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Abstract—Face detection is to search all the possible regions
for faces in images and locate the faces if there are any. Many
applications including face recognition, facial expression recogni-
tion, face tracking and head-pose estimation assume that both the
location and the size of faces are known in the image. In recent
decades, researchers have created many typical and efficient face
detectors from the Viola-Jones face detector to current CNN-
based ones. However, with the tremendous increase in images
and videos with variations in face scale, appearance, expression,
occlusion and pose, traditional face detectors are challenged to
detect various “in the wild” faces. The emergence of deep learning
techniques brought remarkable breakthroughs to face detection
along with the price of a considerable increase in computa-
tion. This paper introduces representative deep learning-based
methods and presents a deep and thorough analysis in terms
of accuracy and efficiency. We further compare and discuss the
popular and challenging datasets and their evaluation metrics. A
comprehensive comparison of several successful deep learning-
based face detectors is conducted to uncover their efficiency using
two metrics: FLOPs and latency. The paper can guide to choose
appropriate face detectors for different applications and also to
develop more efficient and accurate detectors.

Index Terms—Face detection, computational performance,
survey.

I. INTRODUCTION

FACE detection, one of the most popular, fundamental and
practical tasks in computer vision, is to detect human

faces from images and return the spatial locations of faces
via bounding boxes [1], as shown in Fig. 1. Starting with the
Viola-Jones (V-J) detector [2] in 2001, the solution to face
detection has been significantly improved from handcrafting
features such as Haar-like features [2], to end-to-end convo-
lutional neural networks (CNNs) for better feature extraction.
Face detection is the first step for many face-related applica-
tions, such as face recognition, face tracking, facial expression
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Fig. 1. Examples of face detection from WIDER Face [3]. A simple case
(a) where there is only one clear frontal face. Common variations are in scale
(b), pose (c), occlusion (d), expression (e), illumination (f). Red boxes are
faces in extreme conditions.

recognition, facial landmarks detection and so on. Those tech-
nologies can achieve an overall better performance by faster
and more accurate face detectors.

Before deep learning was employed for face detection, the
cascaded AdaBoost classifier was the dominant method for
face detection. Some algorithms were specifically designed
for face detection by using some kinds of features, such as
Haar-like features [2], SURF [4] and Multi-Block LBP [5]. In
recent years, deep learning has been proven to be more power-
ful for feature extraction and helps to achieve very impressive
accuracy on object detection. Numerous object detection deep
models have been designed for generic object detection which
is much more challenging than face detection. Therefore, many
models from face detection are adopted from or inspired by
models for generic object detection. We can train a deep
face detector directly using Faster R-CNN [6], YOLO [7] or
SSD [8], and much better detection results can be obtained
than traditional cascaded classifiers. Some similar works can
be found, such as Face R-CNN [9] and Face R-FCN [10]
which are modified and improved based on Faster R-CNN,
R-FCN [11] respectively. Additionally, some other detectors,
such as MTCNN [12], HR [13], SSH [14], are originally
designed for face detection. Some techniques in generic object
detection have also been adapted into face detection, such as
the multi-scale mechanism from SSD, the feature enhancement
from FPN [15], and the focal loss from RetineNet [16] accord-
ing to the special pattern of human faces for face detection.
These techniques lead to the proposal of various outstanding
face detectors such as S3FD [17], PyramidBox [18], SRN [19],
DSFD [20], and RetinaFace [21].
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Fig. 2. The best AP on the easy, medium and hard subsets of WIDER
Face [3] test set in the recent years.

TABLE I
DIFFERENT MODELS ADOPT DIFFERENT RANGES AND DIFFERENT

PRESETS OF TEST SCALES. ‘0.25X’ DENOTES SHRINKING THE WIDTH

AND HEIGHT BY 0.25, AND OTHERS FOLLOW. SPECIFICALLY, ‘SX’ AND

‘EX’ ARE SHRINKING AND ENLARGING IMAGES ACCORDINGLY, WHILE

‘FX’ IS ENLARGING THE IMAGE INTO A FIXED SIZE. TEST IMAGE SIZES

STAND FOR RE-SCALING THE SMALLER SIDE OF THE IMAGE TO THE

GIVEN VALUE, AND THE OTHER SIDE FOLLOWS THE SAME RATIO

Face detection is sometimes considered as a solved
problem because the average precision (AP) on many face
detection datasets such as PASCAL Face [22], AFW [23] and
FDDB [24], has reached or exceeded 0.990 since 2017.1 On
the most popular and challenging WIDER Face dataset [3],
the AP has reached 0.921 even on the hard test set.

But face detection is not a solved problem. If we observe
the best results of each year in Fig. 2, we can find the AP is
still improving but slowly in recent 3 years. Therefore, with
such near-to-saturated performance improvement, one ques-
tion would be asked: If a tiny improvement is achieved by
a much heavier deep model with great computational cost,
will we consider the model is a good one? If we look slightly
deeper into the implementation of some recent models, we can
find that multiple scaling is heavily used in the evalutions on
WIDERFACE benchmark. If we resize the input image with
many different scales, such as 1/4, 1/2, 1, 3/2, 2, 4 and more,
and feed all those resized images into a detector, the combined
results will have a better AP, which in another word is achieved
by the assembling and suppressing (NMS) the multi-scale out-
puts, and is independent to the backbone of the underlying
face detector. We listed the scales used by some models in
Table I. None of them tested an image using only one scale.
It is a trend that more scales are used recently. There is a
risk that multiple scales with a heavy computational cost are

1State-of-the-art AP can be found in the official result pages of the datasets,
and https://paperswithcode.com/task/face-detection which also collects results
from published papers.

employed, and outstanding accuracy is claimed, which over-
shadows the performance gain the by the detector itself and
the computational cost by such a multi-scale operation is not
known. It is also worth noting that most benchmarks do not
evaluate the computational cost. Most often, it is difficult for
users to know by which the improvement is achieved, a better
backbone technology or the follow-up computational-intensive
multi-scale ensemble strategy?

We do expect a perfect face detector which is robust and
accurate even for some faces in extremely difficult condi-
tions, while being extremely fast with low computational cost.
However, we all know the no free lunch theorem. Therefore,
in this survey, we investigate the recent deep learning based
face detection methods and evaluate them in terms of accu-
racy and computational cost. The main contributions are as
follows.

1) Different from previous face detection sur-
veys [28], [29], [30], [31], [32] in which the content
is mainly built on reviewing traditional methods, our
survey focuses on deep learning-based face detectors.
We have noted the existence of surveys [33], [34], [35]
on deep learning; however, they focus on generic object
detection, not specifically for face detection. In this
paper, we provide a clear view of the path by which
deep learning based face detection has evolved in
recently years.

2) Accuracy and efficiency are both studied and analyzed
in the paper. In addition to detailed introductions to deep
learning based face detectors, some experiments are car-
ried out to analyze different deep face detectors using
different metrics. Some tricks to improve accuracy are
also introduced. So the paper can help readers under-
stand better how good accuracy and efficiency can be
achieved.

3) With a focus on the efficiency of face detectors, com-
prehensive experiments are carried out to evaluate the
accuracy and particularly efficiency of different face
detectors. In addition to latency, we also propose an
accurate metric for the computational cost of a CNN
model. It is FLoating point OPerations (FLOPs) under
certain rules. FLOPs is more neutral than latency which
heavily depends on hardware and deep network struc-
ture. The code to compute the FLOPs has been released
in https://github.com/fengyuentau/PyTorch-FLOPs.git.

The rest of the paper is organized as follows. Some key
challenges in face detection are summarized in Section II. In
Section III, we provide a roadmap to describe the development
of deep learning-based face detection with detailed reviews.
In Section IV, we review several fundamental subproblems
including backbones, context modeling, the handling of face
scale variations and proposal generation. Popular datasets for
face detection and state-of-the-art performances are presented
in Section V. Section VI reveals the relation between com-
putational cost and AP by conducting extensive experiments
on several open-source one-stage face detectors. In addi-
tion, speed-focusing face detectors collected from Github are
reviewed in Section VII. Finally, we conclude the paper
with a discussion on future challenges in face detection in
Section VIII.
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II. MAIN CHALLENGES

Most face-related applications need clear frontal faces.
Detecting a clear frontal face is a relatively easy task. Some
may argue that some faces are useless for the next step such
as face recognition if the faces are tiny and with occlusion;
but it is not. Effectively detecting any faces in extremely dif-
ficult conditions can greatly improve the perception capability
of a computer but is still a challenging task. If a face is
detected and evaluated as a bad quality sample, the subject
can be suggested to be closer to the camera, or the camera can
adjust automatically for a better image. Face detection is still
a problem far from to be well solved. Many challenges do still
exist.

Accuracy-related challenges are from face appearance and
imaging conditions. In real-world scenes, there are many dif-
ferent kinds of face appearance, varying in different skin
color, makeup, expression, wearing glasses or a mask and
so on. In unconstrained environments, imaging a face can be
impacted by various lighting, viewing angles and distances,
backgrounds, and weather conditions. The face images will
vary in illumination, pose, scale, occlusion, blur and distor-
tion. The face samples in difficult conditions can be found
in Fig. 1. There have been several datasets and competitions
featuring face detection in unconstrained conditions, such as
FDDB [24], WIDER Face [3] and WIDER Face Challenge
2019.2 More than 45% of faces are smaller than 20× 20 pix-
els in WIDER. In most face-related applications, we seldom
need small faces whose sizes are less than 20. However, if
we can detect small or even tiny faces, we can resize the
original large images to smaller ones and send them to a
face detector. Then, the computational cost can be greatly
reduced since we only need to detect faces in smaller images.
Therefore, a better accuracy sometimes also means a higher
efficiency.

Masked face detection is becoming more important since
people are wearing and will continuously wear masks to
prevent COVID-19 in the next few years. Face-related applica-
tions did not consider this situation in the past. Wearing masks
will reduce the detection accuracy obviously. Some masks are
even printed with some logos or cartoon figures. All those can
disrupt face detection. If a face has a mask and sunglasses
at the same time, face detection will be even more difficult.
Therefore, in the next few years, masked face detection should
be explored and studied.

Efficiency-related challenges are brought by the great
demands on edge devices. Since the increasing demands on
edge devices, such as smartphones and intelligent CCTV
cameras, massive amount of data is generated per day. We
frequently take selfies, photos of others, long video meetings,
etc. Modern CCTV cameras record 1080P videos constantly
at 30 FPS. These result in a great demand for facial data anal-
ysis, and the data is considerable. In contrast, edge devices
have limited computational capability, storage and battery life
to run advanced deep learning-based algorithms. In this case,
efficient face detection is essential for face applications on
edge devices.

2https://competitions.codalab.org/competitions/20146

III. FACE DETECTION FRAMEWORKS

Before deep learning was used for face detection, cascaded
AdaBoost-based classifiers were the most popular classifiers
for face detection. The features used in AdaBoost were
designed specifically for faces, not generic objects. For exam-
ple, the Haar-like [2] feature can describe facial patterns of
eyes, mouth and others. In recent years, facial features can
be automatically learnt from data via deep learning tech-
niques. Therefore, many deep learning-based face detectors
are inspired by modern network architectures designed from
object detection. Following the popular manner of organizing
object detection frameworks, we organize deep learning-based
face detectors into three main categories.

• Multi-stage face detection frameworks. It is inspired by
cascaded classifiers in face detection and is an early
exploration of applying deep learning techniques to face
detection.

• Two-stage face detection frameworks. The first stage gen-
erates some proposals, and the proposals are confirmed
in the second stage. The efficiency should be better than
multi-stage ones.

• One-stage face detection frameworks. Feature extraction
and proposal generation are performed in a single unified
network. These frameworks can be further categorized
into anchor-based methods and anchor-free methods.

To show how the deep learning-based face detection
evolves, milestone face detectors and some important object
detectors are plotted in Fig. 3. The two-stage and multi-stage
face detectors are on the top branch, and the single-stage ones
are on the bottom branch. The generic object detectors are in
the middle branch and in blue. A More detailed introduction
of those detectors is provided in the following subsections.

A. Multi-Stage and Two-Stage Face Detectors

In the early era when deep learning techniques entered face
detection, face detectors were designed to have multiple stages,
also known as the cascade structure which has been widely
used in most early face detectors. With the remarkable break-
through brought by Faster R-CNN [6], some researchers turned
to improve Faster R-CNN based on face data.

In the cascade structure, features are usually extracted and
refined one or multiple times before being fed into clas-
sifiers and regressors, so as to reject most of the sliding
windows to improve efficiency. As shown on the result page3

of FDDB [24], Li et al. made an early attempt and proposed
their CNN-based face detector, named CascadedCNN [36].
CascadeCNN consists of 3 stages of CNNs, as shown in Fig. 4.
Sliding windows are first resized to 12 × 12 pixels and fed into
the shallow 12-net to reduce candidate windows by 90%. The
remaining windows are then processed by the 12-calibration-
net to refine the size for face localization. Retained windows
are then resized to 24 × 24 as the input for the combina-
tion of 24-net and 24-calibration-net, and so on for the next
CNNs combination. CascadeCNN achieved state-of-the-art
performance on AFW [23] and FDDB, while reaching a

3http://vis-www.cs.umass.edu/fddb/results.html
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Fig. 3. Timeline of milestone face detectors [10], [12], [13], [14], [17], [18], [19], [20], [21], [25], [36], [37], [38], [39], [40], [41], [42], and remarkable works
from object recognition [43], [44] and object detection [6], [8], [11], [15], [16], [45] (marked as blue, attached to the middle branch). Since the proposal of
AlexNet [46], various face detection works inspired by deep learning techniques from object recognition and object detection were published in the 2012-post
deep learning-based face detection era. The top branch is two/multi-stage face detectors, while the bottom branch is one-stage detectors, which has become
the most popular network design adopted by researchers.

Fig. 4. Diagrams of milestone multi/two-stage face detectors [12], [36], [38]. Others share similar architectures as the three.

compelling speed of 14 FPS for the typical 640 × 480 VGA
images on a 2.0 GHz CPU. Another attempt at cascaded CNNs
for face detection is the well-known MTCNN [12] proposed

by Zhang et al. MTCNN is composed of 3 subnetworks, which
are P-Net for obtaining candidate facial windows, R-Net for
rejecting false candidates and refining remaining candidates,
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O-Net for producing the final output with both face bound-
ing boxes and landmarks in the multi-task manner. P-Net is
a shallow fully convolutional network with 6 CONV layers,
which can take images of any sizes as input. MTCNN was
a great success with large and state-of-the-art advantages on
WIDER Face [3], FDDB and AFW, while reaching 16 fps on
a 2.6 GHz CPU.

In the object-detection-fashion two-stage network archi-
tectures, a region proposal network (RPN) [6] is required
to generate object proposals. RPN can be considered as a
straightforward classification CNN, which generates proposals
based on the preset anchors on CNN features, filters out non
objects and refines object proposals. However, as the CNNs
shrink the image to extract features, the corresponding output
features for tiny faces can be less than 1 pixel, making it insuf-
ficient to encode rich information. To address this problem,
Zhu et al. proposed CMS-RCNN [38], which is equiped with
a contextual multi-scale design for both RPN and final detec-
tion. As shown in Fig. 4, multi-scale features from conv3,
conv4 and conv5 are concatenated by shrinking them into the
same shape with conv5 as the input for RPN, so as to collect
more information for tiny faces and also improve the localiza-
tion capability from low-level layers. CMS-RCNN achieved
an AP of 0.899, 0.874, 0.624 on the easy, medium and hard
sets of the WIDER Face dataset respectively, outperforming
MTCNN by 0.051(Easy), 0.049(Medium) and 0.016(Hard).

In addition to CMS-RCNN, there are others making
improvements based on Faster R-CNN. Bootstrapping Faster
R-CNN [47] builds a training dataset by iteratively adding
false positives from a model’s output to optimize Faster R-
CNN. Face R-CNN [9] adopts the same architecture as Faster
R-CNN with center loss, online hard example mining and
multi-scale training strategy. FDNet [48] exploits multi-scale
training and testing and a vote-based NMS strategy on top
of Faster R-CNN with a light-head design. Position-sensitive
average pooling was proposed in Face R-FCN [10] to assign
different weights to different parts of the face based on
R-FCN [11]. With the improvements considering the spe-
cial patterns of face data, these methods achieved better
performance than their original version on the same WIDER
Face dataset.

Whether it is the cascaded multi-stage or two-stage network
design, its computation is heavily dependent on the number of
faces in the image, the increase in which also increases pro-
posals passed to the next stage in the interior of the network.
Notably, the multi-scale test metric, which usually enlarges
the images multiple times to make tiny faces detectable, can
dramatically increase the computational cost on this basis.
Considering that the number of faces in the image from the
actual scene varies from one face in a selfie to many faces in
a large group photo, we consider the robustness of cascade or
two-stage networks in terms of runtime.

B. One-Stage Face Detectors

In real-time face-related applications, face detection must
be performed in real time. If the system is deployed on
edge devices, the computing power is low. In those kinds of

situations, one-stage face detectors are more suitable since
their process time is stable regardless of how many faces
there are in images. Different from the multi/two-stage detec-
tors, the one-stage face detectors perform feature extraction,
proposal generation and face detection in a single and uni-
fied convolutional neural network, whose runtime efficiency
is independent of the number of faces. Dense anchors are
designed to replace proposals in two-stage detectors [14].
Starting from CornerNet [45], an increasing number of works
use the anchor-free mechanism in their frameworks.

HR [13] proposed by Hu and Ramanan is one of the first
to perform anchor-based face detection in a unified convolu-
tional neural network. The backbone of HR is ResNet-101 [44]
with layers truncated after conv4_5. Early feature fusion
on layers conv3_4 and conv4_5 is performed to encode
context since high-resolution features are beneficial for small
face detection. Through experiments on faces clustered into
25 scales, 25 anchors are defined for 2X, 1X and .5X inputs,
to achieve the best performance of three input scales. HR out-
performed CMS-RCNN [38] by 0.199 on the WIDER Face
validation hard set, and more importantly, the run-time of HR
is independent of the number of faces in the image, while
CMS-RCNN’s linearly scale up with the number of faces.

Different from HR, SSH [14] attempts to detect faces at
different scales on different levels of features, as shown in
Fig. 5. Taking VGG-16 [43] as the backbone, SSH detects
faces on the enhanced features from conv4_3, conv5_3
and pool5 for small, medium and large faces respectively.
SSH introduces a module (SSH module) that greatly enriches
receptive fields to better model the context of faces. The SSH
module is widely adopted by later works [18], [20], [21], [40],
which turns out to be efficient for performance boosting.

Since S3FD [17], many one-stage face detectors [18], [19],
[20], [21], [25], [40], [41], [42] fully utilize multi-scale fea-
tures attempting to achieve scale-invariant face detection.
S3FD extends the headless VGG-16 [43] with more con-
volutional layers, whose stride gradually doubles from 4 to
128 pixels, so as to cover a larger range of face scales.
PyramidBox [18] adopts the same backbone as S3FD, inte-
grates FPN [15] to fuse adjacent-level features for semantic
enhancement, and improves the SSH module with wider and
deeper convolutional layers inspired by Inception-ResNet [49]
and DSSD [50]. DSFD [20] also inherits the backbone from
S3FD, but enhances the multi-scale features by the Feature
Enhance Module (FEM), so that detection can be made on
two shots - one from non-enhanced multi-scale features, and
the other from the enhanced features. The same scale fea-
tures from the second shot have larger RFs than those from
the first shot, but also have smaller RFs than the next-level
features from the first shot, indicating that the face scales
are split more refined across these multi-scale detection lay-
ers. Similarly, SRN [19] has a dual-shot networks but is
trained differently on multi-scale features: low-level features
need two-step classification to refine, since they have higher
resolution and contribute the vast majority of anchors and
also negative samples; additionally, high-level features have
lower resolution which is worth two-step regression using the
Cascade R-CNN [51] to have more accurate bounding boxes.
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Fig. 5. Diagrams of milestone one-stage face detectors [13], [14], [17], [18], [20], [25].

There are also some significant anchor-based methods
using the FPN [15] as the backbone. RetinaFace adds
one more pyramid layer on top of the FPN and replaces
CONV layers with the deformable convolution network
(DCN) [52], [53] within FPN’s lateral connections and con-
text module. RetinaFace models a face in three ways: a 3D
mesh (1k points), a 5-landmark mask (5 points), and a bound-
ing box (2 points). Cascade regression [51] is employed with
multi-task loss in RetinaFace to achieve better localization.
Instead of using the handcrafting structures, Liu et al. proposed
BFBox, which explores face-appropriate FPN architectures
using the successful Neural Architecture Search (NAS). Liu
decouples FPN as the backbone and FPN connections, the
former of which can be replaced by VGG [43], ResNet [44]
or the backbone from NAS, and the latter of which can be
top-down, bottom-up or cross-level fusion from NAS.

Since the proposal of CornerNet [45] back in 2018, which
directly predicts the top-left and bottom-right points of bound-
ing boxes instead of relying on prior anchors, many explo-
rations [54], [55], [56], [57] have been made to remodel object
detection more semantically using the anchor-free design. CSP
models a face bounding box as a center point and the scale of
the box as shown in Fig. 5. CSP takes multi-scale features
from the modified ResNet-50 [44], and concatenates them
to take the advantage of rich global and local information for
detection heads using transpose convolution layers. In particu-
lar, the anchor-free detection head can also be an enhancement
module for anchor-based heads. ProgressFace [42] appends an
anchor-free module to provide more positive anchors for the
highest resolution feature maps in FPN, so as to reduce the
imbalance of positive and negative samples for small faces.

One-stage frameworks are popular on face detection in
recent years for the following three reasons. (a) The run-
time of one-stage face detectors is independent of the number
of faces in an image by design. Therefore, it enhances the
robustness of runtime efficiency. (b) It is computationally

efficient and straightforward for one-stage detectors to reach
near scale invariance by contextual modeling and multi-scale
feature sampling. (c) Face detection is a relatively less complex
task than general object detection. This means that innova-
tions and advanced network designs in object detection can be
quickly adjusted to face detection by considering the special
pattern of faces.

IV. FACE REPRESENTATION

The key idea of face detection has never changed whether
it is in the traditional era or deep learning era. It finds the
common patterns of all faces in the dataset. In the traditional
era, many of handcrafted features, such as SIFT [58], Haar [2]
and HOG [59], are employed to extract local features from the
image, which are aggregated by approaches such as AdaBoost
for the higher-level representation of faces.

Different from traditional methods, which require rich prior
knowledge to design handcrafted features, deep convolutional
neural networks can directly learn even more powerful fea-
tures from face images. A deep learning-based face detection
model can be considered as two parts: a CNN backbone and
several detection branches. Starting from some popular CNN
backbones, the feature extraction methods that can handle face
scale invariance are introduced as well as several strategies to
generate proposals for face detection.

A. Popular CNN Backbones

In most deep face detectors there is a CNN backbone
for feature extraction. Some popular backbone networks are
listed in Table II. They are VGG-16 from the VGGNet [43]
series, ResNet-50/101/152 from the ResNet [44] series, and
MobileNet [60]. The models are powerful and can achieve
good accuracy on face detection, but they are a little heavy.

Early attempts on deep learning-based face detection
were cascaded structures that did not take the above CNN
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TABLE II
CNN BACKBONES COMMONLY USED BY MODERN DEEP

LEARNING-BASED FACE DETECTORS. FC LAYERS OF THESE CNNS

ARE IGNORED WHEN CALCULATING ‘#CONV LAYERS’, ‘#PARAMS’
AND ‘FLOPS’. THE INPUT SIZE FOR CALCULATING ‘FLOPS’ IS

224 × 224. THE CALCULATION OF FLOPS IS DISCUSSED IN

SECTION VI. ‘TOP-1 ERROR’ REFERS TO THE PERFORMANCE

ON THE IMANGENET [61] VALIDATION SET. NOTE THAT 9 OF

THE 20 CONV LAYERS IN MOBILENET [60] ARE DEPTH-WISE

Fig. 6. The distribution of face scales on WIDER Face [3] dataset.

architectures. Even some simple structured CNN is much
more computational heavy than AdaBoost, cascaded CNN
is computational heavy also. With breakthroughs in object
detection, some of the techniques have been borrowed and
applied on face detection. VGG-16 [43] has 13 CONV lay-
ers, which is the first choice for the baseline backbones
for many face detectors, such as SSH [14], S3FD [17] and
PyramidBox [18]. Performance improvements can easily be
obtained by simply swapping the backbone from VGG-16 to
ResNet-50/101/152 [44], as shown in [20]. Since state of the
arts have achieved AP >0.900 even on WIDER Face hard
sets, it is common for recent face detectors [20], [42], [62]
to equipe with a deeper and wider backbone for higher AP,
such as the ResNet-152 and ResNets with FPN [15] connec-
tions. Liu et al. employs Neural Architecture Search (NAS) to
search face-appropriate backbones and FPN connections.

One of the most inexpensive choices is ResNet-50 which is
listed in Table II, which has less parameters and less FLOPs,
while achieving very similar performance compared to deeper
nets. Another choice for state-of-the-art face detectors to reach
real-time speed is to change the backbone to MobileNet [60],
which has similar performance to VGG-16 but one order of
magnitude less in ‘#Params’ and FLOPs.

B. Towards Face Scale Invariance

One of the major challenges for face detection is the large
span at face scales. As statistics shown in Fig. 6, there are
157,025 and 39,123 face bounding boxes in the train and val-
idation set respectively, both of which have more than 45%

Fig. 7. A face in different scales. Could you tell the images of sizes 4 × 4,
8 × 8 contain a face?

of face bounding boxes are 16 × 16 and smaller, and a non-
negligible 1% are 256 × 256 and larger. We choose these
scales to perform clustering to match the strides of feature
maps selected for detection; for example there is only 1 pixel
in the feature maps of stride 4 for encoding a face of size equal
to or less than 4 × 4. We also present the visual differences
among scales in Fig. 7. It is challenging even for humans to
tell whether the image of size 16 × 16 contains a face. In
the following, we describe the mechanism of face detectors
towards face scale invariance even with tiny faces.

Most of the modern face detectors are anchor-based.
Anchors are predefined boxes of different scales and aspect
ratios attached to each pixel in the feature maps, which serve
as the proposal to match with the ground truth faces. More
details about anchors are provided in Section IV-C. As [17]
noted, since the predefined anchor scales are discrete while
the face scales in the wild change continuously, outer faces
whose scales are distributed away from anchor scales can-
not match enough anchors. It will result in a low recall rate.
A simple solution for a trained face detector is to perform
multi-scale test on an image pyramid, which is built by pro-
gressively resizing the original image. It is equal to re-scale
faces and hopefully brings outer faces back into the detectable
range of scales. This solution does not require retraining the
detector, but it may come with a sharp increase in redundant
computation, since there is no certain answer to how deep the
pyramid we should build to match with the certain extent of
scale invariance of a trained CNN.

Another better solution to face scale invariance is to make
full use of the feature maps produced in CNNs. One can easily
observe that the layers of standard CNN backbones gradually
decrease in size. The subsampling of these layers naturally
builds up a pyramid with different strides and receptive fields
(RFs). It produces multi-scale feature maps. In general, high-
level feature maps produced by later layers with large RFs
are encoded with strong semantic information, and lead to
its robustness to variations such as illumination, rotation and
occlusion. Low-level feature maps produced by early layers
with small RFs are less sensitive to semantics, but have high
resolution and rich details, which are beneficial for localiza-
tion. To take both the advantages, a number of methods are
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proposed, which can be categorized into modeling context,
detecting on a feature pyramid, and predicting face scales.

Modeling context: Additional context is essential for detect-
ing faces, especially for detecting small ones. HR [13] shows
that context modeling by fusing feature maps of different
scales can dramatically improve the accuracy of detecting
small faces. Following a similar fusion strategy as HR, [27]
detects on three different dilated CONV branches, aiming
to enlarge RF without too much increase in computation.
Reference [38] downsamples feature maps of strides 4 and
8 to concatenate with those of stride 16, so as to improve
the capability of the RPN to produce proposals for faces
at different scales. SSH [14] exploits an approach similar
to Inception [63], which concatenates the output from three
CONV branches that have 3 × 3, 5 × 5 and 7 × 7 filters
respectively. PyramidBox [18] first adopts an FPN [15] mod-
ule to build up context and is further enhanced by deeper
and wider SSH modules. Reference [20] improves the SSH
module by replacing CONV layers with dilated CONV layers.
Reference [25] upsamples feature maps of strides 8, 16 to
concatenate with those of stride 4, which is fed to an FCN to
produce center, scale and offset heatmaps. The fusion of fea-
ture maps encodes rich semantics from high-level feature maps
with rich geometric information from low-level feature maps,
based on which the detectors can improve their capability of
localization and classification towards face scale invariance.
Meanwhile, the fusion of feature maps also introduces more
layers, such as CONV and POOL to adjust scales and channels,
which creates additional computational overhead.

Detecting on a Feature Pyramid: Inspired by SSD [8],
a majority of recent approaches, such as [14], [17], [18],
[19], [20], [21], detect at multiple feature maps of different
scales respectively, and combine detection results. It is con-
sidered to be an effective method for weighing between speed
and accuracy. SSD [8] puts default boxes on each pixel of
the feature maps from 6 detection layers that have strides
of 8, 16, 32, 64 and 128. Sharing a similar CNN back-
bone with SSD, [17], [18] detect on a wider range of layers,
which have strides gradually doubling from 4 to 128 pixels.
SRN [19] and DSFD [20] introduce the two-stream mech-
anism, which detects on both the detection layers from the
backbone and extra layers applied on the detection layers for
feature enhancement. Different from subsampling on more lay-
ers, [14], [21], [26] detects only at the last three level feature
maps, which are enhanced by their context modeling meth-
ods. By detecting on a feature pyramid, detection layers are
implicitly trained to be sensitive to different scales, while it
also leads to an increase in model size and redundant com-
putation, since the dense sampling may cause some duplicate
results from adjacent-level layers.

Predicting Face Scales: To eliminate the redundancy from
pyramids, several approaches [64], [65], [66] predict the face
scales before making a detection. Reference [64] first gener-
ates a global face scale histogram from the input image by the
Scale Proposal Network (SPN), which is trained with image-
level ground truth histogram vectors and without face location
information. A sparse image pyramid is built according to the
output histogram, so as to have faces rescaled to the detectable

range of the later single-scale RPN. Similarly, [65] detects on a
feature pyramid without unnecessary scales, which is built by
using the scale histogram to a sequential ResNet [44] blocks
that can downsample feature maps recursively. Reference [66]
predicts not only face scales but also face locations by a shal-
low ResNet18 [44] with scale attention and spatial attention
attached, named S2AP. S2AP generates a 60-channel feature
map, meaning face scales are mapped to 60 bins, each of which
is a spatial heatmap that has high response to its responsible
face scale. With the 60-channel feature maps, it is possible to
decrease the unnecessary computation with the low-response
channels and the low-response spatial areas by a masked
convolution.

C. Proposal Generation

Faces in the wild can be of any possible locations and
scales in the image. The general pipeline for most of the
early successful face detectors, is to first generate propos-
als in the sliding-window manner, extract features from the
windows using handcrafted descriptors [2], [23], [67], [68] or
CNNs [12], [36], and finally apply face classifiers. However,
inspired by RPN [6] and SSD [8], modern anchor-based face
detectors generate proposals by applying k anchor boxes on
each pixel of the extracted CNN features. Specifically, 3 scales
and 3 aspect ratios are used in Faster R-CNN [6], yielding
k = 9 anchors on each pixel of the feature maps. Moreover, the
detection layer takes the same feature maps as input, yielding
4k outputs encoding the coordinates for k anchor boxes from
the regressor and 2k outputs for face scores from the classifier.

Considering that most of the face boxes are near square,
modern face detectors tend to set the aspect ratio of anchors
to 1, while the scales depends. HR [13] defines 25 scales
so as to match the cluster results on the WIDER Face [3]
training set. S3FD assigns the anchor scale of 4 times the
stride of the current layer to keep anchor sizes smaller than
effective receptive fields [69] and ensure the same density of
different scale anchors on the image. PyramidBox [18] intro-
duces PyramidAnchors, which generates a group of anchors
with larger regions corresponding to a face, such as head
and body boxes, to have more context to help detect faces.
In [70], extra shifted anchors are added to increase the anchor
sample density, and significantly increased the average IoU
between anchors and small faces. GroupSampling [71] assigns
anchors of different scales only on the bottom pyramid layer
of FPN [15], but it groups all training samples according to the
anchor scales, and randomly samples from groups to ensure
the positive and negative sample ratios between groups are the
same.

V. DATASETS AND EVALUATION

To evaluate different face detection algorithms, datasets are
needed. There have been several public datasets, which are
FDDB [24], AFW [23], PASCAL Face [22], MALF [74],
WIDER Face [3], MAFA [75], 4K-Face [79], UFDD [80] and
DARK Face [81]. These datasets all consist of colored images
from real-life scenes. Different datasets may utilize different
evaluation criterion. In Section V-A, we present overviews of



FENG et al.: DETECT FACES EFFICIENTLY: A SURVEY AND EVALUATIONS 9

TABLE III
COMPARISON OF CURRENTLY ACCESSIBLE FACE DETECTION DATASETS, LISTED IN THE ORDER OF PUBLICATION OR STARTED YEAR. NOTE THAT

UCCS [72] AND WILDEST FACE [73] ARE NOT INCLUDED BECAUSE THEIR DATA IS NOT CURRENTLY AVAILABLE. ‘BLUR’, ‘APP.’, ‘ILL.’,
‘OCC.’, ‘POSE’ IN THE ‘VARIATIONS’ COLUMNS DENOTE BLUR, APPEARANCE, ILLUMINATION, OCCLUSION AND POSE RESPECTIVELY

different datasets covering some statistics such as the number
of images and faces, the source of images, the rules of label-
ing and challenges brought by the dataset. A detailed analysis
of the face detection evaluation criterion is also included in
Section V-B. Detection results on the datasets are provided
and analyzed in Section V-C.

A. Datasets

Some essential statistics of currently accessible datasets are
summarized in Table III including the total number of images
and faces, faces per image, how the data was splitted different
sets, etc. More details are introduced in the following part.

FDDB4 [24] is short for Face Detection Dataset and
Benchmark, which has been one of the most popular datasets
for face detector evaluation since its publication in 2010. The
images of FDDB were collected from Yahoo! News, 2,845 of
which were selected after filtering out duplicate data. Faces
were excluded with these factors, (a) height or width less than
20 pixels, (b) the two eyes being non-visible, (c) the angle
between the nose and the ray from the camera to the head
being less than 90 degrees, (d) failure estimation on position,
size or orientation of faces by a human. This led to 5,171
faces left, which were annotated by drawing elliptical face
regions covering from the forehead to the chin vertically, and
the left cheek to the right cheek horizontally. FDDB helped
advance uncontrained face detection in terms of the robustness
of expression, pose, scale and occlusion. However, its images
can be heavily biased toward celebrity faces since they were
collected from the news. It is also worth noting that although
the elliptical style of the face label adopted by FDDB is closer
to human cognition, it is not adopted by later datasets and
deep learning-based face detectors, which favor the bound-
ing box style with a relatively easier method for defining
positive/negative samples by calculating the Intersection over
Union (IoU).

Zhu and Ramanan built an annotated faces in-the-wild
(AFW)5 dataset [23] by randomly sampling images with at
least one large face from Flickr. 468 faces were annotated

4http://vis-www.cs.umass.edu/fddb/
5http://www.cs.cmu.edu/ deva/papers/face/index.html

from 205 images, each of which is labeled with a bounding
box and 6 landmarks. PASCAL Face6 [22] was constructed
by selecting 851 images from the PASCAL VOC [1] test set
with 1,335 faces annotated. Since the two datasets were built
to help evaluate the face detectors proposed by [23] and [1],
they only contain a few hundred images, resulting in limited
variations in face appearance and background.

Yang et al. created the Multi-Attribute Labelled Faces [74]
(MALF)7 dataset for fine-grained evaluation on face detec-
tion in the wild. The MALF dataset contains 5,250 images
from Flickr and Baidu Search with 11,931 faces labeled,
which is an evidently larger dataset than FDDB, AFW and
PASCAL Face. The faces in MALF were annotated by draw-
ing axis-aligned square bounding boxes, attempting to contain
a complete face with the nose in the center of the bounding
box. This may introduce noise for training face detectors since
a square bounding box containing a 90-degree side faces can
have over half of its content being cluttered background. In
addition to labeling faces, some attributes were also annotated,
such as gender, pose and occlusion.

In 2016, WIDER Face8 [3] was released, which has been
the most popular and widely used face detection bench-
mark. The images in WIDER Face were collected from
popular search engines for predefined event categories fol-
lowing LSCOM [82] and examined manually to filter out
similar images and images without faces, resulting in 32,203
images in total for 61 event categories, which were split
into 3 subsets for training, validation testing set. To keep
large variations in scale, occlusion and pose, the annotation
was performed following two main policies: (a) a bound-
ing box should tightly contain the forehead, chin and cheek
and is drew for each recognizable face and (b) an estimated
bounding box should be drawn for an occluded face, produc-
ing 393,703 annotated faces in total. The number of faces
per image reaches 12.2 and 50% of the faces are of height
between 10-50 pixels. WIDER Face outnumbers other datasets
in Table III by a large margin. It means WIDER Face pays

6http://host.robots.ox.ac.uk/pascal/VOC/
7http://www.cbsr.ia.ac.cn/faceevaluation/
8http://shuoyang1213.me/WIDERFACE/
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never-seen-before attention to small faces detection by pro-
viding a large number of images with the densest small faces
for training, validation and testing. Furthermore, the authors
of WIDER Face defined ‘easy’, ‘medium’ and ‘hard’ levels
for the validation and test sets based on the detection rate of
EdgeBox [83]. It offers a much more detailed and fine-grained
evaluation for face detectors. Hence, the WIDER Face dataset
greatly advances the researches of CNN based face detec-
tors, especially the multi-scale CNN designs and utilization of
context.

The last four datasets listed in Table III are less generic than
those reviewed above, and focus on face detection in speci-
fied and different aspects. The MAFA9 [75] dataset focuses
on masked face detection, containing 30,811 images with
39,485 masked faces labeled. In addition to the location of
eyes and masks, the orientation of the face, the occlusion
degree and the mask type were also annotated for each face.
The IJB series10 [76], [77], [78] were collected for multiple
tasks, including face detection, verification, identification, and
identity clustering. The IJB-C is the combination of IJB-A
and IJB-B with some new face data. 4K-Face11 [79] was
built for the evaluation of large face detection, and contains
5,102 4K-resolution images with 35,217 large faces (>512 pix-
els). UFDD12 [80] provides a test set with 6,425 images and
10,897 faces in the variation of different weather conditions
and degradtion such as lens impediments. DARK Face13 [81]
concentrates on face detection in low light conditions, and pro-
vides 6,000 low-light images for training dark face detector.
Since the images are captured in real-world nighttime scenes
such as streets, each image in DARK Face contains 7.3 faces
on average which is relatively dense.

B. Accuracy Evaluation Criterion

There are mainly two accuracy evaluation criteria adopted
by the datasets reviewed above, one of which is the receiver
operating characteristic (ROC) curve obtained by plotting the
true positive rate (TPR) against false positives such as those
adopted by FDDB [24], MALF [74], UCCS [72] and IJB [78],
the other of which is the most popular evaluation criterion
from PASCAL VOC [1] by plotting the precision against
recall while calculating average precision (AP), such as those
adopted by AFW [23], PASCAL Face [22], WIDER Face [3],
MAFA [75], 4K-Face [79], UFDD [80], DARK Face [81] and
Wildest Face [73]. Since these two kinds of evaluation crite-
rion are two different methods for revealing the performance of
detectors under the same calculation of the confusion matrix,14

we choose the most popular evaluation criteria AP calculated
from the precision-again-recall curve in the paper.

To get a precision-again-recall curve, the confusion matrix,
which is to define the true positives (TP), false positives (FP),

9http://www.escience.cn/people/geshiming/mafa.html
10https://www.nist.gov/programs-projects/face-challenges
11https://github.com/Megvii-BaseDetection/4K-Face
12https://ufdd.info
13https://flyywh.github.io/CVPRW2019LowLight/
14https://en.wikipedia.org/wiki/Confusion_matrix

false negatives (FN) and true negatives (TN) from the detec-
tion and ground truths, should be firstly calculated. A true
positive is a detection result matched with a ground truth; oth-
erwise, it is a false positive. The unmatched ground truths are
defined as the false negatives. True negatives are not applied
here since the background can be a large part of the image. To
define whether two regions are matched or not, the commonly
used intersection over union (IoU), also known as the Jaccard
overlap, is applied:

IoU = area(P) ∩ area(GT)

area(P) ∪ area(GT)
(1)

where P is the predicted region, and GT is the ground truth
region. In a widely used setting, the IoU threshold is set to 0.5,
meaning if the IoU of a predicted region and a ground truth
region is greater than or equal to 0.5, the predicted region is
marked as matched and thus a true positive, otherwise it is a
false positive.

After determining true or false positives for each detection,
the next step is to calculate the precision and recall from the
detection result list sorted by score in descending order to plot
the precision-against-recall curve. A granular confidence gap
can be defined to sample more precision and recall, but for a
simple explanation, we define the gap as a detection result. In
nth sampling, we calculate the precision and recall from the
top-n detection results:

Precisionn = TPn

TPn + FPn
(2)

Recalln = TPn

TPn + FNn
(3)

where TPn, FPn and FNn are true positives, false positives
and false negatives from the top-n results respectively. Let
us say we have 1,000 detection results; then, we have 1,000
pairs of (recalli, precisioni) which are enough for plotting the
curve.

We can compute the area under the precision-against-recall
curve, which is AP, to represent the overall performance of a
face detector. Under the single IoU threshold setting of 0.5 in
WIDER Face evaluation, the top AP for the hard test subset of
WIDER reached 0.924. In the WIDER Face Challenge 2019
which uses the same data as the WIDER Face dataset but
evaluates face detectors in 10 IoU thresholds of 0.50:0.05:0.95,
the top average AP reaches 0.5756.

C. Results on Accuracy

To understand the progress in recent years on face detection,
the results of different datasets are collected from their official
homepages. Because of space limitations, only the results from
the two most popular datasets are listed. They are Fig. 8 for
FDDB [24] and Fig. 9 for WIDER Face [3]. The FDDB results
since 2004 are listed. The current ROC curves are much better
than those in the past. This means that the detection accu-
racy is much higher than in the past. The true positive rate
is reaching 1.0. If you look into the samples in FDDB, you
can find there are some tiny and blur faces in the ground truth
data. Sometimes it is hard to decide whether they should be
faces, even by humans. Therefore, we can say that the current
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Fig. 8. The results on the FDDB dataset, which are from the result page of FDDB http://vis-www.cs.umass.edu/fddb/results.html.

Fig. 9. The results on the WIDER Face validation and test sets. The figures are from WIDER face homepage http://shuoyang1213.me/WIDERFACE/.

detectors achieve perfect accuracy on FDDB, and almost all
faces can be detected.

The WIDER face is newer, larger and more challenging
than FDDB. Most recent face detectors have been tested with
it. From Fig. 9, it can be found that the accuracy is also very
high even on the hard set. The improvement on mAP is not so
obvious now. The mAP is almost saturated similar to FDDB.

We must note that the current benchmarks, regardless of
FDDB, WIDER or others, only evaluate the accuracy of detec-
tion and do not evaluate efficiency. If two detectors achieve
similar mAP, but the computational cost of one is just half of
another, surely we will think the detector with half computa-
tional cost is better than another. Since the accuracy metric
is almost saturated, it is time to include efficiency in the
evaluation.

VI. EVALUATION OF COMPUTATIONAL COST

Deep learning techniques have brought momentous
improvement to face detection, and can detect faces more
robustly in unconstrained environments. Most of the recent
works train and test their models on WIDER Face [3]. As
shown in Fig. 2, we can find a large AP leap from 2016 to
2017. However, the line has been flat since 2017. If we look
deep into the official releasing code of recent works, it can be
easily found that newer models tend to use larger scales and a
wider range of scales as shown in Table V. These test scales
are usually not mentioned in the papers, but can lead to a non-
negligibly great increase in computational cost just for slightly
boosting the AP. We may even question: Is the AP improved
by a better algorithm or the usage of a wider range of test
scales?
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TABLE IV
EQUATIONS OF FLOPS CALCULATION OF DIFFERENT LAYERS

TABLE V
TEST SCALES USED BY OPEN-SOURCE ONE-STAGE FACE DETECTORS [13], [14], [17], [18], [19], [20], [25]. NOTE THAT THE DOUBLE CHECK

MARKS DENOTE IMAGE FLIPPING VERTICALLY IN ADDITION TO THE IMAGE AT THE CURRENT SCALE. SSH SHRINKS AND ENLARGES

IMAGES TO SEVERAL PRESET FIXED SIZES. SINCE S3FD, TWO ADAPTIVE TEST SCALES ARE USED TO SAVE GPU MEMORY,
ONE OF WHICH IS “S” FOR ADAPTIVE SHRINKING, THE OTHER OF WHICH IS “E” FOR RECURSIVELY ADAPTIVE

ENLARGING. SCALE “F” DENOTES ENLARGING THE IMAGE TO THE PRESET LARGEST SIZE

A. Rules of FLOPs Calculation

What kind of models are we going to re-evaluate?
First, the models must be open-source at least with the
release of its test code and a trained model. We do not re-
implement the methods since we want to ensure that the
accuracy should be 100% the same as the original authors
claimed. Additionally, it is essential for us to choose one-
stage models, as their FLOPs are independent of the number
of faces in the images, and they have been the most stud-
ied frameworks in recent years. Third, we mainly choose
the models from the WIDER Face result page for fair
comparisons.

How do we calculate the FLOPs of different models?
We first validate whether the officially released trained mod-
els can perform as well as the authors state in their papers. It
should be noted that we do not calculate the pre-processing
and post-processing stages from a model’s pipeline. In other
words, only FLOPs of neural network layers such as convo-
lution, activation, normalization, pooling and other layers are
calculated.

Given a 4D input tensor of size N × Cin × Hin × Win as
input, a neural network layer produces a 4D output tensor
of size N × Cout × Hout × Wout, where N is the batch size
which is dismissed for simplicity in the following since it is
usually set to 1 during test, C, H and W are the channels,
height and width of the tensor respectively. Additionally, K
is introduced to represent the kernel size for layers utilizing
kernels such as convolution and pooling layers. Specifically,
we treat floating point operations, such as addition, subtraction,
multiplication, division and exponentiation the same, which
should be 1 FLOPs for simplicity. With these assumptions,
we are able to derive the equations for calculating FLOPs for
different layers as listed in Table IV.

We implement our FLOPs calculator based on PyTorch
regarding all the rules and equations we discussed above,
which accelerates the calculation of FLOPs by dismiss-
ing any calculation related to the value of tensors, while
only computing the sizes of tensors and FLOPs. This cal-
culator can also allow us to use the code of defining
models from authors with minor changes, which reduces
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Fig. 10. The FLOPs vs. multi-scale AP of WIDER Face validation set. 7 models from the WIDER Face result page are listed, which are HR [13], SSH [14],
S3FD [17], PyramidBox [18], SRN [19], DSFD [20], CSP [25]. (The TFLOPs for some speed-focusing face detectors are listed in Table X because the
TFLOPs are in a much smaller scale and cannot fit in this figure.).

Fig. 11. The FLOPs vs. multi-scale test AP of WIDER Face test set. 7 models from the WIDER Face result page are listed, which are HR [13], SSH [14],
S3FD [17], PyramidBox [18], SRN [19], DSFD [20], CSP [25].

the statistics workload. We released our source code at
https://github.com/fengyuentau/PyTorch-FLOPs.

B. FLOPs vs. AP in Multi-Scale Test

The multi-scale test metric is to test a model with a set
derived from an image at original and different scales (with
aspect ratio fixed). The detection results of different scales are
then merged and applied with the non-maximum suppression
(NMS), so as to suppress the overlapped bounding boxes and

reduce false positives. Based on the training data and scheme,
a comfort zone of a model is determined, which is a range
of scales of faces that can be detected. The multi-scale test
metric can improve a model’s AP by re-scaling out-of-zone
faces back in the comfort zone. However, since we cannot
determine which of the faces in the test set are out-of-zone,
we have to apply re-scaling to every image in the set. It leads
to the multiplied increase in FLOPs per image.

Fig. 10 and Fig. 11 show the multi-scale test AP and FLOPs
of different models on the validation and test sets of the
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TABLE VI
HOW DIFFERENT SCALES IMPACT THE AP OF PYRAMIDBOX [18]. WE USE SCALE = 1 AS THE BASELINE, AND THEN TRY

ADDING DIFFERENT SCALES ONE BY ONE TO TEST HOW AP IS IMPACTED BY DIFFERENT SCALES

TABLE VII
HOW MUCH WILL AP AND FLOPS DECREASE IF A SCALE IS REMOVED? THE DETECTOR PYRAMIDBOX IS EMPLOYED

WIDER Face dataset, respectively. We can find a clear trend
in the two figures. The FLOPs are increasing and the AP is
improving in the sequence of methods HR [13], SSH [14],
S3FD [17], PyramidBox [18], SRN [19] and CSP [25]. There
are two methods do not follow the trend. The first one is
DSFD [20] which has more than 3 times of FLOPs than SRN
and CSP, but the AP is similar with those of SRN and CSP. It
means DSFD has unreasonable high computational cost. Then
second detector is RetinaFace [21] which gained the best AP
but the computational cost is much lower than most other
methods.

The two figures (Fig. 10 and Fig. 11) give us a clear view
of different face detection models and can guide us understand
different models deeper.

C. FLOPs vs. AP in Single-Scale Test

FLOPs can sharply increase in two ways: fundamentally
increasing through introducing more complex modules to the
network, and through multi-scale testing. As Table V shows,
these models are all tested on various scales. However, why
models are tested on these various scales is seldom discussed.
How much contribution on AP can one scale bring? Are any
scales not necessary?

Single-scale test on a single model: Table VI shows the AP
contribution of different scales. The easy subset in WIDER
Face [3] contains a large margin of faces of regular size and
some large faces, as a result of which shrinking images can
help improve the AP. We can observe that APhard gains the
most from scales 1, 1.25 and 1, 1.5, but not for scale 1, 1.75.
Together with FLOPs, we can also observe an increase to the
peak at scale 1, 1.25 and then a sharp drop for larger scales.
The reason is that a threshold for the largest size of images
is set to avoid exceeding the GPU memory. This means that
not all 1.75x resized images were sent to a detector in the
experiments.

TABLE VIII
AP AND FLOPS OF DIFFERENT MODELS ON SCALE 1

Table VII shows how much the AP and FLOPs will decrease
if a model tested without a scale. As the missing scale becomes
larger, the decrease of APeasy decreases. However, this pattern
does not apply to APmedium and APhard. The reason is that the
enlarged images will be skipped if their size goes beyond the
preset limit, so as to avoid exceeding GPU memory. The larger
the scale is, the fewer images will be re-scaled and tested. The
drop of FLOPs greatly decreases on scale 1.75. This is because
the PyramidBox pretrained model is mainly trained on scale 1.

The two Tables VI and VII imply that APeasy is the most
sensitive to scales 0.25, APmedium is the most sensitive to scale
0.25 and 1, and APhard is the most sensitive to scale 1. Note
that this is highly related to the training scale. If the model is
trained differently, the conclusion may change accordingly.

Single-scale test on multiple models: Table VIII shows
the AP and FLOPs of different models on scale 1. The
large overall leap is brought by PyramidBox [18], which
mainly introduces the FPN [15] module to fuse features from
two adjacent scales and the context enhancing module from
SSH [14]. The computational cost of PyramidBox is 2X com-
pared with SSH but less than 1/2 of DSFD. However, the AP
achieved by PyramidBox and DSFD are comparable.

If some benchmarks can evaluate FLOPs or some other
similar efficiency measurements, different face detectors can
compare more fairly. It will also promote face detection
research to a better stage.
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TABLE IX
STATE-OF-THE-ART OPEN-SOURCE MODELS TESTED WITH A 720P

IMAGE CONTAINING SEVERAL FACES AT SCALE = 1.0 ONLY. WE

AVERAGE THE FLOPS (AVG TFLOPS) AND LATENCY (AVG LATENCY)
BY RUNNING THE TEST FOR EACH MODEL 100 TIMES. NOTE THAT

‘POST-PROC’ DENOTES POST-PROCESSING STAGES, SUCH AS

DECODING FROM ANCHORS, NMS AND SO ON. FOR THIS STAGE,
WE ADOPT THE ORIGINAL PROCESSING CODE OF EACH MODEL

D. FLOPs vs Latency

To compare the two measurements, we convert existing
models to the Open Neural Network Exchange (ONNX)
format and run them using the ONNXRUNTIME15 in this
comparison for fair comparison. Note that due to the different
supports to ONNX converting of different DL frameworks, we
managed to convert RetinaFace [21], SRN [19], DSFD [20]
and CSP [25] to ONNX format. The results are in Table IX.
These models are evaluated using an NVIDIA QUADRO RTX
6000 with CUDA 10.2, and an INTEL Xeon Gold 6132
CPU @ 2.60 GHz. The powerful GPU contains 4,609 CUDA
parallel-processing cores and 24GB memory.

We can observe that both FLOPs and forward latency
increase from RetinaFace [21] to DSFD [20]. Note that
although the average FLOPs of RetinaFace are just one-fifth
of SRN’s, the forward latency of RetinaFace is almost near
half of SRN’s, implying that FLOPs are not linearly correlated
to latency due to the differences in implementation, hardware
settings, memory efficiency and so on. The reason why the
post-processing latency of DSFD and CSP sharply increase is
that they do not use GPU-accelerated NMS as others do.

VII. SPEED-FOCUSING FACE DETECTORS

For the face detectors introduced in the previous sections,
the main target is to reach a better AP. Their computational
costs are heavy and normally in magnitude of TFLOPs. It
is unrealistic to deploy those heavy models to a face-related
system. There are some other open source face detectors whose
target is to make face detection run in real time for practical
applications. Their computational costs are in the magnitude
of those of GFLOPs or 10 GFLOPs and are much less than
the previous costs. Here we group them as speed-focusing face
detectors. We collect the most-popular ones from github.com,
and review them in terms of network architectures, AP, FLOPs
and efficiency.

FaceBoxes [87] is one of the first one-stage deep learning-
based models to achieve real-time face detection. FaceBoxes
rapidly downsamples feature maps to a stride 32 with two
convolution layers with large kernels. Inception blocks [63] are
introduced to enhanced feature maps at stride of 32. Following
the multi-scale mechanism from SSD [8], FaceBoes detects on

15https://github.com/microsoft/onnxruntime

layers inception3, conv3_2 and conv4_2 for faces at
different scales, resulting in an AP of 0.960 on FDDB [24]
and 20 FPS on an INTEL E5-2660v3 CPU at 2.60 GHz.

YuFaceDetectNet [89] adopts a light MobileNet [60] as
the backbone. Compared to FaceBoxes, YuFaceDetectNet has
more convolution layers on each stride to have fine-grained
features, and detects on the extra layer of stride 16, which
improves the recall of small faces. The evaluation results of the
model on the WIDER Face [3] validation set are 0.856 (Easy),
0.842 (Medium) and 0.727 (Hard). The main and well-known
repository, libfacedetection [91], takes YuFaceDetectNet as the
detection model and offers pure C++ implementation without
dependence on DL frameworks, resulting from 77.34 FPS for
640 × 480 images to 2,027.74 FPS for 128 × 96 images on
an INTEL i7-1065G7 CPU at 1.3 GHz.

LFFD [90] introduces residual blocks for feature extraction,
and proposes receptive fields as the natural anchors. Its faster
version LFFD-v2 managed to achieve 0.875 (Easy), 0.863
(Medium) and 0.754 (Hard) on the WIDER Face validation set,
while running at 472 FPS using CUDA 10.0 and an NVIDIA
RTX 2080Ti GPU. ULFG [88] adds even more convolution
layers on each stride, taking the advantage of depth-wise con-
volution, which is friendly to edge devices in terms of FLOPs
and forward latency. As reported, the slim version of ULFG
has an AP of 0.770 (Easy), 0.671 (Medium) and 0.395 (Hard)
on the WIDER Face validation set, and can run at 105 FPS
with an input resolution of 320 × 240 on an ARM A72 at
1.5 GHz.

These light-weight models are developed using various
frameworks and tested on different hardware. For fair compar-
ison, we export these models from their original frameworks
to ONNX and test using ONNXRUNTIME on a INTEL i7-
5930K CPU at 3.50GHz. Results are shown in Table X.
We can observe that more CONV layers do not lead to
more parameters (FacesBoxes and ULFG series) and more
FLOPs (YuFaceDetectNet and ULFG series). This is mainly
because of the extensive usage of depth-wise convolution in
ULFG. Additionally, note that more FLOPs do not lead to
more forward latency due to depth-wise convolution. The
post-processing latency across different face detectors seems
inconsistent with the forward latency, and we verified that this
is caused by different numbers of bounding boxes sent to NMS
and the different implementations of NMS (Python-based or
Cython-based).

VIII. CONCLUSION AND DISCUSSIONS

Face detection is one of the most important and popular
topics yet still challenging in computer vision. Deep learning
has brought remarkable breakthroughs for face detectors. Face
detection is more robust and accurate even in unconstrained
real-world environments. In this paper, recent deep learning-
based face detectors and benchmarks are introduced. From the
evaluations of accuracy and efficiency on different deep face
detectors, we can find that we can reach a very high accuracy
if we do not consider the computational cost. However, there
should be a simple and beautiful solution for face detection
since it is simpler than generic object detection. The research
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TABLE X
POPULAR AND ACTIVE OPEN-SOURCE FACE DETECTORS AT GITHUB. NOTE THAT ‘AVG GFLOPS’ ARE COMPUTED ON WIDER
FACE VALIDATION SET IN SINGLE-SCALE TEST WHERE ONLY SCALE=1.0. ALSO NOTE THAT LATENCY IS MEASURED ON CPU

on face detection can focus on the topics introduced in the
following topics in the future.

Superfast Face Detection. There is no definition for super-
fast face detection. Ideally, superfast face detector should be
able to run in real time on low-cost edge devices even when the
input image is 1080P. Empirically speaking, we would like to
expect it to be less than 100M FLOPs with a 1080P image as
input. For real-world applications, efficiency is one of the key
issues. Efficient face detectors can help to save both energy,
the cost of hardware and improve the responsiveness for edge
devices, such as CCTV cameras and mobile phones.

Detecting Faces in the Long-tailed Distribution. Face
samples can be regarded as a long-tailed distribution. Most
face detectors are trained for the dominant part of the distri-
bution. We have already had enough samples for faces with
variances in illumination, pose, scale, occlusion, blur, distor-
tion in the WIDER Face dataset. But what about other faces
like the old and damaged ones? As people getting old, there
are many wrinkles on their faces; and people who suffer from
illnesses or accidents may have damaged faces, such as burn
scars on the faces. Face detection is not only a technical
problem but also a humanitarian problem, meaning that this
technology should serve all the people, not only the dominant
part of the population. Ideally, face detectors should be able
to detect all kinds of faces. However, in most face datasets
and benchmarks, most faces are from young people.

The final goal of face detection is to detect faces with
very high accuracy and high efficiency. Therefore, the algo-
rithms can be deployed to many kinds of edge devices and
centralized servers to improve the perception capability of
computers; currently, there still is a considerable gap. Face
detectors can achieve good accuracy but still require consid-
erable computations. Improving the efficiency should be the
next step.
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