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Abstract—EXxisting model-based gait databases provide the 2D
poses (i.e., joint locations) extracted by general pose estima-
tors as the human model. However, these 2D poses suffer from
information loss and are of relatively low quality. In this paper, we
consider a more informative 3D human mesh model with para-
metric pose and shape features, and propose a multi-view training
framework for accurate mesh estimation. Unlike existing meth-
ods, which estimate a mesh from a single view and suffer from
the ill-posed estimation problem in 3D space, the proposed frame-
work takes asynchronous multi-view gait sequences as input and
uses both multi-view and single-view streams to learn consistent
and accurate mesh models for both multi-view and single-view
sequences. After applying the proposed framework to the existing
OU-MVLP database, we establish a large-scale gait database with
human meshes (i.e., OUMVLP-Mesh), containing over 10,000
subjects and up to 14 view angles. Experimental results show
that the proposed framework estimates human mesh models more
accurately than similar methods, providing models of sufficient
quality to improve the recognition performance of a baseline
model-based gait recognition approach.

Index Terms—Asynchronous multi-view sequences, gait
database, gait recognition, three-dimensional human pose/shape
estimation.

I. INTRODUCTION

HE WAY in which humans walk contains numerous

cues (e.g., static shape and dynamic pose movement)
that indicate their unique identities. Compared with other
traditional biometrics (e.g., face, iris and fingerprint), this
gait information has many advantages, such as availability
at a distance, identification without cooperation, and dif-
ficulty of deception. Therefore, gait has become an ideal
biometric feature for human identity recognition at a dis-
tance, with widespread applications in surveillance and
forensics [1], [2], [3].

Gait recognition approaches are generally divided into
those based on appearance [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20] and
those based on a model [21], [22], [23], [24], [25], [26]. The

Manuscript received November 24, 2021; revised February 24, 2022 and
April 29, 2022; accepted May 4, 2022. Date of publication May 12, 2022;
date of current version June 21, 2022. This work was supported by the
Japan Society for the Promotion of Science (JSPS) KAKENHI under
Grant JP19H05692 and Grant JP20H00607. This article was recommended for
publication by Associate Editor M. Nixon upon evaluation of the reviewers’
comments. (Corresponding author: Xiang Li.)

The authors are with the Department of Intelligent Media, SANKEN, Osaka
University, Osaka 565-0871, Japan (e-mail: li@am.sanken.osaka-u.ac.jp;
makihara@am.sanken.osaka-u.ac.jp; xu@am.sanken.osaka-u.ac.jp; yagi@
am.sanken.osaka-u.ac.jp).

Digital Object Identifier 10.1109/TBIOM.2022.3174559

appearance-based approaches have been dominant in recent
years because of simple yet effective silhouette-based rep-
resentations (e.g., gait energy images [4], frequency-domain
features [14], and cropped silhouettes). However, these rep-
resentations are relatively sensitive to many common covari-
ates, such as viewing angles, clothing, and objects that
are being carried. To solve this, various metric learning-
based methods and deep learning-based networks have been
explored. The model-based approaches are mainly based
on representations of human pose structure and movement
(e.g., skeletons). They are therefore less sensitive to those
covariates, but such representations are difficult to extract
accurately.

This trend is the same for the existing multi-view gait
databases in Table I. Most of them provide silhouettes,
which are easy to extract through background subtrac-
tion or other segmentation methods. This is because the
video sensors employed (e.g., color camera) in generating
these databases cannot provide direct model-based represen-
tations, and the extra estimation is difficult and expensive.
In recent years, there have been significant improvements
in human pose estimation from videos or images owing
to the success of deep learning, which makes it easy to
extract poses from existing gait databases. For example,
OUMVLP-Pose uses state-of-the-art pose estimators (i.e.,
OpenPose [27] and AlphaPose [28]) to estimate the skele-
tons of the existing large-scale multi-view gait database
OU-MVLP [29]. Additionally, some model-based gait recog-
nition approaches [30], [31] have used OpenPose to extract
the poses of the well-known CASIA-B [32] and a new
CASIA-E database [31], [33]. The CASIA-E database con-
tains 1014 subjects, which is much larger than CASIA-B
database. However, it has not been released. The avail-
able CASIA-B database only contains 124 subjects, mak-
ing it insufficient to fully demonstrate the effectiveness of
model-based gait recognition approaches that use deep neural
networks.

Although OpenPose and AlphaPose provide convenient
solutions for pose estimation from existing gait databases, we
argue that there are still some limitations. First, these are gen-
eral pose estimators trained on single-view images that are not
specifically designed for pose estimation from multi-view gait
video sequences, and thus fail to provide accurate poses for all
frames. Second, they mainly use a 2D skeleton as the extracted
pose feature, but the 2D skeleton will change as the viewing
angle varies. In addition, it loses 1D information. For example,
the stride length is generally missing from front-view cases,
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TABLE I

EXISTING MAJOR PUBLICLY AVAILABLE MULTI-VIEW GAIT DATABASES. THE FINAL ROW DESCRIBES OUR DATABASE

Database [ Year Data type # Subjects # Views View range
CMU MoBo [34] 2001 RGB, Silhouettes 25 6 0°-360°
SOTON small [35] 2001 RGB, Silhouettes 12 4 -

USF [36] 2005 RGB, Silhouettes 122 2 -
CASIA-A [37] 2001 RGB, Silhouettes 20 3 0°, 45°, 90°
CASIA-B [32] 2005 RGB, Silhouettes 124 11 0°-180°

AVA [38] 2013 RGB, Silhouettes 20 6 -

WOSG [39] 2013 Short-wave infrared 155 8 -
KY4D [40] 2010 3D volumetric model 42 16 0°-360°

FVG [41] 2019 RGB, Silhouettes 226 3 -45°,0°, 45°

OU-ISIR LP [42] 2012 Silhouettes 4,016 4 55°-85°
OU-MVLP [29] 2018 Silhouettes 10,307 14 0°-90°, 180°-270°
OUMVLP-Pose [43] 2020 2D skeleton 10,307 14 0°-90°, 180°-270°
OUMYVLP-Mesh (Ours) 2021 3D Human Mesh 10,307 14 0°-90°, 180°-270°
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and the body width is usually hidden in side-view cases. Third,
they ignore body shape information, which actually contributes
to the high recognition accuracy of existing gait recognition
works.

Therefore, we consider a more powerful 3D human model
than the 2D skeleton. According to our previous stud-
ies [44], [45], a 3D human mesh model with parametric pose
and shape features (i.e., skinned multi-person linear (SMPL)
model [46]) is an effective choice for model-based gait recog-
nition. Compared with the simple sparse 2D skeleton, the
SMPL model is more complex and informative, and can
encode a full 3D mesh of a human body. Reference [44]
describes how the SMPL model is independently estimated
from a single-view gait sequence, but the possible multi-view
gait sequences are not fully utilized in the training phase,
which causes an ill-posed estimation problem in 3D space. To
make use of multi-view gait sequences, reference [45] intro-
duced a synchronized multi-view pose constraint to force the
poses of multi-view sequences to be similar to each other.
However, this constraint alone cannot completely solve the
problem. Moreover, both of these methods only infer the
SMPL model for single-view gait sequences, and are not
applicable for inferring a unified model from multi-view gait
sequences.

To obtain a more accurate SMPL model for both multi-view
and single-view gait sequences, we propose a multi-view
training framework containing multi-view and single-view
streams for asynchronous multi-view gait sequences. We fur-
ther apply the proposed framework to the existing OU-MVLP
database, and build the first large-scale gait database with
human meshes, named OUMVLP-Mesh.

The contributions of this study can be summarized as
follows.

(1) First large-scale multi-view gait database with 3D
human meshes':

Beyond skeletons, we construct the first multi-view gait
database with 3D human meshes (i.e., SMPL model). The
SMPL model is complex and informative, making it conducive

lOUMVLP-Mesh  is  available at
u.ac.jp/BiometricDB/GaitLPMesh.html.

http://www.am.sanken.osaka-

to promoting the development of model-based gait recognition
and boosting the recognition performance. Besides gait
recognition, the proposed database can also be used for other
gait analyses (e.g., aging progression/regression, training data
as genuine gait models for adversarial learning). Built upon
the existing OU-MVLP database, OUMVLP-Mesh contains
10,307 subjects with up to 14 viewing angles (from 0° to 90°,
180° to 270° at 15° intervals).

(2) Framework that handles asynchronous multi-view input
gait sequences:

To avoid the strict requirement of synchronized multi-view
input gait sequences, we introduce a phase sequence estimator
for the phase information (gait stance) of input sequences, and
synchronize the estimated SMPL models of those sequences
for further fusion. As such, our method can handle asyn-
chronous multi-view gait sequences, enabling a wide range
of applications.

(3) Multi-view training framework that contains multi-view
and single-view streams:

We propose a multi-view training framework containing two
streams with shared weights. One is the multi-view stream,
in which the estimated view-specific SMPL models from
multi-view inputs are fused to form a unified model. The
second is the single-view stream, in which the SMPL mod-
els for each single-view input are independently estimated.
The two streams are constrained to produce similar esti-
mations. As such, the proposed method not only estimates
more accurate models through the multi-view stream in the
case of multi-view inputs, but also recovers more accurate
3D information through the single-view stream when only
single-view inputs are available.

(4) More accurate human models:

Compared with OUMVLP-Pose [43], the proposed
OUMVLP-Mesh database has better-quality human models
and significantly improves the recognition performance using
the same benchmark.

The remainder of this paper is organized as follows.
Section II introduces some existing gait databases and 3D
human pose and shape estimation approaches. Section III
presents the proposed multi-view training framework.
Section IV describes the constructed OUMVLP-Mesh
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database. Section V describes the evaluation of the proposed
framework and analysis of the OUMVLP-Mesh database.
Section VI discusses the performance of the proposed method,
and Section VII concludes this paper and discusses ideas for
future work.

II. RELATED WORK
A. Gait Databases

Existing major publicly available multi-view gait databases
are summarized in Table I. Most of them (i.e., CMU
Mobo [34], SOTON small [35], USF [36], CASIA-A [37],
CASIA-B [32], AVA [38], WOSG [39], FVG [41], OU-ISIR
LP [42], OU-MVLP [29]) contain the silhouettes that are
widely used for appearance-based gait recognition approaches.
For example, the CMU Mobo database collects 25 subjects
walking on a treadmill with six surrounding cameras rang-
ing from 0° to 360°. The SOTON small database contains
12 subjects walking indoors captured under four cameras in
the normal side, normal elevated, oblique, and frontal views.
The USF database contains 122 subjects walking outdoors in
an elliptical path captured under two cameras in the left and
right side. The CASIA-A database contains 20 subjects with
three views (0°, 45°, 90°). The CASIA-B database contains
124 subjects with large view variations from 0° to 180° with
18° intervals, which is the most widely used database for
cross-view gait recognition approaches. The AVA database
contains 20 subjects under six view angles. The WOSG
database contains 155 subjects walking in an active, outdoor
scene captured under eight view variations. Recently, a newly
released FVG database focuses more on frontal-view gait
sequences with minimal gait information, including 226 sub-
jects walking outdoors near the frontal middle, left, and right
view angles. However, these databases cover relatively few
subjects, and may therefore not be suitable for evaluating
recent deep learning-based approaches in a statistically reli-
able way. The OU-ISIR LP database contains a relatively
larger number (4016) of subjects, but its view variation is
limited to only four angles (55°, 65°, 75°, and 85°). The
OU-MVLP database is currently the largest gait database, con-
taining 10,307 subjects and 14 view angles ranging from 0° to
90° and 180° to 270° at 15° intervals.

Only two databases (i.e., KY4D [40] and OUMVLP-
Pose [43]) provide model-based representations. The KY4D
database contains the 3D volumetric models of 42 walk-
ing subjects, as reconstructed by the volumetric intersection
technique from the gait sequences captured by 16 cameras.
Built on the OU-MVLP database, the OUMVLP-Pose database
is the first gait database with pose sequences extracted
by deep learning-based pose estimators (i.e., OpenPose and
AlphaPose). The extracted pose representation is the body
skeleton, containing 18 joints in 2D image-based coordi-
nates, namely Nose, Neck, RShoulder, RElbow, RWrist,
LShoulder, LEIbow, LWrist, RHip, RKnee, RAnkle, LHip,
LKnee, LAnkle, REye, LEye, REar, and LEar. However, the
KY4D database only covers a small number of subjects, and
the 2D skeletons in the OUMVLP-Pose database suffer from
information loss and relatively inaccurate estimation by the

general pose estimators. This paper describes the use of a
more complex and informative 3D mesh model, and proposes
a multi-view training framework for more accurate estimation.

B. 3D Human Pose and Shape Estimation

Research on 3D human pose and shape estimation mainly
focuses on inferring a parametric model of the human body
(e.g., SMPL) from images or videos. Early studies such as
SMPLIify [47] use optimization-based methods that fit the
parameters of SMPL to 2D keypoint detections. More recent
works [48], [49], [50] tend to use regression-based methods
that regress the model parameters through deep networks. For
example, Pavlakos et al. [48] used ConvNet to predict 2D
pose heat maps and silhouettes from an input RGB image,
then designed two individual regression networks to regress
the pose and shape parameters of the SMPL respectively.
Kanazawa et al. [49] proposed an end-to-end human mesh
recovery (HMR) network to directly regress the pose and shape
parameters of the SMPL from a single RGB image. The two
methods are designed for images and fail to produce stable
results using videos. Kocabas et al. [50] proposed the “Video
Inference for Body Pose and Shape Estimation” (VIBE)
method to produce accurate and natural motion sequences of
SMPL parameters for videos. VIBE uses a temporal encoder
and regressor with gated recurrent units (GRUs) [51] to capture
sequential human motion, then employs a motion discriminator
for adversarial learning to obtain realistic human motion using
a large-scale 3D motion-capture dataset named AMASS [52]
as the ground-truth motion. All of the aforementioned methods
focus on single-view images or videos.

However, single-view images or videos suffer from
information loss when estimating a 3D model. For exam-
ple, if a person walks towards a camera (i.e., captured in
the frontal view), the forward—backward motion (e.g., stride
length) cannot be observed as clearly as when captured from
the side-view. Thus, multi-view images or videos are essen-
tial for more accurate 3D human body model estimation. The
word “multi-view” refers to the person being captured by syn-
chronized cameras from different view angles; thus, the person
has almost the same pose in the multi-view images or videos.
There has been relatively little research in this area [53], [54].
Liang and Lin [53] proposed a multi-view multi-stage regres-
sion method that takes synchronized multi-view images as
input. The estimated pose and shape parameters of the SMPL
are iteratively transferred across multiple views, while the esti-
mated camera calibration parameters are transferred across
iteration stages. Shin and Halilaj [54] developed a learn-
able volumetric aggregation approach that fuses information
from multi-view images, enabling accurate SMPL models to
be reconstructed. Note that these two methods are image-
based and require synchronized multi-view images. In con-
trast, our proposed method is video-based and can deal with
asynchronous gait sequences.

C. SMPL Databases

As a strong form of supervision, databases with 3D anno-
tations are essential for 3D human pose and shape estimation.
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However, such databases are difficult for humans to annotate
because the task is ambiguous. Existing 3D databases (e.g.,
Human 3.6M [55], MPI-INF-3DHP [56]) use marker-based
or marker-less motion capture (MoCap) systems to infer the
3D pose (joint locations) based on an approximate skeletal
body structure, commonly treated as the ground-truth 3D pose.
Reference [49] describes how the “Motion and Shape Capture”
(MoSh) method [57] can be used to fit the ground-truth SMPL
parameters from the raw 3D MoCap markers in Human 3.6M.
Reference [52] extends MoSh to MoSh++ for more accurate
model fitting and establishes a collective database with the
SMPL parameters from 15 existing databases. These databases
with SMPL are mainly inferred from the MoCap markers using
MoSh or MoSh++-, a technique that is not applicable for exist-
ing multi-view gait databases that have no markers. In contrast,
our method has no such limitation and can be applied to gait
databases with only multi-view RGB sequences.

III. MULTI-VIEW TRAINING FRAMEWORK
A. Overview

We aim to generate accurate human models (i.e., SMPL
model [46]) for existing multi-view gait databases. In our
problem setting, we assume that the training set contains
asynchronous multi-view RGB gait sequences. Therefore, we
make the best possible use of the asynchronous multi-view
sequences for accurate model fitting. An overview of the
proposed multi-view training framework is shown in Fig. 1.
This is a generative adversarial network-based framework
that contains a two-stream encoder (i.e., multi-view and
single-view stream encoder) for the model fitting and a dis-
criminator for the adversarial learning. In the test case, based
on the given sequences, either the multi-view stream encoder
or the single-view stream encoder is used for the inference.

The SMPL model factorizes the human body into shape
B and pose @ parameters. The shape B € R!? describes the
height, weight, and body proportions of individuals, forming
the first 10 coefficients in a principal component analysis shape
space. The pose # € R% describes the joint locations, which
is the relative 3D rotations of 23 joints in an axis—angle rep-
resentation. From these parameters, the SMPL model outputs
a triangulated mesh M (@, B) € R%993 which is differen-
tiable with respect to @ and B. The 3D joint locations X3p
can be obtained by linear regression from the mesh vertices.
In addition, the global root rotation parameter r € R3 in axis—
angle representation and the camera parameter k = [s,¢] € R3
are estimated, where s is the scale and ¢ = [ty,¢,] is the
translation. As such, the 2D projection of the 3D joints is
computed as Xop = sII(RX3p) + ¢, where R is the global
rotation matrix computed from r and IT is an orthographic pro-
jection. All of these parameters form a full SMPL parameter
O =1k, r0,B] R,

B. Two-Stream Encoder

We design a two-stream encoder to deal with arbi-
trary input sequences in the test phase. As shown in
Fig. 1, one stream is the multi-view stream that fuses the
estimated view-specific SMPL parameters from multi-view
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asynchronous RGB sequences of the same subject to a uni-
fied SMPL parameter. The other is the single-view stream,
which independently estimates the SMPL parameters for each
single-view RGB sequence. The two streams share weights
with each other.

1) Multi-View Stream: The multi-view stream contains two
modules: a phase sequence estimator and a multi-view union
regressor.

Phase sequence estimator: Without imposing multi-view
consistency on input multi-view RGB sequences (i.e., asyn-
chronous sequences) of the same subject, we first estimate the
sequential phase labels of those sequences through a phase
sequence estimator P. These labels are then used for the
synchronization task. The estimation is represented as

P="7P©), 1)

where S = {Iy,...,1I,} is an input sequence with n frames
and P = {p,,....p,} are the corresponding estimated phase
labels. The phase label p € R? is a 2D point on a unit circle
representing the cyclic phase labels [58].

The phase sequence estimator P is a convolutional neural
network (CNN) model as shown in Fig. 2. Initially, there are
four convolutional (Conv) layers with a kernel size of 4 x4 and
a stride of two, and a single fully connected (FC) layer. Each
Conv layer is followed by a batch-normalization layer and
ReLU activation function. The number of filters is increased
from 64 to 512. The FC layer outputs 100-dimensional fea-
tures. A GRU module is then used to learn the sequential phase
information from the latent features, which is a three-layer
GRU in which the hidden layer contains 100 nodes. Finally,
another FC layer is used to estimate the 2D sequential phase
labels P. A normalization layer is also applied to ensure that
1p;1>=1,ie(l,...,n).

Assume that the ground-truth phase labels are P =
{p1,p2,...,pn}. We first compute the estimation loss as
follows:

1y
Ly mse = o Z”Pi _pi”; (2)
i=1

Because gait is a continuous movement, the estimated phase
labels are assumed to change smoothly and sequentially. We
therefore introduce a smoothness loss Ly _smo as

1 n—1 . . 1 n—1 . R .
Ly smo = I Z||Pi+1 —D; H; + n_2 Z”Pi+1 —2p;+pi ”i
i=1 i=2
(3)

and a penalty loss L, _pen for adjacent frames with disordered
phase labels (i.e., reverse evolution of gait stances) as

1

& >l i

2
Lp_pen = | 2 “4)
{i,i+1}eC

where C denotes the set of adjacent frame index pairs with
disordered phase labels.

Finally, these three loss terms constitute the total loss of the
phase sequence estimator, which is represented as

Lphase = )\p_mseLp _mse T )\p_smoLp _smo T kp_pean_ pens (%)

where Ap_mses Ap_smo» and Ap_pen are hyperparameters.
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Fig. 1. Proposed multi-view training framework. There is a two-stream encoder (multi-view and single-view streams) and a discriminator. The multi-view

stream receives asynchronous multi-view RGB sequences of the same subject as the input, and estimates both view-specific and multi-view unified SMPL
parameters through the multi-view union regressor. Here, we take two views as examples. The single-view stream receives each single-view sequence as input
and estimates the corresponding SMPL model. The discriminator receives both estimated and ground-truth SMPL models for adversarial learning. There are

many losses in the framework, which are jointly trained together.
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Fig. 2. Network architecture of phase sequence estimator.

Multi-view union regressor: A conventional iterative
regressor (e.g., HMR) only regresses the SMPL param-
eters for each single-view sequence. In contrast, the
proposed multi-view union regressor can regress both
view-specific and multi-view union SMPL parameters (i.e.,
unified SMPL) for multi-view sequences, where the union
SMPL parameters only contain the pose and shape parameters
because the camera and root rotation parameters are
view-dependent.

Given asynchronous multi-view RGB sequences of the
same subject, the proposed multi-view union regressor
first estimates the view-specific SMPL parameters of the
each input sequence (see (1) in Fig. 1). We use the
same encoder £ (i.e., ResNet-50 [59]) and regressor R
as HMR [49]. Considering the input sequence, we further
add a GRU module after the encoder to learn the sequen-
tial information for the input sequence, similar to [50]
The regressor ‘R outputs the SMPL parameters 6"
[(kl,...,kn),(rl,...,Af),(ol,...,ﬂn),ﬂ of the input
sequence, where ﬁ is the averaged shape parameter over the
sequence. Similarly, we use separate GRU modules to obtain
continuous camera k, root rotation 7, and pose 0 parameters.

The estimated sequential phase labels P from the
phase sequence estimator are then used to interpolate the
view-specific pose parameters 6" in an arbitrary phase
sequence (same as the input RGB sequence) to give the new
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parameters 9" ina pre-defined unified phase sequence for the
synchronization. More specifically, we define unified sequen-
tial phase labels that are evenly distributed on the phase
representation circle. Given the estimated sequential phase
labels, we compute the linear weights between the two sequen-
tial phase labels for the interpolation. After the interpolation,
we obtain the synchromzed pose parameters 6" and the shape
parameters ﬂ from multi-view sequences. Through mean
average pooling, we obtain the unified pose and shape param-
eters of the SMPL model for the input subject (see (2) in
Fig. 1).

Finally, we apply reverse 1nterpolat10n to obtain the updated
view-specific SMPL parameters ©" of each single-view
sequence for a complete loop (see (3) in Fig. 1). The procedure
is repeated several times to ensure a stable estimation.

Following our previous study [44], we propose three loss
terms to train the multi-view union regressor. The first is the
inner loss L;? ., which ensures the temporal continuity of the
camera, root rotation, and pose parameters. This is defined as
the weighted sum of the first- and second-order smoothness
terms of each parameter:

Lﬁner - )\camLZ;m + )\’I’OOIL?Z)Q[ + )\'pOSCL;)”()se7 (6)

m
where LT |

cam —IZ‘

is represented as

1

—1
2

Am Am Am
kipy =2k +ki H2

i+1 = n ) .
(7N
The other two terms, Ly, and Ly, can be obtained in a
similar manner by replacing k" with #" and 0 in Eq. (7).

Acam» Aroots and Apose are hyperparameters.

The second loss term is the reconstruction 108S Lyecon, Which
ensures that the estimated SMPL parameters consider the
thickness of various body parts. This term is defined as the
mean squared error between the rendered silhouettes and the
corresponding ground-truth:

Lm

recon —

2
) (®)

where the rendered silhouettes B" = {13'1", ...,13:1"} are gen-
erated through the neural renderer [60] as a differentiable
renderer.

The final loss term is the joint loss Ljoint, Which stabilizes
the training process and prevents corruption. This is defined as
the mean squared error between the estimated 2D joint loca-
tions and the corresponding ground-truth based on the image
coordinates:

— x5 ©

ZH

where the 2D joint locations X’2"D = {351", o,
from the SMPL parameters.

Here, we only consider the supervision of 2D joints, because
3D joint estimation is ambiguous for existing single-view
approaches (e.g., HMR [49], VIBE [50]), making it unsuitable
for use as the pseudo-ground-truth.

]omt

m
X'} are computed
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In summary, these three loss terms constitute the training
loss Lpy for multi-view union regressor, which is repre-
sented as

Ly = )&innerLin;ner + )\reconL;{c’con + )\jothJ’gmp (10)
where Ainner, Arecon, and Ajoine are hyperparameters.
2) Single-View  Stream:  The  single-view  stream

is a reduced version of the multi-view stream pro-
duced by deleting the phase sequence estimator and
the multi- Vlew umon module. The SMPL , parameters
[(kl,.. k)(rl,... )(01,.. 0)ﬁ]are inde-
pendently estimated for each input sequence. We can also
generate the rendered silhouettes B = {I;S, e, l;il} and the
2D joint locations )A(ED ={x,...., X}
Regarding the training loss, the single-view stream contains
similar losses as the multi-view stream. The first is the inner

loss L} ., which is defined as

Lfnner )“CamLéam + )‘YOOtL}Voot + )‘POSCLéose + )‘ShaPeLéhape‘
(11

This is slightly different to Li7 ., because it also includes the

shape loss L, ., which forces the shape parameters [95 from
different sequences of the same subject to be consistent with
each other. Acam, Aroot, and Apose are the same as in Eq. (6).

The second and third loss terms are the same as for the
multi-view stream, and are defined as

Lrgecon = 1
n —
| 2
Ljsomt = Z Z ng _xi”2' (12)

i=1
Finally, these three loss terms constitute the training loss
Ly, for the single-view stream, which is represented as

Lyy = )hlnnerLfnner + kreconL}vecon + )‘J'OlmL]omt’ (13)

where Ainner, Arecon, and Ajoint are the same as in Eq. (10).

3) Constraint Between Two Streams: The multi-view
stream is capable of capturing the 3D nature of the sub-
ject because of the multi-view inputs. Therefore, we impose
additional similarity constraints Lg, on the estimated SMPL
parameters, rendered silhouettes, and 2D joint locations for
both the multi-view and single-view streams. As a result, the
single-view stream learns to capture more 3D information from
the multi-view stream. The similarity loss Lgn, is defined as

o am sl
Lsim :)\smleQ B" — B )

N N 2
+ )\joint XEnD - XED 5’

(14)

where Asmpl, Arecon, and Ajoint are hyperparameters; Arecon and
Ajoint are the same as in Eq. (10).

C. Discriminator

Because we do not have strong 3D supervision (e.g., the
ground-truth SMPL parameters), the main supervision is pro-
vided by indirect 2D supervision of the silhouette masks and
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2D joint locations. Thus, there is a possibility that unrealis-
tic 3D body shapes and poses may minimize the 2D losses
because of the ambiguity of unused 1D information. Even
in the case of fine-tuning from a well-trained model (e.g.,
HMR [49] or VIBE [50]) with good initialization, we can-
not guarantee that the final model will estimate realistic 3D
human bodies, especially for a sequential input with motion.
To overcome this issue, we use a discriminator D to deter-
mine whether a sequence of the estimated SMPL parameters
is real. More specifically, we consider two sub-discriminators:
a frame-level discriminator, responsible for judging the real
model of each frame, and a sequence-level discriminator,
responsible for judging the real motion of each sequence.

The frame-level discriminator refers to HMR [49] to treat
the pose and shape parameters for each single frame inde-
pendently. Given the estimated pose and shape parameters
<I> [0,, ﬂ ] € R7 of frame i, we train 25 discriminators:
one for the shape, 23 for the joints (one for each joint), and
a final one for all of the joints together. All pose discrimi-
nators receive 9D rotation matrices that have been converted
from @; via the Rodrigues formula. They share the common
feature space of the rotation matrices and only differ in the
final classifiers.

The sequence-level discriminator refers to VIBE [50] to
treat the pose and shape parameters for each sequence. Given
the estimated sequence of pose and shape parameters o =
[531, e, &J,,], we first use a multi-layer GRU model [50] to
extract the latent features h; = f(&)l-) of the i-th frame. A
weighted sum is then used to aggregate the latent features,
where the weight of each frame is computed through a self-
attention module. Finally, we use a linear layer to classify
whether the input ® constitutes real motion.

For the estimations from both discriminators and the two
streams (i.e., (CiDm, CiDm) and (dA>S, CiDS)), we choose the AMASS
dataset [52] as the ground-truth SMPL database, and use this
for adversarial learning. The adversarial loss function for the
two-stream encoder is defined as

Laay = ]E[log(l —_ D(ci>'", ém))] + E[log(l . D(ch, ci:"))],

15)
and the loss function for the discriminator is defined as
Liise = E[logD(é"’, ém)] n E[logD(éS, &S)]

+ E[log(l — D(®, ®))]. (16)

where ® and @ are the ground-truth pose and shape parame-
ters of the single frame and sequence, respectively.

D. Joint Loss Function

Finally, we train the proposed two-stream encoder in an
end-to-end manner with a joint loss that combines the afore-
mentioned losses, i.e., Egs. (5), (10), (13), (14), and (15),
which is defined as

Liotal = Lphase + Ly + Lsy + Lsim + Ladv- (17)

The two losses Lgisc and Lo are iteratively minimized.

E. Training Details and Inference

Input data: The proposed method requires the human-
centered cropping RGB sequences and the corresponding
silhouettes for training. The sizes of the RGB and silhouette
sequences are 224 x 224 and 64 x 64, respectively. See [44]
for how to obtain these data. We extract the sequences of
2D joint locations from the cropped RGB sequences using a
state-of-the-art pose estimator, i.e., VIBE [50], and use these
sequences as the pseudo-ground-truth 2D joint locations. Each
sequence contains n = 25 continuous frames, because this
covers a gait period for most subjects. For sequences of less
than 25 frames, we repeatedly select from the frames at the
beginning of the sequence.

Training details and parameters: We train the proposed
method on 4 Quadro RTX 8000 GPUs using the training set of
OU-MVLP containing 5,153 subjects. We first train the phase
sequence estimator P to ensure stable estimated phases. The
ground truth labels are computed using the same method as
in [58]. Specifically, we first interpolate the original gait cycle
to the common gait cycle with a fixed number of frames for
all subjects (e.g., evenly choose 20 frames from the original
gait cycle for simplicity). Then, we assign cyclic phase labels
to a subject and choose it as the standard. We shift the starting
frame of the standard and compute the sum of silhouette dif-
ference between another subject and this shifted standard for
each amount of shift. The two subjects are considered synchro-
nized at the amount of shift with the smallest difference, and
have the same phase label. Finally, we reversely interpolate the
phase label of the common gait cycle to the original gait cycle.
We use the Adam optimizer [61] and set the mini-batch size
to 64 randomly selected RGB sequences. The training stage
runs for 10 epochs with an initial learning rate of 10~%, and
then runs for another five epochs with a reduced learning rate
of 107>, The hyperparameters in Eq. (5) are experimentally
set as Ap mse = 1, Ap_smo = 0.01, and A, pen = 0.001.

We use the pre-trained phase sequence estimator P, the
encoder £, and the regressor R of HMR [49] to initialize
the corresponding parts of our model; the discriminator uses
the default initialization. The GRU modules in the two-stream
encoder also have three layers, but different numbers of
hidden-layer nodes. Basically, we set the hidden layer to have
the same number of nodes as the size of the input feature
of the GRU module (e.g., the number of nodes is set to 2048
for the GRU module after the encoder £). To prevent the initial
estimation from being destroyed by the pre-trained models,
the GRU module is assigned an initial weight of zero and
outputs an updated input feature, which is added to the orig-
inal input feature to give the final output. After initialization,
the whole framework is fine-tuned in an end-to-end manner.
We use the Adam optimizer [61] for all the models, and set
the mini-batch size to 32, i.e., eight subjects and four RGB
sequences from different views for each subject. The train-
ing runs for 10,000 iterations with an initial learning rate of
104, and then for another 10,000 iterations with a reduced
learning rate of 1075. The hyperparameter settings are the
same as for the phase sequence estimator in the pre-training
process. The remaining hyperparameters are set based on our
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Fig. 3. Camera setup of OU-MVLP and the estimated human mesh models
from multiple views.

previous studies [44], [45], i.e., all parameters set to 1, except
for Acam = 0.1, Aroot = 0.1, Apose = 0.00001, and Ajoint = 100.

Inference: The two-stream design means that the proposed
method can infer the SMPL parameters from either multi-view
gait sequences or a single-view gait sequence in the test phase.
In this study, we use the single-view stream to infer each
single-view gait sequence of the entire OU-MVLP, includ-
ing both training and test sets. This gives the proposed
OUMVLP-Mesh database. As such, we can present a fair com-
parison with existing model-based gait recognition approaches,
which suppose that the multi-view sequences are available in
the training set while only single-view sequences are available
for the probe and gallery in the test set.

If this database was to be wused as a kind of
pseudo-ground-truth, the best-effort models would be ben-
eficial, i.e., SMPL parameters inferred from all views for
the training subjects, although this is not considered in the
performance evaluations.

IV. OUMVLP-MESH DATABASE

Built upon OU-MVLP, the proposed OUMVLP-Mesh
database contains 10,307 subjects with up to 14 viewing angles
(from 0° to 90°, 180° to 270° at 15° intervals). The raw images
are captured at a resolution of 1280 %980 pixels at 25 fps under
the camera setup shown in Fig. 3. There are seven network
cameras placed at 15° intervals along a quarter of a circle.
The subjects walk from location A to location B and back to
location A, producing 14 view sequences. See [29] for more
details about the OU-MVLP database.

The human mesh models are estimated from OU-MVLP
using the proposed method, as described in Section III. The
estimated models from all 14 views are shown in Fig. 3. Some
detailed examples are shown in Fig. 4. Besides the 3D meshes,
the corresponding skeletons are also provided, and have two
different sets of coordinates. The image-based 2D coordinates

Fig. 4. Examples of the proposed OUMVLP-Mesh database from two dif-
ferent views. The first row is the cropped RGB sequences; the second, third,
and fourth rows are the corresponding human mesh models, 2D image-based
joint locations, and 3D human-centered joint locations, respectively.
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Fig. 5. Human skeleton model with 24 joints.

are the same as those of the poses in OUMVLP-Pose; however,
1D information has been lost and the coordinates change with
the viewing angle of the input image. The human-centered
3D coordinates recover the missing information of the input
2D images and are aligned with a common coordinate that is
robust to the viewing angle. There are 24 joints in the skeleton
shown in Fig. 5, including Pelvis, Lhip, Rhip, Spinel, Lknee,
Rknee, Spine2, Lankle, Rankle, Spine3, Lfoot, Rfoot, Neck,
Lcollar, Rcollar, Head, Lshoulder, Rshoulder, Lelbow, Relbow,
Lwrist, Rwrist, Lhand, and Rhand.

V. PERFORMANCE EVALUATION

We evaluate the proposed method from two aspects. The
first is the evaluation of the proposed multi-view training
framework for the human mesh estimation. The second is the
evaluation of the proposed OUMVLP-Mesh database through
cross-view gait recognition approaches.

A. Evaluation Metrics

For the evaluation of human mesh estimation, we mainly
focus on the joints and choose two metrics: (1) mean per-joint
position error (MPJPE), which is computed as the mean of the
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(b)

(c)

(d)

Fig. 6. Examples of estimated human meshes from three different test subjects (side view). (a) shows the continuous input sequences. (b), (c) and (d) show
the results of HMR, VIBE, and the proposed method, respectively. The red dotted circle shows a single-frame pose error. The orange dotted rectangle shows

consecutive pose errors.

Euclidean distances between the estimated and ground-truth
joint locations after root joint alignment (e.g., pelvis joint);
(2) Procrustes aligned MPJPE (PA-MPJPE), which is the
MPJPE after rigid alignment of the estimation with the ground-
truth via Procrustes analysis. For the evaluation of gait recog-
nition, we choose the commonly used rank-1 identification rate
(Rank-1) and equal error rate (EER).

B. Evaluation of Human Mesh Estimation

We compare the estimated human meshes of the proposed
method with two benchmarks, i.e., HMR and VIBE, in
Fig. 6. While both HMR and VIBE have good estimates
for the left-most example, there are also wrong estimates
for the remaining two examples. We can see that HMR pro-
duces more pose errors in a single frame, because it is an
image-based human mesh estimation method that does not
consider the sequential information between adjacent frames.
The video-based VIBE method has the ability to estimate
more consecutive poses. However, it may sometimes cause
severe consecutive pose errors in the left and right leg posi-
tions because of the unclear positional relationship between the
two legs in the side-view case (see the row (c) of the right-
most example in Fig. 6). In contrast, the proposed method
avoids such errors and achieves the best estimation results.
This is because the proposed method considers sequential esti-
mation, similar to VIBE, and also uses a multi-view training
framework that forces the single-view stream to learn from
the multi-view stream. As such, the model is able to estimate
accurate left and right leg positions based on the implication
from the multi-view sequences in the training, even in the case
of difficult scenes (i.e., side view). HMR and VIBE fail to cap-
ture the actual body shape for different subjects and show a
common shape, while the proposed method learns some char-
acteristics of the actual body shape through the reconstruction
loss Lyecon related to the silhouettes.

We now present a quantitative analysis on a synthesized
multi-view gait dataset including the 3D ground-truth poses,
because OU-MVLP does not include ground-truth poses. To
prepare the synthetic dataset, we first generate 10 human
models (five males and five females) using the Makehuman
software,> and select 10 3D pose sequences (walking pose

2https://www.makehumancommunity.org/

TABLE 11
MPJPE AND PA-MPJPE [MM] OF ALL METHODS. THE BEST RESULTS
ARE SHOWN IN BOLD. THIS CONVENTION IS CONSISTENT
THROUGHOUT THE PAPER

18 joints 14 joints

Method MPJPE PA-MPJPE MPJPE PA-MPJPE
MR [49] 1403 888 1149 76.7
VIBE [50] 1238 79.7 102.6 652
Ours 112.6 69.7 97.2 60.8

o]

F
_______________ 3
g

Joint sequence matrix

‘ SSO| J21ud) ‘ ‘

Fig. 7. Network architecture of CNN-Pose.

from 10 subjects) from the CMU MoCap dataset [62]. Using
the Blender software,> one pose sequence is fitted to one
human model and asynchronous walking sequences are gen-
erated with 30 frames from four different viewing angles
(0°, 30°, 60°, 90°) under a simple green background. The
fitted 3D pose sequences provide the corresponding ground-
truths. Because the ground-truth joints are not exactly the same
as our estimated joints, we only consider the 18 joints that are
the same, namely Lhip, Rhip, Lknee, Rknee, Lankle, Rankle,
Lfoot, Rfoot, Neck, Head, Lshoulder, Rshoulder, Lelbow,
Relbow, Lwrist, Rwrist, Lhand, and Rhand. We also prepare a
reduced set of 14 joints by removing the most difficult joints
(i.e., toe and finger joints, namely Lfoot, Rfoot, Lhand, and
Rhand). From the results presented in Table II, it is clear that
the proposed method achieves the smallest estimation errors.

C. Evaluation of Cross-View Gait Recognition

1) OU-MVLP:

Comparison with different types of joints: We compare the
proposed OUMVLP-Mesh with the existing OUMVLP-Pose
through a model-based cross-view gait recognition baseline,
i.e., CNN-Pose [43]. The detailed network architecture of
CNN-Pose is shown in Fig. 7. It takes a joint sequence matrix

3 https://www.blender.org/
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TABLE III
COMPARISON WITH DIFFERENT TYPES OF JOINTS ON OU-MVLP. MEAN
RANK-1 RATE AND EER [%] OF ALL 14 VIEW COMBINATIONS USING
THE BASELINE METHOD CNN-POSE. ‘—’ INDICATES NOT PROVIDED.
“*’ INDICATES THE RESULTS IN THE ORIGINAL PAPER

Joint type Original joints The same 13 joints
Rank-T EER Rank-T EER
OpenPose* 14.76 14.24 - -
OpenPose 15.73 13.04 12.14 15.44
AlphaPose* 20.42 14.01 - -
AlphaPose 28.06 11.34 23.63 12.77
Ours-IM2D 38.30 5.50 31.92 6.08
Ours-HC3D 48.63 3.81 43.71 4.22

as input, and learns the discriminative features through a back-
bone CNN. Finally, two losses are used for training. The joint
sequence matrix consists of a joint location sequence with N
consecutive frames, where each column vector comes from a
single frame.

OUMVLP-Pose has two types of joints, as extracted by
OpenPose and AlphaPose, and there are 18 2D joints per
image. The proposed OUMVLP-Mesh also contains two types
of joints: one in the image-based 2D coordinates (IM2D)
and the other in the human-centered 3D coordinates (HC3D).
There are 24 joints per image. We use these four joint types for
the experiments. Considering the different number of joints,
we conduct two experiments, one using the original joints and
another using the same 13 joints. We re-implemented CNN-
Pose and used the same training settings for all types of joints
to ensure a fair comparison. More specifically, we followed
the original settings in [43] to choose the protocol, number
of input frames in a sequence, and mini-batch size. We also
used the Adam optimizer with an initial learning rate of 1074,
After 100,000 iterations, we set the learning rate to 10~5 and
continued for a further 50,000 iterations.

Table III presents the recognition results. Our
re-implementation of OpenPose and AlphaPose achieves
better performance than reported in the original paper [43].
This may be because we chose better training settings. A
comparison using the 2D joints (i.e., OpenPose, AlphaPose,
and Ours-IM2D) shows that the proposed method outperforms
OpenPose and AlphaPose by a large margin, demonstrating
that our approach achieves better pose quality. A comparison
using the joints given by the proposed method (i.e., Ours-
IM2D and Ours-HC3D) shows that the proposed HC3D joints
achieve better performance, indicating that the proposed
method can successfully restore accurate HC3D joints that
are robust to view changes. The detailed Rank-1 rates and
EERs of all view combinations for Ours-HC3D are presented
in Tables IV and V. When comparing the performance of
different numbers of joints, we find that a higher number
of joints tends to produce better performance because more
information is available.

Comparison with state-of-the-art methods: Table VI com-
pares Ours-HC3D with some state-of-the-art methods, includ-
ing four appearance-based methods (i.e., GaitSet [11],
GaitPart [63], GLN [64], 3DLocal [65]) and two model-based
methods (i.e., ModelGait [44], MvModelGait [45]). Unlike
other tables within this paper, which only show the
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Rank-1 rates without non-enrolled probes, we also present
the results with non-enrolled probes. Compared with
the state-of-the-art appearance-based methods, Ours-HC3D
exhibits worse performance. This is because we use the simple
CNN-Pose for feature extraction and the joints have no body
shape (or appearance) features. This encourages us to use more
informative models (e.g., 3D mesh vertices) that include both
shape and pose features and explore more effective networks
to boost the performance.

We also note that the proposed method exhibits worse
performance than our previous model-based gait recognition
studies (i.e., ModelGait and MvModelGait). This is because
we mainly focus on model estimation in this paper, while
our previous studies are end-to-end frameworks that con-
sider both model estimation and gait recognition. Despite the
higher performance, they require more GPU resources and
are very time-consuming because of the larger batch sizes
required for recognition purposes, making them unsuitable
for exploring various recognition networks. Additionally, these
model-based approaches mainly rely on single-view sequences
for model estimation, so their estimated human models are not
as accurate as those given by the proposed method.

2) CASIA-B: Similar to OU-MVLP, we first train the
proposed multi-view training framework on the training set
of CASIA-B, then generate SMPL models for the whole
CASIA-B using the single-view stream. Finally, we com-
pare with an existing work PoseGait [31]. We follow the
same protocol as PoseGait, which uses the first 62 sub-
jects for training while the remaining 62 subjects for test.
Because PoseGait uses 3D poses, which are first estimated
from original 2D poses extracted by OpenPose and then trans-
formed into the human-centered coordinate to reduce the
effect of view angles, we also select our HC3D joints for
comparison. CNN-Pose is used as the recognition network.
The results are shown in Table VII. The proposed method
achieves higher performance, which shows the better qual-
ity of our HC3D joints. Besides, the generation of our
HC3D joints can be done in an end-to-end way, which is
more convenient than multi-step estimation of 3D poses in
PoseGait.

D. Ablation Study

Multi-view stream: We conduct an ablation study of the
proposed method by deleting the multi-view stream while
retaining the single-view stream. The results are presented
in Table VIII. Without the multi-view stream, the proposed
method cannot learn from the multi-view sequences, and so
there is a certain performance degradation for both IM2D
and HC3D joints. The performance of these two joint types
becomes similar, which indicates that the HC3D joints esti-
mated using only single-view stream training are not as
accurate as those produced by the proposed two-stream train-
ing. We also visualize the estimated joints in Fig. 8. Training
using only the single-view stream results in left and right
leg position flip errors in the side-view case, similar to
VIBE, and the estimated HC3D joints of the two sequences
from almost the same phase are inconsistent. In contrast, the
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TABLE IV
DETAILED RANK-1 RATES [%] USING OURS-HC3D OF ALL VIEW COMBINATIONS ON OU-MVLP.
“P” DENOTES THE PROBE VIEW, “G” DENOTES THE GALLERY VIEW

0° 15° 30° 45° 60° 75° 90° | 180° | 195° | 210° | 225° | 240° | 255° | 270° | Mean
0° 71.31| 53.06 | 40.34 | 3223 | 26.26 | 21.42 | 19.17 | 32.63 | 32.87 | 32.18 | 27.72 | 21.36 | 19.80 | 19.17 | 32.11
15° 61.54 | 82.74 | 71.89 | 59.24 | 46.86 | 38.02 | 30.64 | 38.69 | 50.18 | 50.57 | 46.17 | 38.10 | 33.52 | 30.63 | 48.48
30° 51.64 | 73.11| 82.30 | 76.27 | 63.86 | 51.97 | 42.75| 36.97 | 49.18 | 58.63 | 57.13 | 47.93 | 43.75| 40.16 | 55.40
45° 4221 | 61.14| 76.87 | 84.17 | 76.88 | 64.56 | 51.43 | 32.95| 46.96 | 58.96 | 61.01 | 55.15 | 52.50 | 48.56 | 58.10
60° 3110 | 4740 | 62.41 | 7598 | 84.21| 73.69 | 57.56 | 27.37 | 38.81 | 50.89 | 56.86 | 60.38 | 56.35 | 53.98 | 55.50
75° 2711 39.13 | 53.11 | 65.38 | 74.66 | 82.63 | 73.33 | 24.41 | 33.35| 45.75| 53.31 | 55.33 | 62.68 | 64.62 | 53.91
90° 2433 | 33.65 | 43.54 | 52.65| 60.41| 73.98 | 81.00 | 22.59 | 29.67 | 40.93 | 48.08 | 52.24 | 62.16 | 68.05 | 49.52
180° | 36.93 | 37.42 | 34.64 | 31.52 | 26.93 | 2228 | 19.80 | 79.10 | 58.99 | 50.66 | 37.94 | 27.29 | 23.28 | 21.10 | 36.28
195° | 35.51 | 43.77 | 43.86 | 40.65 | 35.20 | 28.06 | 24.39 | 54.42 | 82.21 | 72.74 | 57.95 | 41.31 | 32.07 | 27.04 | 44.23
210° | 34.31| 4556 | 52.60 | 52.16 | 46.70 | 39.49 | 3492 | 46.38 | 72.75 | 85.37 | 78.47 | 59.04 | 48.07 | 39.28 | 52.51
225° | 30.11 | 40.75| 49.52 | 54.37 | 50.89 | 46.06 | 41.00 | 35.46 | 59.64 | 78.31 | 85.06 | 70.44 | 59.04 | 46.85| 53.39
240° | 22.76 | 32.40 | 40.69 | 48.11 | 54.78 | 47.09 | 43.11| 2499 | 41.05| 57.41 | 70.08 | 80.49 | 65.36 | 51.13 | 48.53
255° | 22.46 | 30.38 | 38.04 | 46.57 | 50.83 | 55.82 | 54.76 | 22.88 | 33.16 | 48.15| 59.57 | 66.37 | 79.21 | 67.96 | 48.30
270° | 21.92 | 27.77 | 34.88 | 42.68 | 48.53 | 56.28 | 60.49 | 20.17 | 26.99 | 39.22 | 47.75 | 51.64 | 67.38 | 78.29 | 44.57
Mean | 36.67 | 46.31 | 51.76 | 54.43 | 53.36 | 50.10 | 45.31 | 35.64 | 46.84 | 54.98 | 56.22 | 51.93 | 50.37 | 46.92 | 48.63

TABLE V
DETAILED EERS [%] USING OURS-HC3D OF ALL VIEW COMBINATIONS ON OU-MVLP.
“P” DENOTES THE PROBE VIEW, “G” DENOTES THE GALLERY VIEW

0° 15° 30° 45° 60° 75° 90° | 180° | 195° | 210° | 225° | 240° | 255° | 270° | Mean
0° 3.05 | 392 | 435 | 486 | 588 | 6.08 | 648 | 548 | 533 | 534 | 568 | 6.67 | 652 | 629 | 542
15° 356 | 250 | 2.85 | 324 | 363 | 435 | 468 | 460 | 390 | 400 | 439 | 506 | 482 | 484 | 4.03
30° 382 | 270 | 214 | 245 | 279 | 317 | 354 | 482 | 377 | 328 | 334 | 366 | 371 | 3.71 3.35
45° 457 | 313 | 239 | 2.06 | 244 | 274 | 320 | 498 | 402 | 332 | 3.05 | 331 | 336 | 322 | 3.27
60° 533 | 378 | 276 | 236 | 213 | 245 | 286 | 559 | 456 | 3.67 | 334 | 3.16 | 299 | 317 | 3.44
75° 558 | 430 | 324 | 272 | 244 | 197 | 216 | 568 | 470 | 3.60 | 3.14 | 323 | 257 | 2.63 | 343
90° 568 | 455 | 3.61 | 3.11 | 289 | 216 | 210 | 567 | 487 | 374 | 3.14 | 322 | 241 | 230 | 3.53
180° | 4.69 | 4.67 | 451 | 494 | 536 | 570 | 557 | 242 | 339 | 359 | 430 | 500 | 520 | 543 | 4.63
195° | 5.04 | 395 | 396 | 423 | 472 | 507 | 520 | 338 | 212 | 272 | 3.07 | 416 | 446 | 492 | 4.07
210° | 482 | 388 | 341 | 335 | 374 | 389 | 406 | 385 | 253 | 1.79 | 225 | 3.00 | 3.30 | 357 | 3.39
225° | 534 | 427 | 356 | 336 | 358 | 358 | 382 | 450 | 3.05 | 207 | 1.94 | 2.60 | 275 | 3.12 | 3.40
240° | 622 | 530 | 420 | 3.81 | 3.65 | 381 | 387 | 572 | 387 | 298 | 247 | 230 | 249 | 314 | 384
255° | 6.14 | 499 | 415 | 3.61 | 351 | 313 | 3.12 | 572 | 457 | 344 | 2.78 | 2.85 | 2.05 | 257 | 376
270° | 6.08 | 503 | 409 | 346 | 337 | 271 | 267 | 589 | 505 | 3.89 | 320 | 3.31 | 238 | 2.02 | 3.80
Mean | 499 | 407 | 352 | 340 | 358 | 3,63 | 381 | 488 | 398 | 339 | 329 | 3.68 | 350 | 3.64 | 3.81

TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS USING OURS-HC3D ON OU-MVLP. THE RANK-1 RATES AND EERS [%] ARE FOR EACH PROBE
VIEW AVERAGED OVER THE 14 GALLERY VIEWS, WHERE THE IDENTICAL VIEW IS EXCLUDED. THE UPPER AND LOWER BLOCKS OF RANK-1 RATES
ARE THE RESULTS WITHOUT AND WITH NON-ENROLLED PROBES, RESPECTIVELY. “—” DENOTES NOT PROVIDED. “{” DENOTES
APPEARANCE-BASED METHODS. “1” DENOTES MODEL-BASED METHODS

Methods Probe view
0° 15° ] 30° | 45° | 60° | 75° [ 90° [ 180° [ 195° | 210° [ 225° [ 240° | 255° [ 270° | Mean
GaitSet [11] T 847 | 93.6 | 96.7 | 96.7 | 93.6 | 953 | 942 | 869 | 92.8 | 96.0 | 96.1 | 93.0 | 945 | 92.8 | 93.3
GaitPart [63] 1 - - - - - - - - - - - - - - 95.1
GLN [64] T 89.3 | 958 | 979 | 97.8 | 96.0 | 96.7 | 96.1 | 90.7 | 953 | 97.7 | 97.5 | 95.7 | 96.2 | 953 | 95.6
3DLocal [65] { - - - - - - - - - - - - - - 96.5
ModelGait [44] § | 92.8 | 962 | 96.8 | 963 | 947 | 96.6 | 96.6 | 93.5 | 954 | 963 | 96.7 | 965 | 965 | 96.2 | 95.8
MvModelGait [45] 1 | 93.5 | 96.5 | 97.1 | 969 | 95.7 | 96.8 | 97.1 | 93.7 | 95.6 | 96.6 | 97.0 | 97.1 | 97.1 | 97.0 | 9%.2
Rank-1 Ours 29.1 | 458 | 533 | 56.1 | 53.3 | 51.7 | 47.1 | 33.0 | 41.3 | 50.0 | 51.0 | 46.1 | 459 | 42.0 | 46.1
GaitSet [I1] § 795 | 879 | 899 | 902 | 88.1 | 887 | 878 | 817 | 86.7 | 89.0 | 89.3 | 872 | 87.8 | 86.2 | 87.1
GaitPart [63] T 82.6 | 889 | 90.8 | 91.0 | 89.7 | 89.9 | 89.5 | 85.2 | 88.1 | 90.0 | 90.1 | 89.0 | 89.1 | 832 | 88.7
GLN [64] T 83.8 | 90.0 | 91.0 | 91.2 | 90.3 | 90.0 | 89.4 | 853 | 89.1 | 90.5 | 90.6 | 89.6 | 89.3 | 88.5 | 89.2
3DLocal [65] t 86.1 | 91.2 | 92.6 | 929 | 92.2 | 91.3 | 911 | 869 | 90.8 | 922 | 923 | 913 | 911 | 90.2 | 90.9
ModelGait [44] § 871 | 894 | 909 | 89.6 | 889 | 90.0 | 89.8 | 879 | 89.2 | 89.2 | 89.8 | 90.2 | 89.4 | 89.3 | 89.3
MvModelGait [45] § | 87.7 | 89.7 | 91.1 | 90.1 | 89.8 | 90.3 | 90.3 | 88.1 | 89.4 | 89.4 | 90.0 | 90.8 | 90.0 | 89.7 | 89.7
Ours 272 | 430 | 49.6 | 525 | 505 | 485 | 442 | 309 | 38.6 | 463 | 475 | 435 | 429 | 393 | 432
GaitSet [11] 145 [ 093] 076 | 075 [ 099 | 0.79 | 0.86 | 2.80 | 1.61 | 153 | 220 | 1.83 | 1.15 | 1.00 | 1.33
EER ModelGait [44] { 034 | 034 | 020 | 018 | 031 | 0.26 | 0.17 | 0.28 | 0.28 | 0.36 | 0.34 | 0.21 | 0.20 | 0.20 | 0.26
MvModelGait [45] £ | 0.29 | 0.29 | 0.18 | 0.14 | 0.24 | 0.23 | 0.15 | 0.24 | 0.22 | 0.27 | 0.24 | 0.18 | 0.17 | 0.17 | 0.21
Ours § 561 | 415 | 344 | 336 | 354 | 354 | 3.64 | 480 | 422 | 351 | 351 | 396 | 3.89 | 393 | 394
proposed two-stream training produces accurate estimations. Training and test view number: We investigate the effect

These results demonstrate the importance of the multi-view on different number of view angles in the both training and
streams for the proposed method. test sets. We set up six cases by increasing the viewing
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TABLE VII

COMPARISON WITH POSEGAIT [31] ON CASIA-B. MEAN RANK-1
RATE [%] OF ALL 11 VIEW COMBINATIONS UNDER THREE
WALKING CONDITIONS

Probe sets
Methods NM BC T
PoseGait [31] 60.92 39.16 29.71
Ours 76.64 42.01 32.81
TABLE VIII

ABLATION EXPERIMENT. MEAN RANK-1 RATE AND EER [%] OF ALL
14 VIEW COMBINATIONS USING THE BASELINE CNN-POSE METHOD

. . 24 joints
Multi-view stream Joint type Rankcl EER
« Ours-IM2D 3227 6.68
Ours-HC3D 31.86 6.34
Ours-IM2D 38.30 5.50
v Ours-HC3D 48.63 3.81

IRSEER] R RET
255 1T ERRAARA

Fig. 8. Ablation study on the multi-view stream. Given two sequences of
the same subject in front and side-view cases, (a) shows the estimation results
using only single-view stream training, and (b) shows the results using the
proposed two-stream training.

range: (1) 1 view [0°]; (2) 2 views [0°, 15°]; (3) 3 views
[0°, 15°, 30°]; (4) 5 views [0°, 15°, 30°, 45°, 60°]; (5) 7 views
[0°, 15°, 30°, 45°, 60°, 75°, 90°]; (6) all 14 views. For each
case, we use the available views to train the proposed method,
and then also combine all available views using the multi-view
stream to generate unified 3D joints. We further project the 3D
joints to 2D joints from the side view and compare with the
ground truth RGB sequences in the side view. The results are
shown in Fig. 9. With only 1 view [0°] (see the row (b) of
Fig. 9), the proposed method fails to capture the 3D nature
of human model and results in totally incorrect poses. With
the increasing of view number (viewing range), the proposed
method has more information to generate more accurate 3D
models.

Discriminator: We also confirm the effect of the discrimi-
nator by deleting it from the main framework, and show the
visualization of some samples in Fig. 10. Without the discrim-
inator, although the poses are consistent with the input images,
the body meshes do not look like real people.

VI. DISCUSSION
A. Advantages Over OpenPose and AlphaPose

Because OpenPose and AlphaPose are general pose esti-
mators trained on pose databases, they may be unsuitable
for specific gait databases and could cause many estimation
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(d)

(e)

(f)

(s)

3D joints 2D joints projected from side view

o

Fig. 9.  Ablation study on the training and test view number. (b) to (g)
show the estimated joints for six cases from case (1) (one front view) to
case (6) (all 14 views); left side shows the unified 3D joints estimated using
the multi-view stream; right side shows the corresponding 2D joints projected
from side view. (a) shows the ground truth from side view. The black dotted

circle shows incorrect poses compared with the ground truth.

Fig. 10.  Ablation study on the discriminator. Models are trained w/o

discriminator.

=
[
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= 2:&./
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Fig. 11. Some failure cases of the estimated 2D joints produced by OpenPose
and AlphaPose. The final row shows the results of the proposed method for
comparison. (a) Leg position errors, where the left and right sides are from
OpenPose and AlphaPose, respectively; (b) total failure cases of OpenPose.
The black dotted circle shows the error frame.

errors. In particular, in the side-view case, the human body
is self-occluded and not fully observed. We illustrate some
failure cases in Fig. 11. From the results, both OpenPose and
AlphaPose produce left and right leg flip errors, and OpenPose
may sometimes estimate totally incorrect poses. However, the
proposed method gives more accurate estimates, because it
is specially designed for gait databases and makes full use of
the multi-view sequences in the training stage. Besides the 2D
pose, it also provides more informative human models, such
as the 3D pose and mesh models.
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Fig. 12. Failure cases of the proposed method on poses. (a) shows the continuous input sequences. (b) and (c) show the results of VIBE, and the proposed
method, respectively. The orange dotted rectangle shows consecutive pose errors.

Fig. 13. Failure cases of the proposed method on children’s shapes.

B. Use of Multi-View Estimation Stream

Because only single-view sequences exist for the probe and
gallery views in the test phase, we only use the single-view
estimation stream of the proposed method to infer the proposed
OUMVLP-Mesh. However, the multi-view estimation stream
would be more useful if multi-view sequences of the same
subject were known simultaneously (e.g., multi-view gait
recognition), because the estimates from all views could be
fused to produce a more accurate unified human model. In
addition, the multi-view estimation stream does not require
synchronized multi-view sequences, nor does it limit the num-
ber of views, making it easier and more extensive to use.
We believe our design could inspire other computer vision
tasks that deal with multi-view sequences (e.g., multi-view
action recognition, where actions include not only the periodic
actions but also temporally segmented actions whose starting
and ending poses are well defined (e.g., standing up from a
sitting position)).

C. Limitations of the Recognition Performance

Because the proposed method is not trained for recogni-
tion purposes in an end-to-end manner, it does not outperform
the state-of-the-art gait recognition approaches (see Table VI).
However, we consider the proposed OUMVLP-Mesh to have
the potential to be a valuable database if made publicly
available. Thus, it should not be optimized to a specific recog-
nition module to avoid bias, retain greater generality, and
enable a wider range of potential applications other than gait
recognition databases.

D. Failure Cases

We present some failure cases of the proposed method in
Figs. 12 and 13. During training, we use the estimated 2D
joints by VIBE as the pseudo ground-truth. Although, the
pseudo ground-truth might have some errors (see the row (c) of
Fig. 6), the proposed method could fix it through the proposed
multi-view training framework (see the row (d) of Fig. 6).
However, as shown in Fig. 12, when the estimated 2D joints
by VIBE have more errors (i.e., long-term errors), the proposed
method could only fix some of them and unavoidably show

(b)
(c)

Fig. 14. Examples of estimated human meshes on CASIA-B. (a) shows the
continuous input sequences. (b) and (c) show the meshes estimated using the
model trained on CASIA-B and OU-MVLP, respectively.

some errors. For these long-term errors, it’s more likely to
occur in side view sequences which are the most difficult case
to distinguish between left and right legs.

The proposed method also performs poorly on images of
children, failing to capture their shape accurately as shown in
Fig. 13, which is similar to most 3D human pose and shape
estimation methods (e.g., HMR, VIBE). This is because the
SMPL model is mainly generated from adults, and does not
include children’s shapes in its shape space. Despite this, we
find that the pose is well estimated.

E. Cross-Dataset Experiment

We make a cross-dataset experiment to investigate the gen-
eralization capability of the proposed method. Specifically, we
first use the trained model on OU-MVLP to directly estimate
the human meshes of CASIA-B. The estimated meshes of
CASIA-B are shown in Fig. 14. We find subtle pose differ-
ences between the meshes estimated using the model trained
on OU-MVLP and those estimated using the model trained
on CASIA-B. We further check the quality of the meshes for
gait recognition by training CNN-Pose on it using the same
protocol as in Section V-C2. The Rank-1 rate for NM, BG,
and CL conditions are 64.81%, 38.35%, and 27.01% respec-
tively, with a certain accuracy drop compared with the results
trained on the CASIA-B (last row in Table VII). From the
results, when trained on the OU-MVLP, the proposed method
can handle relatively small domain gap between CAISA-B and
OU-MVLP, but with some degradation in recognition quality.
However, if faced with more complex and uncontrolled test
scenarios, the proposed method may need to be trained on
more similar scenarios to improve generalization capability.

VII. CONCLUSION

We have introduced a multi-view training framework for 3D
human mesh model estimation from asynchronous multi-view
gait sequences. Using this framework, we generate the
OUMVLP-Mesh database based upon an existing multi-view
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gait database, i.e., OU-MVLP. The proposed OUMVLP-Mesh
provides more informative human models (e.g., 3D meshes,
3D/2D joint locations) than current databases. Experimental
results show that the proposed framework is able to estimate
human mesh models more accurately than the methods com-
pared in this study, and the estimated human mesh models are
of sufficient quality to improve the recognition performance
of a baseline model-based gait recognition approach. Current
model-based gait recognition approaches are still mainly
designed for 2D poses. With the proposed 3D pose and
the more complex 3D mesh, we believe that more suitable
networks are worth exploring to achieve better recognition
performance. Additionally, our current method cannot esti-
mate children’s shapes accurately because of the limitations
of the SMPL model, and so we will attempt to improve it by
introducing the children’s shape space.
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