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Abstract—Security of cryptographic schemes is traditionally
measured as the inability of resource-constrained adversaries to
violate a desired security goal. The security argument usually
relies on a sound design of the underlying components. Arguably,
one of the most devastating failures of this approach can be ob-
served when considering adversaries such as intelligence agencies
that can influence the design, implementation, and standard-
ization of cryptographic primitives. While the most prominent
example of cryptographic backdoors is NIST’s Dual_EC_DRBG,
believing that such attempts have ended there is naive.

Security of many cryptographic tasks, such as digital sig-
natures, pseudorandom generation, and password protection,
crucially relies on the security of hash functions. In this work, we
consider the question of how backdoors can endanger security
of hash functions and, especially, if and how we can thwart
such backdoors. We particularly focus on immunizing arbitrarily
backdoored versions of HMAC (RFC 2104) and the hash-based
key derivation function HKDF (RFC 5869), which are widely
deployed in critical protocols such as TLS. We give evidence
that the weak pseudorandomness property of the compression
function in the hash function is in fact robust against backdoor-
ing. This positive result allows us to build a backdoor-resistant
pseudorandom function, i.e., a variant of HMAC, and we show
that HKDF can be immunized against backdoors at little cost.
Unfortunately, we also argue that safe-guarding unkeyed hash
functions against backdoors is presumably hard.

I. INTRODUCTION

The Snowden revelations in 2013 have exposed several

ongoing surveillance programs targeting people all over the

world, violating their privacy, and endangering their secu-

rity [5], [27]. Different techniques have been used from

installing backdoors, injecting malware, and undermining stan-

dardization processes to simply name a few. A prominent

example is NIST’s pseudorandom generator Dual_EC_DRBG,

which is widely believed to have been backdoored by the

National Security Agency (NSA) [6], [15]. An entity choosing

the elliptic curve parameters used in Dual_EC_DRBG can not

only distinguish the outputs of the pseudorandom generator

(PRG) from random but also predict future outputs.

Studying deliberate and covert weakening of cryptosystems

by embedding backdoors in primitives and subverting imple-

mentations was initiated already over two decades ago by

Young and Yung [42], [43] in a line of work referred to as

kleptography. Recent revelations have drawn our community’s
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attention more than ever before to the realness and the gravity

of such attacks and the increasing importance of their rigorous

treatment (cf. Section VIII for related work).

In this work we turn our attention to understanding and

immunizing backdoored hash functions. A hash function is

a function that compresses an arbitrary-length input to a

short, fixed-length output. To name a few applications, hash

functions are used in message authentication codes (MACs)

such as HMAC (RFC 2104), signature schemes, pseudorandom

generation, randomness extraction such as HKDF (RFC 5869),

and password protection. The security of these applications

among others relies crucially on the security of the underlying

hash function. Naturally, if the employed hash function is

backdoored by its malicious designer, all bets on the standard

security guarantees are off.

We believe that studying the impact of backdoored crypto-

graphic primitives on their applications and developing strate-

gies to build backdoor-resistant constructions is of utmost

necessity. Unfortunately, immunizing hash functions against

backdoors and reviving their security against the backdooring

adversary is far from easy. Most repellents against backdoors

in cryptographic primitives are cumbersome, and often re-

quire additional means like reliable alternative primitives or

complex detection mechanisms. Interestingly, we argue here

that lightweight immunization of hash-based MACs (namely,

HMAC) and hash-based key derivation functions (namely,

HKDF) is possible.

A. Our Results

BACKDOORED HASH FUNCTIONS. Our work begins with for-

malizing backdoored hash functions. A backdooring adversary

generates a backdoored hash function family together with a

short bit string corresponding to a backdoor key. The adver-

sarial influence in the design is captured by this definition,

since the hash function family and its constants can be chosen

maliciously in a way that a short backdoor key co-designed

with the family enables bypassing the security guarantees.

We revisit the main security requirements, i.e., collision resis-

tance, preimage resistance, and second-preimage resistance to

include the possibility of backdoored hash function generation.

Intuitively, a backdoored hash function retains security against

adversaries that do not hold a backdoor key, since a rational

malicious designer would want the backdoor to be exclusive.
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HOW TO IMMUNIZE. Withstanding backdoor attacks is hard.

Therefore, we pursue the quest of identifying cryptographic

properties that provide a successful immunization against all

types of backdoors in hash functions. Fortunately, we are able

to identify a promising candidate property of the compression

function which cannot be weakened by a backdoor. This prop-

erty is weak pseudorandomness, saying that the compression

function’s outputs on random inputs look random. The reason

for our optimism is that we can show that distinguishing

the outputs (on random inputs) from random with a back-
door implies public-key encryption. In other words, placing

a backdoor in the hash function design implicitly needs to

embed a tedious public-key scheme and makes the design look

suspicious. Hence, unless there is surprising progress in the

efficiency of public-key schemes, fast compression functions

will not be built from public-key tools and hence will remain

weakly pseudorandom, even with knowledge of the backdoor.

This result follows an idea of Pietrzak and Sjödin [38] for

building key agreement from secret-coin weak pseudorandom

functions.

Using the assumption of weak pseudorandomness we are

able to provide an immunization strategy for HMAC based on

the randomized cascade construction introduced by Maurer

and Tessaro [33]. On a high level, the construction makes use

of a prefix-free encoding to map blocks of the input message

to (honestly chosen) random strings. We argue that since

the randomized cascade construction yields a pseudorandom

function (PRF), it can be used in the inner HMAC chain

showing that such a modified HMAC is a PRF. However, there

is a small caveat in terms of efficiency since the underlying

transformation in the randomized cascade construction from a

weak PRF to a full-fledged PRF can be expensive in terms of

the number of compression function evaluations.

We further investigate whether there exist simpler immu-

nization solutions (compared to the randomized cascade con-

struction) for key derivation functions based on hash functions,

especially HKDF based on HMAC. Fortunately, we answer

this in the affirmative and show that an idea by Halevi and

Krawczyk [28] for strengthening hash-and-sign schemes via

input randomization can be used to immunize HMAC when

used as a key derivation function. The result again relies on

the weak pseudorandomness of the compression function.

BACKDOORED CONSTRUCTION. We finally demonstrate the

feasibility of embedding a backdoor in a hash function by

constructing a backdoored Merkle-Damgård-based hash func-

tion, which iterates a backdoored compression function. One

may think that building a backdoored hash function, which

is secure without the backdoor but insecure with the back-

door key would imply public-key encryption (or equivalently

trapdoor permutations), as it does in case of backdoored weak
pseudorandom functions (as mentioned above) and backdoored

PRGs [21]. We show, however, that for unkeyed (aka., publicly

keyed) hash functions and (strong) pseudorandom functions

this is unfortunately not necessarily true. They can in principle

be as fast as an unbackdoored one. Our construction is

inspired by many-to-one trapdoor one-way functions with an

exponential preimage size as studied by Bellare et al. [11].

On a high level, a malicious designer can build a backdoored

compression function from an arbitrary secure compression

function, where the backdoored function basically “mimics”

the behavior of the healthy function unless a backdoor key,

which is a particular bit string, is given as part of the input. For

this exceptional input the altered function returns something

trivial, e.g., a part of its input. In other words, the backdoor

key acts as a logical bomb for the backdoored compression

function, thereby triggering a malicious behavior. Since the

inputs to hash functions can be chosen by the adversary,

finding collisions, preimages, and second preimages becomes

easy when triggering the backdoor. It is noteworthy that the

backdoor can only be triggered by an adversary with prior

knowledge of the backdoor key, since it is cryptographically

hidden in the construction.

Furthermore, we show that even though HMAC uses a secret

key, it is not secure against an adversary that can exploit the

backdoor for the underlying hash function. This enables the

adversary to find collisions in the inner hash chain which is

exactly what makes forging MAC tags possible.

B. Structure of the Paper

In Section II, we provide a formal definition of backdoored

hash functions and establish security notions for standard

and backdoored hash functions. In Section III, we show

that backdoored weak pseudorandom functions imply public-

key encryption. Based on this positive result, we provide a

solution for immunizing backdoored HMAC constructions in

Section IV and give a more efficient solution for immunizing

HKDF in Section V. We discuss applications to the pre-shared

key mode of the TLS 1.3 handshake protocol candidate in

Section VI. In Section VII, we concretely show that security

of a Merkle-Damgård-based backdoored hash function and

HMAC can unfortunately be completely undermined if the

iterated compression function is backdoored. In Section VIII,

we discuss related work and finally we conclude the paper in

Section IX.

II. MODELING BACKDOORED HASH FUNCTIONS

In this section we give some background on hash functions

and their security, recall the Merkle-Damgård transform for

building hash functions from fixed input-length compression

functions as well as the HMAC construction. Finally, we give

a formal definition of backdoored hash functions and ex-

tend standard security notions to additionally capture security

against the backdooring adversary.

NOTATION. The set of bit strings of arbitrary length is denoted

by {0, 1}∗ and the set of bit strings of length at most n by

{0, 1}≤n. The length of a bit string s ∈ {0, 1}∗ is denoted

by |s| and a special symbol ε indicates a string of length

0. The concatenation of two bit strings s1 and s2 by s1||s2.

By s[i,j] we denote the substring of s starting from the i-th
bit and ending with the j-th bit, where the first index of a

string is i = 0. We write s $←− S to denote the sampling of a
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value uniformly at random from a finite set S. We use PPT to

denote probabilistic polynomial-time and denote by poly(λ)
an unspecified polynomial in the security parameter. For a run

of a randomized algorithm A on input x and with randomness

r we write A(x; r). Accordingly, for a probabilistic algorithm

A the random variable A(x) describes its output, and we write

y $←− A(x) for the sampling. For a deterministic algorithm

we simply write y ← A(x). An optional input value x for

an algorithm is put in square brackets [x]. It is sometimes

convenient to write [x]b to make the presence of the optional

input dependent on a bit b, i.e., A([x]b) means that A receives

the input if b = 1, and not if b = 0.

A. Hash Functions

Informally, a hash function is an efficiently computable

function which compresses bit strings of arbitrary length to

bit strings of a fixed length. Inputs of hash functions are often

referred to as messages and their outputs are often called

digests. Depending on concrete applications, cryptographic

hash functions are required to meet certain security require-

ments, among which collision resistance, preimage resistance,

and second-preimage resistance are the most common ones.

Roughly speaking, collision resistance means that it is compu-

tationally infeasible to find any two distinct messages which

will be mapped to the same digest. Preimage resistance, also

known as one-wayness, concerns the infeasibility of finding a

message that hashes to a given random digest of the hash

function. Finally, second-preimage resistance indicates that

given a random message it is computationally infeasible to

find a second distinct message that collides with the given

message. We formalize the above security notions later in this

section.

To bridge the gap between keyed hash functions in theory

and unkeyed hash functions in practice, we adopt the more

general notion of hash functions as families of keyed functions.

The keys are public such that a key here can be thought of as

an index specifying which particular hash function from the

family is being considered. For unkeyed hash functions the

key can be set to some constant.

Definition II.1 (Hash Function). A hash function is a pair
of efficient algorithms H = (KGen,H) with associated key
space K, message space M, and digest space D, such that:

• k $←− KGen(1λ): On input of a security parameter, this
probabilistic polynomial-time algorithm generates and
outputs a key k ∈ K;

• d ← H(k,m): On input of a key k ∈ K and a
message m ∈ M, this deterministic polynomial-time
algorithm outputs a digest d ∈ D.

We write Hk(m) as a shorthand for H(k,m). Since the key

is public, it is often helpful to identify it as an initialization

vector in concrete constructions of hash functions, denoted

by IV.

1) Merkle-Damgård-based Hash Functions: The Merkle-

Damgård construction [18], [34] is one of the most commonly

used approaches for building a full-fledged hash function with

arbitrary input length. The construction works by iterating

a compression function, processing a single block of the

input message in each iteration and using padding techniques

to make the entire input message length comply with the

block length. In terms of security, for appropriate paddings it

preserves the collision resistance of the iterated compression

function. The Merkle-Damgård domain extender is extensively

used in practice for hash functions including the MD family,

SHA-1 and SHA-2, while each one employs a different

compression function.

In the following, we describe a generic Merkle-Damgård-

based hash function Hmd
h := (KGenmd,Hmd

h ) with associated

key space K := {0, 1}�, message space M := {0, 1}≤2p for

some fixed integer p, and digest space D := {0, 1}�, iterating

a compression function h : {0, 1}� × {0, 1}b → {0, 1}�. As

described in Figure 1, an input message m is first padded

such that its length becomes a multiple of the block size b
that is processable by the compression function. The padded

message is then split into blocks m0,m1, . . . ,mn−1, where

each message block is of size b. Below we discuss the padding

function in more detail. Next the compression function h
is iterated in such a way that the output of the previous

compression function and the next message block become the

input to the next compression function. The iteration starts

with an initialization value IV $←− KGenmd(1λ) and the first

message block m0.

Hmd
h,IV(m)

m ← m||lpad(m, b, p)

parse m as m0|| . . . ||mn−1 where |mi| = b for all 0 ≤ i < n

d0 ← IV

for i = 0...n− 1 do

di+1 ← h(di,mi)

return dn

IV
h

m0

�

��
�

h

m1

�

��
�

h

mn−1

�

��
�

� d

Figure 1: Merkle-Damgård construction from a compression

function h.

LENGTH PADDING. The padding used in the domain extender

must itself be collision free. Length padding is typically used

for Merkle-Damgård-based hash functions. It appends the

length of the message to the end, while making sure that the

length of the padded message is a multiple of the block size b
required by the compression function. We consider a compact

length padding function lpad that uses p bits to represent the

message length, where p is usually smaller than or equal to

� (e.g., p = 64 for SHA-256). Hence, the padded message

contains the message length in its last b-bits block possibly

together with some of the least significant bits of the message.
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Such a length padding function is commonly used in practical

Merkle-Damgård-based hash functions, such as MD5, SHA-1

and SHA-2. A similar padding that additionally prepends the

length of the message with a bit of 1 is used in BLAKE. Let

binary(x, y) be the binary representation of x in y bits, then

lpad is defined as:

lpad(m, b, p) := 1||0(b−|m|−p−1) mod b||binary(|m|, p).
A less compact and mostly theoretical variant of length

padding uses exactly b bits for representing the message

length, which is then encoded in a separate block.
2) The HMAC Scheme: Message authentication codes

(MACs) provide message integrity, i.e., they can be used to

prevent adversaries from tampering with a communication

without being detected by the receiver. The widely used

HMAC scheme [9] is built on a cryptographic hash function.

It has been standardized in IETF RFC [30] and NIST [24],

and is widely deployed in various security protocols such

as for example TLS and IPSec. HMAC (to be precise, its

theoretical counterpart NMAC) is provably a pseudorandom

function, i.e., indistinguishable from a random function, under

the assumption that its underlying compression function is a

pseudorandom function [8]. Note that PRF security implies

the standard notion of unforgeability for MAC schemes.

Definition II.2 (HMAC). Let Hmd
h = (KGenmd,Hmd

h ) be
a Merkle-Damgård-based hash function with associated key
space K, message space M, and digest space D. The
hash-based message authentication scheme HMACh =
(KGen,HMACh) with associated secret key space SK, mes-
sage space M, and tag space T is defined as:

• (k, IV) $←− KGen(1λ): On input of a security parameter,
this PPT algorithm outputs a secret key k ∈ SK and an
initial value IV ∈ K, where IV $←− KGenmd(1λ).

• t ← HMACh(k, IV,m): On input of a key k ∈ SK,
an initial value IV ∈ K, and a message m ∈ M,
this deterministic polynomial-time algorithm outputs a
tag t ∈ T :

HMACh(k, IV,m) =

Hmd
h,IV((k⊕ opad) ||Hmd

h,IV((k⊕ ipad) ||m)),

where ipad and opad are fixed, distinct b-bit constants.

IV
h

k⊕ ipad

�

��
�

h

m0

�

��
�

h

m1

�

��
�

h

mn−1

�

��
�

h

k⊕ opad

IV �

��
�

h�

��
�

� t

Figure 2: Illustration of HMAC.

B. Backdoored Hash Functions

A backdoored hash function is a function which is de-

signed by an adversary together with a short backdoor key,

whose knowledge allows for violating the security of the hash

function. More precisely, we consider an efficient algorithm

BDHGen, which outputs a hash function family H, a backdoor

bk, and a string r. The latter, if not empty, is used as the

randomness in key generation. Otherwise, the key generation

algorithm uses its own random coins. The algorithm BDHGen
can be seen as a designer of a hash function H installing

a backdoor bk, potentially depending (via r) on a specific

instance of the hash function family.

Definition II.3 (Hash Function Generator). A PPT algorithm
BDHGen is called a hash function generator, if on input of a
security parameter 1λ, it outputs (the description of) a hash
function family H, a backdoor key bk ∈ {0, 1}poly(λ), and a
potentially empty randomness string r ∈ {0, 1}poly(λ).

Before formally defining backdoored hash functions, we

give definitions for the most commonly used security notions

of hash functions. We deviate slightly from the classic formu-

lations and generate the key with adversarial chosen random-

ness (if provided by BDHGen). Moreover, we optionally give

the adversary the backdoor key, the availability depending on

a bit b. Our definitions are thus general enough to capture

standard security notions without backdoors (b = 0) as well

as security against backdoored hash functions (b = 1), both

with and without influencing the key generation.

Definition II.4 (Collision Resistance). The advantage of an
adversary A in finding collisions for a hash function generated
by a PPT hash function generator BDHGen is defined below.
The bit b indicates whether the adversary knows the generated
backdoor key.

AdvCRBDHGen,A,b(λ) :=

Pr

⎡
⎢⎣
Hk(m) = Hk(m

′)
∧ m �= m′

∣∣∣∣∣
(H, bk, r) $←− BDHGen(1λ)

∧ k $←− KGen(1λ; r)

∧ (m,m′) $←− A([bk]b, k)

⎤
⎥⎦ ,

where the probability is over the internal random coins of
BDHGen, A, and potentially KGen. We call BDHGen collision

resistant (resp. collision resistant with backdoor) if for all PPT
adversaries A, the above advantage for b = 0 (resp. b = 1)
is negligible.

Definitions of preimage resistance and second-preimage

resistance are parameterized with an integer n which indicates

the length of the challenge message. Doing so allows us to

easily circumvent the technicality of uniformly sampling from

an infinite set.

Definition II.5 (Preimage Resistance). Let n be an integer
such that {0, 1}n ⊆ M. The advantage of an adversary A
in finding preimages for a hash function generated by a PPT
hash function generator BDHGen is defined below. The bit b
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indicates whether the adversary knows the generated backdoor
key.

AdvPR,nBDHGen,A,b(λ) :=

Pr

⎡
⎢⎢⎢⎣Hk(m

′) = Hk(m)
∣∣∣∣∣

(H, bk, r) $←− BDHGen(1λ)

∧ k $←− KGen(1λ; r)

∧ m $←− {0, 1}n

∧ m′ $←− A([bk]b,Hk(m), k)

⎤
⎥⎥⎥⎦ ,

where the probability is over the random choice of m
and the internal random coins of BDHGen, A, and poten-
tially KGen. We call BDHGen preimage resistant or one-way

(resp. preimage resistant with backdoor) for parameter n if
for all PPT adversaries A the above advantage for b = 0
(resp. b = 1) is negligible.

Definition II.6 (Second-Preimage Resistance). Let n be an
integer such that {0, 1}n ⊆ M. The advantage of an ad-
versary A in finding second preimages for a hash function
generated by a PPT hash function generator BDHGen is
defined below. The bit b indicates whether the adversary knows
the generated backdoor key.

AdvSPR,nBDHGen,A,b(λ) :=

Pr

⎡
⎢⎢⎢⎣Hk(m

′) = Hk(m)

∧ m �= m′

∣∣∣∣∣
(H, bk, r) $←− BDHGen(1λ)

∧ k $←− KGen(1λ; r)

∧ m $←− {0, 1}n

∧ m′ $←− A([bk]b,m, k)

⎤
⎥⎥⎥⎦ ,

where the probability is over the random choice of m,
and the internal random coins of BDHGen, A, and po-
tentially KGen. We call BDHGen second-preimage resistant

(resp. second-preimage resistant with backdoor) for parameter
n if for all PPT adversaries A, the above advantage for b = 0
(resp. b = 1) is negligible.

Definition II.7 (Backdoored Hash Function). Let BDHGen
be a PPT hash function generator and S ∈ {CR,PR, SPR}
denote a security notion for hash functions.

We call BDHGen a backdoored hash function generator (and
its output hash function a backdoored hash function), if there is
a PPT adversary A such that the advantage AdvS,[n]BDHGen,A,1(λ)
is non-negligible.

We call BDHGen a weakly backdoored hash function gen-

erator (and its output hash function a weakly backdoored hash

function) if the randomness string r output by BDHGen is not
empty. At the same time, however, for all PPT adversaries A
without bk the advantage Adv

S,[n]
BDHGen,A,0(λ) is still negligible.

Weakly backdoored hash functions only provide a backdoor

if the key generation algorithm is run on the randomness r.

They are defined for the sake of completeness, since hash

functions are usually used with fixed keys in practice. How-

ever, throughout this paper we consider the stronger notion of

backdoors, which allow attacks for randomly chosen keys. In

this case, the malicious designer of the hash function does not

need to influence the hash key generation, i.e., r is empty.

III. ON THE IMPLAUSIBILITY OF BACKDOORED WEAK

PSEUDORANDOM FUNCTIONS

We argue that it is reasonable to assume that a backdoored

weak PRF, which is secure in the standard sense against

distinguishers who do not know the backdoor, remains a weak

PRF even against distinguishers who know the backdoor. We

prove that if a backdoor allows for distinguishing outputs

of a weak PRF on random inputs from uniform random bit

strings, then that weak PRF family already implies public-

key encryption. Put differently, any such backdoored function

would need to already contain some form of public-key

encryption. Such systems, however, are significantly slower

than symmetric-key based pseudorandom functions.

A. Weak Pseudorandom Functions

A family of functions f : {0, 1}k × {0, 1}i → {0, 1}o is

called weakly pseudorandom if no efficient adversary can

distinguish a random function of the family from a uniform

random function when queried on random inputs. More pre-

cisely, let a family of functions, and potentially a backdoor,

be generated by a PPT generator (f, bk) $←− BDPRFGen(1λ).
An adversary attacking the weak pseudorandomness of f can

only query an oracle on an integer q ≤ poly (λ), where

the oracle either implements a function F (k, ·) or a random

function F$(·). Upon being queried on q, the oracle outputs

q input-output pairs (x, y) such that x $←− {0, 1}i is random

and y = f(k, x) (resp. y = f$(x)). Here, k ← {0, 1}k is

also chosen at random (resp. f$
$←− Func(i, o) is a randomly

chosen function from the set Func(i, o) of all functions from

{0, 1}i to {0, 1}o). The weak PRF-advantage of an adversary

A, optionally using the backdoor bk (based on a bit b), is then

defined by:

AdvwPRF
BDPRFGen,A,b(λ) :=∣∣∣Pr [AF (k,·)(1λ, [bk]b) = 1 |
(f, bk) $←− BDPRFGen(1λ), k $←− {0, 1}k

]
− Pr

[
AF$(·)(1λ, [bk]b) = 1 |

(f, bk) $←− BDPRFGen(1λ), f$
$←− Func(i, o)

]∣∣∣,
where the probability is over the choice of f$ resp. k,

BDPRFGen and A’s coin tosses.

Remark. When saying that a compression function h :
{0, 1}�×{0, 1}b → {0, 1}� is weakly pseudorandom we mean

that the key k is chosen from {0, 1}� and that we consider the

function h(k, ·) : {0, 1}b → {0, 1}�.
Remark. Note that if the backdoor key is not given to the

adversary, we obtain the standard security notion for weak

PRFs. We say that f is a backdoored weak PRF if f is a weak

PRF against adversaries without the backdoor, while with the

backdoor there exists a PPT distinguisher A against its weak

pseudorandomness that has a non-negligible advantage.

B. Backdoored Weak PRFs Imply Public-Key Encryption

In the following we construct a public-key scheme, given a

backdoored weak PRF. The idea for this constructions is based
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on the work of Pietrzak and Sjödin [38] for building key agree-

ment from secret-coin weak pseudorandom functions. Since

the backdoor allows to distinguish pseudorandom from random

strings, even on random inputs, we can use the backdoor to

decrypt bit encryptions. The sender encodes the bit b to be sent

by using pseudorandom answers yj = f(xj) for random inputs

xj for b = 1, and truly random answers yj instead to encode

the bit b = 0. The backdoor holder can then distinguish the two

cases and hence recover the bit with some probability bounded

away from 1
2 (and we can amplify the success probability via

repetitions). Since one cannot distinguish random outputs of

a weak PRF from uniform outputs without the backdoor, we

obtain a secure public-key encryption scheme.

We give the construction and proof in terms of concrete

security but occasionally refer to the common asymptotic

setting. As for asymptotic behavior, we note that we get an

infinite-often public-key encryption scheme, where infinitely

often means that the decryption algorithm works for infinitely

many security parameters.

Theorem III.1. Let f : {0, 1}k × {0, 1}i → {0, 1}o be a
backdoored weak pseudorandom function. Then we can build
an IND-CPA-secure public-key bit encryption scheme from f .

Proof. Let BDPRFGen be a generator for a backdoored weak

pseudorandom function family. Suppose A is a PPT adversary

such that A’s only query to its oracle is on an integer q ≤
poly(λ) and it holds that AdvwPRF

BDPRFGen,A,1(λ) = ε �≈ 0. In

particular, ε ≥ 1
poly(λ) infinitely often.

Then we can construct a public-key bit encryption scheme

E := (KGen,Enc,Dec) with overwhelming correctness as

follows. For sake of simplicity we first construct an encryption

scheme with correctness 1
2 + ε and explain afterwards how to

boost the correctness bound.

KGen(1λ)

(f, bk) $←− BDPRFGen(1λ)

pk ← f

sk ← bk

return (pk, sk)

Dec(sk, c)

b $←− A(sk, c)

return b

Enc(pk, b)

if b = 0 then

c $←− {0, 1}(i+o)·q

else

k $←− {0, 1}k, c ← ε

for j = 1 . . . q do

xj
$←− {0, 1}i, yj ← f(k, xj)

c ← c||xj ||yj
return c

For correctness observe that by construction a ciphertext can

be correctly decrypted if A successfully distinguishes random

outputs of f(k, ·) from uniformly random bit strings. Hence

we obtain the following correctness:

Pr[Dec(sk,Enc(pk, b)) = b] = Pr[A(sk,Enc(pk, b)) = b] =

1

2
+ AdvwPRF

BDPRFGen,A,1(λ) =
1

2
+ ε,

In other words, the decryption error is noticeably smaller than
1
2 for infinitely many security parameters.

It remains to show that E is indistinguishable under chosen-

plaintext attacks. Suppose in the contrary that there exists

a PPT adversary B against the security of E . Since we are

concerned with security of bit encryption, this means that B
can decrypt a ciphertext with a non-negligible advantage ε′.
We can build from B a PPT adversary C against the weak PRF

security of BDPRFGen, i.e., the generated family f (when not

holding a backdoor). When C queries its oracle on an integer

q, it obtains a string c containing q pairs of random messages

with the result of the oracle evaluation on them. It then runs

B on that value c. When B finally terminates with output bit

b, the adversary C also outputs b as its guess. We obtain:

AdvwPRF
BDPRFGen,C,0(λ) = AdvIND-CPA

E,B (λ) =

Pr[B(pk,Enc(pk, b)) = b]− 1

2
= ε′.

Thus our adversary C, who does not know a backdoor key, has

a non-negligible advantage against the weak pseudorandom-

ness of f . This contradicts our assumption of f being weakly

pseudorandom (without the backdoor key).

The final step is to note that we can reduce the decryption

error by standard techniques. For this we repeat the basic

encryption step above polynomial times, letting the sender

always generate pseudorandom (b = 1) or truly random

strings (b = 0) in each of the repetitions. The decrypter

outputs a majority decision for all the extracted bits. If we

use λ · ε2 ≤ λ · poly(λ)2 repetitions, where ε ≥ 1
poly(λ) is

the lower bound for the distinguisher’s advantage, then the

Hoeffding-Chernoff bound implies that the decryption error is

lower-bounded by e−λ. At the same time, the security of the

public-key encryption scheme remains intact for a polynomial

number of repetitions.

IV. IMMUNIZATION OF HMAC

According to the result presented in the previous section,

we may assume that the compression function used in an

HMAC construction preserves weak pseudorandomness in

the presence of backdoors. In the following we use the

randomized cascade (RC) construction introduced by Maurer

and Tessaro [33] in order to immunize HMAC under the

weak pseudorandomness assumption. In basic terms, the RC

construction is an iterated construction of a PRF from a

(constant-query) weak PRF. The first construction of a PRF

from a weak PRF is due to Naor and Reingold [37], and

a further construction was later proposed by Maurer and

Sjödin [32]. In our case, we are interested in an iterated

construction of a PRF where the candidate for a weak PRF

may be a compression function of hash functions. Maurer

and Tessaro note that both constructions [32], [37] may be

turned easily into iterative versions with the drawback that the

number of calls to the function would increase significantly. In

contrast, the randomized cascade construction is more efficient

and requires for input length b approximately b
log s (for s ≥ 2)

many calls to the function and also only requires the weaker
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underlying assumption of an s-query weak PRF1 than weak

PRF.

Let us now review the idea of the RC construction which

itself is based on the cascade construction for hash func-

tions by Bellare, Canetti and Krawczyk [10]. The RC con-

struction requires a prefix-free encoding of the input (from

some set X ). We say an efficiently computable encoding

Encode : X → {1, . . . , s}+ is prefix-free if for all distinct

inputs x, x′ ∈ X the sequence Encode(x) is not a prefix of

the sequence Encode(x′). On a high level, the RC construction

follows the principles of the Merkle-Damgård construction

(cf. Figure 1) with some additional randomness where the

underlying building block is a s-weak PRF.

The RC construction with parameter s and input set

X ⊇ M for the function h : {0, 1}� × {0, 1}b → {0, 1}�
and a prefix-free encoding as described above is a mapping

RCh
s,X ,Encode : {0, 1}�×{0, 1}s·b×X → {0, 1}�. The mapping

uses as input a private key k of length � and a (s · b)-bit long

public part which can be interpreted as the concatenation of s
b-bit strings r1, . . . , rs and an input x ∈ X . The input x is first

padded (following Section VII) such that the length becomes

a multiple of b and is then further processed with the above

prefix-free encoding outputting a sequence (m1, . . . ,mn) ∈
{1, . . . , s}+. Then for i = 1, . . . , n the cascade is computed

as yi+1 ← h(yi, rmi) with y1 ← k. First let us remark

that in each iteration the rmi ’s are chosen according to the

outputted sequence from the encoding. Maurer and Tessaro

formally prove given that h is a s-weak PRF then the resulting

RC construction is a PRF. The proof relies on the encoding

being done via a tree structure, where it is argued that by the

definition of s-weak PRF whenever we evaluate the function

under some secret key at s independent random inputs, it

produces s pseudorandom outputs and in particular sets all

vertices in the tree to be pseudorandom.

Now let HMACh := (KGen,HMACh) be a backdoored

HMAC construction. Our goal is to replace the Merkle-

Damgård construction with the randomized cascade construc-

tion from above and argue that one can salvage HMAC in

the context of backdoored hash functions. The idea is that

we first pad the input message m with the usual length

padding function and then use a prefix-free encoding obtaining

a sequence m′. According to the sequence the correct random

string will be chosen and used as the input to the compression

function. More formally it follows that

HMACrc
h (k, IV,m) =

Hh,IV

(
(k⊕ opad)||Hh,IV((k⊕ ipad)||rm′

1
|| . . . ||rm′

n
)
)
.

The above HMAC construction is a secure PRF, since its inner

hash chain is a PRF even against backdooring adversaries. In

particular, the first iteration in the inner chain (i.e. h(IV, k⊕

1We say that a function f : {0, 1}k×{0, 1}i → {0, 1}o for some constant
s with k < s · o is an s-query weak PRF if f(k, ·) (under a secret key k)
is indistinguishable from a random function when evaluated at s independent
known random inputs. This notion is weaker than a (regular) weak PRF where
we require indistinguishability for polynomially many random inputs.

ipad)) is computationally indistinguishable from a uniformly-

distributed random string, assuming as a weak dual PRF [7].

This guarantees that the first chaining value is pseudorandom

and hence can be used as a “good” key in the RC construction.

The same argument applies for the first chaining value in the

outer chain. The last iteration in HMAC receives as input from

both chains a pseudorandom input, and hence the output is still

pseudorandom and thus HMAC is secure.

V. IMMUNIZATION OF KEY DERIVATION FUNCTIONS

The above transformation from a weak PRF to a full-fledged

PRF can be expensive in terms of the number of compression

function evaluations, which depends on the parameter s. Here

we argue that for key derivation functions based on hash

functions, in particular HKDF based on HMAC, there exists

a simpler solution.

A. The Approach for HKDF

The HMAC-based key derivation function HKDF [29], [31]

consists of two steps: an extraction step to smooth the entropy

in some input key material like a Diffie-Hellman key, and an

expansion step where sufficient key material is generated. The

extraction step may use some public salt extsalt (if not present

then it is set to 0) and produces a pseudorandom key PRK
from the input key material IKM. The expand step takes the

key PRK, some context information info like a transcript in a

key exchange model, and the requested output length len (in

octets). It iterates HMAC on PRK, the previous value, info,

and a counter to generate sufficient key material. Formally,

PRK ← Extract(extsalt, IKM) = HMAC(extsalt, IKM)

k = k1 ||k2 || · · · ← Expand(PRK, info, len)

where k0 = ε, i.e., is the empty string, and ki =
HMAC(PRK, ki−1 ||info ||i), with the counter value i being

encoded as an octet. The last key part in the output may be

truncated to match the requested output length.

Immunizing HKDF boils down to hardening HMAC and

therefore the round function h. The security of HKDF relies

on the pseudorandomness of h, which does not hold for

backdoored functions according to our attacks on HMAC
which we will describe in Section VII-B. As argued in the

previous section, assuming that h is still a weak PRF in the

presence of a backdoor appears to be more reasonable. Hence,

our goal is to tweak HKDF to base its security on h to be a

weak PRF.

We use the idea of Halevi and Krawczyk [28] to strengthen

hash-and-sign schemes via input randomization. They propose

to pick a fresh random string r with each signature generation

and then compute the hash as H((m1 ⊕ r) || · · · || (mn ⊕ r)),
XORing the random string to each message block. This alle-

viates the necessary assumption for the compression function

h from collision resistance to some kind of second-preimage

resistance. We stress that this strategy does not work to

immunize hash functions against backdoors, as our attacks in

Section VII-A1 show that a backdoored compression function

would even allow to break second preimage resistance. In fact,
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one can show that a backdooring adversary can still break the

randomized hash-and-sign scheme.

The idea of Halevi and Krawczyk does apply, nonetheless,

in the case of HMAC when used as a key derivation function, if

we allow for a random value salt in the computation. Suppose

that, when computing keying material, one is allowed to pick

a random string salt of b bits. Then, instead of using the

compression function h in the HMAC computations, we use

the function hsalt(x, y) = h(x, y ⊕ salt). Note that this means

that we add salt to each input in each of the iteration steps.2

When outputting the key material in the computation one can

also return the value salt. The salt sometimes even needs to

be published, e.g., in a key exchange protocol where the other

party, too, should be able to derive the same key.

The downside of our construction is that each HMAC call

in the expansion requires a fresh salt. However, usually only a

few iterations in the expansion step are required. For example,

the cipher suite AES_256_CBC_SHA256 in TLS 1.2 requires

128 key bytes such that four iterations, each with 256 bits

output, suffice.

B. Security of Salted Key Derivation

To define security of the salted key derivation functions

we adopt the approach of Krawczyk [29], demanding that the

key derivation function provides pseudorandom outputs even

when the adversary can ask to see derived keys on different

information info. Since we use a fresh salt for each KDF call,

we can even allow the adversary to query the same information

info multiple times and still demand indistinguishability from

fresh random key material.

In the security experiment below we again assume that we

have a PPT generator BDKDFGen(1λ) which outputs a key

derivation function KDF and possibly a backdoor bk. We

assume that the function KDF takes two inputs, a context

information info and a length input len, and returns a random

value salt (of b bits) and keying material of len bits. To claim

indistinguishability from random we consider an oracle $(·)
which on any input pair (info, len) returns a fresh random

value salt and a random string k of len bits. Clearly, the

adversary cannot ask its two oracles about the same input

info, or else distinguishing the cases would be trivial. The

salted-KDF-advantage of an adversary A, optionally using the

backdoor bk, is then defined by:

Advskdf
BDKDFGen,A,b(λ) :=∣∣∣Pr [AKDF(k,·,·),KDF(k,·,·)(1λ, [bk]b) = 1 |
(KDF, bk) $←− BDKDFGen(1λ), k $←− {0, 1}k

]
− Pr

[
AKDF(k,·,·),$(·,·)(1λ, [bk]b) = 1 |

(KDF, bk) $←− BDKDFGen(1λ), k $←− {0, 1}k
]∣∣∣,

where the probability is over the choices of (KDF, bk), k, the

oracles answers, and A’s coin tosses.

2As pointed out by Halevi and Krawczyk in [28] this also means that the
padded message for the hash computation is masked with the random salt.

C. HKDF Expansion based on NMAC

We first discuss the case of expansion being based on

NMAC instead of HMAC and argue afterwards that the result

can be lifted to HMAC and the extraction step, making some

additional assumptions. Recall that there are two differences

between NMAC and its “practical cousin” HMAC. First,

NMAC takes two independent keys kin, kout ∈ {0, 1}� instead

of using correlated keys k ⊕ ipad, k ⊕ opad as in HMAC.

Second, the keys in NMAC are used directly as a substitute for

the initialization vector IV, instead of making an extra iteration

to first compute h(IV, k ⊕ ipad) resp. h(IV, k ⊕ opad) as in

HMAC.

Let sNMAC((kin, kout), ·) (for salted NMAC) be the prob-

abilistic algorithm which, on being called, picks a fresh

salt $←− {0, 1}b and then computes NMAC on keys kin, kout

for the salted compression function hsalt. It outputs the result

of the computation together with the salt. By the construction

of Expand we can assume that the adversary in the salted-KDF

experiment only queries the key derivation function for length

values len = � equal to the output size of NMAC. This would

already allow the adversary to assemble the full key material

by sequentially making the corresponding queries.

Theorem V.1. Let BDPRFGen be a backdoored PRF gen-
erator. Then sNMAC is a secure salted KDF, i.e., for any
adversary A against sNMAC we obtain an adversary B
against the weak PRF property with

Advskdf
sNMAC,A,b(λ) ≤ 2nq · AdvwPRF

BDPRFGen,B,b(λ)

where B is the maximal number of message blocks and each
of them has at most q key derivation queries, and n := B +
2 · 
�/b� + 3. Furthermore the run times of A and B are
essentially the same.

The proof idea is that each computation of sNMAC starts

with an evaluation of the backdoored compression function

for x2 = h(kin, y1 ⊕ salt), where y1 is the first input block

according to the adversary’s query and salt is a fresh random

value, picked independently after y1 has been determined.

This means that the input pair is random, such that we can

conclude by the weak pseudorandomness that the output value

x2 looks random, too. The argument then applies to the next

iteration step as well, since the next input (x2, y2 ⊕ salt) to

the compression function is (indistinguishable from) random.

The approach can be set forth to show that all final answers

in the computations look random, where the formal way to

show this is via a hybrid argument. Since we pick a fresh

salt in each computation, the result also holds for multiple

queries. The formal proof can be found in the full version of

the paper [25].

D. Lifting the Result to HKDF

To extend the above argument to also cover the extraction

step we need to assume, as in the original security proof of

HMAC [7], that the compression function h is a weak dual

PRF. This means that h(·, IKM) is weakly pseudorandom for

the input keying material IKM (with sufficient entropy). This
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appears to be a widely accepted assumption, but in our case

this should also hold for backdoored compression functions.

With a similar argument as in the wPRF case we can argue

that a weak dual PRF remains secure (for fixed extraction salt

extsalt) even when having a backdoor, or else one can again

construct a public-key encryption scheme. The argument is as

before, putting extsalt as part of the public-key and using the

backdoor to distinguish random values (for encryptions of 0’s)

from h(extsalt, IKM) values (for encryptions of 1’s, where the

sender chooses IKM).

Similarly, we need to argue that using kin = h(IV, k⊕ ipad)
and kout = h(IV, k⊕opad) in the HMAC computation, instead

of random values kin, kout as in NMAC, does not endanger

the security, even for backdoored h. The argument that the

backdoored case should not make a difference is as before:

pseudorandomness of the (correlated values) h(IV, k ⊕ ipad)
and h(IV, k ⊕ opad) should also hold in the backdoored

case, unless the backdooring already embeds a public-key

encryption scheme.

VI. IMMUNIZATION OF TLS-LIKE KEY EXCHANGE

Once we have immunized HMAC and HKDF the next

question is how we can use these building blocks in higher-

level protocols to make them backdoor-resistant. We discuss

this here briefly for the case of the TLS 1.3 protocol (in

version draft-28 [39]), and especially for the pre-shared key

(PSK) mode. The PSK mode covers the case in which client

and server already hold a shared key and do not need to run

a Diffie-Hellman key exchange sub-protocol; immunizing the

latter would be beyond our work’s scope. The PSK protocol

only relies on a cryptographic hash function, but used in

different contexts: as a collision-resistant hash function, as a

MAC via HMAC, and as a key derivation function via HKDF.

A. Pre-Shared Key Mode of TLS 1.3

The PSK mode is displayed in Figure 3. We follow the

presentation in [22], [23]. In the protocol the client starts with

the ClientHello message, containing a nonce rc, and speci-

fies identifiers for shared keys via the ClientPreSharedKey

message. The server replies with the ServerHello message,

also containing a nonce rs, and the choice of key identifier

in ServerPreSharedKey. The server then starts deriving

keys via HKDF on the pre-shared key PSK and the tran-

script hashes. It sends the encrypted extension information

{EncryptedExtensions}. The server also computes a fin-

ished message ServerFinished which is an HMAC over the

derived keys and the transcript hash. The client subsequently

computes the keys, checks the HMAC, and sends its finished

message ClientFinished. Both parties once more use HKDF
and transcript hashes to derive the shared session key.

B. Towards Immunizing the PSK Mode

Not surprisingly, we are not able show that the PSK mode of

TLS 1.3, as is, can be immunized against backdoors. There are

both security-related as well as functional reasons. In terms of

security, the main problem is that the protocol crucially relies

Client Server

ClientHello: rc
$←− {0, 1}256

+ ClientPreSharedKey: psk_id1, . . .

ServerHello: rs
$←− {0, 1}256

+ ServerPreSharedKey: psk_id

H1 ← H(CH||SH) (incl. extensions)
ES ← HKDF.Extract(0,PSK)

XES ← HKDF.Expand(ES,"derived")
DHE ← 0

HS ← HKDF.Extract(XES,DHE)
HTSC/HTSS ← HKDF.Expand(HS, label1/label2||H1)
tkchs/tk

s
hs ← HKDF.Expand(HTSC/HTSS, label3)

{EncryptedExtensions}
H2 ← H(CH|| . . . ||EncryptedExtensions)

SFK ← HKDF.Expand(HTSS,"finished")
{ServerFinished}: HMAC(SFK, H2)

check SF = HMAC(SFK, H2)
CFK ← HKDF.Expand(HTSC,"finished")

{ClientFinished}: HMAC(CFK, H2)

check CF = HMAC(CFK, H2)
XHS ← HKDF.Expand(HS,"derived")

MS ← HKDF.Extract(XHS, 0)
H3 ← H(CH|| . . . ||SF)

TSS/TSC ← HKDF.Expand(MS, label4/label5||H3)
tkapp = (tkcapp/tk

s
app) ← HKDF.Expand(TSS/TSC, label3)

Protocol flow legend
MSG: Y TLS 1.3 message MSG containing Y
+ MSG message sent as extension within previous message
{MSG} message MSG AEAD-encrypted with tkc

hs/tk
s
hs

a/b alternative usage of a or b for server and client
labeli specific label in derivation step

Figure 3: The TLS 1.3 draft-28 [39] PSK handshake protocol.

on the collision-resistance of the hash function to compute the

transcript hashes. As we discuss in the next section, planting

backdoors in collision-resistant hash functions is rather easy,

such that we may not get immunity for the given protocol.

Fortunately, the transcript hashes are only used to enable the

parties to store the intermediate hash values instead of the

entire transcript. In terms of security, one can easily forgo

the transcript hashes and feed the full transcript into the

immunized version of HMAC resp. HKDF.

Another obstacle to use our immunization strategy via salt-

ing of HKDF is that the salt needs to be picked independently

of the input to the hash function. This can only be done by

the party which evaluates the hash function next, e.g., when

the server computes

HTSC/HTSS ← HKDF.Expand(HS, label1/label2||H1)

over the transcript hash H1 ← H(CH||SH), or rather

the full transcript H1 ← CH||SH, to send the encrypted

{EncryptedExtensions} message, then the entire input is

only determined when the server is deriving the keys. The

same holds on the client side for the finished message key

CFK. Hence, we require that both parties at some point pick a

random salt in a trustworthy way and therefore can only cover

“backdooring” attacks against outsiders, eavesdropping on

the communication. Still, we preserve active security against

adversaries which cannot tamper with the cryptographic prim-

itives.
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Another problem with TLS 1.3 in its current form is that

it is not clear how to embed the salt in the protocol flow.

The extensions currently do not offer a variable field for this.

Hence, one would need to change the specification to enable

the inclusion of such extra data, as well as the algorithm

specifiers to capture the salted versions.

With all the modifications above, one obtains a PSK mode

which only relies on the backdoor-resistant modified primitives

HMAC and HKDF. We omit a formal analysis as it would

require to define security of key exchange protocols and is

beyond the scope here.

VII. BACKDOORED MERKLE-DAMGÅRD-BASED HASH

FUNCTIONS AND HMAC

In this section, we turn our attention to demonstrating the

feasibility of embedding a backdoor in ordinary hash func-

tions, such that the adversary in possession of the backdoor is

able to undermine the most crucial security properties of the

hash function. At the same time, the hash function retains all

those security properties against adversaries without knowl-

edge of the backdoor key. Moreover, the specification only

uses symmetric-key primitives and is secure against reverse

engineering attempts, in that it cryptographically hides the

backdoor key. For our construction we drew inspiration from

many-to-one trapdoor one-way functions with an exponential

preimage size as studied by Bellare et al. [11]. They show

that such trapdoor one-way functions can be built from one-

way functions and hence building secure public-key encryption

from them is hard.

We construct a backdoored Merkle-Damgård-based hash

function by iterating a backdoored compression function,

which behaves like a secure compression function unless the

backdoor is triggered by a special key as part of the input

message. The proposed construction might seem rather simple

but demonstrates how easy it is to embed a backdoor into the

building block such that its knowledge enables an adversary

to easily violate the hash function’s security properties. We

also investigate whether our construction has any weakening

impact when used in HMAC (where HMAC is used as is,

without our immunization modifications). Unfortunately, we

have to answer this in the affirmative and show that even

though HMAC uses a secret key, it is not secure, since the

adversary has full control over the input message and can

trigger the backdoor for the underlying hash function.

In the full version of the paper [25], we provide a similar

result for sponge-based hash functions. Namely, we discuss

backdooring the underlying permutation of the sponge-based

hash function construction and show that such a backdoored

construction violates the security properties by describing

attacks.

A. Backdoored MD-based Hash Functions

Let h : {0, 1}� × {0, 1}b → {0, 1}� be a collision-resistant

compression function with b ≥ 2�. The algorithm BDHGen
creates a backdoored compression function h̃ : {0, 1}� ×
{0, 1}b → {0, 1}� and its backdoor key bk ∈ {0, 1}�, as

defined below. In order for h̃ to be collision-resistant against

adversaries without knowledge of the backdoor, h̃ behaves es-

sentially like h, unless the backdoor is triggered. The backdoor

bk is defined in a way that h(bk, c) = β, for fixed values

c ∈ {0, 1}b and β ∈ {0, 1}�. The values bk and c can for

instance be chosen randomly by the malicious designer of h̃,

from which β is determined.

compression function :

h̃ : {0, 1}� × {0, 1}b → {0, 1}�

h̃(x, y) :=

{
y[�,2�−1], if h(y[0,�−1], c) = β

h(x, y), otherwise

backdoor key :

random bk ∈ {0, 1}� and c ∈ {0, 1}b

such that h(bk, c) = β

Figure 4: Backdoored compression function h̃ and its backdoor

key bk, built from any compression function h : {0, 1}� ×
{0, 1}b → {0, 1}� with b ≥ 2�.

The backdoor key is a particular point bk of admissible

inputs of h. The malicious compression function h̃ simply

evaluates h, except if it detects a backdoor key in the input.

Let us take a closer look at the definition of h̃ from Figure 4.

In the first case, the first � bits of the processed b-bit block

correspond to the backdoor value bk (or another preimage of

β under h(·, c)), then h̃ sets the output to the next � bits of

that input string. This allows to program the output of this

iteration since the message block can be thought of as being

under adversarial control. For all other inputs, the second case

of h̃ applies, which simply calls the underlying compression

function h on the inputs. In the next section, we describe the

attacks in more detail.

Our backdoor uses an if-then-else construct. Such con-

structs, or derivatives thereof, are often implicit in the de-

sign of round functions of hash algorithms for nonlinearity

reasons. For instance, SHA-1 and SHA-2 use the function

Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z) on 32-bit words in the

round evaluations, implementing a bit-wise “if xi then yi else

zi” simultaneously over words. In SHA-3 the χ operation

χ(a, b, c) = c ⊕ (¬a ∧ b) on 64-bit words can be viewed to

implement “if ai then ci else bi⊕ci” for each bit in the words.

We stress, however, that we are not claiming that SHA-

1, SHA-2, or SHA-3 actually have backdoors. In particular,

embedding our backdoors would introduce additional com-

plications since one has less control over the inputs when

the operations Ch and χ are applied in the iterations of the

round functions. Our construction merely demonstrates that

incorporating hidden backdoors is possible in principle, and

that only mild operations are necessary to exploit the backdoor.

Proposition VII.1. The compression function h̃ given in
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Figure 4 is collision resistant if the underlying h is collision
resistant and h(·, c) is preimage resistant (for parameter �)
for randomly chosen c $←− {0, 1}b.

The idea is that a collision finder can only take advantage

of the embedded case if it finds a preimage for β for h(·, c).
Else it needs to find a collision from scratch.

Proof. Suppose that a PPT adversary A finds collisions for

h̃ with some probability ε, i.e., outputs (x, y) �= (x′, y′), such

that h̃(x, y) = h̃(x′, y′). We make a case distinction:

• Assume that h(y[0,�−1], c) = β or h(y′[0,�−1], c) = β.

Then it is straightforward to build an adversary against the

preimage resistance of h(·, c), since y[0,�−1] resp. y′[0,�−1]

constitutes a preimage for β.

• According to the other case we thus have h̃(x, y) =
h(x, y) = h(x′, y′) = h̃(x′, y′) for (x, y) �= (x′, y′). This,

however, contradicts the collision resistance of h.

In summary, an adversary A successfully attacking collision

resistance of h̃ can be used to build an adversary that can

either find preimages for h(·, c) or find collisions under h (in

the same time). Hence, A’s success probability is bounded by

the sum of these cases.

With a similar argument we can show that the same holds

for the other properties:

Proposition VII.2. The compression function h̃ given in
Figure 4 is preimage resistant if the underlying h is preimage
resistant for parameter �+b and if h(·, c) is preimage resistant
for parameter � for randomly chosen c $←− {0, 1}b.

As in the proof for collision resistance this holds as an

adversary A against preimage resistance either needs to find a

preimage for parameter � (i.e., a backdoor key), or under the

original function h for parameter �+ b.

Proposition VII.3. The compression function h̃ given in
Figure 4 is second-preimage resistant for parameter �+b if the
underlying h is second-preimage resistant for �+b and h(·, c)
is preimage resistant for parameter � for randomly chosen
c $←− {0, 1}b.

Next we build from h̃ a backdoored hash function Hmd
h̃

:=

(KGenmd,Hmd
h̃
) using the standard Merkle-Damgård domain

extender, which iterates the backdoored compression func-

tion h̃. Intuitively, with the backdoor key an adversary can

trigger one or more iterations of the compression function to

land in a weak mode, and abuse it to break the hash function,

i.e., find collisions, preimages, and second preimages. In the

following section we discuss the attacks in detail.

Remark. Although it is hard to find the backdoor itself,

the fact that the above construction is backdoored is fairly

obvious. However, techniques such as practical obfuscation

may be employed to better hide the (implicit) if-clause and

the constants used for backdooring. The complexity of per-

mutations and compression functions used in practice makes

detection even harder. Alternatively, the attacker may also

aim at the implementation and insert malicious code in a

software update. The new backdoored implementation remains

indistinguishable from its specification via black-box testing.
1) Attack Description: In this section we describe how a

backdoor key bk as described in Figure 4 can be used to break

collision resistance, preimage resistance and second-preimage

resistance of the above backdoored hash function Hmd
h̃

. Precise

definitions of these properties were given in Section II-B. For

finding collisions and preimages, the adversary does not need

to actually evaluate the hash function at all. For finding second

preimages, the adversary evaluates the hash function once and

only for computing the digest of the given message. Here, we

consider the compact length padding defined in Section II-A1.

However, we remark that backdoored compression functions,

similar to the one that we discuss below, do exist for other

padding functions.

FINDING COLLISIONS. The adversary’s goal is to find two

messages m,m′ ∈ {0, 1}≤2p , that will be mapped to the

same digest. We argue that any two messages m and m′ of

the same length that have a common suffix starting with bk
and an arbitrary prefix of the same size, which is a multiple

of the block size b, collide. It immediately follows from

the exponential size of the message space that the backdoor

enables finding an exponential number of collisions. More

precisely, for all prefixes v, v′ ∈ ({0, 1}b)+ with |v| = |v′|
and suffixes w ∈ {0, 1}∗ the colliding messages are:

m = v||bk||w and m′ = v′||bk||w.
Observe that, after padding, both messages contain the back-

door bk at the beginning of the same block. This triggers the

“bad” case of the backdoored compression function, which

then outputs the following � bits of the message, ignoring

the intermediate value x obtained from the previous iteration.

Since the messages do not differ after the backdoor and neither

does the padding of the equal length messages, their digests

eventually coincide.
In a similar attack, the adversary may be able to encode

an expected digest d ∈ {0, 1}� directly in the messages. That

is, for all prefixes v, v′ ∈ ({0, 1}b)+ of the same size (i.e.,

|v| = |v′|), and short suffixes u, u′ ∈ {0, 1}≤b−2�−p−1 the

following messages are both mapped to the same value by the

backdoored hash function:

m = v||bk||d||u and m′ = v′||bk||d||u′.

If b ≥ 2� + p + 1, the lengths of the messages fit in the

same block as bk, d, and u resp. u′. Hence, the encoded length

binary(|m|, p) resp. binary(|m′|, p) is simply ignored by the

backdoored compression function and d is output as the digest

for both. Here, the messages do not even have to be of the

same size. However, if 2� ≤ b < 2�+p+1 the binary encoding

of the message lengths cannot be included in the same block

as bk and d, hence, the above messages will collide (mapped

to a different digest than d) if their last blocks after padding

(in particular their lengths) are equal.

FINDING PREIMAGES. Here we describe how an adversary

can use the backdoor to find a preimage for a random
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digest d ∈ {0, 1}�. We distinguish two cases based on the

length of message blocks. First we consider b ≥ 2� + p + 1,

where the backdoor key, the challenge digest, and the padded

message length can all fit in a single block. Second, we

consider 2� ≤ b < 2�+p+1, where at least the backdoor key

and the message length can fit into the same block, however

not together with the challenge digest.

If b ≥ 2� + p + 1, the adversary can encode the digest d
in the message directly after the backdoor key bk, while still

leaving space in the last block for the message length to be

encoded in by the padding. More precisely, for all prefixes v ∈
({0, 1}b)+ and all short suffixes u ∈ {0, 1}≤b−2�−p−1 the

following message m is a valid preimage for d:

m = v||bk||d||u.

Here, after the first malicious case of the compression

function is triggered by bk, the digest d will be output, and the

rest of the last block, containing the encoded length is simply

ignored.

The attack is slightly more subtle in case of 2� ≤ b <
2�+ p+1. However, one can still trigger the backdoor in the

last message block, causing the next � bits to be output by

the backdoored compression function. Consider the message

m = v||bk||u now with u ∈ {0, 1}≤b−�−p−1. If the � bits

of the padded message immediately following the backdoor

key bk, i.e., u and a prefix of lpad(m, b, p), correspond to the

challenge digest d, then m is a valid preimage.

FINDING SECOND-PREIMAGES. Finding second preimages is

very similar to finding preimages. In fact the adversary can

perform the above attacks to find a second preimage m′ for a

given message m, after setting d = Hmd
h̃,IV

(m). Note that since

the adversary can find an exponential number of preimages by

choosing different prefixes and suffixes, she can easily find a

preimage m′ of d that is not equal to the original message m.

2) Exposure of Backdoor Key: As discussed, a backdoor

can enable adversaries to break security of a hash function.

The same backdoored construction is unexploitable by an

adversary who does not know the backdoor key. Attempts at

detecting a potential backdoor via black-box testing or finding

the backdoor key by reverse engineering the code may easily

fail.

However, observe that every collision, preimage, or second

preimage found using the backdoor key, encodes the backdoor

key in the message. Therefore, using the backdoor may put the

adversary in risk of being exposed. It is unclear whether con-

structions of backdoored compression functions are possible

that do not expose their backdoor key in adversarial inputs

and do not rely on indistinguishability obfuscation to hide a

secret key in the compression function and use it to internally

decrypt malicious triggers.

B. Backdoored HMAC

In this section, we discuss that building HMAC upon

the backdoored Merkle-Damgård hash function Hmd
h̃

of Sec-

tion VII-A yields a backdoored HMAC scheme, which is

easily forgeable using the backdoor key. More precisely,

the backdoored HMAC scheme is defined as HMACh̃ :=
(KGen,HMACh̃). However, note that h̃ is still a PRF against

adversaries that do not know a backdoor, as we prove below.

Therefore, the resulting HMAC construction HMACh̃ is also

a PRF against such adversaries.

Lemma VII.4. The compression function h̃ from Section VII
is a PRF if the underlying function h is a PRF, and if h(·, c)
is preimage resistant for parameter � for random c $←− {0, 1}b.

Proof. Assume that there exist an adversary A with a

non-negligible advantage AdvPRF
h̃,A,0

(λ) in distinguishing h̃ :

{0, 1}� × {0, 1}b → {0, 1}� from a random function with the

same domain and range. We use A to build an adversary B
against the PRF-security of h as follows. By definition B gets

access to an oracle which either implements h(k, ·), for a

random key k, or a truly random function f$.

Initially, B picks random values bk, c and computes β as

β = h(bk, c). Upon receiving a query y ∈ {0, 1}b from A, our

new adversary B simply forwards this query to its oracle and

returns the answer unless h(y[0,�−1], c) = β is met, in which

case y[�,2�−1] is returned. When the adversary A terminates

with output b, then so does B.

For the analysis note that, in case that B is communicating

with the oracle h, the only difference in the answers handed

to A lie in the exceptional case that h(y[0,�−1], c) = β. This

means that we can compute a preimage of β under h(·, c)
with the help of A’s queries, which straightforwardly leads

to a contradiction to the preimage resistance of h (via the

construction of some algorithm C against preimage resistance

derived from A resp. derived by a pure guessing strategy) and

thus have small probability only. Hence,

Pr
[
Bh(k,·)(1λ) = 1

]
≥ Pr

[
Ah̃(k,·)(1λ) = 1

]
− AdvPR,�h,C,0(λ).

For a truly random function oracle the behavior of A and B
are identical. Therefore,

AdvPRFh,B,0(λ) ≥ AdvPRF
h̃,A,0

(λ)− AdvPR,�h,C,0(λ)

This, however, contradicts the PRF-security (or the preimage

resistance) of h.

Note that it is also unlikely that the HMAC case of first

computing h̃(IV, k⊕ ipad) resp. h̃(IV, k⊕ opad) triggers the

exceptional branch. The reason is that this could only happen

if the key parts constituted a preimage of the backdoor value β.

1) Attack Description: Recall that the backdoor bk, defined

in Figure 4, allows an adversary to find collisions for the

underlying hash function Hmd
h̃

. Finding collisions for the inner

hash chain of the backdoored HMAC construction is precisely

what makes forging MAC tags possible. First, the adversary

queries HMACh̃ on a message m = v||bk||w, where v ∈
({0, 1}b)+ and w ∈ {0, 1}∗. After receiving the corresponding

tag t, the adversary returns the pair (m∗, t) = (v′||bk||w, t) as

a forgery, where v′ ∈ ({0, 1}b)+, v �= v′, and |v| = |v′|.
As discussed in Section VII-A1, the messages m and m∗

lead to collisions in Hmd
h̃

. Since their prefixes v and v′ of equal
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length can be arbitrary, they can in particular start with a block

of b-bits equal to k⊕ ipad. Hence, it is easy to see that after

the messages are prepended by k ⊕ ipad, they still lead to a

collision in the inner hash chain of HMACh̃. Since the outer

chain is equal for all messages, m and m∗ both have the same

tag t. Putting differently, HMAC is not backdoor-resilient just

because it uses a secret key. In summary, since an adversary

holding a backdoor can forge a tag for a new message,

HMACh̃ is forgeable and hence not pseudorandom.

VIII. RELATED WORK

Techniques of mass-surveillance in the kleptographic setting

can be roughly divided into backdooring cryptosystems and

algorithm-substitution attacks (ASAs). A backdoor targets the

design and/or the public parameters of a primitive, while ASAs

target the implementation.

In the realm of backdoored hash functions, Albertini et

al. [1] investigate backdoored hash functions designed by

abusing the freedom of choice in selecting the round constants.

They illustrate the possibility of malicious hash function

designs by providing a tailored version of SHA-1, such that

two certain colliding messages that are adaptively chosen

with the malicious round constants during the design are

found with an approximate complexity of 248. In comparison,

the complexity of finding collisions for the standard SHA-1

function is believed to be over 263. Similarly, Aumasson [4]

presents a malicious version of the SHA-3 competition’s final-

ist BLAKE where the attacker adaptively modifies operators

in the finalization function to find collisions. Furthermore,

Morawiecki [36] proposes a malicious variant of Keccak

(the winner of the SHA-3 competition) and AlTawy and

Youssef [2] present a backdoored version of Streebog which

is a Russian cryptographic standard. Both papers introduce

modified round constants generating collisions using differen-

tial cryptanalysis.

Inspired by the Dual-EC tragedy, Dodis et al. [21] initiated

the formal study of backdoored pseudorandom number gener-

ators, proving their equivalence to public-key encryption and

discussing immunization strategies. Their notion is extended

by Degabriele et al. [20] in order to investigate stronger

“backdoorability” of forward-secure pseudorandom generators

and pseudorandom number generators with refreshed states.

Bernstein et al. [14] analyzed the possibilities of maliciously

standardized elliptic curves.

Bellare et al. [13] formalize algorithm-substitution attacks

in the context of symmetric key encryption. They describe

attacks, where subverted randomized encryption algorithms

can leak the user’s secret key subliminally and undetectably

to the adversary. Understanding ASAs and possible detection

and prevention mechanisms was followed by several work [3],

[12], [19], [35], [40], [41], [26].

Notable works in the context of the Dual_EC_DRBG-

related incidents are [16] and [17] by Checkoway et al. that

provide a systematic analysis as well as a study on the practical

exploitability of the backdoor.

IX. CONCLUSION

Developing immunization strategies with meaningful pro-

tection against the threat of maliciously designed cryptosys-

tems is a challenging and non-trivial task. Relying on our

observation that efficient weak pseudorandom functions, which

do not contain public-key encryption, cannot be weakened

by a backdoor, we gave solutions for immunizing potentially

backdoored HMAC and HKDF constructions.

A natural open question is, whether immunizing publicly

keyed hash functions under reasonable assumptions is pos-

sible. Since inputs of hash functions are under adversarial

control and can be used to trigger malicious behavior, a

generic solution via a priori transformation of the inputs to

destroy its potentially malicious structure does not seem to

exist. However, there may be immunization strategies that are

specific to the applications of hash functions.

Not only is it important to immunize potentially backdoored

hash functions, but in order to facilitate detection of back-

doored functions in practice and design hash functions that in-

herently resist backdoors, it is also necessary to understand the

various ways backdoors can be embedded in hash functions.

Our construction of a backdoored hash function shows that it is

mathematically feasible to embed a powerful backdoor (which

is exclusive to the malicious designer) in a hash function,

while not sacrificing efficiency. An important extension in this

direction is to study different backdooring attempts that are

less apparent and harder to detect even if they are potentially

less powerful.
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