
Secure Boot and Remote Attestation in the Sanctum
Processor

Ilia Lebedev
MIT CSAIL, USA

ilebedev@csail.mit.edu

Kyle Hogan
MIT CSAIL, USA

klhogan@csail.mit.edu

Srinivas Devadas
MIT CSAIL, USA

devadas@mit.edu

Abstract—During the secure boot process for a trusted ex-
ecution environment, the processor must provide a chain of
certificates to the remote client demonstrating that their secure
container was established as specified. This certificate chain is
rooted at the hardware manufacturer who is responsible for
constructing chips according to the correct specification and
provisioning them with key material. We consider a semi-honest
manufacturer who is assumed to construct chips correctly, but
may attempt to obtain knowledge of client private keys during
the process.

Using the RISC-V Rocket chip architecture as a base, we
design, document, and implement an attested execution processor
that does not require secure non-volatile memory, nor a pri-
vate key explicitly assigned by the manufacturer. Instead, the
processor derives its cryptographic identity from manufacturing
variation measured by a Physical Unclonable Function (PUF).
Software executed by a bootloader built into the processor
transforms the PUF output into an elliptic curve key pair. The
(re)generated private key is used to sign trusted portions of the
boot image, and is immediately destroyed. The platform can
therefore provide attestations about its state to remote clients.
Reliability and security of PUF keys are ensured through the
use of a trapdoor computational fuzzy extractor.

We present detailed evaluation results for secure boot and
attestation by a client of a Rocket chip implementation on a
Xilinx Zynq 7000 FPGA.

I. INTRODUCTION

A. Attested Execution

In order for a client to securely execute a remote program

it must be able to verify information about the host system.

Specifically, clients often desire their computations to be run

on trusted hardware, such as Intel SGX or Sanctum [10], [32],

[37], that provides guarantees about the privacy and integrity

of the computation. For the client to be confident that their

remote computation is indeed being run on such a system, it

is necessary for the hardware to have a unique and immutable

cryptographic identity. A system equipped with such hardware

can use this identity to provide the client with an attestation

to its state that can be compared against a manufacturer list of

authentic platforms. In practice, these attestations can be made

anonymous and unlinkable in that an attestation does not reveal

who produced it and no two attestations can be determined to

have the same origin.

In addition to authenticity, it is important that the processor

demonstrate that it has booted correctly, particularly that any

code that could affect the attestation to or subsequent execution

of client code is unmodified from its expected value. Attested

execution thus requires a secure boot process in either a local or

remote client setting. A bootloader must configure the system

as desired by the client and, after booting, the processor needs

to prove that the secure container requested by the client

has been set up properly, i.e., with appropriate privacy and

integrity properties. To accomplish this, the processor presents

a container measurement certificate that can be verified by a

client.

In one common setting, processor hardware or firmware

in a boot ROM cryptographically measures the bootloader

software and all software loaded by the bootloader, then uses

the processor’s secret key to sign the measurement, producing a

certificate. The public key associated with the processor’s secret

key is signed by the manufacturer. The local or remote client

verifies the signature of the processor’s public key using the

manufacturer’s public key, verifies the measurement certificate

using the processor’s public key, and checks the measurement

itself against a client-side stored hash of the expected system

state.

To produce such a certificate the processor must be pro-

visioned with a public key pair. Generally, the manufacturer

produces a key pair for each chip and embeds the private

key into the chip, typically into secure non-volatile memory.

In this scenario however, the manufacturer knows the chip’s

private key without the chip leaking it so even a correctly

manufactured processor could have exposed keys at production.

Alternatively, to maintain privacy of the secret key, a hardware

True Random Number Generator (TRNG) generates a random

seed stored in secure non-volatile memory, which is used to

generate a public/private key pair inside the processor. The

manufacturer signs the public key, which can be stored in

publicly readable non-volatile memory while the private key

never leaves the processor and is unknown to the manufacturer.

Thus, while the manufacturer must be honest, we tolerate a

“curious” manufacturer, as they do have to be trusted to manage

secrets.

An alternative scenario involves the use of silicon Physical

Unclonable Functions (PUFs) [17]. PUFs extract volatile secret

keys from semiconductor manufacturing variation that only

exist when the chip is powered. The first documented use

of PUF generated keys in a secure processor setting was in

the Aegis processor [41]. The PUF was used to generate a

symmetric key shared with the client through a cryptographic

protocol. PUFs are used as symmetric key generators in

46

2018 IEEE 31st Computer Security Foundations Symposium

© 2018, Ilia Lebedev. Under license to IEEE.
DOI 10.1109/CSF.2018.00011

commercial products such as Xilinx Ultrascale Zynq FPGAs

[48]1 and Intel/Altera FPGAs [2]. While it has been well

known that a PUF can be used to generate a random seed for a

public/private key generator inside of a secure processor (e.g.,

[12]), we are unaware of any published implementation that

accomplishes this.

B. Our approach

Using the RISC-V Rocket chip architecture [27] as a base,

we design, document, and implement an attested execution

processor that does not require a private key explicitly as-

signed by the manufacturer. Instead, the processor derives its

cryptographic identity from manufacturing variation measured

by a PUF. Software executed by a bootloader built into the

processor transforms the PUF output into an elliptic curve key

pair, the public portion of which is signed by the manufacturer

using its private key. Since a regenerated PUF output needs to

be error corrected, we employ a trapdoor computational fuzzy

extractor [20] to ensure the security of error correction. The

(re)generated private key is used to sign trusted portions of the

boot image, and is immediately destroyed. The signed boot

image is responsible to performing attestations to remote clients.

A client can establish a secure communication channel with

the platform using Diffie-Hellman key exchange and request

the platform signature on the boot image. It can verify this

signature to establish authenticity and integrity of the system

before sending its code and data. Upon receiving the client

code, the boot image can further attest to the state of the client

program prior to execution. We argue that such a processor is

attractive when physical security is important, and when it is

desirable to keep the handling of secret information by entities

to a minimum.

We present detailed evaluation results for key generation,

secure boot and attestation for a Rocket chip implementation

on a Xilinx Zynq 7000 FPGA.

C. Organization of this paper

The rest of this manuscript is organized as follows: Section II

describes prior work and introduces relevant concepts. Sec-

tion III defines the threat model used throughout this manuscript.

Section IV describes key derivation performed at boot and the

hardware the boot ROM root of trust assumes for correct

operation. Our remote attestation protocol is described in

Section V. Section VI describes primitives to implement the

root of trust key derivation. Section VII explores the tradeoffs

and performance of the root of trust; Section VIII concludes.

II. BACKGROUND AND RELATED WORK

A. Secure Boot

In order to establish a trusted environment for program

execution, the host system must first have booted into a

verifiable state. If a step in the boot process is not included in

the attestation to the client then its state cannot be guaranteed

1The PUF generated key is used to AES-encrypt and decrypt keys that
encrypt and decrypt the FPGA bitstream. Not even the manufacturer knows
the PUF key.

and it could potentially compromise the privacy or integrity

of any subsequently loaded programs. A trusted bootloader is

typically the first component in this process and is considered

the root of trust for the boot process. It is the first code to

run upon system initialization and is responsible for checking

the measurements and/or signatures of subsequent components

either locally or by utilizing a piece of trusted hardware such

as a TPM.

The primary distinctions between different secure boot

processes used in practice are how they obtain their attestation

root key, whether the root of trust for measurement/verification

differs from the root of trust for attestation, and whether com-

ponents are verified using a signature from the manufacturer

or by a measurement of their code.

Heads [24] implements a measured boot process supported

by a TPM where the root of trust for the boot process is a

write protected ROM and the root of trust for authentication

and attestation is the TPM. ARM’s TrustZone does not provide

a canonical mechanism for remote attestation, but software

in its secure world is able to implement its own attestation.

Intel’s Secure Boot has both measured and verified modes.

For both modes microcode on the CPU is the root of trust

for the boot process [35]. In the measured mode a TPM is

responsible for storing and attesting to the measurements while

in verified mode each component is signed by the manufacturer

and these signatures are verified prior to loading the component.

In contrast, SGX is not concerned with the boot process of the

system in general and focuses only on providing attestation

and authentication for enclaves post boot using keys stored on

the processor [4], [32].

In all three cases, the TPM manufacturer and potentially the

CPU manufacturer are directly responsible for provisioning

platform attestation/authentication keys.

B. Trusted key derivation

Commercial secure processors such as Intel Skylake (which

includes SGX) and ARM’s secure processor offerings (based

on TrustZone) appear to use some form of non-volatile memory

to store a secret key. SGX patents disclose the use of a PUF

to generate a device-specific key from a fused key obfuscated

in the design [9].

The Aegis processor was introduced in [39], and [41]

described an implementation that used a PUF to generate

a symmetric key for use in attestation. The error correction

scheme used predated fuzzy extractors and was fairly limited

in its capability [16].

Prior work in PUF based key derivation is described below.

1) Physically Obfuscated Keys and Fuzzy Extractors: Silicon

PUFs were introduced in [17], and over the past several years

there have been several proposals for candidate silicon PUF

architectures, which include delay PUFs [40] and SRAM PUFs

[23], and several variants. Our focus here is on error correction

of PUF outputs, so the error-corrected output can be used in

cryptographic applications. A PUF is being used as a Physically

Obfuscated Key (POK) [16]. Delay PUFs naturally provide

47

“confidence” information, which provides additional knowledge

of the stability of a POK bit [40].

Silicon POK key generation was first introduced using

Hamming codes in [16] and more details were presented

in [38]. The security argument used is information-theoretic.

Specifically, if one requires a k-bit secret from n bits generated

by the POK, then at most n− k bits could be exposed. The

number of correctable errors is quite limited in this approach.

Fuzzy extractors [13] convert noisy biometric data (either hu-

man or silicon) into reproducible uniform random strings, which

can then serve as secret keys in cryptographic applications. In

the fuzzy extractor framework, it is possible to extract near-full-

entropy keys from a POK source while maintaining information-

theoretic security. The information-theoretic security, however,

comes at a high cost in terms of the raw entropy required and

the maximum tolerable error rate. Even in cases where entropy

remains after error correction (e.g., [31]), there may not be

enough entropy remaining to accumulate the necessary bits for

a 128-bit key.

There are several works that created helper data that is

information-theoretically secure. A soft-decision POK error

correction decoder based on code-offset was described in [29],

[30] where the confidence information part of the helper data

was proven to be information-theoretically secure under an

i.i.d. assumption.

[50] uses POK error correction helper data called Index-

Based Syndrome (IBS), as an alternative to Dodis’ code-offset

helper data. IBS is information-theoretically secure, under the

assumption that POK output bits are independent and identically

distributed (i.i.d.). Given this i.i.d. assumption, IBS can expose

more helper data bits than a standard code-offset fuzzy extractor

construction. Efficiency improvements to IBS that maintained

information-theoretic security are described in [21] and [22].

2) Computational Fuzzy Extractors: Fuller et al. [15] give

a computational fuzzy extractor based on the Learning With

Errors (LWE) problem. In Fuller et al.’s scheme, the output

entropy improves; the error correction capacity, however, does

not. Indeed, Fuller et al. show in their model that computational

fuzzy extractors are subject to the same error correction bounds

as information-theoretic extractors. Their construction therefore

requires exponential time to correct Θ(m) errors, where m is

the number of bits output by the POK.

Fuller et al. expect that the exponential complexity in

correcting a linear number of errors is unlikely to be overcome,

since there is no place to securely put a trapdoor in a fuzzy

extractor. Herder et al. [20] recognized that certain kinds

of silicon biometric sources have dynamically regenerated

confidence information that does not require persistent storage

memory and can in fact serve as a trapdoor. This results

in an efficient extractor in terms of the amount of helper

data and the entropy requirement on the POK, though the

computational requirements of error correction may be higher

than in information-theoretic schemes. However, in the secure

processor application of this paper, error correction can be

done in software making Herder et al.’s scheme attractive; the

additional hardware that is required is a set of ring oscillators

corresponding to the POK.

C. Remote attestation

Attestation by hardware components of a platform allows

remote clients to verify details of the system state. In particular,

clients need to verify both the authenticity of the system

performing the attestation and the integrity of their own remote

application. Platform authenticity is typically verified via its

membership in a manufacturer managed group of all non-

revoked platforms. During the manufacturing process platforms

are provisioned with public key pairs where the secret key is

permanently bound to the platform. Group membership can be

determined by verifying signatures produced by the platform

as only platforms with valid secret keys are able to generate

signatures that can be verified by one of the public keys for the

group. These schemes can also be anonymous and unlinkable

where the verifier learns only the platform’s membership in a

specified group, but not which platform specifically produced

the signature or whether any pair of signatures was produced

by the same platform [7].

These platforms can then be responsible for signing the hash

of a program’s state to demonstrate to a client that it was

loaded as expected. The client’s trust in this process is rooted

in the provisioning of the platform’s secret key. Often, keys

are generated and provisioned explicitly by the manufacturer,

but it is also possible to generate keys on platform using a

TRNG or PUF in such a way that the manufacturer does not

acquire knowledge of the platform’s secret key.

Intel SGX, TXT, and TPMs are all able to provide attestations

to remote clients about platform state using keys directly

provisioned by the device manufacturer. TPM’s use Direct

Anonymous Attestations (DAA) where the signatures do not

reveal the identity of the signer unless the secret key used to

generate the signature is subsequently revealed [1].

D. Isolated execution

XOM [28] introduced the idea of executing sensitive code on

data in isolated containers with an untrusted operating system

handling resource allocation for the secure container.

Aegis [39] instead relies on a trusted security kernel, the

hash of which is collected at runtime and used in conjunction

with the hash of secure containers to derive container keys and

attest to the initial state of the container. Unlike XOM, Aegis

tolerates untrusted memory.

Intel’s Trusted Execution Technology (TXT) [19] is a widely

deployed implementation for trusted execution. However, it

was shown to be susceptible to several confused deputy attacks

[46], [47] that allowed a malicious operating system to direct

a network card to perform direct memory accesses on the

supposedly protected virtual machine. A later revision to TXT

introduced DRAM controller modifications that selectively

block DMA transfers to mitigate these attacks.

Intel’s SGX [4], [32] adapted the ideas in Aegis and XOM

to multi-core processors with a shared, coherent last-level

cache. It is widely deployed in Skylake and later generation

48

processors and supports isolated execution and attestation of

client processes in the presence of a malicious operating system.

It remains vulnerable to side channel and controlled channel

attacks [6], [49].

Sanctum [10] offers the same promise as Intel’s Software

Guard Extensions (SGX), namely strong provable isolation of

software modules running concurrently and sharing resources,

but protects against an important class of additional software

attacks that infer private information from a program’s memory

access patterns. Sanctum follows a principled approach to

eliminating entire attack surfaces through isolation, rather

than plugging attack-specific privacy leaks. Most of Sanctum’s

logic is implemented in trusted software, called the “Security

Monitor”, which does not perform cryptographic operations

using keys. The Sanctum prototype targets a Rocket RISC-V

core, an open implementation that allows any researcher to

reason about its security properties. The Sanctum prototype

does not implement memory encryption implying that DRAM

is trusted.

ARM’s TrustZone [3] is a collection of hardware modules

that can be used to conceptually partition a system’s resources

between a secure world, which hosts a secure container, and

a “normal” world, which runs an untrusted software stack.

The TrustZone documentation [5] describes semiconductor

intellectual property cores (IP blocks) and ways in which

they can be combined to achieve certain security properties,

reflecting the fact that ARM is an IP core provider, not

a processor manufacturer. Therefore, the mere presence of

TrustZone IP blocks in a system is not sufficient to determine

whether the system is secure under a specific threat model.

The reset circuitry in a TrustZone processor places it in secure

mode, and executes a trusted first-stage in an on-chip ROM.

TrustZone’s TCB includes this bootloader in addition to the

processor and all peripherals that enforce access control for

the secure world.

III. THREAT MODEL: AN HONEST BUT CURIOUS

MANUFACTURER

Our goal is to use a PUF in conjunction with a root of

trust endorsed by the manufacturer to improve the security

of key derivation over the case where the manufacturer is

responsible for explicitly provisioning keys. In this setting the

manufacturer is no longer able to store keys and thus cannot

provision multiple systems with the same key or retroactively

compromise keys.

We consider an “honest” manufacturer with a well-known

public key that follows the specification for constructing the

PUF and CPU without introducing backdoors. The manu-

facturer is also responsible for endorsing the correct root

of trust and not replacing it with a malicious program that

does not follow the protocol in Section IV. The manufacturer

is “curious”, however, and may attempt to learn information

while following the specification, including repeating a protocol

multiple times with different parameters. As a concrete example,

we handle a manufacturer that attempts to learn information

about a PUF output through many runs of the key derivation

protocol.

The root of trust (boot ROM) is assumed to correctly derive

keys from the PUF output, and then measure and endorse a

“payload” software. Much like the hardware itself, we assume

this implementation to be honest and free of bugs, as it is not

replaceable on a given chip.

We assume the system memory is trusted and only accessible

via the processor, which is able to sanitize this memory at

boot, and guard access to cryptographic keys and other private

information stored there. If DRAM must be excluded from the

TCB, one may employ transparent encryption at the DRAM

controller (counter mode AES on the data of all or some

memory accesses) as in XOM [28] and Aegis [39]. Moreover,

if the threat model must protect the access pattern of DRAM

requests – as in the case of a hostile machine operator observing

traffic on the DRAM link – an Oblivious RAM [18] primitive

may be employed, with corresponding overhead as in the

Ascend processor [14].

The Sanctum processor [10] implements a strongly isolated

software container (enclave) primitive, which can be used to

dramatically reduce the size of a system’s software trusted

computing base. Sanctum relies on a trusted (but authenticated)

“Security Monitor” (precisely the payload in this secure boot

scheme), which correctly configures the underlying hardware,

and maintains the invariants needed for the system’s security

argument. Sanctum excludes the operating system and any

software it runs from the TCB (these are therefore loaded

after the secure boot, and are not measured), but allows

the creation and remote attestation of a secure container,

thereby bootstrapping trust in additional software (whereby

the security monitor uses its keys to measure and sign the

secure container). While Sanctum’s security monitor is trusted

to correctly implement its API, it is authenticated, meaning the

remote party seeking attestation is able to reject attestations

coming from a system that loaded a known-vulnerable security

monitor.

IV. ROOT OF TRUST

At reset, the processor must execute instructions beginning

at an address corresponding to a trusted “boot ROM” –

a requirement described in Section VI-A. This first-stage

bootloader, which we denote the “root of trust” is a program

that loads a “payload” binary segment from untrusted storage

into trusted system memory, derives the payload-specific keys

(SKP , PKP), and uses the device key to sign PKP and the

trusted manufacturer’s endorsement of the processor.

Several implementation variations on this common theme

are explored in this section, differing in their construction

of SKDEV and their use of the trusted boot ROM memory.

Figure 1 shows a general template for all roots of trust examined

in this manuscript.

The processor has multiple cores, all of which execute

starting at the same address after a reset. Our root of trust

stalls all but one core while executing the root of trust

program on Core 0. Because the contents of memory at

49

Zero all
other memory

init core

(re)generate
(PKDEV , SKDEV)

(re)generate
(PKP , SKP)

Core 0?

memcpy
payload P

Compute
HP=SHA3(payload)

Sign (PKP , H(P))
with SKDEV

Erase SKDEV and
stack memory

(wake other
cores)

(jump to payload)

yes no

at
each
reset

(wait)

Payload
(attestation

management)

D
RA

M

Signature(PKP , H(P))
with SKDEV

SKP

PKP

H(Payload)
SKDEV

PKDEV
0x80..000

Bootloader
code

(root of trust)
0x1000Tr

us
te

d
 R

O
M

(zero)

Payload
(attestation

management)
Signature(PKP , H(P))

with SKDEV

SKP

PKP

H(Payload)

PKDEV

Bootloader
code

(root of trust)

32B
64B
32B
32B
64B

64B

(zero)

(stack used by
root of trust)

zero or Enc(SKDEV)

1

2

1 2

Payload
(attestation

management)
Signature(PKP , H(P))

with SKDEV

SKP

PKP

H(Payload)

PKDEV

(remote)
Trusted

First
Party

zero or Enc(SKDEV)

OS,
other software,

data

(r
em

ot
e

at
te

st
at

io
n

pr
ot

oc
ol

)

(jump to payload)

(n
et

w
or

k)

Fig. 1. The root of trust signs trusted system software (Payload) and its derived key pair (PKP , SKP) at boot. During remote attestation, the trusted first
party communicates with the processor (or an enclave, in the case of Sanctum), creates an “attestation”, and establishes a shared key with the first party.

boot are undefined, a synchronization via a lock in memory

is not possible; instead, this work relies on all but one core

waiting on an interrupt. Core 0 resumes all other cores via

an inter-processor interrupt at the completion of the root of

trust program. All cores sanitize core-local state (registers,

configurations, etc.) in order to prevent an adversary from

leaking private information via soft reset into a malicious

payload. For the same reason, the root of trust must erase all

uninitialized memory via a memset.

In implementing the root of trust, we rely on a portable

implementation of the SHA3 hash function [36] and ed25519

elliptic curve DSA cryptography (we slightly modify an existing

implementation [34] to use SHA3). For the roots of trust that

use an AES cipher, we again rely on an existing, portable

implementation [26]. The sections below describe our root of

trust implementations that derive cryptographic keys for the

processor and a given payload.

A. Deriving an ephemeral SKDEV for cloud-hosted FPGA
designs

Here, we describe a root of trust in a setting where an

honest but curious party (the “manufacturer”) has access to

the processor at boot, and is available to sign the processor’s

randomly generated public key (SKDEV) messages with their

128 bit
random

seed

TRNG Ed25519
KDF

PKDEV

SKDEV

SHA3 SignM(PKDEV)

(manufacturer/operator signs
PKDEV with its well-known identity)

Fig. 2. Ephemeral SKDEV derivation from entropy.

well-known key. In other words, the “manufacturer” is able to

locally attest the processor, obviating the need for a persistent

cryptographic root in the device. A practical example of this

setting is an FPGA secure processor deployed by a semi-trusted

cloud provider. The hardware platform hosting the secure

processor is time-shared among many mutually distrusting

tenants, and the provider does not guarantee the processor

is deployed on a specific FPGA. In this scenario, the cloud

operator is effectively a “manufacturer” of an ephemeral secure

processor; non-volatile keys are neither meaningful nor easy

to implement in this scenario.

50

The ephemeral SKDEV key derivation is illustrated in

Figure 2. Here, device keys (PKD, SKD) are derived from a

hashed random value; each instance of the secure processor has

a new cryptographic identity, which does not survive a reset.

The processor commits to (PKD) at boot, and expects the man-

ufacturer (machine that programs the cloud FPGA) to endorse

it with its well-known cryptographic key (SignM (PKDEV)).
This signature binds the processor’s PKDEV to the remote

user’s trust in the manufacturer’s integrity: the processor

eventually performs attestation involving a certificate signed

with SKDEV (cf. Section V), and presents SignM (PKDEV)
to convince the remote user that the certificate is rooted in a

trustworthy platform, not an arbitrary malicious emulation of

the remote attestation protocol.

B. Non-volatile SKP derived from a PUF

In a situation where no trusted party can locally attest to the

processor at boot, e.g., a computer system deployed remotely

in an untrusted environment, remote attestation must be rooted

in a trusted public key. This key must persist across reboots,

and must not be practically recoverable by an adversary.

While the device could be provisioned with a key pair

explicitly, via a tamper-resistant non-volatile memory, this

would assume a lot of trust in the party installing the key.

A “curious” manufacturer may choose to remember the keys,

compromising a processor retroactively by leaking its secret

key, or endowing an untrusted emulator with the same key

pair.

To satisfy the threat model presented earlier (cf. Section III),

we employ a root of trust that repeatably generates its

cryptographic key pair by seeding a Key Derivation Function

(KDF) with a physically obfuscated key via a fuzzy extractor

scheme proposed by Herder et al. [20]. The roots of trust,

P256 and P512 use an array of identical ring oscillator pairs

(a physically obfuscated key, where manufacturing variation

informs the relative frequency of the oscillators in each pair)

and a trapdoor fuzzy extractor to derive a semi-repeatable secret

M -bit #»e (a M -element vector in GF (2)), where M is 256

and 512 for P256 and P512, respectively (this is the only

difference between the two implementations). Section VI-B

details this hardware structure and its parameters.

1) Initial key provisioning by the manufacturer with the PUF:
After the secure processor is manufactured (or the FPGA is

programmed with the design containing the secure processor),

the root of trust provisions a secret 128-bit #»s . From #»s , the

root of trust computes a public M -bit vector
#»

b = A #»s + #»e ,

where A is an M -by-128 matrix in GF (2).
#»

b and A are public

“helper data”, which are used by future invocations of the root

of trust to recover #»s .

The key provisioning is illustrated in Figure 3. From
#»s (hashed), an ed25519 key derivation function computes

(PKDEV , SKDEV). The root of trust program then runs to

completion, as shown in Figure 1, conveying (PKDEV ,
#»

b , ...)
(but not #»s or SKDEV , which are erased by the root of trust) to

the payload. The manufacturer is able to learn PKDEV via the

128 bit
s

TRNG

ED25519
KDF

PKDEV

SKDEV

SHA3 SignM(PKDEV)

(manufacturer signs PKDEV
with its well-known identity)

PUF M-bit
noisy e

public M x 128
bit matrix A

b=As+e public
M-bit b

(assert fuse is clear)
(assert fuse is set)

Fig. 3. Initial provisioning of PUF-backed device keys.

128 bit
s

Ed25519
KDF

PKDEV

SKDEV

SHA3

SignM(PKDEV)

PUF M-bit
noisy e

public M x 128
bit matrix A

s=A’-1(b-e’)
public
M-bit b

invertible A’

N-bit e’

(select N highest-confidence
bits of e, remove corresponding

rows of A, retry if A’ is singular)
(retry if s and b

are inconsitent)

Fig. 4. Key derivation of PUF-backed device keys.

payload, and sign this public key with their own well-known

cryptographic identity.

P256 and P512 employ the TRNG to source a 128-bit

random value for #»s , and use the same A (256-by-128 and

512-by-128 bit matrices, for P256 and P512, respectively)

for all devices, by including A as part of the boot ROM. The

manufacturer selects the matrix A by generating a string of

random bits of the requisite length.

To prevent the manufacturer from repeatedly re-provisioning

keys (which may weaken the secrecy of #»e), the root of trust

requires a fuse (one-time non-volatile memory) to be written

as part of provisioning. Due to a quirk of the FPGA platform,

the root of trust program does not write the fuse itself. Instead,

before selecting #»s , the program ensures a fuse (exposed as a

readable register) is not set, and stalls until its value changes (a

fuse cannot be cleared after being set, so provisioning proceeds

exactly once). The manufacturer sets the fuse via a management

interface (JTAG). If the fuse is set initially, the root of trust

does not provision a new #»s , and instead attempts to recover

it from helper data in untrusted memory, as described below.

We note that the fuse can be avoided by making a stronger

assumption about PUF bits or a stronger assumption on the

hardness of a variant Learning Parity with Noise (LPN) problem

[20].

2) Key recovery with the LPN PUF: At each reset, the

root of trust reconstructs 128-bit secret #»s from public (
#»

b , A),
and uses it to re-compute (PKDEV , PKDEV) as illustrated

in Figure 4. The root of trust reads the array of ring oscillator

pairs to obtain #»e (a somewhat noisy view of the bit vector

51

SKDEV

SHA3Payload

Ed25519
KDF

SKP

PKP

H(P)

SignDEV(HP,PKP)Ed25519
Signature

SHA3SHA3
H(P)

PK
P

SK
P

Fig. 5. Key derivation and endorsement by the device of the Payload.

used in provisioning #»s), and the corresponding “confidence”

information #»c ∈ {Z}M . As described in the original construc-

tion [20], the root of trust discards low-confidence bits of #»e
and corresponding rows of

#»

b and A, resulting in #»e ′,
#»

b ′ and

A′, respectively. The bits of #»e with high confidence values

are assumed to be stable across reboots with high probability,

a design requirement for the ring oscillator pairs, as described

in Section VI-B and evaluated in Section VII-C.

If A′ is invertible, the root of trust uses Gauss-Jordan

elimination (in GF (2), informed by [25]) to compute A′−1. A

different A′ is chosen if A′ is singular. A′ is a sampling of 128

128-bit rows from a larger random matrix, so we consider A′ to

be a random 128-by-128 matrix in GF (2). The probability [43]

of A′ having a zero determinant (and therefore singular) is given

by P (n = 128, q = 2) = 1−(1−q−1)(1−q−2)...(1−q−n) =

1−
128∏

i=1

1− 1
2i ≈ 71.12%. The probability that A′ is invertible

is therefore 28.88%, and the root of trust considers ∼ 3.5
matrices before finding one that is invertible, in expectation.

Given an invertible A′, the root of trust straightforwardly

computes #»s ′ = A′−1(
#»

b ′ − #»e ′), and verifies #»s ′ = #»s by

computing
#»

b ′′ = A #»s ′ + #»e ; a very high edit distance between

b and b′′ signals an uncorrected error, and retries with a new
#»e . Section VII-C examines the (very low) expectation of bit

errors among high-confidence elements of #»e .

After s is recovered, the root of trust computes

(PKDEV , SKDEV) from a KDF over its hash, as before. The

root of trust disables the PUF ring oscillator readout until the

next reset, as described in Section VI-B in order to prevent a

malicious payload from accessing the secret #»e .

C. Payload keys and endorsement

All roots of trust considered in this manuscript identically

derive the payload-specific keys (PKP , SKP) from a SHA3

hash of the payload and SKDEV . The key derivation is

shown in Figure 5; all software libraries needed to do this

were previously introduced to derive device keys. The root

of trust computes H(P) = SHA3(Payload), combines it

with SKDEV , and uses the result to seed an ed25519 KDF.

(PKP , SKP) = KDFed25519(SHA3(SKDEV , H(P))).
The payload is not assumed to be honest; a malicious

payload may leak its own hash and keys. This does not

compromise the processor’s key SKDEV : the SHA3 hash

is a one-way, collision-resistant function, so even should an

adversary reconstruct the seed from which its keys were derived,

and although H(P) is public, the other hash input (SKDEV)

is not compromised. SKP , meanwhile, is derived, in part, from

128 bit
s

SK

PUF-
backed

key
AES

128 bit
s

PUF-
backed

key
ENCSK AES SK ENCSK

ENCSK is stored in
untrusted memory across reboots

Fig. 6. Key encryption for untrusted storage.

the payload’s hash, so an adversary leaking their own keys has

no bearing on the confidentiality of an honest payload’s keys.

Finally, the processor “endorses” the payload by

signing its hash and public key: CertificateP =
SignedSKDEV

(SHA3(H(P), PKP)). Given the

certificates (CertificateDEV , CertificateP) and SKP , an

uncompromised payload can prove to a remote party that it

is indeed a specific piece of software executing on hardware

signed by the trusted manufacturer, as we will describe in

Section V. The payload is expected to safeguard its key (any

payload that leaks its SKP can be emulated by an adversary,

and is not trustworthy).

All intermediate values are, as before, on a stack in memory,

which must be erased before the processor boots the untrusted

payload.

D. Key encryption and minimal root of trust

In the case of the P256AES and P512AES roots of trust,

the processor encrypts its secret keys (SKD, SKPayload) with

a symmetric key derived from the PUF, to be kept in untrusted

non-volatile memory, as shown in Figure 6. To this end, the

root of trust links a portable implementation of the AES

in addition to the SHA3 and ed25519 KDF, and includes

control flow to perform the ed25519 KDF, which will be used

when no encrypted keys are provided with the payload. The

payload is responsible for storing its own encrypted key blob,

as this value is public and untrusted. As shown in Section VII,

decrypting a stored key with AES does offer a performance

advantage over re-deriving the key using the KDF at each

boot. Persistently maintaining the key to be decrypted with

AES requires additional complexity, however, and a larger boot

ROM to accommodate the AES code. This increases the trusted

code base, so implementations should consider this tradeoff

when designing the root of trust.

We consider also a root of trust intended to minimize the

size of the boot ROM by securely loading the previously

described root of trust from untrusted memory (We denote

these five roots of trust HT, HP256, HP256AES, HP512,

and HP512AES). Here, the trusted boot ROM only includes

the instructions needed to copy a root of trust binary from

untrusted memory to DRAM, and verify its hash against an

expected constant. The boot ROM consists of memcpy, SHA3,

a literal expected hash, and a software loop to perform the

hash comparison. Aside from a variation in the size of the root

of trust, and different expected hash constants, the five designs

produce similar binaries, of nearly identical size, as shown in

Section VII.

52

V. REMOTE ATTESTATION

An immutable hardware root of trust as described in the

previous section allows the platform to provide attestations

about its state to remote clients. Use of a PUF to generate

platform root keys implies that the platform’s keys are both

unique to the system running client code and unknown to any

other party. This gives remote clients high confidence in the

authenticity of any attestations provided by the platform.

A. Remote Attestation with Generic Payload

The payload loaded as part of the system’s boot process is

responsible for handling remote attestation of client processes.

The initial state of the payload is verified as part of the key

generation process, but it must be trusted to maintain its

integrity and the privacy of its keys, PKP and SKP , that

were derived by the device during boot.

The general procedure the payload follows to perform

attestations is outlined in Figure 1 from the initial generation

of keys during the boot process through the sending of

the attestation to the client. The remote client must first

initiate a Diffie-Hellman key exchange to establish a secure

communication channel between itself and the platform. Upon

receiving the Diffie-Hellman parameters g, gA, p from the

client, the payload will then choose a B and compute gB .

It will then send a signature under its secret key, SKP , of

the public key of the device (PKDEV), the signature under

the device secret key of the payload’s public key and hash of

initial payload state (SignSKDEV
(PKpayload, H(payload))),

and the Diffie-Hellman parameters back to the client. The

signature from the device containing the payload’s public key

and a hash of its initial state can be used by the client to

verify that the payload loaded by the device matches the one

it expected. The client can then use the secure communication

channel that has been established to send over any code and

data that it wishes to be run by the platform and will receive

a signature from the payload over a hash of the state of the

client’s program. In this way the client can bootstrap trust in

their remote code from their trust in the secure processor.

B. Remote Attestation with Sanctum

A more detailed protocol as performed by Sanctum is shown

in Figure 7. The primary distinction between the two protocols

is that the payload in the case of Sanctum is its security

monitor which is responsible for enforcing some of the isolation

properties for client enclaves as well as spawning a special

“signing enclave”. The security monitor hashes a client enclave

as it is initialized, and delegates its endorsement to the signing

enclave, which is exclusively able to access SKP . We rely

on the isolation properties of Sanctum enclaves to guarantee

privacy of the signature.

To avoid performing cryptographic operations in the security

monitor, Sanctum instead implements a message passing primi-

tive, whereby an enclave can receive a private message directly

from another enclave, along with the sender’s measurement.

Details are provided in [11].

Sanctum is also capable of handling local attestations without

the presence of a trusted remote party. In this use case requests

for attestation are authenticated by the signing enclave in order

to prevent arbitrary enclaves from obtaining another enclave’s

attestation.

C. Anonymous Attestation

Neither of the protocols outlined here provide anonymous

attestations, but the construction is not incompatible with

anonymous schemes as the attestation protocol is implemented

in replaceable authenticated software. In order to convert the

existing scheme to an anonymous one a trusted party is needed

to handle group membership and revocation. This party, often

the platform manufacturer, is responsible for managing the set

of public keys corresponding to authentic devices. It must also

keep track of any compromised platforms and add their keys

to a revocation list.

As an example, to implement direct anonymous attestation a

platform wishing to prove that it is authentic will demonstrate

to the manufacturer in zero knowledge that it possesses a

secret key corresponding to one of the public keys on the list.

This can be done using a scheme for signatures over encrypted

messages such as [7], [8] and allows the manufacturer to certify

that the platform is authentic without learning which platform

corresponds to a key and breaking its anonymity. To perform

attestations the platform will generate a signature proof of

knowledge over the value to be attested to, the certification

from the manufacturer, and its secret key. Remote clients can

verify based on the platform’s knowledge of a certification from

the manufacturer over its secret key that the attestation came

from an authentic device. These attestations are guaranteed to

be both anonymous in that they reveal no information about

which platform generated them and unlinkable in that no two

attestations can be determined to have come from the same

platform.

For the use case of allowing remote clients to verify that

their outsourced computation is being run on the expected

hardware, anonymity does not provide any immediate benefit,

as the same entity, a cloud provider for example, will often

own a large set of interchangeable platforms on which the

client could have been scheduled. Anonymity could even be

detrimental in the case where the client wishes to verify that the

provider scheduled their computation to a specific datacenter

and did not further outsource it.

VI. REQUIRED HARDWARE

While the secure boot and remote attestation mechanisms

presented in this manuscript are not limited to one specific

processor architecture, we do rely on some basic properties

and primitives to implement the root of trust key derivation.

Specifically, the processor must boot from a trusted code

sequence with an integrity guarantee, e.g., an on-chip ROM, so

that the measurement and key derivation procedures described

in this work produce deterministic results. An uncompromised

system should be able to reliably generate its root keys, while

53

Payload
(attestation

management)

Signature(PKP , H(P))
with SKDEV

SKP

PKP

H(Payload)

PKDEV

(remote)
Trusted

First
Party

zero or Enc(SKDEV)

OS,
other software,

data (r
em

ot
e

at
te

st
at

io
n

pr
ot

oc
ol

)

(S / enclave)

(network)

1. Remote (R) trusts (PKDEV),
selects
primes p, g and random A;
sends (p, g, gA (mod p)).

2. Software to be attested (S)
selects random B,
computes gB (mod p)
k=(gA)B(mod p).

3. S produces an attestation:
(Sanctum implements this via
a special “signing enclave”)
A = SignedP(PKDEV,
 SignedDEV(PKP, H(P)),
 p, g, gA,gB, ...)
sends A

3. R computes
k=(gB)A(mod p)
verifies A
trusts messages
 encrypted with k

Fig. 7. A protocol diagram for remote attestation, as implemented by the
Sanctum processor.

changes to the boot process should result in the system deriving

an incorrect key.

Post boot the processor is responsible for maintaining the

integrity of the system and the confidentiality of the keys it

receives from the root of trust. As keys are generated in part

based on the authenticity of the software stack, a machine

that boots with malicious or otherwise modified software will

generate different keys than the system would have had it

booted with the expected software stack. Thus, a malicious

software stack may leak its keys without compromising the

security of an honest software system, as the keys for modified

system have no relation to those for the uncompromised soft-

ware stack. The exact isolation mechanism required to maintain

these confidentiality and integrity guarantees depends on the

threat model. Sanctum capably achieves these requirements

for a software adversary via its enclaves and security monitor,

while a system on which all software is trusted may rely on

process isolation alone.

In addition to these basic requirements, the processor

must provide a trusted source of entropy for attestation. In

Section VI-C, we describe the implementation of a true random

number generator (TRNG), which can be read directly by

unprivileged software. In a system where the operating system

is part of the trusted code base, OS-provided entropy may

suffice.

The processor must also store or derive its root cryptographic

key pair (or a seed) in a trustworthy manner. In this manuscript,

we focus on PUF-backed keys and keys derived from TRNG

entropy, as described in Section VI-B. Other systems may

employ non-volatile memory with explicitly provisioned keys,

taking care to adjust the threat model to include the additional

Ring Oscillator

roi

+1

-

Counter

PUF
Readout[0]

j

j

CounterRing Oscillator

PUF Bit Cell

PUF Bit Cell

PUF Bit Cell
...

ro0

roen

PUFEN

PUF Bit Cell

PUF
Readout[M-1]

j

PUF
Readout[1]

PUF
Readout[2]

Clock

(i delay elements)

PUF
Controller

(reset clears all
FFs and repeats

controller)

FF

FF

PUFDISABLE

PUFSELECT

PUFCYCLES

PUFREADOUT

Reset

(controller emits
a pulse of duration

PUFCYCLES at reset)

ci coxor

Fig. 8. A detailed block diagram of the LPN PUF.

trust in the manufacturer.

A. Baseline Processor Architecture (Sanctum)

The Sanctum processor [10] is a modification of the Rocket

Chip [27] implementation of the RISC-V [45] priv-1.10 [44]

instruction set architecture. Rocket Chip’s straightforward

architecture guarantees that a trusted “boot ROM” executes at

each reset.

Sanctum’s hardware modifications enable strong isolation

(integrity and confidentiality) of software containers (enclaves)

with an insidious threat model of a remote software adversary

able to subvert system software and actively tamper with

network traffic. Sanctum also guarantees the integrity of an

honest “Security Monitor” (SM), which is authenticated at boot,

and maintains meaningful isolation guarantees, as was formally

verified [37]. Sanctum uses RISC-V’s “machine mode” (highest

privilege software) to host the SM, and maintains that the SM

has exclusive access to a portion of DRAM (thus maintaining

its integrity and protecting its keys). The SM routes interrupts

and configures hardware invariants to ensure enclaves do not

involuntarily share resources with any other software. Enclaves

access the TRNG via a user-mode CSR (register), meaning

enclaved software accesses trusted entropy without notifying

the untrusted operating system. Sanctum also guards against

subtle side channel attacks via the cache state and shared page

tables.

Sanctum trusts the integrity and confidentiality of DRAM,

and maintains its security invariants on all DRAM accesses

including DMA and the debugger interface. As a consequence,

the root of trust must include code to sanitize all DRAM
before any untrusted software is allowed to execute, in order

to guarantee keys persist across reboots and be compromised

by malicious system software.

The work described in this manuscript does not rely on

details of any specific ISA, and can be adopted for arbitrary

processor systems so long as the underlying architecture can

provide the basic requirements outlined at the head of this

section.

B. LPN PUF for secure, repeatable key derivation

In order to achieve secure non-volatile keys with an honest-

but-curious manufacturer, we rely on a trapdoor LPN PUF

54

scheme constructed by Herder et al. [20]. The majority of the

mechanism is implemented in the root of trust software, as

detailed in Section IV-B; the required hardware is an array of M
identical ring oscillator pairs, as shown in Figure 8. Software ac-

cesses this structure via CSRs (control/status registers) at Core
0: puf_disable, puf_select, and puf_cycles, and

puf_readout. Their semantics are explained below.

Each ring oscillator pair is endowed with counters to compute

the relative frequency of the pair of ring oscillator: the j-

bit counters are clocked by each ring oscillator, their counts

subtracted to derive a j-bit magnitude. The elements #»e and #»c
vectors, as defined in Section IV-B2 are the sign and absolute

value of each oscillator pair’s magnitude, respectively. The

oscillator (and counter) circuits are identically implemented

to minimize bias due to differences in design among the ring

oscillators – this circuit measures bias from manufacturing

variation. The ring oscillator is a series of delay elements

(buffers), feeding back into an inverting element (XOR) at

the head. Each ring oscillator consists of i delay elements in

total. A controller circuit generates a pulse of puf_cycles
processor clock cycles at reset, simultaneously enabling all ring

oscillators. While enabled, the ring oscillates, and the resulting

signal is used to clock the attached counter circuit. The specific

parameterization of i and j depends on the implementation

platform: the ring oscillators must not oscillate at a higher

frequency than the counter circuit can accommodate. Depending

on the magnitude of manufacturing variation, j can be adjusted

to increase the dynamic range of counters. A more sophisticated,

future design may implement a saturating counter to better

address a platform where high dynamic range of counts is

expected.

The processor can adjust puf_cycles and trigger a soft

reset in order to re-run the PUF with a new duration, in

case of overflowing or insufficient counts. The root of trust

reads magnitude values via a mux, by setting puf_select
and observing puf_readout. Afterwards, the root of trust

disables the readout by setting puf_readout, which latches

and forces puf_readout to 0xFF.F until the processor is

reset. At reset, counters and disabling latch are cleared, and

the PUF is re-run, allowing a new readout.

We implement the LPN PUF hardware on a Xilinx Zynq

7000 FPGA by manually implementing a portable ring oscil-

lator and counter circuit, and aggressively constraining the

relative placement of its components. This implementation, as

shown in Figure 9, occupies a column of SLICEL sites on the

FPGA, which prevents the circuit to be placed sparsely, and

ensures the ring oscillator and counter circuit are contiguous

(constraining the circuit to a row would allow the FPGA tools

to place the circuit sparsely across columns containing BRAMs,

DSPs and other large blocks).

The ring oscillator is a chain of buffers implemented as LUT6
elements. Through trial and error, we determined that using the

A6 input for the ring oscillator (inputs A1-A5 drive a 5-input

lookup table, and are not guaranteed glitch-free) yields the best

results. The inverting element in the oscillator is implemented

as an XOR of the enable signal and the feedback (A1 A6 LUT6

Ri
ng

 O
sc

ill
at

or

co[0]

LUT6 (O6=A1 A6)
LUT5

LUT5
AO6

A1
1
0

��������	��
roen

ro0

����������roi

LUT6 (O6=A6)
LUT5 (�1)
LUT5 (�0)

BO6

A6

1
0

ro1

ro0 A6

LUT6 (O6=A6)

CO6 ro2
ro1 A6

LUT6 (O6=A6)

DO6 ro3
ro2

SLICEL

(entire ring oscillator
and counter are arranged

in one column of SLICEL
elements, as ring oscillator
circuits must be identically

placed and routed)

roi
roi-1

(i-
5

de
la

y
el

em
en

ts
)

SLICEL

FF
roen

AX AQPUFEN

Co
un

te
r

co[0]

...

FF AQ

(implemented
as below) O6A6

O6A6

LUT6 (O6=A6)

1
0

LUT6

O6
A6 ci[0]

co[1]co[1]
FF BQ

0
LUT6

O6
A6 ci[1]

co[2]co[2]
FF CQ

0
LUT6

O6
A6 ci[2]

co[3]co[3]
FF DQ

0
LUT6

O6
A6 ci[3]

CARRY4 SLICEL

co[j-1]co[j-1]
FF

LUT6

O6
A6

ci[j-1]CARRY4

... (j-5 counter bits)

SLICEL

(all counter FFs clocked by roi)

...

Fig. 9. Ring oscillator and counter, a critical component of the LPN PUF,
as implemented on a Xilinx Zynq 7000 FPGA. The circuit is placed in the
same column of SLICEL elements to ensure it is identically routed across all
instances.

55

XOR
Reduction

Sampling clock

(M samples
contribute

to each
 TRNG bit)

TRNG Sample

TRNG bit [0]

TRNG bit [1]

TRNG bit [N-1]

LUT6 (O6=~A6)

LUT5

LUT5

a

b c

{A/B/C/D}

xQ

O6

A6

A1-A5

O5 x

a

0
0
0
0
0 1

0

(LUT-FF pair in a SLICEL)

b

cFF

��������

���������

d
FF

c _X

_MUX

d

Fig. 10. A TRNG, as implemented on a Xilinx Zynq 7000 FPGA.

inputs, respectively). We constrain i delay elements of the ring

oscillator to be laid out contiguously in a single column.

Adjacent to each ring oscillator is its counter circuit. As

shown in Figure 9, we exploit detail of the CARRY4 primitive

on the FPGA to implement a small ripple-carry counter without

the use of slow programmable logic. Like the ring oscillator,

we constrain the j bits of counter to be laid out contiguously

in the same column.

C. TRNG via jittery sampling of ring oscillators

In order to implement remote attestation for enclaves in

the presence of malicious system software, Sanctum requires

private, trustworthy entropy. This is needed, at a minimum,

to complete a Diffie Hellman handshake to establish a secure

communications channel with the trusted first party (cf. Sec-

tion V). Enclaves that require non-deterministic behavior (such

as enclaves that generate cryptographic keys) require additional

entropy, but may rely on a PRNG seeded from the initial word

of entropy.

Here, we describe a TRNG, which produces a stream of

random data words by sampling free-running ring oscillators.

Clock jitter is considered an unpredictable physical resource

and, given that the (100MHz, as a generous maximum)

sampling frequency is far less than the natural frequency

of the short ring oscillator (in the gigahertz), we assume

the relative jitter of these processes is sufficient to treat

subsequent samples as independent and identically distributed

(i.i.d.) random variables. Furthermore, we assume different (but

identically implemented) ring oscillators and sampling logic to

be i.i.d. Section VII-C rigorously tests these assumptions via

a suite of statistical tests over the TRNG output.

While the bits sampled from the free-running ring oscillator

do not have a 50% fair distribution (bias), an unfair coin flip

can be “conditioned” toward fairness using a von Neumann

corrector by instead recording the parity of several unfair (but

i.i.d.) coin flips. To this end, the TRNG aggregates several

(M) concurrently sampled ring oscillators which are XOR-

ed to produce a single bit of output. Software is able to

construct arbitrarily wide words of entropy by repeatedly

sampling bits from the TRNG. To improve TRNG bandwidth

and convenience, however, we concatenate a parallel vector of

N such that sets of M ring oscillators produce N -bit words

of entropy.

This structure, and the detail of placement and routing of one

sampled ring oscillator in FPGA fabric is shown in Figure 10

and Section VII-C demonstrates that a cryptographically secure

TRNG is achieved with M = 7 or better. To minimize bias, the

ring oscillators and sampling circuit are identically placed and

routed, by manually implementing the structure via constrained

FPGA resources, as shown in the figure. In order to resolve

metastability, each ring oscillator is doubly registered in the ring

oscillator module. The output is aggregated with (M −1) other

ring oscillator samples (this circuit has no fanout), and latched

in the core pipeline; three registers are widely considered

sufficient to prevent metastable bits.

In Sanctum, the TRNG values are exposed to user-mode

software (including enclaves) via a user-mode readable CSR

(control/status register), allowing enclaves to access TRNG

output without notifying the untrusted operating system. Each

core implements its own TRNG to grant private entropy to

each hardware process.

VII. EVALUATION

We evaluate our approach to secure bootstrapping by

measuring the code size and latency of the root of trust. The

evaluation examines a variety of design points (T, P, PAES,

H, etc. defined in Section IV) addressing the threat model of

a honest-but-curious manufacturer. The code size of the root

of trust is a straightforward measurement of the required real

estate in a processor’s trusted boot ROM, which includes the

devicetree and a rudimentary reset vector, as is the case with

an insecure baseline.

Given the bootstrapping operation is performed in a trusted,

isolated environment with no asynchronous events, we use

the number of instructions executed by the root of trust

program to estimate its latency (the time between a reset, and

when the processor transfers control to the payload), given an

assumed clock frequency. The in-order pipeline makes number

of instructions a good proxy for latency. We augment this via a

fixed cost model, which is used to approximate the overheads

due to the memory hierarchy.

We separately examine our implementation of the required

hardware subsystems: the TRNG and PUF, focusing on the

process by which we select appropriate parameters for the

security guarantees these primitives must provide.

We do not evaluate the remote attestation scheme as

described in this manuscript, as it not a part of the root of

trust (boot ROM), and is implemented in any of a variety of

ways by the software system after boot. Also excluded from

evaluation is the performance of inter-enclave communication

and other aspects of the Sanctum processor, as these are not

the main focus of this manuscript.

A. Root of Trust code size and latency

For all roots of trust considered, we evaluate a simulated

system with 4 in-order 1GHz RISC-V cores booting a 128 KB

payload. We model memory accesses via a simulated cache

hierarchy consisting of a shared 4-way 1 MB L2 cache with 32

byte lines and a random replacement policy (3 cycle accesses),

56

Fig. 11. Code size of variations of the root of trust.

Fig. 12. Measurement root latency for variations on the root of trust, excluding
the clearing of uninitialized DRAM.

and private data and instruction caches, each a set-associative 4-

way 32 KB cache with 32 byte lines with a random replacement

policy (30 cycle access time). Our modeled system has 1 GB

DRAM and a 70 cycle access time.

We evaluate the six variations on the root of trust described

in Section IV, and report the root of trust size (required

trusted ROM size) in Figure 11. The minimal roots of trust

(HT and similar) are small indeed, requiring only a 1.47 KB

ROM, which includes only the code needed to copy a root of

trust binary from untrusted memory, hash it, and compare the

result against an expected constant. No significant variation

in the size of the root of trust appeared with a varied size

of the root of trust binary in untrusted memory, meaning

HT,HP256,HP256AES,HP512,HP512AES all require

a 1.5 KB ROM.

The corresponding latency of each root of trust considered

is shown by Figure 11. As expected, the minimal root of trust

ROM designs (HT, etc.) incur a small increase (approximately

0.3 milliseconds) in root of trust latency, but exhibit an

enormous reduction in boot ROM size.

This evaluation does not measure the time to provision the

PUF (to generate a secret key and compute the corresponding

public helper data), as this is a one-time operation, and is

less complex than normal key recovery, which is included in

the measurements here. Increasing the number of PUF ring

oscillators (M) from 256 to 512 did not significantly increase

the root of trust latency, as the costly matrix operations are

performed on a 128 × 128 matrix in GF (2) in all scenarios,

and only the size of straightforward vector operations and

linear scans are increased.

Storing AES-encrypted keys in untrusted memory is some-

what more efficient than re-generating the keys from their seeds

at each boot, although this difference is dwarfed by the latency

of erasing DRAM at boot, as discussed below.

The latency of sanitizing DRAM is excluded from these

results, and is estimated to be 2.35 seconds (on our modeled

system), via a straightforward software loop, for the 1GB of

DRAM in the systems considered, or slightly less, if booting

a larger payload. Given that the latency of sanitizing DRAM

dominates the root of trust, all roots of trust considered exhibit

approximately the same latency at under 2.4 seconds, with

ample opportunity to accelerate the DRAM erasure via DMA

operations. In a system with transparent encryption of DRAM,

cryptographic erasure is a reasonable option (erase only the

keys with which DRAM is encrypted, thereby making the

encrypted data unrecoverable).

B. TRNG

In order to evaluate the TRNG implemented on an FPGA

fabric, we sample a contiguous string of bytes from the TRNG

(one sample per clock cycle), store the stream in a large memory,

and inspect the resulting binary with a suite of statistical tests.

The dieharder [33] suite of statistical tests is run on a

gigabyte of contiguous bytes read from the TRNG; the test

suite is invoked with default configuration (a true random string

is expected to pass each test with 95% probability). The ent
[42] test estimates bit bias (expected bit value) and entropy per

bit in the same binary blob. We report the size of each TRNG

configuration (measured by utilization of SLICEL resources),

and a digest of the results of each test suite. The TRNG was

constrained to densely pack the required circuit on the Xilinx

Zynq 7000 FPGA fabric. A 4 inverter loop with two registers is

packed into one SLICEL primitive, with additional SLICELs

used for an XOR reduction for a TRNG with M > 1.

TABLE I
TRNG PERFORMANCE AND COST.

M
size

(SLICELs)
expected
bit value

entropy
per bit

dieharder
tests passed

1 16 0.5134 0.9995 15/114
3 64 0.5004 1.0000 55/114
5 96 0.5000 1.0000 75/114
7 136 0.5000 1.0000 108/114
9 176 0.5000 1.0000 114/114

The TRNG is configured to output a 64-bit word per cycle,

and this evaluation considers a range (M) of inverters XOR-ed

together to produce each TRNG bit. Slight bias of individual

bits translates into a reduced entropy – an effect mitigated by

increasing M – the number of unpredictable bits XOR-reduced

to produce one bit of entropy. Our evaluation (see Table VII-B)

shows that a 64-bit TRNG produces a cryptographically secure

random stream for M as low as 7 at a modest cost of FPGA

resources (0.24% of the FPGA; for reference, a bare-bones

in-order 32-bit processor without the cache subsystem weighs

in at approximately 600 slices).

The TRNG can be significantly reduced in size by adjusting

its N parameter to produce only a byte of entropy per

sample. Furthermore, lesser parameterizations of M produce a

reasonably high-quality random stream.

57

4 delay
elements

8 delay
elements

12 delay
elements

16 delay
elements

32 delay
elements

Large spread of
frequencies requires
wide counters

Small spread of
frequencies results in
a noisy PUF

Fig. 13. Distribution of repeated frequency measurements for a population of
i-element ring oscillators on a Xilinx Zynq7000 for several i: 4,8,12,16,32.

C. Trapdoor LPN PUF

We examine the performance of the LPN PUF primitive in

order to select an appropriate parameterization (M : number

of ring oscillator pairs for N = 128, i.e., a 128-bit secret

value) such that the processor is able to tolerate bit errors

in typical conditions, and achieve negligible probability of

failed key recovery at boot. All PUF measurements were

performed with a Xilinx Zynq 7000 device (via a ZC706

development platform) in a typical setting, reasonably isolated

from sources of electric interference, at 72 degrees F. We do

not evaluate the repeatability of the ring oscillator pairs across

temperature and power variations; prior work [20] demonstrates

automotive variation in environmental conditions increases the

noise exhibited by the PUF, and recommends a set of 450
ring oscillator pairs to obfuscate a 128-bit secret value.

Figure 13 shows a distribution of measured RO frequencies

obtained from 1024 measurements spanning several hours and

several power cycles of the FPGA platform. To measure this

distribution, we implemented 1024 ring oscillators of various

lengths driving a 12-bit counter. We run the ring oscillators

for 5.12 microseconds (1024 200MHz processor cycles), and

estimate ring oscillator frequency from recorded counter values

(extremely fast ring oscillators may introduce errors in counts

due to timing closure and overflow). We observe no significant

counter glitches in the recorded population. The distribution

of RO frequencies narrows significantly for oscillators with

a longer delay line. Short, fast oscillators exhibit a wide

distribution of frequencies, with some noise indicative of

glitching.

Table VII-B details the distribution of ring oscillator frequen-

cies for the 5 configurations considered, including the largest

standard deviation in frequency of any single ring oscillator

observed across the 1024 repeated samples. From this table

and Figure 13, and based on trial and error, we note that an

Fig. 14. Probability of one or more bit errors among a greedy sampling 512
ring oscillator pairs, in order of decreasing confidence.

8-gate ring oscillator is well-suited for an LPN PUF circuit:

with a wide distribution of frequencies, it does not exceed the

device’s rated maximum, shows little evidence of glitching,

and has little variation in RO frequencies over time.

TABLE II
RING OSCILLATOR PERFORMANCE AND COST.

delay
elements

minimum
frequency

expected
frequency

maximum
frequency

maximum
deviation of

RO frequency

4 307 MHz 515 MHz 608 MHz 9MHz
8 218 MHz 277 MHz 303 MHz 5MHz

12 96 MHz 185 MHz 205 MHz 2MHz
16 44 MHz 137 MHz 152 MHz 15MHz
32 62 MHz 70 MHz 76 MHz 0.6 MHz

Each PUF bit is a pair of ring oscillators and counters; the

measurement of a PUF bit is the difference of the two counts,

which conveys the bit value (the sign of the measurement),

and confidence (the magnitude), as described in Section VI-B.

To characterize the PUF bit error rate, we implement 512 PUF

bits with 12-bit counters and 8-element ring oscillators. We

enable the 512 PUF bits for a duration of 1024 processor cycles

(5.12 microseconds), and read out the resulting magnitudes.

We repeat this measurement 1024 times across several hours,

occasionally power cycling the platform. The expected value

of a PUF bit sampled from this population is 0.4688. For

each PUF bit, we define a “gold” value to be the median (most

frequent) value across the 1024-sample population. Figure 14

shows the probability of one or more bit errors (relative to gold

values) in one entire PUF readout. Under typical conditions,

only about one percent of ring oscillator pairs we examined are

unreliable. Among the 90% of ring oscillator pairs with highest
confidence value, no errors were detected across 1024 readouts.

Informally, we note that while this error rate is as high as

58

10-15% for other ring oscillator configurations, the confidence

information remains a reliable means to select stable PUF bits.

We confirmed that 4 identical FPGA platforms produced

different expected PUF outputs. For a population of 512

PUF bits, we observed 51 with the same value across all

4 platforms, in expectation, after 16 measurements. Under an

i.i.d. assumption, we expect to observe 64 identical bits across

4 devices.

Prior work [20], [25] characterizes their PUF implementation

across the automotive range of environmental conditions, and

selects a much larger M (450) for the same N = 128 in order

to tolerate a higher error rate. Given the above evaluation, we

parameterize the LPN PUF with M = 256 for the P256 root

of trust (a generous margin of POK bits for a 128-bit key, given

our observations under normal conditions), and M = 512 for

the P512 (informed by the reported increased noise in an

automotive environment, as shown in prior work). In practice,

the larger M considered in this case has little performance

overhead, and requires only a few bytes of additional space in

the on-chip boot ROM, as shown in Section VII-A.

VIII. CONCLUSION

We have provided a detailed description of the secure boot

and remote attestation process in a prototype Sanctum processor.

While a significant part of this paper was devoted to PUF-based

key generation, the boot and attestation protocols are agnostic

to where entropy comes from, and are equally applicable to the

case where secret keys or seeds are stored in secure non-volatile

memory, or simply generated by a TRNG. In our prototype

implementation, we have shown that PUFs can be used to

derive keys unknown to the manufacturer while providing an

efficient boot and attestation process.

ACKNOWLEDGEMENTS

This work was partially funded by Delta Electronics, Analog

Devices, and DARPA & SPAWAR under contract N66001-

15-C-4066, and the DARPA SSITH program under contract

HR001118C0018. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes

not withstanding any copyright notation thereon. The views,

opinions, and/or findings expressed are those of the author(s)

and should not be interpreted as representing the official

views or policies of the Department of Defense or the U.S.

Government.

REFERENCES

[1] “Trusted platform module library specification family “2.0”.” Trusted
Computing Group, 2014.

[2] Altera, “Secure Device Manager for Intel R© Stratix 10 Devices Provides
FPGA and SoC Security,”
https://www.altera.com.

[3] T. Alves and D. Felton, “TrustZone: Integrated hardware and software
security,” Information Quarterly, vol. 3, no. 4, pp. 18–24, 2004.

[4] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
technology for CPU based attestation and sealing,” in Proceedings of
the 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy, HASP, vol. 13, 2013.

[5] ARM Security Technology Building a Secure System using TrustZone R©
Technology, http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-009492C trustzone security whitepaper.
pdf, ARM Limited, Apr 2009, reference no. PRD29-GENC-009492C.

[6] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A. Sadeghi, “Software grand exposure: SGX cache attacks are
practical,” CoRR, vol. abs/1702.07521, 2017. [Online]. Available:
http://arxiv.org/abs/1702.07521

[7] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attesta-
tion,” in Proceedings of the 11th ACM conference on Computer and
communications security. ACM, 2004, pp. 132–145.

[8] J. Camenisch, M. Drijvers, and A. Lehmann, “Anonymous attestation
with subverted tpms,” in Advances in Cryptology – CRYPTO 2017, J. Katz
and H. Shacham, Eds. Cham: Springer International Publishing, 2017,
pp. 427–461.

[9] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, Report 2016/086, Feb 2016.

[10] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 857–874.

[11] ——, “Secure processors part II: Intel SGX security analysis and MIT
sanctum architecture,” in FnTEDA, 2017.

[12] S. Devadas and T. Ziola, “Volatile device keys and applications thereof,”
Jul. 21 2009, uS Patent 7,564,345.

[13] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data,” in Advances in
Cryptology - Eurocrypt 2004, 2004.

[14] C. Fletcher, M. van Dijk, and S. Devadas, “Secure Proces-
sor Architecture for Encrypted Computation on Untrusted Pro-
grams,” in Proceedings of the 7th ACM CCS Workshop on
Scalable Trusted Computing; an extended version is located at
http://csg.csail.mit.edu/pubs/memos/Memo508/memo508.pdf (Master’s
thesis), Oct. 2012, pp. 3–8.

[15] B. Fuller, X. Meng, and L. Reyzin, “Computational fuzzy extractors,” in
Advances in Cryptology-ASIACRYPT 2013. Springer, 2013, pp. 174–193.

[16] B. Gassend, “Physical random functions,” Master’s thesis, Massachusetts
Institute of Technology. Dept. of Electrical Engineering and Computer
Science., Jan. 2003.

[17] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM conference on
Computer and communications security (CCS), 2002.

[18] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation on
Oblivious RAMs,” Journal of the ACM, vol. 43, no. 3, pp. 431–473,
1996. [Online]. Available: citeseer.nj.nec.com/goldreich96software.html

[19] D. Grawrock, Dynamics of a Trusted Platform: A building block approach.
Intel Press, 2009.

[20] C. Herder, L. Ren, M. van Dijk, M.-D. Yu, and S. Devadas, “Trapdoor
computational fuzzy extractors and stateless cryptographically-secure
physical unclonable functions,” IEEE Transactions on Dependable and
Secure Computing, vol. 14, no. 1, pp. 65–82, 2017.

[21] M. Hiller, D. Merli, F. Stumpf, and G. Sigl, “Complementary IBS:
Application Specific Error Correction for PUFs,” in IEEE Int. Symposium
on Hardware-Oriented Security and Trust. IEEE, 2012.

[22] M. Hiller, M. Weiner, L. Rodrigues Lima, M. Birkner, and G. Sigl,
“Breaking Through Fixed PUF Block Limitations with Differential
Sequence Coding and Convolutional Codes,” in Proceedings of the 3rd
International Workshop on Trustworthy Embedded Devices, ser. TrustED
’13, 2013, pp. 43–54.

[23] D. Holcomb, W. Burleson, and K. Fu, “Initial SRAM State as a
Fingerprint and Source of True Random Numbers for RFID Tags,” in
Proceedings of the Conference on RFID Security, Jul. 2007.

[24] T. Hudson, “Heads,” 2017. [Online]. Available: https://trmm.net/Heads

[25] C. Jin, C. Herder, L. Ren, P. H. Nguyen, B. Fuller, S. Devadas, and
M. van Dijk, “Fpga implementation of a cryptographically-secure puf
based on learning parity with noise,” Cryptography, vol. 1, no. 3, 2017.
[Online]. Available: http://www.mdpi.com/2410-387X/1/3/23

[26] kokke, “tiny-aes-c,” https://github.com/kokke/tiny-AES-c, 2018.

[27] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovic,
and K. Asanovic, “A 45nm 1.3 GHz 16.7 double-precision GFLOPS/w
RISC-V processor with vector accelerators,” in European Solid State
Circuits Conference (ESSCIRC), ESSCIRC 2014-40th. IEEE, 2014, pp.
199–202.

59

[28] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 168–177, 2000.

[29] R. Maes, P. Tuyls, and I. Verbauwhede, “Low-Overhead Implementation
of a Soft Decision Helper Data Algorithm for SRAM PUFs,” in
Cryptographic Hardware and Embedded Systems (CHES), 2009, pp.
332–347.

[30] ——, “Soft Decision Helper Data Algorithm for SRAM PUFs,” in
Proceedings of the 2009 IEEE International Conference on Symposium
on Information Theory - Volume 3, ser. ISIT’09, 2009, pp. 2101–2105.

[31] R. Maes, A. Van Herrewege, and I. Verbauwhede, “PUFKY: A Fully
Functional PUF-based Cryptographic Key Generator,” in Proceedings
of the 14th International Conference on Cryptographic Hardware and
Embedded Systems, ser. CHES’12, 2012, pp. 302–319.

[32] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” HASP, vol. 13, p. 10, 2013.

[33] G. Novark and E. D. Berger, “Dieharder: Securing the heap,”
in Proceedings of the 17th ACM Conference on Computer and
Communications Security, ser. CCS ’10. New York, NY, USA: ACM,
2010, pp. 573–584. [Online]. Available: http://doi.acm.org/10.1145/
1866307.1866371

[34] O. Peters, “Ed25519,” https://github.com/orlp/ed25519, 2018.
[35] X. Ruan, Boot with Integrity, or Don’t Boot. Berkeley, CA: Apress,

2014, pp. 143–163. [Online]. Available: https://doi.org/10.1007/978-1-
4302-6572-6 6

[36] M.-J. O. Saarinen, “tiny sha3,” https://github.com/mjosaarinen/tiny sha3,
2018.

[37] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia,
“A formal foundation for secure remote execution of enclaves,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 2435–2450.

[38] G. E. Suh, “Aegis: A single-chip secure processor,” Ph.D. dissertation,
Massachusetts Institute of Technology. Dept. of Electrical Engineering
and Computer Science., Aug. 2005.

[39] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas, “AEGIS:
architecture for tamper-evident and tamper-resistant processing,” in Pro-
ceedings of the 17th annual international conference on Supercomputing.
ACM, 2003, pp. 160–171.

[40] G. E. Suh and S. Devadas, “Physical unclonable functions for device au-
thentication and secret key generation,” in ACM/IEEE Design Automation
Conference (DAC), 2007.

[41] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas,
“Design and Implementation of the AEGIS Single-Chip Secure
Processor Using Physical Random Functions,” in Proceedings of the
32nd ISCA’05. New-York: ACM, June 2005. [Online]. Available:
http://csg.csail.mit.edu/pubs/memos/Memo-483/Memo-483.pdf

[42] J. Walker, “A pseudorandom number sequence test program,” http://www.
fourmilab.ch/random/, 2018.

[43] W. C. Waterhouse, “How often do determinants over finite fields
vanish?” Discrete Mathematics, vol. 65, no. 1, pp. 103 – 104,
1987. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0012365X87902172

[44] A. Waterman, K. Lee, Asanovic, and S. Inc., “The RISC-V instruction
set manual volume II: Privileged architecture version 1.10,” EECS
Department, University of California, Berkeley, Tech. Rep., May 2017.
[Online]. Available: https://riscv.org/specifications/privileged-isa/

[45] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The
RISC-V instruction set manual, volume I: User-level ISA, version
2.0,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2014-54, May 2014. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[46] R. Wojtczuk and J. Rutkowska, “Attacking Intel trusted execution
technology,” Black Hat DC, 2009.

[47] R. Wojtczuk, J. Rutkowska, and A. Tereshkin, “Another way to
circumvent Intel R© trusted execution technology,” Invisible Things Lab,
2009.

[48] Xilinx, “Developing Tamper-Resistant Designs with Zynq UltraScale+
Devices,”
https://www.xilinx.com.

[49] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp. 640–656.

[50] M.-D. M. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Design and Test of Computers,

vol. 27, pp. 48–65, 2010.

60

