliary functions 𝐊𝐞𝐲𝐬 and 𝐏𝐚𝐫𝐭𝐬 describing the keys and

parts of an expression given in Fig. 2. As a matter of notation,

for any two expressions 𝑒′ and 𝑒, we say that 𝑒′ is a sub-
expression of 𝑒, denoted as 𝑒′ ⋐ 𝑒, if 𝑒′ ∈ 𝐏𝐚𝐫𝐭𝐬(𝑒). Notice that

encryption keys 𝑘 are not considered sub-expressions of ⦃𝑒⦄𝑘,

as, even an adversary with unlimited decryption capabilities

cannot, in general, recover 𝑘 from ⦃𝑒⦄𝑘. Informally, 𝐫(𝑒) is

defined as the set of all keys that can be potentially recov-

ered from 𝐏𝐚𝐫𝐭𝐬(𝑒). In [18], this is defined using a general

framework to model partial information in symbolic security

analysis. For simplicity, here we only give the definition

specialized to our class of expressions.

Definition 3. For any 𝑒 ∈ 𝐏𝐚𝐭, we define the key recovery
function 𝐫 ∶ 𝐏𝐚𝐭 → ℘(𝐏𝐚𝐭(𝕂)) as follows:

𝐫(𝑒) = 𝖦∗ ({𝑘 ∈ 𝐊𝐞𝐲𝐬(𝑒) ∣ (𝑘 ⋐ 𝑒) ∨ (∃𝑘′ ∈ 𝐊𝐞𝐲𝐬(𝑒).𝑘 ≺ 𝑘′)}
)

Informally, 𝐫(𝑒) contains all keys 𝑘 from 𝐊𝐞𝐲𝐬(𝑒) (and

pseudorandom keys that can be derived from 𝑘) such that

either 𝑘 appears in 𝑒 as a sub-expression, or 𝑘 is related to

some other key in 𝐊𝐞𝐲𝐬(𝑒). The intuition behind this definition

is that the adversary can learn a key 𝑘 either by reading it

directly from the parts of 𝑒, or by combining different pieces

of partial information about 𝑘. We refer the reader to [18] for

further discussion and justification of this definition.

One can check by induction that the following commutative

properties hold for 𝐩 and 𝐫: For any pattern 𝑒 ∈ 𝐏𝐚𝐭, set

of keys 𝑆 ⊆ 𝐊∗, and pseudorandom renaming 𝛼, we have

𝛼(𝐩(𝑒, 𝑆)) = 𝐩(𝛼(𝑒), 𝛼(𝑆)), and 𝛼(𝐫(𝑒)) = 𝐫(𝛼(𝑒)).
h) Computational soundness: We can now return to

the framework of [12] to associate computationally sound

symbolic patterns to cryptographic expressions. The functions

𝐩 and 𝐫 are used to define, for any 𝑒 ∈ 𝐏𝐚𝐭, a key recovery

operator

𝑒(𝑆) = 𝐫(𝐩(𝑒, 𝑆))
mapping any set of keys 𝑆 ⊆ 𝖦∗(𝐊), to the set of keys

potentially recoverable by an adversary that is capable of

decrypting under the keys in 𝑆. This operator is used in [12]

to prove the following general computational soundness result.

Theorem 2 ([12, Theorem 1]). Assume the functions 𝐩, 𝐫
satisfy the following properties:

1) 𝐩(𝑒,𝐊∗) = 𝑒

2) 𝐩(𝐩(𝑒, 𝑆), 𝑇) = 𝐩(𝑒, 𝑆 ∩ 𝑇) for all 𝑆, 𝑇 ⊆ 𝐊∗

3) 𝐫(𝐩(𝑒, 𝑇)) ⊆ 𝐫(𝑒) for all 𝑇 ⊆ 𝐊∗

4) The distributions �𝑒� and �𝐩(𝑒, 𝐫(𝑒))� are computation-
ally indistinguishable.

Then, the key recovery operator 𝑒 has a (unique) greatest
fixed point Fix(𝑒) = ∩𝑖>0

(𝑖)
𝑒 (𝐊∗), and the pattern

𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑒) = 𝐩(𝑒,Fix(𝑒))

is computationally sound, in the sense that �𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑒)� and
�𝑒� are computationally indistinguishable distributions.

One can check that the functions 𝐩 and 𝐫 satisfy all the

conditions 1 to 3 in Theorem 2. For the last condition, the

following lemma shows that �𝑒� and �𝐩(𝑒, 𝐫(𝑒))� are indis-

tinguishable for all patterns 𝑒. The proof is omitted due to

space constraint. Using the soundness theorem of the general

symbolic framework of [12] we can then conclude that our

symbolic semantics is computationally sound.

Lemma 3. For any 𝑒 ∈ 𝐏𝐚𝐭, the probability distributions �𝑒�
and �𝐩(𝑒, 𝐫(𝑒))� are computationally indistinguishable.

Recall that renamings commute with the pattern function

𝐩, i.e., for any expression 𝑒 and for any set of keys 𝑆 ⊆ 𝐊∗,

𝐩(𝛼(𝑒), 𝛼(𝑆)) = 𝛼(𝐩(𝑒, 𝑆)). It follows that 𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝛼(𝑒)) =
𝛼(𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑒)), and therefore we can extend the computational

soundness theorem to pattern equivalence up to renaming. That

is, for any two expressions 𝑒1 and 𝑒2, symbolic equivalence

(up to pseudorandom renaming) of their patterns 𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑒1)
and 𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑒2) implies that the two probability distributions

�𝑒1� and �𝑒2� are computationally indistinguishable.

Theorem 3. For any two symbolic expressions 𝑒0, 𝑒1, if
𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑒0) ≈ 𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑒1), then �𝑒0� and �𝑒1� are compu-
tationally indistinguishable.

152

III. INDUCTIVE CIRCUITS

Traditionally, boolean circuits are described by two sets of

gates {𝑔𝑖}
𝑞

𝑖=1 and wires {𝑤𝑖}
𝑝

𝑖=1 and a description of how they

are connected together. Each wire carries a boolean value, that

is either given as part of the input to the circuit, or is computed

by a gate. Each gate is associated to a number of input and

output wires, and sets the value of the output wires to some

fixed function of the values of the input wires. For simplicity,

we consider circuits using just two types of gates:

∙ a NAND gate that on input two boolean values 𝑥0, 𝑥1,

computes the output 𝑦 = 𝑥0 ↑ 𝑥1, and

∙ a DUP gate, which duplicates the value on its single input

wire 𝑥 to its two output wires 𝑦0 = 𝑦1 = 𝑥.

The NAND function itself is complete for the set of all

boolean functions, and the DUP gate can be used to implement

arbitrary fan-out. So any boolean circuit can be converted to

this notation. A circuit with 𝑛 input wires and 𝑚 output wires

computes a boolean function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚.

This traditional formalization of circuits is completely un-

structured, making it inconvenient to use in symbolic construc-

tions and proofs of security. Below we present an alternative

way to describe boolean circuits, which is inductive (larger

circuits are built from smaller ones), and supports definitions

and proofs by structural induction.

We begin by putting some structure on the set of input and

output wires of a circuit, by defining the notion of a wire
bundle. Informally, the shape of a wire bundle is defined by

a well parenthesized expression like (◦, (◦, ◦)). Formally, we

can define bundle to be either a single wire (represented by

the symbol ◦), or an ordered pair (𝑢, 𝑣) where 𝑢 and 𝑣 are wire

bundles. The size of a bundle is simply the number of wires

in it, i.e., the number of ◦ subexpressions. Each wire ◦ carries

a bit 𝑏 ∈ {0, 1}, and a bundle of 𝑛 wires naturally carries a

bit vector in {0, 1}𝑛, but the additional bundle structure will

give us easier access to individual bits, without having to index

them. We remark that the grouping of wires is not associative,

i.e., ((𝑢, 𝑣), 𝑤) is different from (𝑢, (𝑣,𝑤)).
We define circuits inductively, specifying a number of

basic circuits, and some general operations to combine them

together. Each circuit takes as input a bundle of wires, and

produces as output another bundle. The set of circuits with

input shape 𝑠 and output shape 𝑡 is denoted by Circuit(𝑠, 𝑡).
Circuits, their inputs and outputs, and the functions they

compute, are formally specified in the following definition,

with the base and inductive cases illustrated in Fig. 3 and 4.

Definition 4. A circuit is either a basic circuit from the
set {𝐒𝐰𝐚𝐩,𝐀𝐬𝐬𝐨𝐜,𝐔𝐧𝐚𝐬𝐬𝐨𝐜,𝐃𝐮𝐩,𝐍𝐀𝐧𝐝}, or it is a composite
circuit built using operations ⋙ and 𝐅𝐢𝐫𝐬𝐭. The semantics of
basic circuits are:

∙ 𝐒𝐰𝐚𝐩 consumes wires (𝑢, 𝑣) and produces wires (𝑣, 𝑢).
∙ 𝐀𝐬𝐬𝐨𝐜 consumes wires (𝑢, (𝑣,𝑤)) and produces wires
((𝑢, 𝑣), 𝑤).

∙ 𝐔𝐧𝐚𝐬𝐬𝐨𝐜 consumes wires ((𝑢, 𝑣), 𝑤) and produces wires
(𝑢, (𝑣,𝑤)).

∙ 𝐃𝐮𝐩 consumes a single wire 𝑤 and produces wires (𝑤,𝑤).

S

Swap

A

Assoc

U

Unassoc

D

Dup

↑
N

NAnd

Fig. 3. The atomic circuits 𝐒𝐰𝐚𝐩, 𝐀𝐬𝐬𝐨𝐜, 𝐔𝐧𝐚𝐬𝐬𝐨𝐜, 𝐃𝐮𝐩, and 𝐍𝐀𝐧𝐝. The
dotted lines indicate how values are transferred from input wires to output
wires. For 𝐒𝐰𝐚𝐩, 𝐀𝐬𝐬𝐨𝐜, and 𝐔𝐧𝐚𝐬𝐬𝐨𝐜, an arrow may represent a bundle of
more than one wires.

𝐶0 𝐶1

𝐶0 ⋙ 𝐶1

𝐶

𝐅𝐢𝐫𝐬𝐭(𝐶)

Fig. 4. Composite circuits 𝐶0 ⋙ 𝐶1 and 𝐅𝐢𝐫𝐬𝐭(𝐶) using operations ⋙ and
𝐅𝐢𝐫𝐬𝐭 on circuits 𝐶0, 𝐶1, 𝐶 . Dotted lines draw the boundaries of composite
circuits.

∙ 𝐍𝐀𝐧𝐝 consumes wires (𝑢, 𝑣), where 𝑢 and 𝑣 are single
wires carrying bits 𝑥 and 𝑦, and its output is a single
wire that carries the bit 𝑥 ↑ 𝑦.

For composite circuits, assume 𝐶0 is a circuit that takes 𝑢
as input wires and produces output wires 𝑤, and 𝐶1 a circuit
that takes 𝑤 as input wires and produces output wires 𝑣. Then

∙ 𝐶0 ⋙ 𝐶1 is a circuit that takes input 𝑢 and produces
output 𝑣, obtained by first applying 𝐶0 on 𝑢 to get an
intermediate result 𝑤, and then applying 𝐶1 on 𝑤 to get 𝑣.

∙ 𝐅𝐢𝐫𝐬𝐭(𝐶0) is a circuit that takes input wires (𝑢, 𝑢′) and
produces output wires (𝑤, 𝑢′) for any wires 𝑢′, where 𝑤

is the output of 𝐶0 on input 𝑢, and 𝑢′ is left unchanged
by the circuit.

To evaluate a circuit, we define the function 𝐄𝐯(𝐶,𝑤) that

takes a circuit 𝐶 ∈ Circuit(𝑠, 𝑡) and a wire bundle 𝑤 of shape

𝑠, and return a bundle of shape 𝑡 according to the above

semantics. For simplicity, we usually just write 𝐶(𝑥) for the

boolean value carried on the wires 𝑢 = 𝐄𝐯(𝐶,𝑤) where 𝑥 is

the value carried on 𝑤.

We remark that the circuit concatenation operation ⋙ is

associative, i.e., (𝐶0 ⋙ 𝐶1) ⋙ 𝐶2 and 𝐶0 ⋙ (𝐶1 ⋙ 𝐶2)
produce the same circuit. So, we may omit the parentheses

when writing a sequence of concatenations 𝐶0 ⋙ 𝐶1 ⋙ 𝐶2.

For a circuit 𝐶 , we say that 𝐶 ′ is a sub-circuit of 𝐶 if one

of the following holds:

∙ 𝐶 ′ = 𝐶 , or

∙ 𝐶 = 𝐶0 ⋙ 𝐶1 and 𝐶 ′ is a sub-circuit of 𝐶0 or 𝐶1, or

∙ 𝐶 = 𝐅𝐢𝐫𝐬𝐭(𝐶0) and 𝐶 ′ is a sub-circuit of 𝐶0.

Example 1. To illustrate our circuit notation, consider the

function 𝑓 ((𝑥, 𝑦), 𝑧) = (𝑥∧𝑦, 𝑦 → 𝑧), where 𝑦 → 𝑧 ≡ ¬𝑦∨𝑧 is

the logical implication operation. First we define an operation

153

D
A

U

𝑥

𝑦

𝑧

↑ D ↑

D ↑ ↑

(𝑥 ∧ 𝑦)

(𝑦 → 𝑧)

𝐀𝐧𝐝

𝐈𝐦𝐩

Fig. 5. The circuit that computes the function 𝑓 ((𝑥, 𝑦), 𝑧) = (𝑥 ∧ 𝑦, 𝑦 → 𝑧).

𝐒𝐞𝐜𝐨𝐧𝐝 on circuits such that 𝐒𝐞𝐜𝐨𝐧𝐝(𝐶) is a circuit that takes

as input a wire bundle (𝑢, 𝑣) and produces as output a bundle

(𝑢,𝑤), where 𝑣 is the input of 𝐶 and 𝑤 is the output of 𝐶:

𝐒𝐞𝐜𝐨𝐧𝐝(𝐶) = 𝐒𝐰𝐚𝐩⋙ 𝐅𝐢𝐫𝐬𝐭(𝐶)⋙ 𝐒𝐰𝐚𝐩

Since 𝑥 ↑ 𝑥 = ¬𝑥, the circuit 𝐍𝐨𝐭 = 𝐃𝐮𝐩 ⋙ 𝐍𝐀𝐧𝐝
computes the negation of an input bit, and the circuit 𝐀𝐧𝐝 =
𝐍𝐀𝐧𝐝 ⋙ 𝐍𝐨𝐭 = 𝐍𝐀𝐧𝐝 ⋙ 𝐃𝐮𝐩 ⋙ 𝐍𝐀𝐧𝐝 computes the

function (𝑥, 𝑦) ↦ (𝑥∧𝑦). Since 𝑦 → 𝑧 = (¬𝑦)∨𝑧 = 𝑦↑(¬𝑧), the

circuit 𝐈𝐦𝐩 = 𝐒𝐞𝐜𝐨𝐧𝐝(𝐍𝐨𝐭)⋙ 𝐍𝐀𝐧𝐝 computes the function

(𝑦, 𝑧) ↦ (𝑦 → 𝑧). Putting them together, we obtain a circuit

𝐶 = 𝐅𝐢𝐫𝐬𝐭(𝐒𝐞𝐜𝐨𝐧𝐝(𝐃𝐮𝐩)⋙ 𝐀𝐬𝐬𝐨𝐜)⋙ 𝐔𝐧𝐚𝐬𝐬𝐨𝐜
⋙ 𝐅𝐢𝐫𝐬𝐭(𝐀𝐧𝐝)⋙ 𝐒𝐞𝐜𝐨𝐧𝐝(𝐈𝐦𝐩)

for the function 𝑓 ((𝑥, 𝑦), 𝑧) = (𝑥∧𝑦, 𝑦 → 𝑧), illustrated graph-

ically in Fig. 5. Notice how the first part of the computation

consisting of the 𝐃𝐮𝐩, 𝐀𝐬𝐬𝐨𝐜 and 𝐔𝐧𝐚𝐬𝐬𝐨𝐜 gates is used to

route the input wires to the appropriate subcircuit.

Remark 1. With our circuit notation, a circuit with 𝑞 gates and

𝑝 wires can be represented using a string of size 𝑂(𝑞𝑑 log 𝑞),
where 𝑑 is the depth of the circuit. We can convert the

traditional DAG-like circuit notation to our inductive circuit

representation by organizing gates into layers according to

their depth. For a layer with 𝑞𝑖 gates, the computation of

these gates can be described using 𝑞𝑖 log 𝑞𝑖 many 𝐅𝐢𝐫𝐬𝐭 and

𝐒𝐞𝐜𝐨𝐧𝐝 operations together with 𝑞𝑖 basic circuits. To rearrange

wires after a layer of 𝑞𝑖 gates, we can add 𝑂(𝑞𝑖 log 𝑞𝑖) many

𝐒𝐰𝐚𝐩, 𝐀𝐬𝐬𝐨𝐜, and 𝐔𝐧𝐚𝐬𝐬𝐨𝐜 gates. The entire circuit can be

concatenated from layers using ⋙ operations. So the size of

such representation is 𝑂(𝑞𝑑 log 𝑞).

IV. SYMBOLIC GARBLING

Let us first recall the definition of circuit garbling schemes

in the computational setting [9], [24].

Definition 5 (Syntax). A garbling scheme is defined by a pair
of PPT algorithms (𝙶𝚊𝚛𝚋𝚕𝚎, 𝙶𝙴𝚟𝚊𝚕)3 where

∙ 𝙶𝚊𝚛𝚋𝚕𝚎(𝐶, 𝑥) = (𝐶, 𝑥̃): The circuit garbling algorithm
takes a circuit 𝐶 and a boolean vector 𝑥 as input, and it
produces a garbled circuit 𝐶 and a garbled input 𝑥̃.

3Usually a garbling scheme consists of three algorithms

(𝙶𝙲𝚒𝚛𝚌𝚞𝚒𝚝, 𝙶𝙸𝚗𝚙𝚞𝚝, 𝙶𝙴𝚟𝚊𝚕) such that 𝙶𝙲𝚒𝚛𝚌𝚞𝚒𝚝(𝐶) = (𝐶,𝐿) produces
a garbled circuit 𝐶̃ and labels 𝐿 for the input wires, and 𝙶𝙸𝚗𝚙𝚞𝚝(𝐿, 𝑥) = 𝑥̃
produces garbled input 𝑥̃ using the labels. Such a syntax is useful to define
adaptive security. However, we choose a simplified syntax of two algorithms
that is sufficient to define selective security and convenient for our analysis.

∙ 𝙶𝙴𝚟𝚊𝚕(𝐶, 𝑥̃) = 𝑦: The garbled circuit evaluation algo-
rithm takes a garbled circuit 𝐶 and a garbled input 𝑥̃ as
input, and it produces a boolean vector 𝑦 as output.

Definition 6 (Correctness and security). For a garbling
scheme (𝙶𝚊𝚛𝚋𝚕𝚎, 𝙶𝙴𝚟𝚊𝚕), we say that

∙ it is correct if 𝙶𝙴𝚟𝚊𝚕(𝙶𝚊𝚛𝚋𝚕𝚎(𝐶, 𝑥)) = 𝐶(𝑥) for all
circuits 𝐶 and boolean vectors 𝑥;

∙ it is (selectively) secure if there exists a PPT simulator
𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎(⋅, ⋅) such that for any circuit 𝐶 and input 𝑥, the
distributions 𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎(𝐶,𝐶(𝑥)) and 𝙶𝚊𝚛𝚋𝚕𝚎(𝐶, 𝑥) are
computationally indistinguishable.

Strictly speaking, a simulator should not gain access to a

circuit, and instead, it should take the topology of a circuit

as input. To simplify discussion, we use the actual circuit

as its topology representation rather than introducing new

notations. This can be justified by the facts that 1) there is only

one primitive gate in our circuit notation, namely the NAND

gate, and 2) our simulator (defined later) does not exploit the

function computed by the NAND gate.

i) Symbolic garbled circuit: We consider garbling

schemes where the output of all algorithms 𝙶𝚊𝚛𝚋𝚕𝚎, 𝙶𝙴𝚟𝚊𝚕,

and 𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎 are expressions in our symbolic language

𝐄𝐱𝐩. This will allow us to analyze both the correctness

and security properties of the scheme in a purely symbolic

manner, without resorting to the power (and complications)

of the full computational model of cryptography. The circuit

garbling construction described here is essentially the one with

the point-and-permute technique as described in [36]. In this

section we present 𝙶𝚊𝚛𝚋𝚕𝚎 and 𝙶𝙴𝚟𝚊𝚕, and we will define

𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎 and prove security in the next section.

Let 𝜖 denote a special symbolic expression whose compu-

tational evaluation is the empty string. We slightly change the

notation of atomic key symbols by using both subscripts and

superscripts to index them: an atomic key is a symbol 𝖪𝑗
𝑖

where 𝑖 ∈ {1, 2,…} and 𝑗 ∈ {0, 1}. With this notation, the

set of atomic keys is now 𝐊 = {𝖪0
1,𝖪

1
1,𝖪

0
2,𝖪

1
2,…}. To hide

the input of a circuit, the garbling algorithm encodes values

carried on wires using labels of shape ⦇𝔹, ⦇𝕂,𝕂⦈⦈, one for

each wire. We call a bundle of labels a label expression.

Formally, we first define a function 𝙻𝚊𝚋𝚎𝚕 that on input a

bundle shape 𝑠, outputs a collection of wire labels:

𝙻𝚊𝚋𝚎𝚕(◦) = (𝖡ℎ, (𝖪0
ℎ
,𝖪1

ℎ
)) where

ℎ ← new
𝙻𝚊𝚋𝚎𝚕((𝑠, 𝑡)) = (𝙻𝚊𝚋𝚎𝚕(𝑠), 𝙻𝚊𝚋𝚎𝚕(𝑡))

The instruction ℎ ← new picks a fresh index ℎ (e.g., using a

counter), used to define a new symbolic label (𝖡ℎ, (𝖪0
ℎ
,𝖪1

ℎ
)).

A garbled input has two parts: an encoded input expression

that is a bundle of shape (𝔹,𝕂), and an output mask expression

that is a bundle of bits. The function 𝙶𝙴𝚗𝚌 encodes a boolean

vector using bits and keys in a label expression:

𝙶𝙴𝚗𝚌((𝖡, (𝖪0,𝖪1)), 0) = (𝖡,𝖪0)
𝙶𝙴𝚗𝚌((𝖡, (𝖪0,𝖪1)), 1) = (¬𝖡,𝖪1)
𝙶𝙴𝚗𝚌((𝐿0, 𝐿1), (𝑥0, 𝑥1)) = (𝙶𝙴𝚗𝚌(𝐿0, 𝑥0), 𝙶𝙴𝚗𝚌(𝐿1, 𝑥1))

154

The output masks are used to decode an encoded expression.

It is formed by the bits in a label expression:

𝙶𝙼𝚊𝚜𝚔((𝖡, (𝖪0,𝖪1))) = 𝖡
𝙶𝙼𝚊𝚜𝚔((𝐿0, 𝐿1)) = (𝙶𝙼𝚊𝚜𝚔(𝐿0), 𝙶𝙼𝚊𝚜𝚔(𝐿1))

The core of the garbling algorithm is a recursive function

𝙶𝚋, which takes as input a circuit and a label expression for the

input wires, and outputs a symbolic expression of the garbled

circuit and a label expression for the output wires.

𝙶𝚋 :: Circuit(𝑠, 𝑡) × 𝐄𝐱𝐩 → 𝐄𝐱𝐩 × 𝐄𝐱𝐩
𝙶𝚋(𝐒𝐰𝐚𝐩, (𝑢, 𝑣)) = 𝜖, (𝑣, 𝑢)
𝙶𝚋(𝐀𝐬𝐬𝐨𝐜, (𝑢, (𝑣,𝑤))) = 𝜖, ((𝑢, 𝑣), 𝑤)
𝙶𝚋(𝐔𝐧𝐚𝐬𝐬𝐨𝐜, ((𝑢, 𝑣), 𝑤)) = 𝜖, (𝑢, (𝑣,𝑤))
𝙶𝚋(𝐶0 ⋙ 𝐶1, 𝑢) = (𝐶0, 𝐶1), 𝑣 where

𝐶0, 𝑤 = 𝙶𝚋(𝐶0, 𝑢)
𝐶1, 𝑣 = 𝙶𝚋(𝐶1, 𝑤)

𝙶𝚋(𝐅𝐢𝐫𝐬𝐭(𝐶), (𝑢,𝑤)) = 𝐶, (𝑣,𝑤) where

𝐶, 𝑣 = 𝙶𝚋(𝐶, 𝑢)
𝙶𝚋(𝐃𝐮𝐩, (𝑏, (𝑘0, 𝑘1))) = 𝜖,𝑤 where

𝑤 = ((𝑏,𝖦0(𝑘0),𝖦0(𝑘1)), (𝑏,𝖦1(𝑘0),𝖦1(𝑘1)))
𝙶𝚋(𝐍𝐀𝐧𝐝, ((𝑏𝑖, (𝑘0𝑖 , 𝑘

1
𝑖
)), (𝑏𝑗 , (𝑘0𝑗 , 𝑘

1
𝑗
)))) = 𝐶,𝑤 where

ℎ ← new
𝐶 = 𝜋[𝑏𝑖](𝜋[𝑏𝑗](⦃⦃(¬𝖡ℎ,𝖪1

ℎ
)⦄𝑘0

𝑗
⦄𝑘0

𝑖
,⦃⦃(¬𝖡ℎ,𝖪1

ℎ
)⦄𝑘1

𝑗
⦄𝑘0

𝑖
),

𝜋[𝑏𝑗](⦃⦃(¬𝖡ℎ,𝖪1
ℎ
)⦄𝑘0

𝑗
⦄𝑘1

𝑖
,⦃⦃(𝖡ℎ,𝖪0

ℎ
)⦄𝑘1

𝑗
⦄𝑘1

𝑖
))

𝑤 = (𝖡ℎ, (𝖪0
ℎ
,𝖪1

ℎ
))

The full garbling procedure can be obtained by composing

the above functions. On input a circuit 𝐶 and a boolean

vector 𝑥, it picks random labels for the input wires using

𝙻𝚊𝚋𝚎𝚕, calls 𝙶𝚋 to generate a garbled circuit 𝐶 and output

labels, and then calls 𝙶𝙴𝚗𝚌 and 𝙶𝙼𝚊𝚜𝚔 to produce a garbled

input 𝑥̃. Note that the second parameter of 𝙶𝙴𝚗𝚌 is a bundle of

bits rather than a boolean vector. In the definition of 𝙶𝚊𝚛𝚋𝚕𝚎
below we slightly abuse notation and use 𝑥 to denote a bundle

of bits 𝑥1,… , 𝑥𝑛 of a suitable shape, which can be efficiently

constructed from 𝑥 and 𝑠.

𝙶𝚊𝚛𝚋𝚕𝚎 :: Circuit(𝑠, 𝑡) × {0, 1}𝑛 → 𝐄𝐱𝐩
𝙶𝚊𝚛𝚋𝚕𝚎(𝐶, 𝑥) = (𝐶, 𝑥̃) where

𝑢 ← 𝙻𝚊𝚋𝚎𝚕(𝑠)
𝐶, 𝑣 = 𝙶𝚋(𝐶, 𝑢)
𝑥̃ = (𝙶𝙴𝚗𝚌(𝑢, 𝑥), 𝙶𝙼𝚊𝚜𝚔(𝑣))

Next, we consider the garbled circuit evaluation algorithm

𝙶𝙴𝚟𝚊𝚕. The core part of 𝙶𝙴𝚟𝚊𝚕 is a recursive function 𝙶𝙴𝚟
that takes a garbled circuit and an encoded input expression,

producing an encoded output expression. Any encoded output

is also an encoded input for evaluating subsequent garbled

circuits. We include a circuit as another input of 𝙶𝙴𝚟, which

is used to determine the shapes of output wires. Ideally we

can use the circuit’s topology instead, but for simplicity we

just use the circuit itself and we do not exploit the function

computed by a circuit.

𝙶𝙴𝚟 ∶∶ Circuit(𝑠, 𝑡) × 𝐄𝐱𝐩 × 𝐄𝐱𝐩→ 𝐄𝐱𝐩
𝙶𝙴𝚟(𝐒𝐰𝐚𝐩, 𝜖, (𝑢, 𝑣)) = (𝑣, 𝑢)
𝙶𝙴𝚟(𝐀𝐬𝐬𝐨𝐜, 𝜖, (𝑢, (𝑣,𝑤)) = ((𝑢, 𝑣), 𝑤)
𝙶𝙴𝚟(𝐔𝐧𝐚𝐬𝐬𝐨𝐜, 𝜖, (𝑢, (𝑣,𝑤)) = ((𝑢, 𝑣), 𝑤)
𝙶𝙴𝚟(𝐃𝐮𝐩, 𝜖, (𝑏, 𝑘) = ((𝑏,𝖦0(𝑘)), (𝑏,𝖦1(𝑘)))
𝙶𝙴𝚟(𝐍𝐀𝐧𝐝, 𝐶, ((𝑏′0, 𝑘0), (𝑏

′
1, 𝑘1))) = (𝑏, 𝑘) where

𝜋[𝑏0](𝑟0, 𝑟1) = 𝐶

𝜋[𝑏1](𝑒0, 𝑒1) = if 𝑏′0 ≡ 𝑏0 then 𝑟0 else 𝑟1⦃⦃(𝑏, 𝑘)⦄𝑘1⦄𝑘0 = if 𝑏′1 ≡ 𝑏1 then 𝑒0 else 𝑒1
𝙶𝙴𝚟(𝐶0 ⋙ 𝐶1, (𝐶0, 𝐶1), 𝑢) = 𝙶𝙴𝚟(𝐶1, 𝐶1, 𝑤) where

𝑤 = 𝙶𝙴𝚟(𝐶0, 𝐶0, 𝑢)
𝙶𝙴𝚟(𝐅𝐢𝐫𝐬𝐭(𝐶), 𝐶, (𝑢,𝑤)) = (𝑣,𝑤) where

𝑣 = 𝙶𝙴𝚟(𝐶,𝐶, 𝑢)

We briefly explain how 𝙶𝙴𝚟 works. For the basic circuits

𝐒𝐰𝐚𝐩, 𝐀𝐬𝐬𝐨𝐜, 𝐔𝐧𝐚𝐬𝐬𝐨𝐜, and 𝐃𝐮𝐩 whose corresponding gar-

bled circuits are 𝜖, it simply rearranges the bits and keys in

the encoded input to form an encoded output, except for 𝐃𝐮𝐩
where it generates and then splits a pseudo-random key in

the encoded output. For 𝐍𝐀𝐧𝐝, it parses the corresponding

garbled circuit as permutations controlled by atomic bits 𝑏0, 𝑏1,

and it selects the entry corresponding to the bits 𝑏′0, 𝑏
′
1. In

the above definition, we use pattern matching syntax that is

usually found in functional programming languages to parse 𝐶

and select the subexpression ⦃⦃(𝑏, 𝑘)⦄𝑘1⦄𝑘0 . One can verify

that, if (𝑏′
𝑖
, 𝑘𝑖) is in the encoded input to 𝐍𝐀𝐧𝐝 for 𝑖 ∈ {0, 1},

then 𝑏′
𝑖
∈ {𝑏𝑖,¬𝑏𝑖} and the entry selected using bits 𝑏′0, 𝑏

′
1 are

doubly encrypted under keys 𝑘0,𝑘1. So the expression (𝑏, 𝑘)
extracted by 𝙶𝙴𝚟 is well-defined. For the composite circuits

𝐶0 ⋙ 𝐶1 and 𝐅𝐢𝐫𝐬𝐭(𝐶), 𝙶𝙴𝚟 produces an encoded output

expression recursively in a way similar to how 𝐄𝐯 evaluates

these circuits.

Notice that the output of 𝙶𝙴𝚟 are bit symbols rather than

boolean values. The function 𝙳𝚎𝚌𝚘𝚍𝚎 uses the output masks

to decode a garbled output into a boolean vector:

𝙳𝚎𝚌𝚘𝚍𝚎((𝑏, 𝑘), 𝑏′) = if 𝑏 ≡ 𝑏′ then 0 else 1
𝙳𝚎𝚌𝚘𝚍𝚎((𝑢0, 𝑢1), (𝑑0, 𝑑1)) = (𝙳𝚎𝚌𝚘𝚍𝚎(𝑢0, 𝑑0), 𝙳𝚎𝚌𝚘𝚍𝚎(𝑢1, 𝑑1))

Finally, the full evaluation algorithm 𝙶𝙴𝚟𝚊𝚕 is defined as4:

𝙶𝙴𝚟𝚊𝚕 ∶∶ Circuit(𝑠, 𝑡) × 𝐄𝐱𝐩 × 𝐄𝐱𝐩→ {0, 1}𝑛
𝙶𝙴𝚟𝚊𝚕(𝐶,𝐶, 𝑥̃) = 𝙳𝚎𝚌𝚘𝚍𝚎(𝙶𝙴𝚟(𝐶,𝐶, 𝑢), 𝑑) where

(𝑢, 𝑑) = 𝑥̃

The following theorem shows that our garbling scheme

is correct. Briefly speaking, the encoded input expressions

contain the sufficient bits and keys to obtain the encoded

output from the garbled circuit expression, and the output

masks provide information for decoding the encoded output.

The formal proof can be found in the full version [35].

Theorem 4. For any circuit 𝐶 ∈ Circuit(𝑠, 𝑡) and any boolean
vector 𝑥 of shape 𝑠, 𝙶𝙴𝚟𝚊𝚕(𝐶, 𝙶𝚊𝚛𝚋𝚕𝚎(𝐶, 𝑥)) = 𝐶(𝑥).

4Notice that 𝙳𝚎𝚌𝚘𝚍𝚎 outputs a bundle of bits. Here we slightly abuse
notation and assume a boolean vector can be extracted from a bundle of
bits.

155

V. SYMBOLIC SIMULATION AND PROOF OF SECURITY

In this section we define a simulator 𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎(⋅, ⋅), and

we then present our proof that, for any circuit 𝐶 and

any boolean vector 𝑥, the expressions 𝙶𝚊𝚛𝚋𝚕𝚎(𝐶, 𝑥) and

𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎(𝐶,𝐶(𝑥)) are equivalent up to renaming. Together

with the computational soundness theorem of our symbolic

framework, such proof implies that the garbled circuit scheme

of the previous section is computationally secure.

j) Symbolic simulator: Recall that a simulator must out-

put a symbolic expression that represents a garbled circuit and

a garbled input, and a garbled input consists of an encoded

input and output masks. The simulator has no access to the

circuit input values, so it picks the random bit and the first

random key from each label to form the encoded input:

𝚂𝙴𝚗𝚌((𝖡, (𝖪0,𝖪1))) = (𝖡,𝖪0)
𝚂𝙴𝚗𝚌((𝐿0, 𝐿1)) = (𝚂𝙴𝚗𝚌(𝐿0), 𝚂𝙴𝚗𝚌(𝐿1))

In order to correctly evaluate the simulated garbled circuit

on the simulated garbled input, we adjust the output masks

according to the circuit output value. Given a label expression

and a boolean vector representing the circuit output value, the

function 𝚂𝙼𝚊𝚜𝚔 computes the output masks:

𝚂𝙼𝚊𝚜𝚔((𝖡, (𝖪0,𝖪1)), 0) = 𝖡
𝚂𝙼𝚊𝚜𝚔((𝖡, (𝖪0,𝖪1)), 1) = ¬𝖡
𝚂𝙼𝚊𝚜𝚔((𝐿0, 𝐿1), (𝑦0, 𝑦1)) = (𝚂𝙼𝚊𝚜𝚔(𝐿0, 𝑦0), 𝚂𝙼𝚊𝚜𝚔(𝐿1, 𝑦1))
The core of our simulator is a recursive function 𝚂𝚒𝚖 that

consumes a circuit and a label expression for input wires,

and produces a symbolic expression of the simulated garbled

circuit and a label expression for output wires:

𝚂𝚒𝚖 :: Circuit(𝑠, 𝑡) × 𝐄𝐱𝐩→ 𝐄𝐱𝐩 × 𝐄𝐱𝐩
𝚂𝚒𝚖(𝐒𝐰𝐚𝐩, (𝑢, 𝑣)) = 𝜖, (𝑣, 𝑢)
𝚂𝚒𝚖(𝐀𝐬𝐬𝐨𝐜, (𝑢, (𝑣,𝑤))) = 𝜖, ((𝑢, 𝑣), 𝑤)
𝚂𝚒𝚖(𝐔𝐧𝐚𝐬𝐬𝐨𝐜, ((𝑢, 𝑣), 𝑤)) = 𝜖, (𝑢, (𝑣,𝑤))
𝚂𝚒𝚖(𝐶0 ⋙ 𝐶1, 𝑢) = (𝐶0, 𝐶1), 𝑣 where

𝐶0, 𝑤 = 𝚂𝚒𝚖(𝐶0, 𝑢)
𝐶1, 𝑣 = 𝚂𝚒𝚖(𝐶1, 𝑤)

𝚂𝚒𝚖(𝐅𝐢𝐫𝐬𝐭(𝐶), (𝑢,𝑤)) = 𝐶, (𝑣,𝑤) where 𝐶, 𝑣 = 𝚂𝚒𝚖(𝐶, 𝑢)
𝚂𝚒𝚖(𝐃𝐮𝐩, (𝑏, (𝑘0, 𝑘1))) = 𝜖,𝑤 where

𝑤 = ((𝑏, (𝖦0(𝑘0),𝖦0(𝑘1))), (𝑏, (𝖦1(𝑘0),𝖦1(𝑘1))))
𝚂𝚒𝚖(𝐍𝐀𝐧𝐝, ((𝑏𝑖, (𝑘0𝑖 , 𝑘

1
𝑖
)), (𝑏𝑗 , (𝑘0𝑗 , 𝑘

1
𝑗
)))) = 𝐶,𝑤 where

ℎ ← new
𝐶 = 𝜋[𝖡𝑖](𝜋[𝖡𝑗](⦃⦃(𝖡ℎ,𝖪0

ℎ
)⦄𝑘0

𝑗
⦄𝑘0

𝑖
,⦃⦃(𝖡ℎ,𝖪0

ℎ
)⦄𝑘1

𝑗
⦄𝑘0

𝑖
),

𝜋[𝖡𝑗](⦃⦃(𝖡ℎ,𝖪0
ℎ
)⦄𝑘0

𝑗
⦄𝑘1

𝑖
,⦃⦃(𝖡ℎ,𝖪0

ℎ
)⦄𝑘1

𝑗
⦄𝑘1

𝑖
))

𝑤 = (𝖡ℎ, (𝖪0
ℎ
,𝖪1

ℎ
))

Notice that, for any circuit 𝐶 and any label expression 𝑢, if

𝐶, 𝑣 = 𝙶𝚋(𝐶, 𝑢) and 𝐶,𝑤 = 𝚂𝚒𝚖(𝐶, 𝑢), then the subscript ℎ of

any atomic key symbol 𝖪𝑖
ℎ

that appears in (𝐶, 𝑣) and (𝐶,𝑤)
follows the same ordering.

Our simulator is composed of the above functions. It takes

a circuit 𝐶 and a boolean vector 𝑦 as input, and it generates

a simulated garbled circuit using 𝚂𝚒𝚖 and a simulated garbled

input using 𝚂𝙴𝚗𝚌 and 𝚂𝙼𝚊𝚜𝚔:

𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎 :: Circuit(𝑠, 𝑡) × {0, 1}𝑚 → 𝐄𝐱𝐩
𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎(𝐶, 𝑦) = (𝐶, 𝑥̂) where

𝑢 ← 𝙻𝚊𝚋𝚎𝚕(𝑠)
𝐶, 𝑣 = 𝚂𝚒𝚖(𝐶, 𝑢)
𝑥̂ = (𝚂𝙴𝚗𝚌(𝑢), 𝚂𝙼𝚊𝚜𝚔(𝑣, 𝑦))

k) Symbolic proof of security: For this paper we present

a pen-and-paper symbolic security proof, which can also be

adapted to a machine-checked proof using verification tools.

For any bit expression 𝑏 ∈ 𝐏𝐚𝐭(𝔹) and any 𝑥 ∈ {0, 1}, we

introduce the notation 𝑏⊕𝑥 to shorten our proofs:

𝑏⊕𝑥 =
{

𝑏 if 𝑥 = 0
¬𝑏 if 𝑥 = 1

We say that a label expression 𝑤 is strongly independent if

𝐊𝐞𝐲𝐬(𝑤) is a set of independent keys and, if 𝑤 = (𝑏, (𝑘0, 𝑘1))
is a single label then 𝑘0 ≠ 𝑘1, and if 𝑤 = (𝑢, 𝑣) where 𝑢

and 𝑣 are label expressions, then 𝑢 and 𝑣 are both strongly

independent and 𝐊𝐞𝐲𝐬(𝑢) ∩𝐊𝐞𝐲𝐬(𝑣) = ∅.

Let us start with some technical lemmas that are helpful to

derive our main result. The first lemma can be easily verified

by induction on the definition of 𝙶𝚋.

Lemma 4. For any circuit 𝐶 and label expression 𝑢, if 𝐶, 𝑣 =
𝙶𝚋(𝐶, 𝑢) and 𝑘 ∈ 𝐊𝐞𝐲𝐬(𝐶)∩𝐏𝐚𝐫𝐭𝐬(𝐶), then 𝑘 ∈ 𝐊 is an atomic
key symbol.

Our next lemma shows that 𝙶𝚋 produces strongly inde-

pendent output labels from strongly independent input labels.

Furthermore, any key in the output label expression is yielded

from either a new atomic key introduced in the garbled circuit

or a key in the input labels, and it does not yield any other key

in the garbled circuit. The formal proof is done using structural

induction on circuits, and it is omitted due to space constraint.

Lemma 5. For any circuit 𝐶 and any strongly independent
label expression 𝑢 such that 𝐶, 𝑣 = 𝙶𝚋(𝐶, 𝑢), 𝑣 is strongly
independent, and the following hold for all 𝑘 ∈ 𝐊𝐞𝐲𝐬(𝑣):

1) 𝖦+(𝑘) ∩𝐊𝐞𝐲𝐬((𝐶, 𝑢)) = ∅;
2) ∃𝑘′ ∈ 𝐊𝐞𝐲𝐬((𝐶, 𝑢)) ∩ 𝐏𝐚𝐫𝐭𝐬((𝐶, 𝑢)).𝑘′ ⪯ 𝑘.

A quick observation on 𝙶𝚋 is that, for any circuit 𝐶 , if 𝑘 ∈
𝐏𝐚𝐭(𝕂) appears in 𝐶 , then either 𝑘 is in a plaintext message

and so 𝑘 ∈ 𝐏𝐚𝐫𝐭𝐬(𝐶), or 𝑘 is used as an encryption key. The

former case has been considered in Lemma 4. The following

lemma characterizes the latter case, and it can be proved using

structural induction on circuits.

Lemma 6. For any circuit 𝐶 and any label expression 𝑢 such
that 𝑢 is strongly independent and 𝐶, 𝑣 = 𝙶𝚋(𝐶, 𝑢), if ⦃𝑒⦄𝑘 ∈
𝐏𝐚𝐫𝐭𝐬(𝐶) for some expression 𝑒 and some key 𝑘 ∈ 𝐏𝐚𝐭(𝕂),
then the following hold:

1) 𝖦+(𝑘) ∩𝐊𝐞𝐲𝐬(𝐶) = ∅;
2) 𝖦∗(𝑘) ∩𝐊𝐞𝐲𝐬(𝑣) = ∅;
3) ∃𝑘′ ∈ 𝐊𝐞𝐲𝐬((𝐶, 𝑢)) ∩ 𝐏𝐚𝐫𝐭𝐬((𝐶, 𝑢)).𝑘′ ⪯ 𝑘.

For the rest of paper, let us fix a circuit 𝐶 ∈ Circuit(𝑠, 𝑡)
and a boolean vector 𝑥 ∈ {0, 1}𝑛, where 𝑠 is a shape of 𝑛 wires

and 𝑡 is a shape of 𝑚 wires. Let 𝑒 = (𝐶, 𝑥̃) = 𝙶𝚊𝚛𝚋𝚕𝚎(𝐶, 𝑥) be

156

the symbolic expression of the garbled circuit and the garbled

input of 𝐶 on input 𝑥. Since 𝑒 is monotone, the greatest fixed

point of 𝑒 exists and it can be computed in polynomially

many steps. Let 𝑆 = Fix(𝑒) and 𝑒′ = 𝐩(𝑒, 𝑆). Then

𝐑𝐨𝐨𝐭𝐬(𝑆) ⊆ 𝐊𝐞𝐲𝐬(𝑒) and 𝑆 = 𝑒(𝑆) = 𝐫(𝐩(𝑒, 𝑆)) = 𝐫(𝑒′).
For any label (𝑏, (𝑘0, 𝑘1)), we say that it satisfies the label
invariant if

𝑏 ∈ 𝐁,∃𝑧 ∈ {0, 1} such that 𝑘𝑧 ∈ 𝑆, 𝑘1−𝑧 ∉ 𝑆, (1)

and we call 𝑧 the actual value of the label (𝑏, (𝑘0, 𝑘1)).

Lemma 7. For any sub-circuit 𝐶 ′ of 𝐶 , and for any label
expression 𝑢, if 𝐶 ′, 𝑣 = 𝙶𝚋(𝐶 ′, 𝑢) and all labels (𝑏, (𝑘0, 𝑘1)) ⋐
𝑢 satisfy the label invariant, then all labels (𝑏̄, (𝑘̄0, 𝑘̄1)) ⋐ 𝑣

satisfy the label invariant.

Proof. We use induction on the structure of circuit 𝐶 ′. For

the base case, 𝐶 ′ is an atomic circuit:

∙ 𝐶 ′ = 𝐒𝐰𝐚𝐩, 𝐀𝐬𝐬𝐨𝐜, or 𝐔𝐧𝐚𝐬𝐬𝐨𝐜: Any label (𝑏̄, (𝑘̄0, 𝑘̄1)) ⋐
𝑣 is also a sub-expression of 𝑢. So the lemma holds.

∙ 𝐶 ′ = 𝐃𝐮𝐩: Suppose 𝑢 = (𝑏, (𝑘0, 𝑘1)) satisfies the label

invariant with an actual value 𝑧. If (𝑏̄, (𝑘̄0, 𝑘̄1)) ⋐ 𝑣,

then 𝑏̄ = 𝑏, 𝑘̄0 = 𝖦ℎ(𝑘0), and 𝑘̄1 = 𝖦ℎ(𝑘1) for some

ℎ ∈ {0, 1}. So 𝑏̄ ∈ 𝐁. Let 𝑧̄ = 𝑧. Then 𝑘̄𝑧̄ = 𝖦ℎ(𝑘𝑧) ∈ 𝑆.

Assume towards a contradiction that 𝑘̄1−𝑧̄ ∈ 𝑆. Then

𝖦ℎ(𝑘1−𝑧) = 𝑘̄1−𝑧̄ ∈ 𝖦∗(𝑘′) for some 𝑘′ ∈ 𝐊𝐞𝐲𝐬(𝑒′) where

𝑘′ ∈ 𝐏𝐚𝐫𝐭𝐬(𝑒′) or ∃𝑘′′ ∈ 𝐊𝐞𝐲𝐬(𝑒′) such that 𝑘′ ≺ 𝑘′′.
Notice that 𝑒′ = 𝐩((𝐶, 𝑥̃), 𝑆) = (𝐩(𝐶, 𝑆),𝐩(𝑥̃, 𝑆)), and 𝑥̃

contains only atomic keys. So 𝑘′′ ∈ 𝐊𝐞𝐲𝐬(𝐶 ′) ⊆ 𝐊𝐞𝐲𝐬(𝐶).
We have two cases:

– 𝖦ℎ(𝑘1−𝑧) ≠ 𝑘′: 𝑘1−𝑧 ∈ 𝖦∗(𝑘′) ⊆ 𝑆, a contradiction.

– 𝖦ℎ(𝑘1−𝑧) = 𝑘′: Now 𝑘′ ∉ 𝐏𝐚𝐫𝐭𝐬(𝑒′), and thus⦃𝑔′⦄𝑘′ ∈ 𝐏𝐚𝐫𝐭𝐬(𝑒′) for some pattern 𝑔′. So ⦃𝑔′⦄𝑘′ ∈
𝐏𝐚𝐫𝐭𝐬(𝐩(𝐶, 𝑆)) and ⦃𝑔⦄𝑘′ ∈ 𝐏𝐚𝐫𝐭𝐬(𝐶) for some

expression 𝑔 such that 𝑔′ = 𝐩(𝑔, 𝑆). By Lemma 6,

𝖦+(𝑘′) ∩ 𝐊𝐞𝐲𝐬(𝐶) = ∅ and hence 𝑘′′ ∉ 𝐊𝐞𝐲𝐬(𝐶), a

contradiction.

Therefore (𝑏̄, (𝑘̄0, 𝑘̄1)) satisfies the label invariant.

∙ 𝐶 ′ = 𝐍𝐀𝐧𝐝: The only label in 𝑣 is (𝖡ℎ, (𝖪0
ℎ
,𝖪1

ℎ
)). Notice

that the expressions in 𝐏𝐚𝐫𝐭𝐬(𝑒) that contain 𝖪0
ℎ
,𝖪1

ℎ
are

the following and their sub-expressions:⦃⦃(¬𝖡ℎ,𝖪1
ℎ
)⦄𝑘0

𝑗
⦄𝑘0

𝑖
,⦃⦃(¬𝖡ℎ,𝖪1

ℎ
)⦄𝑘0

𝑗
⦄𝑘1

𝑖
,

⦃⦃(¬𝖡ℎ,𝖪1
ℎ
)⦄𝑘1

𝑗
⦄𝑘0

𝑖
,⦃⦃(𝖡ℎ,𝖪0

ℎ
)⦄𝑘1

𝑗
⦄𝑘1

𝑖
,

where ((𝑏𝑖, (𝑘0𝑖 , 𝑘
1
𝑖
)), (𝑏𝑗 , (𝑘0𝑗 , 𝑘

1
𝑗
))) = 𝑢. Observe that these

four expressions can be generated as

⦃⦃(𝖡⊕(𝑥𝑖↑𝑥𝑗)
ℎ

,𝖪
𝑥𝑖↑𝑥𝑗
ℎ

)⦄
𝑘
𝑥𝑗
𝑗

⦄𝑘𝑥𝑖
𝑖

for 𝑥𝑖, 𝑥𝑗 ∈ {0, 1}.

Let 𝑧̄ = 𝑧𝑖 ↑ 𝑧𝑗 . By assumption, we have 𝑘
𝑧𝑖
𝑖
, 𝑘

𝑧𝑗
𝑗

∈ 𝑆 and

𝑘
1−𝑧𝑖
𝑖

, 𝑘
1−𝑧𝑗
𝑗

∉ 𝑆, so 𝑘𝑧̄ = 𝖪𝑧̄
ℎ
∈ 𝑆 and 𝑘1−𝑧̄ = 𝖪1−𝑧̄

ℎ
∉ 𝑆,

and Condition 1 holds for (𝖡ℎ, (𝖪0
ℎ
,𝖪1

ℎ
)).

Next, consider composite circuits. Assume the lemma holds

for all sub-circuits of 𝐶 ′. Then we have these cases:

∙ 𝐶 ′ = 𝐶 ′
0 ⋙ 𝐶 ′

1: Suppose 𝐶 = (𝐶 ′
0, 𝐶

′
1) where 𝐶 ′

0, 𝑤 =
𝙶𝚋(𝐶 ′

0, 𝑢) and 𝐶 ′
1, 𝑣 = 𝙶𝚋(𝐶 ′

1, 𝑤). Since 𝐶 ′
0 and 𝐶 ′

1

are both sub-circuits of 𝐶 ′, by assumption we see that

Condition 1 holds for all labels in 𝑢 and consequently, for

all labels in 𝑤, and so it holds for all labels in 𝑣.

∙ 𝐶 ′ = 𝐅𝐢𝐫𝐬𝐭(𝐶 ′′): Suppose 𝑢 = (𝑢′′, 𝑤) and 𝑣 = (𝑣′′, 𝑤)
such that 𝐶, 𝑣′′ = 𝙶𝚋(𝐶 ′′, 𝑢′′). For any label (𝑏̄, (𝑘̄0, 𝑘̄1)) ⋐
𝑣, it is either a sub-expression of 𝑣′′ or it is a sub-

expression of 𝑤. For the former case, since 𝐶 ′′ is a

sub-circuit of 𝐶 ′, Condition 1 holds for (𝑏̄, (𝑘̄0, 𝑘̄1)) by

induction hypothesis. For the latter case, since 𝑤 ⋐ 𝑢,

Condition 1 holds for this label by assumption.

Therefore the lemma holds for any circuit 𝐶 .

Let 𝑓 = (𝐶, 𝑥̂) = 𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎(𝐶,𝐶(𝑥)) be the symbolic

expression of simulated garbled circuit of 𝐶 on output 𝐶(𝑥).
Let 𝑇 = Fix(𝑓), which satisfies 𝑓 (𝑇) = 𝐫(𝐩(𝑓, 𝑇)) = 𝑇 .

The following lemma shows that, for each key pair 𝑘0, 𝑘1 in

𝑓 , exactly one of 𝑘0 and 𝑘1 is in 𝑇 .

Lemma 8. For any sub-circuit 𝐶 ′ of 𝐶 and any label
expression 𝑢 such that 𝐶 ′, 𝑣 = 𝚂𝚒𝚖(𝐶 ′, 𝑢), if all labels
(𝑏, (𝑘0, 𝑘1)) ⋐ 𝑢 satisfy the label invariant with actual value 0,
then all labels (𝑏̄, (𝑘̄0, 𝑘̄1)) ⋐ 𝑣 satisfy the label invariant with
actual value 0.

Proof. We can directly apply the proof of Lemma 7 except

for the base case when 𝐶 ′ = 𝐍𝐀𝐧𝐝:

∙ 𝐶 ′ = 𝐍𝐀𝐧𝐝: The label in 𝑣 is (𝖡ℎ, (𝖪0
ℎ
,𝖪1

ℎ
)). The expres-

sions in 𝐏𝐚𝐫𝐭𝐬(𝑓) that contain 𝖪0
ℎ
,𝖪1

ℎ
are the following

and their sub-expressions:⦃⦃(𝖡ℎ,𝖪0
ℎ
)⦄𝑘0

𝑗
⦄𝑘0

𝑖
,⦃⦃(𝖡ℎ,𝖪0

ℎ
)⦄𝑘0

𝑗
⦄𝑘1

𝑖
,

⦃⦃(𝖡ℎ,𝖪0
ℎ
)⦄𝑘1

𝑗
⦄𝑘0

𝑖
,⦃⦃(𝖡ℎ,𝖪0

ℎ
)⦄𝑘1

𝑗
⦄𝑘1

𝑖
,

where ((𝑏𝑖, (𝑘0𝑖 , 𝑘
1
𝑖
)), (𝑏𝑗 , (𝑘0𝑗 , 𝑘

1
𝑗
))) = 𝑢. Let 𝑧̄ = 0. By

assumption, 𝑘0
𝑖
, 𝑘0

𝑗
∈ 𝑇 and 𝑘1

𝑖
, 𝑘1

𝑗
∉ 𝑇 . So 𝑘𝑧̄ = 𝖪0

ℎ
∈

𝑇 and 𝑘1−𝑧̄ = 𝖪1
ℎ

∉ 𝑇 , and Condition 1 holds for

(𝖡ℎ, (𝖪0
ℎ
,𝖪1

ℎ
)) with actual value 0.

For the rest of the cases, the proof of Lemma 7 applies with

actual value 0.

Now we are ready to prove our main result that the patterns

of the real garbled circuit and the simulated garbled circuit are

equivalent up to renaming.

Theorem 5. For any circuit 𝐶 ∈ Circuit(𝑠, 𝑡) and any
boolean vector 𝑥 ∈ {0, 1}𝑛, where 𝑠 is a shape of 𝑛 wires,
𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝙶𝚊𝚛𝚋𝚕𝚎(𝐶, 𝑥)) ≈ 𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎(𝐶,𝐶(𝑥))).

Proof. Let 𝑢 = ((𝖡1, (𝖪0
1,𝖪

1
1)),… , (𝖡𝑛, (𝖪0

𝑛,𝖪
1
𝑛))) be the label

expression in 𝙶𝚊𝚛𝚋𝚕𝚎. Let 𝐶, 𝑣 = 𝙶𝚋(𝐶, 𝑢). One can check

that, for any sub-circuit 𝐶 ′ of 𝐶 , if 𝐶 ′, 𝑣′ = 𝙶𝚋(𝐶 ′, 𝑢′)
and 𝐶 ′, 𝑤′ = 𝚂𝚒𝚖(𝐶 ′, 𝑢′) for any label expression 𝑢′ of an

appropriate shape, then 𝑣′ = 𝑤′. Since 𝚂𝚒𝚖 is also applied on

𝐶 and 𝑢 in 𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎, we can write 𝐶, 𝑣 = 𝚂𝚒𝚖(𝐶, 𝑢).
Let 𝑒 = (𝐶, 𝑥̃) = 𝙶𝚊𝚛𝚋𝚕𝚎(𝐶, 𝑥), 𝑓 = (𝐶, 𝑥̂) =

𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎(𝐶,𝐶(𝑥)), 𝑆 = Fix(𝑒), and 𝑇 = Fix(𝑓). We

can write 𝐶 = (𝐶1,… , 𝐶𝑞) and 𝐶 = (𝐶1,… , 𝐶𝑞), where

𝐶𝑖, 𝑣𝑖 = 𝙶𝚋(𝐶𝑖, 𝑢𝑖) and 𝐶𝑖, 𝑣𝑖 = 𝚂𝚒𝚖(𝐶𝑖, 𝑢𝑖) for some atomic

157

sub-circuit 𝐶𝑖 of 𝐶 and some label expression 𝑢𝑖. To show

𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑒) = 𝐩(𝑒, 𝑆) ≈ 𝐩(𝑓, 𝑇) = 𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑓), we first

show (𝐩(𝐶1, 𝑆),… ,𝐩(𝐶𝑞, 𝑆)) ≈ (𝐩(𝐶1, 𝑇),… ,𝐩(𝐶𝑞, 𝑇)) with

respect to a pseudorandom renaming 𝛼 = (𝛼𝐵, 𝛼𝐾), and then

we show 𝐩(𝑥̃, 𝑆) ≈𝛼 𝐩(𝑥̂, 𝑇).
For the first part, let 𝛼𝐵 be the random bit renaming

𝛼𝐵(𝖡𝑖) = 𝖡
⊕𝑧𝑖
𝑖

for all 𝖡𝑖 ∈ 𝐁, where 𝑧𝑖 is the actual

value of the label that contains 𝖡𝑖. Let 𝛼𝐾 be the bijection

on 𝐊 such that 𝛼𝐾 (𝖪
𝑧𝑖
𝑖
) = 𝖪0

𝑖
and 𝛼𝐾 (𝖪

1−𝑧𝑖
𝑖

) = 𝖪1
𝑖

for

each 𝖪0
𝑖
,𝖪1

𝑖
. We claim that, for any sub-circuit 𝐶 ′ of 𝐶

and for any label expression 𝑢′, if 𝐶 ′, 𝑣′ = 𝙶𝚋(𝐶 ′, 𝑢′) and

𝐶 ′, 𝑣′ = 𝚂𝚒𝚖(𝐶 ′, 𝑢′), then Condition 1 holds for all labels in

𝑣′ and 𝐩(𝐶 ′, 𝑆) ≈𝛼 𝐩(𝐶 ′, 𝑇).
Proof of claim: Notice that all labels in 𝑢 satisfy Condi-

tion 1. By Lemma 7, all labels in 𝑣′ also satisfy Condition 1.

We use induction on the structure of 𝐶 ′ to show 𝐩(𝐶 ′, 𝑆) ≈𝛼

𝐩(𝐶 ′, 𝑇). For the base case, 𝐶 ′ is an atomic circuit:

∙ 𝐶 ′ = 𝐒𝐰𝐚𝐩, 𝐀𝐬𝐬𝐨𝐜, 𝐔𝐧𝐚𝐬𝐬𝐨𝐜, or 𝐃𝐮𝐩: Both 𝐶 ′ and 𝐶 ′

are the empty garbled circuit 𝜖, so 𝐩(𝐶 ′, 𝑆) = 𝐩(𝐶 ′, 𝑇).
∙ 𝐶 ′ = 𝐍𝐀𝐧𝐝: Suppose 𝑢′ = ((𝑏𝑖, (𝑘0𝑖 , 𝑘

1
𝑖
)), (𝑏𝑗 , (𝑘0𝑗 , 𝑘

1
𝑗
)))

and 𝑣′ = (𝖡ℎ, (𝖪0
ℎ
,𝖪1

ℎ
)). Let 𝑧𝑖, 𝑧𝑗 and 𝑧ℎ be the ac-

tual values of the labels (𝑏𝑖, (𝑘0𝑖 , 𝑘
1
𝑖
)), (𝑏𝑗 , (𝑘0𝑗 , 𝑘

1
𝑗
)) and

(𝖡ℎ, (𝖪0
ℎ
,𝖪1

ℎ
)), respectively. We know from the proof of

Lemma 7 that 𝑧ℎ = 𝑧𝑖 ↑ 𝑧𝑗 . So we can apply 𝛼𝐾 and get

𝐶 ′= 𝜋[𝐵𝑖](𝜋[𝐵𝑗](⦃⦃(𝖡⊕(0↑0)
ℎ

,𝖪0↑0
ℎ

)⦄𝑘0
𝑗
⦄𝑘0

𝑖
,

⦃⦃(𝖡⊕(0↑1)
ℎ

,𝖪0↑1
ℎ

)⦄𝑘1
𝑗
⦄𝑘0

𝑖
),

𝜋[𝐵𝑗](⦃⦃(𝖡⊕(1↑0)
ℎ

,𝖪1↑0
ℎ

)⦄𝑘0
𝑗
⦄𝑘1

𝑖
,

⦃⦃(𝖡⊕(1↑1)
ℎ

,𝖪1↑1
ℎ

)⦄𝑘1
𝑗
⦄𝑘1

𝑖
))

≈𝛼 𝜋[𝐵
⊕𝑧𝑖
𝑖

](𝜋[𝐵⊕𝑧𝑗
𝑗

](⦃⦃(𝖡⊕(0↑0)⊕𝑧ℎ
ℎ

,𝖪
(0↑0)⊕𝑧ℎ
ℎ

)⦄𝑘0
𝑗
⦄𝑘0

𝑖
,

⦃⦃(𝖡⊕(0↑1)⊕𝑧ℎ
ℎ

,𝖪
(0↑1)⊕𝑧ℎ
ℎ

)⦄𝑘1
𝑗
⦄𝑘0

𝑖
),

𝜋[𝐵⊕𝑧𝑗
𝑗

](⦃⦃(𝖡⊕(1↑0)⊕𝑧ℎ
ℎ

,𝖪
(1↑0)⊕𝑧ℎ
ℎ

)⦄𝑘0
𝑗
⦄𝑘1

𝑖
,

⦃⦃(𝖡⊕(1↑1)⊕𝑧ℎ
ℎ

,𝖪
(1↑1)⊕𝑧ℎ
ℎ

)⦄𝑘1
𝑗
⦄𝑘1

𝑖
))

≡ 𝜋[𝐵𝑖](𝜋[𝐵𝑗](⦃⦃(𝖡⊕𝜇(𝑧𝑖,𝑧𝑗)
ℎ

,𝖪
⊕𝜇(𝑧𝑖,𝑧𝑗)
ℎ

)⦄𝑘0
𝑗
⦄𝑘0

𝑖
,

⦃⦃(𝖡⊕𝜇(𝑧𝑖,1−𝑧𝑗)
ℎ

,𝖪
⊕𝜇(𝑧𝑖,1−𝑧𝑗)
ℎ

)⦄𝑘1
𝑗
⦄𝑘0

𝑖
),

𝜋[𝐵𝑗](⦃⦃(𝖡⊕𝜇(1−𝑧𝑖,𝑧𝑗)
ℎ

,𝖪
⊕𝜇(1−𝑧𝑖,𝑧𝑗)
ℎ

)⦄𝑘0
𝑗
⦄𝑘1

𝑖
,

⦃⦃(𝖡⊕𝜇(1−𝑧𝑖,1−𝑧𝑗)
ℎ

,𝖪
⊕𝜇(1−𝑧𝑖,1−𝑧𝑗)
ℎ

)⦄𝑘1
𝑗
⦄𝑘1

𝑖
)),

where 𝜇(𝑑𝑖, 𝑑𝑗) = (𝑑𝑖 ↑𝑑𝑗)⊕𝑧ℎ for 𝑑𝑖, 𝑑𝑗 ∈ {0, 1}. In par-

ticular, 𝜇(𝑧𝑖, 𝑧𝑗) = 0. By Condition 1, 𝑘
𝑧𝑖
𝑖
, 𝑘

𝑧𝑗
𝑗
,𝖪

𝑧ℎ
ℎ

∈ 𝑆,

𝑘
1−𝑧𝑖
𝑖

, 𝑘
1−𝑧𝑗
𝑗

,𝖪
1−𝑧ℎ
ℎ

∉ 𝑆, and 𝑏
⊕𝑧𝑖
𝑖

, 𝑏
⊕𝑧𝑗
𝑗

∈ 𝐏𝐚𝐫𝐭𝐬(𝐩(𝑒, 𝑆)).
So 𝑘0

𝑖
, 𝑘0

𝑗
∈ 𝛼(𝑆), 𝑘1

𝑖
, 𝑘1

𝑗
∉ 𝛼(𝑆), and the pattern

𝛼(𝐩(𝐶 ′, 𝑆)) = 𝐩(𝛼(𝐶 ′), 𝛼(𝑆)) is equivalent to

𝜋[𝐵𝑖](𝜋[𝐵𝑗](⦃⦃(𝖡ℎ,𝖪0
ℎ
)⦄𝑘0

𝑗
⦄𝑘0

𝑖
,⦃⦃⦇𝔹,𝕂⦈⦄𝑘1

𝑗
⦄𝑘0

𝑖
),

𝜋[𝐵𝑗](⦃⦃⦇𝔹,𝕂⦈⦄⦄𝑘1
𝑖
,⦃⦃⦇𝔹,𝕂⦈⦄⦄𝑘1

𝑖
))

On the other hand, by Lemma 8, 𝑘0
𝑖
, 𝑘0

𝑗
,𝖪0

ℎ
∈ 𝑇 and

𝑘1
𝑖
, 𝑘1

𝑗
,𝖪1

ℎ
∉ 𝑇 . So the pattern 𝐩(𝐶 ′, 𝑆) of 𝐶 ′ is

𝜋[𝐵𝑖](𝜋[𝐵𝑗](⦃⦃(𝖡ℎ,𝖪0
ℎ
)⦄𝑘0

𝑗
⦄𝑘0

𝑖
,⦃⦃⦇𝔹,𝕂⦈⦄𝑘1

𝑗
⦄𝑘0

𝑖
,

𝜋[𝐵𝑗](⦃⦃⦇𝔹,𝕂⦈⦄⦄𝑘1
𝑗
),⦃⦃⦇𝔹,𝕂⦈⦄⦄𝑘1

𝑗
))

Thus 𝐩(𝐶 ′, 𝑆) ≈𝛼 𝐩(𝐶 ′, 𝑇).
For the induction step, assuming the claim holds for sub-

circuits 𝐶 ′
0 and 𝐶 ′

1 of 𝐶 , it is easy to check that the claim

also holds for the cases 𝐶 ′ = 𝐅𝐢𝐫𝐬𝐭(𝐶 ′
0) and 𝐶 ′ = 𝐶 ′

0 ⋙ 𝐶 ′
1.

Therefore our claim follows.

For the second part, let 𝑦 = 𝐶(𝑥). Then for any 𝑖 ∈ [𝑚], 𝑦𝑖
is the actual value of the corresponding output wire. Since 𝑥̃ =
((𝖪𝑥11 ,𝖡

⊕𝑥1
1),… , (𝖪𝑥𝑛𝑛 ,𝖡

⊕𝑥𝑛
𝑛), (𝑏1,… , 𝑏𝑚)), we can calculate

𝛼(𝑥̃) = ((𝖪0
1,𝖡1),… , (𝖪0

𝑛,𝖡𝑛), (𝑏
⊕𝑦𝑖
1 ,… , 𝑏

⊕𝑦𝑚
𝑚)) = 𝑥̂.

So 𝑥̃ ≈𝛼 𝑥̂, and thus 𝐩(𝑥̃, 𝑆) ≈𝛼 𝐩(𝑥̂, 𝑇).
Therefore the theorem holds.

As a corollary of Theorem 3 and 5, we can now conclude

that our garbled circuit scheme is computationally secure.

Corollary 1. For any circuit 𝐶 ∈ Circuit(𝑠, 𝑡) and any
𝑥 ∈ {0, 1}𝑛 where 𝑠 is a shape of 𝑛 wires, the probability
distributions �𝙶𝚊𝚛𝚋𝚕𝚎(𝐶, 𝑥)� and �𝚂𝚒𝚖𝚞𝚕𝚊𝚝𝚎(𝐶,𝐶(𝑥))� are
computationally indistinguishable.

VI. IMPLEMENTATION AND AUTOMATED TESTS

As a proof of concept, we have implemented our symbolic

framework as well as the garbling scheme and the simulator in

Haskell. The source code can be found at https://github.com/

b5li/SymGC. Our symbolic framework implementation closely

follows the definitions in Section II-A. In addition, we added

a normalization operation norm on patterns, for example:

𝚗𝚘𝚛𝚖 (𝙽𝚘𝚝 (𝙱𝚒𝚝 𝙵𝚊𝚕𝚜𝚎)) = 𝙱𝚒𝚝 𝚃𝚛𝚞𝚎
𝚗𝚘𝚛𝚖 (𝙽𝚘𝚝 (𝙱𝚒𝚝 𝚃𝚛𝚞𝚎)) = 𝙱𝚒𝚝 𝙵𝚊𝚕𝚜𝚎
𝚗𝚘𝚛𝚖 (𝙽𝚘𝚝 (𝙽𝚘𝚝 𝑒)) = 𝚗𝚘𝚛𝚖 𝑒

𝚗𝚘𝚛𝚖 (𝙿𝚎𝚛𝚖 (𝙱𝚒𝚝 𝙵𝚊𝚕𝚜𝚎) 𝑝 𝑞) = 𝙿𝚊𝚒𝚛 (𝚗𝚘𝚛𝚖 𝑞) (𝚗𝚘𝚛𝚖 𝑝)
𝚗𝚘𝚛𝚖 (𝙿𝚎𝚛𝚖 (𝙱𝚒𝚝 𝚃𝚛𝚞𝚎) 𝑝 𝑞) = 𝙿𝚊𝚒𝚛 (𝚗𝚘𝚛𝚖 𝑝) (𝚗𝚘𝚛𝚖 𝑞)
𝚗𝚘𝚛𝚖 (𝙿𝚎𝚛𝚖 (𝙽𝚘𝚝 𝑏) 𝑝 𝑞) = 𝚗𝚘𝚛𝚖 (𝙿𝚎𝚛𝚖 𝑏 𝑞 𝑝)

The equivalence relation ≡ on patterns, defined in Sec-

tion II-A, is checked using syntactic equality on normalized

patterns. Random bit renaming and pseudo-random key re-

naming are implemented using maps on normalized bit and

key patterns. Thus we can check equivalence up to renaming

by first applying renaming maps to normalized patterns and

then checking for equivalence.

To build symbolic expressions of the real and the simulated

garbled circuits, the pseudo-code definitions of the garbling

scheme and the simulator in Sections IV and V were directly

translated into Haskell code. The bit and key renamings 𝛼𝐵 and

𝛼𝐾 were constructed recursively as in the proof of Lemma 5.

So far, given a circuit and a boolean vector of an appropriate

shape, our programs are able to produce symbolic expressions

of the real and the simulated garbled circuits, compute their

patterns, and check if these patterns are equivalent up to

renaming. The whole implementation consists of about 500

158

Fig. 6. Running times of proving symbolic security of the garbling scheme
using our implementation. Experiments were run on a Linux desktop with
an Intel I7-4790 CPU running at 3.60GHz. Each point corresponds to a
randomly generated test case, where the circuit may contain up to 250k 𝐍𝐀𝐧𝐝
subcircuits and the input vector may have up to 128 components. For each test
case we measure the total time spent on generating the real and the simulated
garbled circuit expressions, computing their patterns, and then checking for
symbolic equivalence on patterns. The horizontal axis measures the number
of 𝐍𝐀𝐧𝐝 subcircuits in a circuit, and the vertical axis measures the time in
seconds.

lines of Haskell code, and its performance is fairly good: For

example, with a randomly generated circuit that contains about

10000 NAND subcircuits and a 112-dimension boolean vector,

the entire process of generating the real and the simulated

garbled circuits, computing their patterns, and checking for

symbolic equivalence runs in about 1.3 second on a Linux

desktop with an Intel I7-4790 CPU running at 3.60GHz. No-

tice that the number of NAND subcircuits and the dimension

of the input vector together determine the number of atomic

keys in the garbled circuit expression, which affects how fast

the greatest fixed point of the recoverable key set can be

reached. Further optimization is possible, for example, we

could expand our circuit notation by adding AND and XOR

as basic circuits. As a reference, an AES encryption circuit

usually consists of about 5k AND and 20k XOR gates, which

can be implemented using about 90k 𝐍𝐀𝐧𝐝 inductively.

We conducted automated tests using the QuickCheck test

framework to perform symbolic security analysis on randomly

generated circuits and boolean vectors, and the performance

results are shown in Fig. 6.

We remark that our automated tests run on a circuit-by-

circuit basis, that is, given a circuit and a boolean vector, the

test ensures that the resulting garbled circuit is computationally

secure. In fact, our program can check that, for any crypto-

graphic system that is built using primitives in our symbolic

framework, an instance for a given input is computationally

secure. It is also interesting to translate our proofs into a

machine-checked flavor using verification tools, but such work

is out of the scope of the current paper, and we would like to

explore it in the future.

VII. CONCLUSION

We presented a lightweight and sound symbolic security

framework and an inductive notation for formal specification

of boolean circuits. Our symbolic language extends on previ-

ous work by including random bits and controlled swap opera-

tion; such an extension is not trivial as we need the additional

rules for equivalence on patterns and the pseudorandom bit

renaming to build a sound language. We proved that Yao’s

garbled circuit scheme is symbolically secure, which can be

translated into selective computational security thanks to the

computational soundness theorem. By abstracting the proba-

bilistic behaviors in the computational soundness theorem, one

may find concise and clean descriptions of security properties,

e.g., the label invariant in our proof of garbled circuit schemes.

As a result, the complete security proof can be presented in a

way that is not only easy to be mechanized by computer-aided

verification tools but also manageable for human readers to

understand and verify. We remark that helping cryptographers

comprehend formal security proofs could be of great benefit to

them to find optimization opportunities that might be hidden

in complex computational proofs.

Our symbolic language does not limit us to just circuit

garbling schemes. With a small extension to include the xor

operation on key expressions, we can formally specify Yao’s

computational secret sharing scheme [37], [38] and prove its

security. We briefly present such analysis in the Appendix. As

another example, we can formalize the protocol of OT length

extension via a pseudorandom generator [39] in this extended

framework, and we can prove it is secure against a static

semi-honest adversary. A natural but challenging upgrade is to

consider active security of cryptographic protocols; we leave

it to future work.

ACKNOWLEDGMENT

This work was supported in part by the National Science

Foundation (NSF) under grant CNS-1528068. Opinions, find-

ings and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily

reflect the views of the NSF.

REFERENCES

[1] A. C. Yao, “Protocols for secure computations (extended abstract),” in
23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982, 1982, pp. 160–164.

[2] ——, “How to generate and exchange secrets (extended abstract),” in
27th Annual Symposium on Foundations of Computer Science, Toronto,
Canada, 27-29 October 1986, 1986, pp. 162–167.

[3] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,”
in Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA, 1987, pp. 218–229.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract),” in Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, 1988,
pp. 1–10.

[5] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: a system for secure
multi-party computation,” in Proceedings of the 2008 ACM Conference
on Computer and Communications Security, CCS 2008, Alexandria,
Virginia, USA, October 27-31, 2008, 2008, pp. 257–266.

159

[6] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay - secure two-
party computation system,” in Proceedings of the 13th USENIX Security
Symposium, August 9-13, 2004, San Diego, CA, USA, 2004, pp. 287–
302.

[7] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for
fast privacy-preserving computations,” in Computer Security - ESORICS
2008, 13th European Symposium on Research in Computer Security,
Málaga, Spain, October 6-8, 2008. Proceedings, 2008, pp. 192–206.

[8] L. Malka, “Vmcrypt: modular software architecture for scalable secure
computation,” in Proceedings of the 18th ACM Conference on Com-
puter and Communications Security, CCS 2011, Chicago, Illinois, USA,
October 17-21, 2011, 2011, pp. 715–724.

[9] Y. Lindell and B. Pinkas, “A proof of security of yao’s protocol for two-
party computation,” J. Cryptology, vol. 22, no. 2, pp. 161–188, 2009.

[10] M. Abadi and P. Rogaway, “Reconciling two views of cryptography (the
computational soundness of formal encryption),” J. Cryptology, vol. 20,
no. 3, p. 395, 2007.

[11] D. Micciancio and B. Warinschi, “Completeness theorems for the abadi-
rogaway language of encrypted expressions,” Journal of Computer
Security, vol. 12, no. 1, pp. 99–130, 2004.

[12] D. Micciancio, “Computational soundness, co-induction, and encryp-
tion cycles,” in Advances in Cryptology - EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May 30 - June 3, 2010.
Proceedings, 2010, pp. 362–380.

[13] D. Micciancio and S. Panjwani, “Corrupting one vs. corrupting many:
The case of broadcast and multicast encryption,” in Automata, Lan-
guages and Programming, 33rd International Colloquium, ICALP 2006,
Venice, Italy, July 10-14, 2006, Proceedings, Part II, 2006, pp. 70–82.

[14] S. Panjwani, “Tackling adaptive corruptions in multicast encryption
protocols,” in Theory of Cryptography, 4th Theory of Cryptography
Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24,
2007, Proceedings, 2007, pp. 21–40.

[15] D. Micciancio and S. Panjwani, “Optimal communication complexity
of generic multicast key distribution,” IEEE/ACM Trans. Netw., vol. 16,
no. 4, pp. 803–813, 2008.

[16] M. Abadi and B. Warinschi, “Security analysis of cryptographically
controlled access to XML documents,” J. ACM, vol. 55, no. 2, pp. 6:1–
6:29, 2008.

[17] M. Baudet, B. Warinschi, and M. Abadi, “Guessing attacks and the
computational soundness of static equivalence,” Journal of Computer
Security, vol. 18, no. 5, pp. 909–968, 2010.

[18] D. Micciancio, “Symbolic encryption with pseudorandom keys,” Cryp-
tology ePrint Archive, Report 2009/249, 2009, https://eprint.iacr.org/
2009/249.

[19] J. Hughes, “Generalising monads to arrows,” Sci. Comput. Program.,
vol. 37, no. 1-3, pp. 67–111, 2000.

[20] ——, “Programming with arrows,” in Advanced Functional Program-
ming, 5th International School, AFP 2004, Tartu, Estonia, August 14-21,
2004, Revised Lectures, 2004, pp. 73–129.

[21] R. Paterson, “A new notation for arrows,” in Proceedings of the Sixth
ACM SIGPLAN International Conference on Functional Programming
(ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001., 2001, pp.
229–240.

[22] S. Lindley, P. Wadler, and J. Yallop, “The arrow calculus,” J. Funct.
Program., vol. 20, no. 1, pp. 51–69, 2010.

[23] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in the ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, 2012, pp.
784–796.

[24] ——, “Adaptively secure garbling with applications to one-time pro-
grams and secure outsourcing,” in Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application of
Cryptology and Information Security, Beijing, China, December 2-6,
2012. Proceedings, 2012, pp. 134–153.

[25] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev,
V. Vaikuntanathan, and D. Vinayagamurthy, “Fully key-homomorphic
encryption, arithmetic circuit ABE and compact garbled circuits,” in
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
2014, pp. 533–556.

[26] B. Hemenway, Z. Jafargholi, R. Ostrovsky, A. Scafuro, and D. Wichs,
“Adaptively secure garbled circuits from one-way functions,” in Ad-

vances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part III, 2016, pp. 149–178.

[27] Z. Jafargholi and D. Wichs, “Adaptive security of yao’s garbled circuits,”
in Theory of Cryptography - 14th International Conference, TCC 2016-
B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part
I, 2016, pp. 433–458.

[28] Z. Jafargholi, C. Kamath, K. Klein, I. Komargodski, K. Pietrzak,
and D. Wichs, “Be adaptive, avoid overcommitting,” in Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part I, 2017, pp. 133–163.

[29] D. Beaver and S. Haber, “Cryptographic protocols provably secure
against dynamic adversaries,” in Advances in Cryptology - EUROCRYPT
’92, Workshop on the Theory and Application of of Cryptographic
Techniques, Balatonfüred, Hungary, May 24-28, 1992, Proceedings,
1992, pp. 307–323.

[30] R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adaptively secure
multi-party computation,” in Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, Philadelphia, Pennsyl-
vania, USA, May 22-24, 1996, 1996, pp. 639–648.

[31] B. Blanchet, “A computationally sound mechanized prover for security
protocols,” in IEEE Symposium on Security and Privacy, Oakland,
California, May 2006, pp. 140–154.

[32] G. Barthe, B. Grégoire, and S. Zanella Béguelin, “Formal certification
of code-based cryptographic proofs,” in Proceedings of the 36th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’09. New York, NY, USA: ACM, 2009, pp.
90–101.

[33] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-
aided security proofs for the working cryptographer,” in Advances in
Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, 2011, pp. 71–90.

[34] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, B. Grégoire,
V. Laporte, and V. Pereira, “A fast and verified software stack for
secure function evaluation,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017,
2017, pp. 1989–2006.

[35] B. Li and D. Micciancio, “Symbolic security of garbled circuits,”
Cryptology ePrint Archive, Report 2018/141, 2018, https://eprint.iacr.
org/2018/141.

[36] D. Beaver, S. Micali, and P. Rogaway, “The round complexity
of secure protocols,” in Proceedings of the Twenty-second Annual
ACM Symposium on Theory of Computing, ser. STOC ’90. New
York, NY, USA: ACM, 1990, pp. 503–513. [Online]. Available:
http://doi.acm.org/10.1145/100216.100287

[37] A. Beimel, “Secret-sharing schemes: A survey,” in Coding and Cryptol-
ogy - Third International Workshop, IWCC 2011, Qingdao, China, May
30-June 3, 2011. Proceedings, 2011, pp. 11–46.

[38] V. Vinod, A. Narayanan, K. Srinathan, C. P. Rangan, and K. Kim, “On
the power of computational secret sharing,” in Progress in Cryptology
- INDOCRYPT 2003, 4th International Conference on Cryptology in
India, New Delhi, India, December 8-10, 2003, Proceedings, 2003, pp.
162–176.

[39] B. Li and D. Micciancio, “Equational security proofs of oblivious
transfer protocols,” in Public-Key Cryptography - PKC 2018 - 21st
IACR International Conference on Practice and Theory of Public-Key
Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings,
Part I, 2018, pp. 527–553.

APPENDIX

YAO’S SECRET SHARING SCHEME

Here we show how to extend our symbolic framework with

the xor expressions to give a sound symbolic security proof

of Yao’s secret sharing scheme [37], [38].

Formally, we extend the syntax of 𝐄𝐱𝐩(𝕂) as:

𝐄𝐱𝐩(𝕂) → 𝐊𝐞𝐲 ∣ 𝐄𝐱𝐩(𝕂)⊕ 𝐄𝐱𝐩(𝕂) ∣ 𝖢0 ∣ 𝖢1 ∣ 𝖢2 ∣ ⋯
𝐊𝐞𝐲 → 𝖪𝑖 ∣ 𝖦0(𝐊𝐞𝐲) ∣ 𝖦1(𝐊𝐞𝐲)

160

where 𝖪𝑖 ranges over 𝐊, and 𝖢0,𝖢1,𝖢2,… are new constant

symbols representing keys in {0, 1}𝜅 . At the same time, we

modify the grammar rule of 𝐄𝐱𝐩(⦃𝑠⦄) as:

𝐄𝐱𝐩(⦃𝑠⦄) → ⦃𝐄𝐱𝐩(𝑠)⦄𝐊𝐞𝐲
Note that the encryption expressions remain the same as in

Section II, and 𝐊𝐞𝐲 = 𝖦∗(𝐊) = 𝐊∗ is the set of possible

encryption keys. So symbolic properties on pseudorandom

keys do not change. For all 0 ≤ 𝑖 < 2𝜅 , let 𝑖 ∈ {0, 1}𝜅 be

the binary representation of 𝑖. Any computational evaluation

function 𝜎 can be extended in the obvious way:

𝜎(𝑘0 ⊕ 𝑘1) = 𝜎(𝑘0) ⊻ 𝜎(𝑘1), 𝜎(𝖢𝑖) = 𝑖,

where ⊻ is the bitwise xor operation on bitstrings.

We extend the congruence relation ≡ with the following

rules: For all 𝑘, 𝑘′, 𝑘′′ ∈ 𝐏𝐚𝐭(𝕂) and for all 0 ≤ 𝑖, 𝑗 < 2𝜅 , let

𝑘 ⊕ 𝑘′ ≡ 𝑘′ ⊕ 𝑘, (𝑘 ⊕ 𝑘′)⊕ 𝑘′′ ≡ 𝑘 ⊕ (𝑘′ ⊕ 𝑘′′),
𝑘 ⊕ 𝖢0 ≡ 𝑘, 𝑘 ⊕ 𝑘 ≡ 𝖢0,

𝖢𝑖 ⊕ 𝖢𝑗 ≡ 𝖢ℎ for some 0 ≤ ℎ < 2𝜅 such that 𝑖 ⊻ 𝑗 = ℎ.

Pseudorandom bit renamings and pseudorandom key renam-

ings remain the same. We consider an additional mapping

𝛼⊕ ∶ 𝐏𝐚𝐭(𝕂) → 𝐏𝐚𝐭(𝕂) such that it is compatible with ≡,

i.e., 𝛼⊕(𝑘 ⊕ 𝑘′) ≡ 𝛼⊕(𝑘) ⊕ 𝛼⊕(𝑘′) for all 𝑘, 𝑘′ ∈ 𝐏𝐚𝐭(𝕂).
Moreover, we require that, for all 𝑘 ∈ 𝐏𝐚𝐭(𝕂):

∙ if 𝑘 = 𝖢𝑖 for some 𝖢𝑖, then 𝛼⊕(𝑘) = 𝑘;

∙ if 𝑘 ∈ 𝐊𝐞𝐲, then 𝛼⊕(𝑘) = 𝑘 ⊕ 𝖢𝑗 for some 𝖢𝑗 ;

∙ if 𝑘 = 𝑘′ ⊕ 𝑘′′, then 𝛼⊕(𝑘) = 𝛼⊕(𝑘′)⊕ 𝛼⊕(𝑘′′).
Then for all 𝑘, 𝑘′ ∈ 𝐏𝐚𝐭(𝕂), 𝑘 ≡ 𝑘′ if and only if 𝛼⊕(𝑘) ≡
𝛼⊕(𝑘′). We extend 𝛼⊕ to all patterns in the obvious way. It is

easy to check that for any pattern 𝑒 the distributions �𝑒� and

�𝛼⊕(𝑒)� are the same. Now, a pseudorandom renaming is a

triple 𝛼 = (𝛼𝐵, 𝛼𝐾, 𝛼⊕), and we write 𝛼(𝑒) = 𝛼⊕(𝛼𝐾 (𝛼𝐵(𝑒)))
To compute the pattern of an expression, we keep the

definitions of 𝐩, 𝐊𝐞𝐲𝐬, and 𝐏𝐚𝐫𝐭𝐬 unchanged. For any set 𝑆

of keys, let 𝑆⊕ be the closure of 𝑆 under ⊕. Then we modify

the definition of 𝐫 to include keys that can be derived using

the xor operation:

𝐫(𝑒) = 𝖦∗ ({𝑘 ∈ 𝐊𝐞𝐲𝐬(𝑒) ∣ (𝑘 ⋐ 𝑒 ∨ ∃𝑘′ ∈ 𝐊𝐞𝐲𝐬(𝑒).𝑘 ≺ 𝑘′)
})⊕

.

For any 𝑒 ∈ 𝐏𝐚𝐭, the key recovery operator 𝑒 ∶ ℘(𝐏𝐚𝐭(𝕂)) →
℘(𝐏𝐚𝐭(𝕂)) has the same definition as in Section II: for any

𝑆 ⊆ 𝐏𝐚𝐭(𝕂), 𝑒(𝑆) = 𝐫(𝐩(𝑒, 𝑆)). One can check that the

conditions in Theorem 2 (with 𝐊 replaced by 𝐏𝐚𝐭(𝕂)) still hold

with these changes, and thus the extended symbolic framework

is sound.

A secret sharing scheme Π for 𝑛 parties 𝑝1,… , 𝑝𝑛 consists

of a pair of algorithms (𝚜𝚑𝚊𝚛𝚎, 𝚛𝚎𝚌𝚘𝚗) and an access structure

defined by a boolean circuit 𝐶 ∶ {0, 1}𝑛 → {0, 1}. Any

set 𝑃 of parties can be encoded using a boolean vector

𝑥𝑃 ∈ {0, 1}𝑛 such that 𝑥𝑃
𝑖

= 1 if and only of 𝑝𝑖 ∈ 𝑃 . The

probabilistic algorithm 𝚜𝚑𝚊𝚛𝚎 takes a circuit 𝐶 and a secret

𝑦 ∈ {0, 1}𝑛, and it produces 𝑛 secret shares {𝑦̃𝑖}𝑛𝑖=1, one for

each party; the algorithm 𝚛𝚎𝚌𝚘𝚗 takes a set of secret shares,

and it outputs 𝑦′ ∈ {0, 1}𝑛. The scheme Π is correct if for

any set 𝑃 of parties with 𝐶(𝑥𝑃) = 1 and any 𝑦 ∈ {0, 1}𝑛,

if {𝑦̃𝑖}𝑛𝑖=1 ← 𝚜𝚑𝚊𝚛𝚎(𝐶, 𝑦), then 𝚛𝚎𝚌𝚘𝚗({𝑦̃𝑗}𝑝𝑗∈𝑃) = 𝑦. It

is computationally secure if for any 𝑦0, 𝑦1 ∈ {0, 1}𝑛, if

{𝑦̃ℎ,𝑖}𝑛𝑖=1 ← 𝚜𝚑𝚊𝚛𝚎(𝐶, 𝑦ℎ) for ℎ ∈ {0, 1}, then for any set

𝑃 of parties such that 𝐶(𝑥𝑃) = 0, the distributions {𝑦̃0,𝑗}𝑝𝑗∈𝑃
and {𝑦̃1,𝑗}𝑝𝑗∈𝑃 are computationally indistinguishable.

Yao’s secret sharing scheme Π is a computational secret

sharing scheme for monotone boolean circuits, i.e., circuits

that consist of AND and OR gates and have a single bit output.

To describe such circuits in our inductive circuit notation, we

remove 𝐍𝐀𝐧𝐝 and add 𝐀𝐧𝐝 and 𝐎𝐫 circuits: both of 𝐀𝐧𝐝
and 𝐎𝐫 have two input wires and one output wire, and they

compute the boolean and and or functions, respectively. In the

symbolic settings, we can describe 𝚜𝚑𝚊𝚛𝚎 as follows:

𝚜𝚑𝚊𝚛𝚎 :: Circuit(𝑠, ◦) × {0, 1}𝑛 → 𝐄𝐱𝐩
𝚜𝚑𝚊𝚛𝚎(𝐶, 𝑦) = ((𝚌𝚝, 𝑘1),… , (𝚌𝚝, 𝑘𝑛)) where

(𝚌𝚝, 𝑣) = 𝚜𝚑(𝐶,𝖢𝑦)
(𝑘1,… , 𝑘𝑛) = 𝑣

𝚜𝚑 :: Circuit(𝑠, 𝑡) × 𝐄𝐱𝐩 → 𝐄𝐱𝐩
𝚜𝚑(𝐀𝐧𝐝, 𝑘) = (𝜖, (𝖪ℎ, 𝑘 ⊕ 𝖪ℎ)) where

ℎ ← new
𝚜𝚑(𝐎𝐫, 𝑘) = (𝜖, (𝑘, 𝑘))
𝚜𝚑(𝐃𝐮𝐩, (𝑘𝑖, 𝑘𝑗)) = ((⦃𝑘𝑖⦄𝖪ℎ

,⦃𝑘𝑗⦄𝖪ℎ
),𝖪ℎ) where

ℎ ← new
𝚜𝚑(𝐒𝐰𝐚𝐩, (𝑢, 𝑣)) = (𝜖, (𝑣, 𝑢))
𝚜𝚑(𝐀𝐬𝐬𝐨𝐜, (𝑢, (𝑣,𝑤))) = (𝜖, ((𝑢, 𝑣), 𝑤))
𝚜𝚑(𝐔𝐧𝐚𝐬𝐬𝐨𝐜, ((𝑢, 𝑣), 𝑤)) = (𝜖, (𝑢, (𝑣,𝑤)))
𝚜𝚑(𝐶0 ⋙ 𝐶1, 𝑤) = ((𝚌𝚝0, 𝚌𝚝1), 𝑢) where

(𝚌𝚝1, 𝑣) = 𝚜𝚑(𝐶1, 𝑤)
(𝚌𝚝0, 𝑢) = 𝚜𝚑(𝐶0, 𝑣)

𝚜𝚑(𝐅𝐢𝐫𝐬𝐭(𝐶), (𝑣,𝑤)) = (𝚌𝚝, (𝑢,𝑤)) where

(𝚌𝚝, 𝑢) = 𝚜𝚑(𝐶, 𝑣)
Due to space constraint, the definition of 𝚛𝚎𝚌𝚘𝚗 is omitted

here and can be found in the full version [35].

To show that this scheme is secure, let us fix any mono-

tone boolean circuit 𝐶 with 𝑛 input wires and a set 𝑃 =
{𝑝𝑖1 ,… , 𝑝𝑖𝑚} of 𝑚 parties such that 𝐶(𝑥𝑃) = 0. One can show

that the following lemma holds:

Lemma 9. For any 𝑦 ∈ {0, 1}𝑛, let ((𝚌𝚝, 𝑘1),… , (𝚌𝚝, 𝑘𝑛)) =
𝚜𝚑𝚊𝚛𝚎(𝐶, 𝑦), and let 𝑒 = (𝚌𝚝, (𝑘𝑖1 ,… , 𝑘𝑖𝑚)). If 𝖢𝑦 ⊕ 𝑘 ∈
Fix(𝑒) for some 𝑘 ∈ 𝐏𝐚𝐭(𝕂), then 𝑘 ∉ Fix(𝑒).

Fix any 0 ≤ 𝑦0, 𝑦1 < 2𝑛. For ℎ ∈ {0, 1}, let

((𝚌𝚝ℎ, 𝑘ℎ1),… , (𝚌𝚝ℎ, 𝑘ℎ𝑛)) = 𝚜𝚑𝚊𝚛𝚎(𝐶, 𝑦ℎ), and let 𝑒ℎ =
(𝚌𝚝ℎ, (𝑘ℎ

𝑖1
,… , 𝑘ℎ

𝑖𝑚
)). If 𝖢𝑦0

⊕ 𝑘 ⋐ 𝑒0 then let 𝛼0
⊕

be such

that 𝛼0
⊕
(𝑘) ≡ 𝑘 ⊕ 𝖢𝑦0

; otherwise let 𝛼0
⊕

be the identity map

on 𝑘. Similarly we can define 𝛼1
⊕

for 𝑒1. Let 𝛼𝐵 and 𝛼𝐾
be identity maps. One can check that 𝛼0

⊕
(𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑒0)) ≡

𝛼1
⊕
(𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑒1)), and thus 𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑒0) and 𝐏𝐚𝐭𝐭𝐞𝐫𝐧(𝑒1) are

equivalent up to the pseudorandom renaming 𝛼. Therefore Π
is computationally secure.

161

