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Abstract—Face morphing attacks target to circumvent Face
Recognition Systems (FRS) by employing face images derived
from multiple data subjects (e.g., accomplices and malicious
actors). Morphed images can be verified against contributing
data subjects with a reasonable success rate, given they have
a high degree of facial resemblance. The success of morphing
attacks is directly dependent on the quality of the generated
morph images. We present a new approach for generating strong
attacks extending our earlier framework for generating face
morphs. We present a new approach using an Identity Prior
Driven Generative Adversarial Network, which we refer to as
MIPGAN (Morphing through Identity Prior driven GAN). The
proposed MIPGAN is derived from the StyleGAN with a newly
formulated loss function exploiting perceptual quality and iden-
tity factor to generate a high quality morphed facial image with
minimal artefacts and with high resolution. We demonstrate the
proposed approach’s applicability to generate strong morphing
attacks by evaluating its vulnerability against both commercial
and deep learning based Face Recognition System (FRS) and
demonstrate the success rate of attacks. Extensive experiments
are carried out to assess the FRS’s vulnerability against the
proposed morphed face generation technique on three types of
data such as digital images, re-digitized (printed and scanned)
images, and compressed images after re-digitization from newly
generated MIPGAN Face Morph Dataset. The obtained results
demonstrate that the proposed approach of morph generation
poses a high threat to FRS.

Index Terms—Morphing attack, GAN, attack detection, face
recognition, vulnerability, deep learning.
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I. INTRODUCTION

FACE Recognition Systems (FRS) have provided ubiq-
uitous ways of verifying an identity claim in many

applications. FRS have been used in everyday applications
from low-security applications such as smartphone unlocking
to high-security applications such as identity verification in
border control processes. Each of the applications mandate a
chosen way of enrolment to FRS where either a supervised
enrolment is carried out (for instance in on-boarding at bank
premises) or unsupervised enrolment is requested (on-boarding
for banking applications from home). While it provides a high
degree of flexibility and convenience to users to initiate an
enrolment process in an unsupervised manner, this potentially
leads to a security risk: Without supervision, a data subject
enrolling into the FRS can submit a face image which is
manipulated, a printed face image, an image displayed from an
electronic screen (e.g., iPad) or a silicone latex face mask [2].
In order to mitigate such attacks at the enrolment level, it is
therefore essential to have a robust attack detection mecha-
nism. While a number of works in recent years have been
proposed on both conducting such attacks and detecting the
attacks in a robust manner for printed attacks, display attacks
and mask attacks, in this work we focus on a new kind of
attack referred popularly as Morphing Attack.

Face morphing is the process of combining two or more
face images to generate a single face image that can resem-
ble visually to all the contributing face images to a greater
degree [3]. A good quality morphed face image is also effec-
tive in verifying against all contributing subjects by obtaining
a comparison score that exceeds the pre-determined threshold
(i.e., passes through FRS) [3], [4], [5], [6]. While morphing
can be conducted using multiple face images of different sub-
jects, the effectiveness of morphed images is reported when
the face images of similar ethnicity, gender and age group are
considered [6], [7], [8]. This is primarily due to the fact that a
morphed image should not only defeat the FRS but should also
provide high visual similarity, in order to convince a human
expert in a visual comparison process.

Face morphing attacks threaten FRS due to the current
practices in the ID-document application process, where the
biometric enrolment is carried out in an unsupervised manner
in many countries. Countries like the U.K. and New Zealand
allow citizens to upload a digital face image for various appli-
cations such as passport renewal [9] and visa application [10].
The capture process for such images is unsupervised. In a
similar manner, many Asian countries and European countries

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-8557-0314
https://orcid.org/0000-0003-0484-3956
https://orcid.org/0000-0002-9489-5161
https://orcid.org/0000-0001-7910-7895
https://orcid.org/0000-0002-9159-2923


366 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 3, NO. 3, JULY 2021

(e.g., in The Netherlands [11]) request the applicant to submit
a scanned face image for passport/visa/identity-card applica-
tions. Given that the images are captured and submitted in
an unsupervised setting, the applicant has vast opportunities
to upload a morphed image with malicious intent underlin-
ing the need for robust Morphing Attack Detection (MAD)
mechanisms.

A. Related Works on Face Morph Generation

While morphing attacks have been studied in recent
years, most of the attacks are conducted using the mor-
phed images created using facial landmarks-based approaches
needing high a degree of supervision to first determine
the facial landmarks, thereupon align them and then finally
blend them to generate morphs. The common set of proce-
dures for warping/blending includes Free Form Deformation
(FFD) [12], [13], Deformation by moving least squares [14],
deformation based on mass spring [15], Bayesian framework
based morphing [16] and Delaunay triangulation based mor-
phing [17], [18], [19], [20], [21]. Due to inadvertent artefacts
caused by pixel/region-based morphing, the images need addi-
tional work in refining the signal to create highly realistic
morph images. A set of post processing steps are usually
included as illustrated in number of works [20], [22], [23].
Generally, some set of post processing techniques such as
image smoothing, image sharpening, edge correction, his-
togram equalization, manual retouching, image enhancement
to improve the brightness and contrast are used to elimi-
nate the artefacts generated during the morphing process. In
a parallel direction, morphed face images can also be gener-
ated using landmarks-based methods available in open-source
resources like GIMP/GAP and OpenCV. Morphs generated
using GIMP/GAP technique are more efficient with respect
to a good quality of the resulting image (i.e., less notice-
able artefacts) as pixels are aligned manually. Despite the
minimal amount of effort needed for creating morphs using
such approaches, a significant amount of effort needs to
be dedicated to correcting artefacts. Additionally, commer-
cial solutions like Face Fusion [24] and FantaMorph [25]
can also generate good quality morphed images with limited
manual intervention. Although some steps can be excluded
in creating the morphs, it is very critical to meet the
face image quality standards laid out by the International
Civil Aviation Organization (ICAO) [26], [27] for electronic
Machine Readable Travel Document (eMRTD) and deploy-
ment of biometric identification applications.

B. GAN Based Face Morph Generation

In an attempt to overcome the cumbersome efforts of
manually creating (semi-automated) morphed images, a fully
automated approach using a Generative Adversarial Network
(GAN) was proposed by Damer et al. [28]. Unlike the super-
vision required in the mark-up of landmarks and aligning
the face images in a (partially) manual process, GAN-based
techniques synthesise morphed images directly by merg-
ing two facial images in the latent space. In the work by
Damer et al. [28], the proposed MorGAN architecture for

morph generation basically employed a generator constitut-
ing encoders, decoders and a discriminator. The generator was
trained to generate images with the dimension 64 × 64 pixels
which is a key limiting factor of the attack, as most com-
mercial FRS will reject images that do not meet the ICAO
standard that requires a minimum Inter-Eye Distance (IED)
of 90 pixels. The empirical evaluation of generated morph
images using MorGAN in a vulnerability analysis against two
commercial FRS indicated that those MorGAN morphs fail
to meet both quality standards and the verification threshold
of the FRS [1]. Motivated to address the deficiency of the
MorGAN architecture, in our recent work [1]1 we proposed
an approach based on the StyleGAN architecture [29] to
increase the spatial dimension to 1024 × 1024 and thus to
improve the face image quality. Unlike the previous approach
of MorGAN [28], StyleGAN [1] achieves better spatial res-
olution by embedding the images in the intermediate latent
space. With the increased spatial dimension of resulting mor-
phed images from our recently proposed architecture, we not
only demonstrated that the images meet quality standards but
also have a reasonable success rate when attacking commercial
FRS [1].

C. Limitations of GAN Based Face Morph Generation and
Our Contributions

While our earlier work [1] indicated that better GAN archi-
tectures could result in superior quality morphs and could
attack an FRS in general, we also acknowledge the limited
threats that exist for Commercial-Off-The-Shelf (COTS) FRS,
as merely a subset of morphed images was accepted. Only
approximately 50% of the generated morph images were ver-
ified successfully against probe images from a contributing
subject. Thus the empirical evaluation in our earlier work has
shown that the attack was yet not very effective [1] for a COTS
FRS [30] and an open-source FRS based on ArcFace [31]. We
must state that up to now FRS are not very vulnerable to GAN-
based morphing attacks unlike to landmarks-based morphing
attacks. With a clear introspection into this aspect, we notice
that the resulting morphed images from our earlier work [1]
does not retain a high degree of facial similarity to both
contributing subjects. With lower similarity to contributing
subjects in terms of facial structures, the FRS do not attribute
a high comparison score, as anticipated. In other words, the
missing enforcement of identity information of contributing
subjects will lead to a high visual quality facial image but
with lower face similarity to contributing face characteristics.

In an effort to make the attacks stronger such that both sub-
jects can be verified with a good success rate, in this work,
we extend our previous architecture to generate morphs by
including the identity priors before the generation of morphed
faces. We now refer to this approach as MIPGAN (Morphing
through Identity Prior driven GAN). We propose two variants
of our approach named as MIPGAN-I and MIPGAN-II based
on the employed GAN being StyleGAN or StyleGAN2 respec-
tively [29], [32]. With the inclusion of a new loss function
in our proposed architecture, we increase the attack success

1The preliminary work results were published at IWBF-2020 in April, 2020.
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Fig. 1. Results from StyleGAN based face morphing [1] and the proposed MIPGAN (a) Contributing subject 1 (b) StyleGAN [1] (c) Proposed method
(d) Contributing subject 2.

Fig. 2. Details of segmented components in morphs generated by earlier method based on StyleGAN [1] and proposed MIPGAN (a) StyleGAN [1]
(b) MIPGAN-I (c) MIPGAN-II.

rate against commercial-off-the-shelf (COTS) FRS and deep
learning based FRS. Figure 1 shows the example of mor-
phed face images generated using proposed MIPGAN along
with outputs of both the variants. To further achieve superior
quality face morphs, we also customize the newly designed
loss function to account for ghosting and blurring artefacts in
an end-to-end manner with no human or manual intervention
eliminating the need for a high degree of interaction. As noted
in Figure 2, the results from MIPGAN-I and MIPGAN-II is
more coherent in retaining structural similarity as compared
to our earlier architecture [1]. With the updated architecture
to generate high-quality morphs which preserve both iden-
tity information and structural correspondence, we evaluate the
applicability in creating stronger attacks by creating a large-
scale dataset of morphed images by employing the face images
derived from the FRGC-V2 face database [33]. The created
dataset of 1270 bona fide images and 2500 morphed images
is first evaluated to measure the attack success rate by ver-
ifying the morphed images against the contributing subjects
using a commercial FRS from Cognitec [30]. In addition to
measuring the attack success rate for digital images, we also
extend our work by printing and scanning (re-digitizing) the
dataset. We check the consistency of the attack success rate,
unlike our earlier work which was limited to an investigation
on digital images alone [1]. We also include the experiments
on assessing the impact of compression (down to 15kb follow-
ing ICAO guidelines) of printed and scanned face images that

simulate the real-life e-passport application scenario. The key
motivation to extend our work in this direction is, to mimic the
passport application process that is operated in many European
countries and Asian countries, which all accept printed-and-
scanned facial images in the application process for an identity
document (e.g., passports).

With the extensive experimental results indicating a highly
satisfactory attack success rate, we also evaluate a set of MAD
algorithms to benchmark the detection capabilities. To this
extent, we evaluate two state-of-the-art MAD approaches on
digital morphed images, re-digitized and compressed morphed
images after re-digitizing. Thus, we comprehensively cover
the potential morphing attacks in the digital domain and the
re-digitized domain. While we note the earlier works [1] argu-
ing that attacks in the digital domain can be detected by
studying the cues such as residual noise in morphing [34],
patterns of noise from morphed images, histogram features
of textures or the deep features [4], we also investigate the
MAD capabilities for re-digitized images which do not exhibit
the similar features (residual noise) as the print-scan process
eliminates the digital cues and presents another set of vari-
ations. Specifically, given the nature of the dataset in which
we have only a single suspected morphed image, for which
we must determine either the morph or the bona fide class, we
resort to Single Image based MAD (S-MAD) approaches using
two recent but robust approaches using hybrid and ensemble
features [34], [35], [36], [37].
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Fig. 3. Block diagram of the proposed MIPGAN for generating high quality morphed face images.

We therefore present a summary of contributions of this
work as listed below:

• We present a novel approach of generating morphed
face images through GAN architecture with enforced
identity priors and a customized novel loss function
to generate highly realistic images which we refer as
MIPGAN (Morphing through Identity Prior driven GAN).
We present two variants of the proposed approach for
generating attacks with a high success rate.

• The proposed approach (both variants) is benchmarked to
measure the attack success rate by verifying COTS and
deep learning based FRS through studying the vulnera-
bility using a newly generated dataset from our proposed
architecture which is referred as MIPGAN Face Morph
Dataset.

• Human observer analysis for detecting morphs generated
by the proposed and existing morphing attack methods is
presented.

• Analysis of the perceptual quality metrics to illustrate the
visual quality of the generated morph images is presented.

• Extensive experiments on three different data types such
as (a) digital morphed images (b) print-scan morphed
image (c) print-scan morphed images with compression
are presented to cover the full spectrum of passport
application process under morphing attacks.

• The generated images are also benchmarked against the
existing MAD approaches both in digital form and the
re-digitized form to provide the insights on detection
challenges of SOTA approaches. We also present a gener-
alizability study on MAD schemes by training one kind
of morph generation and testing on a different kind of
morph generation approach to indicate directions to future
works.

In the rest of the paper, Section II describes the new archi-
tecture along with the newly designed loss function to generate
high-quality morphs. Section III provides the details on the
quantitative experiments indicating the vulnerability of FRS
and the detection challenge. With the set of remarks and future
works in this direction, we draw the conclusion in Section V.

II. PROPOSED MORPHED FACE GENERATION

Figure 3 presents the block diagram of the proposed mor-
phed face image generation using MIPGAN. The proposed
method is based on the end-to-end optimization using a new
loss function that can preserve the identity of the gener-
ated morphed face image through enforced identity priors.
The proposed MIPGAN framework is designed independently
on two different GAN models based on StyleGAN [29]
and StyleGAN2 [32] model. We refer to the proposed
scheme with StyleGAN as MIPGAN-I and with StyleGAN2
as MIPGAN-II respectively. Given the face images from
the accomplice (I1) (contributing subject 1) and the mali-
cious (I2) (contributing subject 2) data subjects, we predict
the corresponding latent vectors L′

1 and L′
2 in the first

step. In this work, we have employed the open-source pre-
trained prediction models trained to predict the corresponding
latent vector given an input image. Hence, L′

1 and L′
2 are

predictions from the final output layer of the model, which
is further reshaped. Since MIPGAN-I and MIPGAN-II are
based on pre-trained StyleGAN [29] and StyleGAN2 [38]
model respectively, we used two different open-source pre-
trained models for prediction. Both of the prediction mod-
els employ ResNet50 [39] as backbone. The model for
MIPGAN-I (StyleGAN) uses one convolution layer and two
tree-connected layers [40] to map the output of ResNet50 into
the final latent vector with the size of (18, 512). In compar-
ison, the model for MIPGAN-II (StyleGAN2) just uses one
fully-connected layer to achieve the mapping. The predicted
latent vectors thus provide the initialization for the morphed
face generation that is obtained using a weighted linear average
of L′

1 and L′
2 as follows:

L′
M = w1 ∗ L′

1 + w2 ∗ L′
2

2
, (1)

where w1 and w2 indicate the weights, which we have chosen
to be w1 = w2 = 1. Equal weights are selected as shown in
earlier work [41] where the morphing images generated with
equal weights pose higher vulnerability to COTS FRS. Finally,
L′

M is passed through the synthesis network (independently
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from StyleGAN [29] and StyleGAN2 [32] model) to generate
the corresponding morphed image I′

M that has a resolution of
1024 × 1024 pixels. The generated morphed face image I′

M is
then optimized using the proposed loss function to generate the
high quality morphed face image. In the following section, we
discuss the loss function to optimism the latent vector obtained
using Equation (1).

A. Proposed Loss Function

The proposed loss function is based on both perceptual
fidelity, quality and identity factors that can facilitate high-
quality face morph generation. The common issue with the
GAN-based morph generation is the presence of ghost arte-
facts and blurring issues. We employ the perceptual loss with
multiple layers to eliminate such effects as given by Eqn. (2).

LossPerceptual = 1

2

∑

i

1

Ni

∥∥Fi(I1) − Fi
(
I′
M

)∥∥2
2

+ 1

2

∑

i

1

Ni

∥∥Fi(I2) − Fi
(
I′
M

)∥∥2
2, (2)

where Ni denotes the number of features in layer i and Fi

denotes features in layer i of the perceptual network (VGG-
16 in our case). For the combination of perceptual layers,
we choose conv11, conv12, conv22, conv33 inspired by [42].
Compared with the original combination of layers conv12,
conv22, conv33, conv43 [43], our design measures low-level
features instead of high-level features like style of an image
and is closer to our goal of morphing faces with high quality.

The main goal of this paper is to generate the morphed
face images that can significantly attack FRS. In order to
achieve this, we have introduced the identity loss function
based on the feedback from FRS. We employ Arcface [31]
- a deep learning based FRS because of its robust and accu-
rate performance to obtain feedback on generated morphed
face images. Specifically, we employ a pre-trained embedding
extractor with ResNet50 as the backbone to extract the unit
embedding vectors and define the identity loss by their cosine
distance to improve the morph generation process as given by
Eqn. (3).

LossIdentity =
(

1 − �v1·�vM‖�v1‖‖�vM‖
)

+
(

1 − �v2·�vM‖�v2‖‖�vM‖
)

2
, (3)

where �v1, �v2, �vM respectively denotes the embedding vectors
which are extracted from image I1, I2, I′

M respectively.
To further prove the loss function is differential for the mor-

phed embedding vector �vM , we define xd, yd, zd to be the value
of vector �v1, �v2, �vM in dimension d respectively and d′ �= d
to be other dimensions except d. The expanded identity loss
function and its partial derivative are:

LossIdentity =
(

1 −
∑

d xdzd
‖�v1‖‖�vM‖

)
+

(
1 −

∑
d ydzd

‖�v2‖‖�vM‖
)

2
, (4)

∂LossIdentity

∂zd
= 1 − xd

2‖�v1‖
∂

∂zd

⎛

⎝ zd√
z2

d + ∑
d′ �=d z2

d′

⎞

⎠

− yd

2‖�v2‖
∂

∂zd

⎛

⎝ zd√
z2

d + ∑
d′ �=d z2

d′

⎞

⎠, (5)

∂

∂zd

⎛

⎝ zd√
z2

d + ∑
d′ �=d z2

d′

⎞

⎠ = 1√
z2

d + ∑
d′ �=d z2

d′

+ 2z2
d

−2
(

z2
d + ∑

d′ �=d z2
d′
) 3

2

=
∑

d′ �=d z2
d′

(
z2

d + ∑
d′ �=d z2

d′
) 3

2

∂LossIdentity

∂zd
= 1 −

(
xd

2‖�v1‖ + yd
2‖�v2‖

) ∑
d′ �=d z2

d′
(

z2
d + ∑

d′ �=d z2
d′
) 3

2

. (6)

For any value zd = z′
d, it is obvious that:

lim
�zd→0

∂LossIdentity
(
z′

d + �zd
)

∂zd

= lim
�zd→0

⎛

⎜⎜⎝1 −
(

xd
2‖�v1‖ + yd

2‖�v2‖
) ∑

d′ �=d z2
d′

((
z′

d + �zd
)2 + ∑

d′ �=d z2
d′
) 3

2

⎞

⎟⎟⎠

= 1 −
(

xd
2‖�v1‖ + yd

2‖�v2‖
) ∑

d′ �=d z2
d′

(
z
′2
d + ∑

d′ �=d z2
d′
) 3

2

= ∂LossIdentity
(
z′

d

)

∂zd
.

Hence, for any dimension of d, the partial derivative of the
identity loss function is continuous.

It is interesting to note that the identity loss based on the
Arcface feature extractor model is trained to maximize the face
class separability and thus is more sensitive to face attributes.
Hence, only optimising the identity loss cannot achieve the
same reconstruction performance as the perceptual loss but
applying it on the face region can effectively control the
generated attributes to be recognized as both subjects.

To solve the imbalance between different subjects, we
introduce an identity difference loss as given by Eqn. (7).

LossID−Diff =
∣∣∣∣

(
1 − �v1 · �vM

‖�v1‖‖�vM‖
)

−
(

1 − �v2 · �vM

‖�v2‖‖�vM‖
)∣∣∣∣. (7)

With the idea of the Lagrange multiplier, it adds a constraint to
the optimization process to force the cosine distance between
morph embedding and each of the two reference embeddings
to be the same. Since LossID−Diff is usually small with a value
less than 1, we apply L1 loss on the difference of two cosine
distance terms to avoid the vanishing gradient problem.

Finally, in order to improve the structural visibility of the
generated morphed face image, we also apply the Multi-Scale
Structural Similarity (MS-SSIM) loss LMS−SSIM to measure the
similarity in structure [45]. Given two discrete non-negative
signals (images in our case) x and y, luminance, contrast
and structure comparison measures were given by l, c, s as
computed using Eqn. (8).

l(x, y) =
(
2μx2μy + (K1L)2

)

μ2
x + μ2

y + (K1L)2
,
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Fig. 4. Qualitative results of proposed MIPGAN together with existing GAN based face morph generation methods (a) Landmark-I [7] (b) Landmark-II [44]
(c) StyleGAN [1] (d) MorGAN [28] (e) Proposed method.

c(x, y) =
(
2σx2σy + (K2L)2

)

σ 2
x + σ 2

y + (K2L)2
,

s(x, y) =
(
σxy + (K2L)2

2

)

σxσy + (K2L)2

2

, (8)

where μx, σx and σxy denotes the mean of x, the variance
of x and the covariance of x and y respectively. L is the
dynamic range of the signal and K1 � 1, K2 � 1 are two con-
stant scalars. The MSSSIM loss LMS−SSIM is further defined
by Eqn. (9).

MSSSIM(x, y) = [
lJ(x, y)

]αJ ·
J∏

j=1

[
cj(x, y)

]βj
[
sj(x, y)

]γj ,

LMS−SSIM = 1

2

(
1 − MSSSIM

(
I1, I′

M

))

+ 1

2

(
1 − MSSSIM

(
I2, I′

M

))
, (9)

where j = 1, 2, . . . , J represents the jth scale and αj, βj and γj

are the factors of relative importance. As suggested in [45],
we also set αj = βj = γj,

∑J
j=1 γj = 1 and use the resulting

parameters β1 = γ1 = 0.0448, β2 = γ2 = 0.2856, β3 = γ3 =
0.3001, β4 = γ4 = 0.2363, α5 = β5 = γ5 = 0.1333.

Thus, the proposed loss function can be formulated as:

Loss = λ1LossPerceptual + λ2LossIdentity

+ λ3LossMS−SSIM + λ4LossID−Diff , (10)

where λ1, λ2, λ3 and λ4 are the hyper-parameters that are set
to achieve both stable and generalized convergence. In this
work, we empirically set λ1 = 0.0002, λ2 = 10, λ3 = 1 and
λ4 = 1.

B. Training and Optimization

The training and optimization of the proposed method are
carried out on Tensorflow version 1.13 and version 1.14 for
StyleGAN and StyleGAN2, respectively. The optimization is
carried out using NVIDIA GTX 1070 8 GB GPU with CUDA
version 10.0 and CUDNN version 7.5 and NVIDIA Tesla
P100 PCIE 16 GB GPU. The Adam optimizer with hyper-
parameters β1 = 0.9, β2 = 0.999 and ε = 1 × 10−8 as
recommended in the original paper [46] is employed on this
work. The list of morphing pairs is generated in advance with
careful considerations to gender. During each optimization

process of 150 iterations, the learning rate is initially set
to η = 0.03 with an exponential decay per 6 iterations of
ηnew = η ∗ 0.95.

Figure 4 illustrates the qualitative results of the proposed
MIPGAN framework based on StyleGAN and StyleGAN2.
Further, the qualitative results of the existing methods based
on StyleGAN [1] and MorGAN [28] are provided alongside
for the convenience of the reader in the same figure. It is
interesting to note that the proposed MIPGAN generated face
morph images indicate both perceptual and geometric features
correspondence to both contributing subjects (for instance,
malicious actor and accomplice).

III. EXPERIMENTS AND RESULTS

This section presents and discusses the experimental pro-
tocols, datasets, and quantitative results of the proposed face
morphing technique. The images generated from the proposed
MIPGAN-I and MIPGAN-II architectures are compared with
the state-of-the-art techniques based on both facial land-
marks [7] and StyleGAN based morph generation [1]. The
effectiveness of the face morphing generation is quantitatively
evaluated by benchmarking the vulnerability of the COTS FRS
and deep learning based FRS for generated morphed face
images. Further, we also evaluate the morphing attack detec-
tion potential by evaluating the generated morphed face images
using the most recent and robust MAD techniques.

A. MIPGAN Face Morph Dataset

We employ the face images from FRGC-V2 face
database [33] to generate the MIPGAN Face Morph Dataset
consisting of morphed face images using both state-of-the-art
and the proposed MIPGAN technique. We have selected 140
unique data subjects from the FRGC dataset by considering
the high-quality face images captured in constrained condi-
tions that resemble the passport image quality. Among 140
data subjects, 47 data subjects are female and 93 data subjects
are male. Each data subject has a variable size of 7-21 addi-
tional captured samples, resulting for the whole dataset to have
1270 samples corresponding to 140 data subjects. We employ
three different face morph generation techniques based on
facial landmarks constrained by Delaunay triangulation with
blending [7] we term this as Landmarks-I, landmarks-based
techniques with automatic post processing and color equali-
sation [44], we term this as Landmarks-II and StyleGAN [1].
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Fig. 5. Illustration of morphing in digital, print-scan and print-scan compression data (a) Contributing subject 1 (b) Landmark-I [7] (c) Landmark-II [44]
(d) StyleGAN [1] (e) MIPGAN-I (f) MIPGAN-II (g) Contributing subject 2.

We do not consider MorGAN [28], [47] based face morph
generation as it was earlier demonstrated that MorGAN does
not generate ICAO compliant images and thus makes COTS
FRS not vulnerable [1]. All the samples are pre-processed to
meet the ICAO standards [27] and morphing is carried out
by following the guidelines outlined earlier [7], [8], i.e., care-
ful selection of subjects based on gender and similarity score
using a FRS, in order to have realistic attacks.

To effectively evaluate the proposed method’s quantita-
tive performance and the existing techniques, we create three
different types of attacks from morphed images, such as
Digital morphed images: Morphed face images that are
obtained from the morph generation process in the digital
domain. Print-scanned morphed images: The digital mor-
phed and bona fide images are printed and then scanned
(or re-digitized) to simulate the passport application process.
We have employed a DNP-DS820 [48] dye-sublimation photo
printer to generate the prints of the digital morphed and bona
fide face images in this work. The use of a dye-sublimation
photo printer guarantees high-quality photo printing (generally
used for a passport application) and makes sure that printed
photos are free from dotted patterns (or individual droplets of
ink) that are resulting from the printing process of conven-
tional printers. Each of these printed photos is then scanned
(or re-digitized) using the Canon office scanner to have 300
dpi as suggested in ICAO standards [27]. Print-scanned com-
pressed morphed images: The printed and scanned images
(both morphed and bona fide) are compressed to have a size
of 15kb that makes it suitable to store in the e-passport. This
process reflects the real-life scenario of face image storage in
passport systems. Thus, the overall dataset has 2500 × 3 (types

of morph data) × 4 types of morph generation technique =
30, 000 morph samples and 1270 × 3 (types of morph data)
× 4 types of morph generation technique = 15, 240 bona fide
samples. Figure 5 illustrates the three data types of attacks
that are used to evaluate the effectiveness of the proposed
method and the existing methods of face morph generation.
It is evident that the visual quality of the images vary largely
for different attack types (for instance, the digital data attack
indicates the best quality and print-scan with compression
indicates the lowest quality).

B. Vulnerability Analysis

This section presents the vulnerability analysis of the
proposed morphed face generation techniques to quantify the
impact of our efficient attacks on FRS. We quantify the attack
success for five different FRS including two Commercial-off-
the-Shelf (COTS) FRS and three deep-learning-based open-
source FRS. The COTS FRS include the Cognitec FRS
(Version 9.4.2) [30]2 and Neurotechnology (Version 10) [50]
and the set of open-source FRS includes Arcface [31],
VGGFace [49] and LCNN-29 [51]. The operational thresh-
old for all 5 FRS is set at False Match Rate (FMR) of 0.1%
following the guidelines of Frontex [52].

The vulnerability is assessed using two metrics Mated
Morphed Presentation Match Rate (MMPMR) [8] and Fully
Mated Morphed Presentation Match Rate (FMMPMR) [1]
based on the threshold provided by Cognitec FRS. For a
given morph image MI1,2 obtained using two subjects, we
compute the vulnerability by enrolling MI1,2 and verifying it

2Outcome not necessarily constitutes the best the algorithm can do.
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TABLE I
QUANTITATIVE EVALUATION OF VULNERABILITY OF COTS COGNITEC-FRS [30] FROM VARIOUS MORPH GENERATION APPROACHES. NOTE THAT,

SINCE FNMR = 0 @ FMR = 0.1% FOR COGNITEC-FRS [30] FOLLOWING EQ. (12) AND (13), THE VALUE OF RMMR IS EQUAL TO

MMPMR/FMMPMR. THEREFORE, WE HAVE NOT ENTERED RMMR SEPARATELY IN THE TABLE ABOVE

against probe images from the corresponding contributing sub-
jects I1 and I2. The obtained comparison scores S1 and S2
for both probe images I1 and I2 against the morphed image
MI1,2 indicates the threat to FRS, if and only if both S1 and
S2 cross the actual verification threshold at FMR = 0.1%.
The corresponding metric FMMPMR [1], [41] is therefore
computed as:

FMMPMR

= 1

P

∑

M,P

(
S1P

M > τ
)
&&

(
S2P

M > τ
)
. . . &&

(
SkP

M > τ
)
,

(11)

where P = 1, 2, . . . , p represent the number of attempts made
by presenting all probe images of the contributing subjects
against the Mth morphed image, K = 1, 2, . . . , k represents
the number of composite image constitute to generate the
morphed image (in our case K = 2), SkP

M represents the com-
parison score of the Kth contributing subject obtained with
Pth attempt corresponding to Mth morphed image and τ rep-
resents the threshold value corresponding to FMR = 0.1%.
When compared to MMPMR, the FMMPMR will consider
both pair-wise comparison of contributory subjects and the
number of attempts. In order to also establish the relationship
with respect to earlier metrics, we also report the vulnerability
using MMPMR [8].

Further, to effectively analyse the vulnerability, we also
present the results using Relative Morph Match Rate (RMMR)
defined as follows [8]:

RMMR(τ )MMPMR = 1 + (MMPMR(τ )) − [1 − FNMR(τ )]

(12)

RMMR(τ )FMMPMR = 1 + (FMMPMR(τ )) − [1 − FNMR(τ )]

(13)

where, FNMR indicates the False Reject Rate (FNMR) of the
FRS under consideration obtained at the threshold τ . In this
work, τ represents the value corresponding to FMR = 0.1%.
Since we have evaluated 5 different FRS systems, we have
computed FNMR corresponding to these FRS to calculate the
RMMR. Note that, in Equation (12) and (13) if FNMR = 0
then RMMR corresponds to MMPMR/FMMPMR.

The obtained success rate, or alternatively the vulnerability
of FRS is provided in Tables I, II, III, IV, and V cor-
responding to Cognitec [30], VGGFace [49], Arcface [31],
Neurotechnology (Version 10) [50] and LCNN-29 [51] respec-
tively. The vulnerability analysis is carried out on 5 differ-
ent morph generation methods that include facial landmarks
(Landmarks-I) with image smoothing as the post-processing
operation [7], Facial landmarks (Landmarks-II) with automatic
image retouching and color equalisation [44], existing GAN
based face morphing method based on StyleGAN [1] and
proposed MIPGAN variants (MIPGAN-I and MIPGAN-II).
Based on the obtained results, the following are the concrete
observations:

• The FNMR corresponding to five different FRS is equal
to 0. Therefore, the value of the RMMR is equal to
MMPMR or FMMPMR. This indicates that the FRS
systems are accurate on our face datasets employed in
this work.

• Among the five FRS, the highest vulnerability is noted
for Arcface [31], which is vulnerable to all five kinds of
face morphing attack methods.

• Among COTS FRS, the Cognitec FRS indicates a higher
vulnerability on all five types of face morphing attack
methods compared to Neurotechnology FRS.

• Among five different morph generation methods,
Landmark-I indicates the highest vulnerability on all five
other FRS.
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TABLE II
QUANTITATIVE EVALUATION OF VULNERABILITY OF VGGFACE2 [49] FRS FROM VARIOUS MORPH GENERATION APPROACHES. NOTE THAT, SINCE

FNMR = 0 @ FMR = 0.1% FOR VGGFACE2 [49] FOLLOWING EQ. (12) AND (13), THE VALUE OF RMMR IS EQUAL TO MMPMR/FMMPMR.
THEREFORE, WE HAVE NOT ENTERED RMMR SEPARATELY IN THE TABLE ABOVE

TABLE III
QUANTITATIVE EVALUATION OF VULNERABILITY OF ARCFACE [31] FRS FROM VARIOUS MORPH GENERATION APPROACHES. NOTE THAT, SINCE

FNMR = 0 @ FMR = 0.1% FOR ARCFACE [31] FOLLOWING EQ. (12) AND (13), THE VALUE OF RMMR IS EQUAL TO MMPMR/FMMPMR.
THEREFORE, WE HAVE NOT ENTERED RMMR SEPARATELY IN THE TABLE ABOVE

• The proposed face morphing methods MIPGAN-I and
MIPGAN-II consistently indicate the highest vulnera-
bility, when compared to the existing method based
on StyleGAN [1]. This indicates the high quality of
morphs generated using the proposed MIPGAN-I and
MIPGAN-II methods.

• The proposed MIPGAN-I and MIPGAN-II methods also
indicate a higher vulnerability than the Landmark-II
technique for morph generation with four different FRS.

• Among the two different metrics (MMPMR and
FMMPMR), the proposed FMMPMR indicates a lower
vulnerability than MMPMR consistently as FMMPMR

imposes a strict selection of attack images, unlike
MMPMR.

• MIPGAN-I based morphed images show a marginally
better performance in attacking FRS than images gen-
erated by MIPGAN-II.

C. Perceptual Image Quality Analysis

This section presents quantitative results of the proposed
morphed image generation techniques using the perceptual
image quality metrics PSNR and SSIM. Both of these metrics
are computed based on the reference image. Morphed face
images are generated based on parent face images from two
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TABLE IV
QUANTITATIVE EVALUATION OF VULNERABILITY OF COTS NEUROTEC [50] FRS FROM VARIOUS MORPH GENERATION APPROACHES. NOTE THAT,

SINCE FNMR = 0 @ FMR = 0.1% FOR COTS NEUROTEC [50] FOLLOWING EQ. (12) AND (13), THE VALUE OF RMMR IS EQUAL TO

MMPMR/FMMPMR. THEREFORE, WE HAVE NOT ENTERED RMMR SEPARATELY IN THE TABLE ABOVE

TABLE V
QUANTITATIVE EVALUATION OF VULNERABILITY OF LCNN-29 [51] FRS FROM VARIOUS MORPH GENERATION APPROACHES. NOTE THAT, SINCE

FNMR = 0 @ FMR = 0.1% FOR LCNN-29 [51] FOLLOWING EQ. (12) AND (13), THE VALUE OF RMMR IS EQUAL TO MMPMR/FMMPMR.
THEREFORE, WE HAVE NOT ENTERED RMMR SEPARATELY IN THE TABLE ABOVE

contributory data subjects. Therefore, we used the parent face
images from both contributory data subjects as the reference
image against which the given morphed image is assessed and
we average the obtained image quality scores for both par-
ent images. Table VI indicates the quantitative results of both
PSNR and SSIM on four different types of face morph gener-
ation mechanism in the digital format. Based on the obtained
results, it can be observed that:

• There is little deviation in the perceptual image qual-
ity metrics computed on all four different types of face
morph generation mechanisms.

• The proposed MIPGAN-I and MIPGAN-II methods indi-
cate a slightly better image quality when compared to the
StyleGAN [1] based face morphing method.

• The proposed MIPGAN-I and facial landmarks-based
methods [44] indicate a similar image quality.

• Figures 6 and 7 indicate the box plots of the
PSNR and SSIM quality scores. These results fur-
ther indicate that the perceptual quality of the
proposed MIPGAN-I and MIPGAN-II is superior
to the existing state-of-the-art method based on
StyleGAN [1].
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Fig. 6. Box plots of PSNR values computed from different face morph
generation methods (digital version).

Fig. 7. Box plots of SSIM values computed from different face morph
generation methods (digital version).

TABLE VI
MORPH IMAGE QUALITY ANALYSIS USING PSNR AND SSIM WITH

95% CONFIDENCE INTERVAL

D. Human Observer Analysis

In this section, we discuss the quantitative detection
performance of human observations regarding morphed
face images, which are generated using MIPGAN-I and
MIPGAN-II. To this extent, we have designed and developed
a Web-portal to evaluate the human morph detection
performance reflecting both single image-based morphing
attack detection scenario (S-MAD) and differential morph-
ing attack detection scenario (D-MAD). We have used only
digital samples of both bona fide and morphed face images
as the proposed MIPGAN is used to generate the images in

the digital domain. Figure 8 (a) shows the screenshot of the
Web-portal for S-MAD in which the human observer needs to
decide whether the displayed image is a morphed face image
or a bona fide image by looking at one single image at a
time. Correspondingly, Figure 9 (a) presents the screenshot
for D-MAD experiment where the observer needs to detect
whether the unknown image is morphed given a trusted bona
fide image as a reference. We have selected a total of 90
images where 15 images are from each group correspond-
ing to bona fide, two different types of facial landmarks
based morphing such as Landmarks-I [7] and Landmarks-
II [44], StyleGAN [1] based face morphing, MIPGAN-I and
MIPGAN-II based face morphing. To make the testing robust,
all 90 chosen images correspond to unique data subjects and
there is no repetition of data subjects. To avoid gender bias
by participants, we have selected a near equal distribution of
male and female data subjects in each group. We have cho-
sen 90 images considering the time constraints required to
assess these images for human observers. It was important that
observers do not loose focus while conducting the detection
experiments.

Figure 8 (b) shows the quantitative results of S-MAD
obtained from 56 human observers, including 14 experienced
and 42 inexperienced observers. The experienced observers’
group consists of researchers working in face morphing attack
detection and as ID expert’s in border control, while the
non-experienced group consists of students and other com-
puter science professionals. As noticed from the Figure 8 (b)
following are the main observations:

• Detection performance of the bona fide images indicates
better detection performance by both experienced and
non-experienced group when compared to the morphed
face image. The experienced group indicates the detection
performance with an accuracy of 97.14%, while the non-
experienced group indicates the detection performance
with an accuracy of 79.21%.

• Human observers with experience in face morphing
demonstrate higher detection accuracy on four different
face morph generation mechanisms than the inexperi-
enced group.

• Among the four different morphing types, the experienced
group indicates that the detection of the landmarks-based
morphing is challenging compared to other morphing
mechanisms (deep learning-based).

• Human observers with no experience in face morphing
are marginally good in detecting the landmarks-based
face morph images compared to other types of face mor-
phing techniques. MIPGAN-I exhibits more challenging
morph images to detect as compared to other morph
generation methods.

• Based on the obtained results, it can be noted that the
human observers with good experience in face morphing
can detect morphed images with an accuracy of 88.25%
while the human observer with no knowledge of face
morphing shows the challenge to detect the morphed face
images with a detection accuracy of 64.31%.

• The overall results from 56 human observers indicate that
detecting morphed face images is challenging. Further, it
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Fig. 8. (a)Example of screen shot used for human observer study (b) Quantitative results.

Fig. 9. (a) Example of screen shot used for differential human observer study (b) Quantitative results.

is also interesting to note that detecting different face
morphing types is also challenging.

For the quantitative results of D-MAD, 5 experienced
observers and 10 inexperienced observers have participated.
As shown in Figure 9 (b), the following observations are
illustrated:

• In the scenario of D-MAD, the group with relevant expe-
riences achieved an overall 86% accuracy, which is better
than 81% for the inexperienced group. However, this dif-
ference is much less than the difference in S-MAD, which
means that the reference image can help inexperienced
observers to identify the morphs.

• Morphs generated by Landmark-II present a significant
challenge as compared to other morph generation mech-
anisms in D-MAD. This may be attributed to a more
natural skin texture appearance (comparing with GAN-
based mechanisms) and fewer artefacts (comparing with
Landmark-I) and observers focusing less on its minor
artefacts in the pairwise comparison.

• It is also interesting to see that the performances
of experienced observers on detecting Landmark-II
(80.95% and 72.00%), StyleGAN (90.48% and 88.00%),
MIPGAN-II (90.95% and 86.67%), and bona fide images
(90% and 88.00%) are lower than their performance

in S-MAD. We believe this is because experienced
observers do not pay critical attention to tolerable dif-
ference between the trusted reference image and the
unknown comparison image.

E. Ablation Study

In order to measure the impact of the loss functions in
the proposed approach, we conduct an extensive ablation
study. The proposed loss function combines four different
entities such as: perceptual loss (LossPerceptual), identity loss
(LossIdentity), identity difference (LossID−Diff ) and Multi-Scale
Structural Similarity (MS-SSIM) loss (LossMS−SSIM). The
main contribution of our work is to use identity information,
which can be considered as a specific high-level feature, to
measure the loss. However, high-level features also mean that
it is hard for the gradient descent algorithm to ensure a good
convergence during the optimization process. Therefore, we
have introduced the perceptual loss that can measure rela-
tively low-level features in addition to MS-SSIM and identity
difference loss to effectively control the optimization process
to generate a high-quality morphed image. We perform the
ablation study by discarding each term in the loss function
iteratively. We benchmark the vulnerability using COTS FRS
(Cognitec FRS (Version 9.4.2)) and the open-source ArcFace
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TABLE VII
VULNERABILITY - ABLATION STUDY ON THE PROPOSED LOSS FUNCTION. HERE, �INDICATES THE SELECTED AND × INDICATES

THE NOT SELECTED LOSS FUNCTION IN THE ABLATION STUDY

Fig. 10. Qualitative results of ablation study using proposed MIPGAN-I
(a) LossID−Diff (b) LossIdentity (c) LossMS−SSIM (d) LossPerceptual.

Fig. 11. Qualitative results of ablation study using proposed MIPGAN-II
(a)LossID−Diff (b) LossIdentity (c) LossMS−SSIM (d) LossPerceptual.

FRS, as the proposed approach is dedicated to generating
high-quality morphed images.

Table VII indicates the quantitative performance of the
ablation study using a vulnerability analysis for both the
COTS-FRS from Cognitec and for the open-source Arcface
FRS with the proposed MIPGAN-I and MIPGAN-II methods.
The ablation study is carried out on the digital morphed images
generated using both MIPGAN-I and MIPGAN-II Methods.
Figures 10 and 11 shows the qualitative performance of the
ablation study on both MIPGAN-I and MIPGAN-II, respec-
tively. Based on the obtained results, the following are the
main observations:

• Each term in our proposed loss function (see Eq. (10))
contributes to posing a greater challenge to a FRS for both
proposed MIPGAN-I and MIPGAN-II morph generation
frameworks.

• Among the four other loss functions that we have used,
the LossPerceptual is critical in improving the proposed
method’s performance. Discarding the perceptual loss has
resulted in a degrading performance in both qualitative
(see Figures 10 (d) and 11 (d)) and quantitative results.

• The use of identity loss (LossIdentity) also indicates the
importance of improving the quantitative performance of
the proposed method.

• The LossMS−SSIM also contributes to both qualitative and
quantitative improvements of the morphs generated by
the proposed method.

F. Hyper-Parameters Study

This section presents both qualitative and quantitative results
on the selection of hyper-parameters (λ1, λ2, λ3, and λ4)

Fig. 12. Qualitative results of Hyper-parameters study on both MIPGAN-I
and MIPGAN-II (a)λ1 (b) λ2 (c) λ3 (d) λ4.

in the proposed loss function employed in both MIPGAN-I
and MIPGAN-II. Based on the ablation study reported in
Section III-E, we have noticed that the perceptual loss is
the vital component of our loss function (see Eq. (10)) and
the other three terms can be used as constraints during the
optimization. Therefore, the first step is to study the gen-
erated morphed face images’ attack strength by increasing
and decreasing the value of λ1. Among the remaining three
terms, we have also noticed from the ablation study that the
identity loss (LossIdentity) is contributing more towards gen-
erating a high-quality morph compared to the other two-loss
functions (lossMS−SSIM , LossID−Diff ). We analyze the impor-
tance of identity loss (LossIdentity) with respect to the other
two loss functions (LossMS−SSIM , LossID−Diff ) by increasing
the value of λ3 and/or λ3 and decreasing the value of λ2.
Further, we have also noticed from the ablation study that the
loss functions lossMS−SSIM and LossID−Diff are less important
and numerically very small. Therefore, we did not conduct
studies on decreasing the values of λ3 and λ4. Altogether,
we have tested four different cases of changing the hyper-
parameter values to generate the morphed face images. These
generated morphed face images are benchmarked against the
proposed hyper-parameter values through the vulnerability
analysis using both COTS FRS (Cognitec FRS (Version 9.4.2))
and open-source ArcFace FRS.

Table VIII shows the qualitative performance and Figure 12
shows the qualitative performance of the hyper-parameter
study. Based on the obtained results, it can be noted that the
increase in the value of λ1 and λ3 shows comparable results
with the proposed weighting schemes. However, based on our
empirical study on hyper-parameters, we noted that: if we set
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TABLE VIII
QUANTITATIVE RESULTS OF HYPER-PARAMETERS STUDY

λ1 and λ2 with equal weights, then, during the optimization,
the generated morph image will soon become roughly similar
to both contributing subjects. This will quickly reduce identity
loss (LossIdentity) to a minimal value and loose its importance
in the optimization. Hence, we set a larger factor to the iden-
tity loss compared with other loss terms measuring high-level
features to ensure our most important constraint term is still
effective in the later stage of optimization. Further, both λ3 and
λ4 can make the optimization goal more comprehensive but
setting a large factor will obstruct the convergence. Especially
setting high values to λ4 will end up with an image not sim-
ilar to both subjects. Therefore, the selection of the proposed
hyper-parameters confirms the generation of a high-quality
morphed image but also aids for effective and comprehensive
optimization.

G. Morphing Attack Detection Potential

Considering the success rate of the newly generated dataset,
we naturally choose to evaluate the morphing attack detection
performance to also validate the robustness of existing MAD
mechanisms. Additionally, we investigate recent works about
general face manipulation detection [53], [54], [55] and some
results are shown in the supplementary material. In this work,
we focus on single image based morphing attack detection (S-
MAD) as it perfectly suits our dataset. MAD has been widely
addressed in the literature by developing the techniques based
on both deep learning [56], [57], [58], [59], [60] and non-
deep learning [19], [61], [62] approaches. Readers can refer
to [63] for an exclusive survey on face MAD. Owing to the
recent works detailing the applicability of Hybrid features [35]
and Ensemble features [36] in detecting morphing attacks, we
choose to benchmark both Hybrid features [35] and Ensemble
features [36]. While the Hybrid features [35] resort to extract-
ing features using both scale space and color space combined
with multiple classifiers, Ensemble features [36] employ a
variety of textural features in conjunction with a set of classi-
fiers. In common both approaches evaluate a wide variety of
MAD mechanisms in a holistic manner supported by empirical
results [35], [36]. In addition, the Hybrid features [35] mech-
anisms are also validated against the ongoing NIST FRVT

MORPH challenge [37] with the best performance in detecting
printed and scanned morph images justifying our selection of
algorithm to benchmark the newly composed database.

The reporting of MAD performance is following the
ISO/IEC metrics [64] namely the Attack Presentation
Classification Error Rate (APCER (%)) which defines the
proportion of attack images (morph images) incorrectly clas-
sified as bona fide images and the Bona fide Presentation
Classification Error Rate (BPCER (%)) in which bona fide
images incorrectly classified as attack images are counted [64]
along with the Detection Equal Error Rate (D-EER (%)). To
evaluate the generated morphed face image’s attack potential,
we have sub-divided the newly generated database into two
sets for training and testing that consists of independent data
subjects with no overlap between the splits. The training set
includes 690 bona fide images and 1190 morphed images. The
testing set consists of 580 bona fide and 1310 morphed images.
To effectively evaluate the performance of the MAD reflecting
a real-life scenario, we report the results on both intra (training
and testing dataset from the same morph generation approach)
and inter (training on one type of morphing techniques and
testing on another type of morphing techniques) evaluation of
MAD mechanisms. Extensive experiments are performed on
digital, print-scan and print-scan with compression data types
to provide an in-depth analysis of the S-MAD performance.
Tables IX, X, XI, XII, and XIII presents the quantitative results
of MAD mechanisms on morph generation methods together
with the SOTA morph generation techniques. Based on the
results obtained from the intra-dataset experiments, we make
some concrete observations as listed below:

• The intra-dataset evaluation indicates that the morphing
attacks are detected with a good success rate irrespective
of the type of generation.

• In general, the attack detection success rate is high with
digital data when compared to print-scan and print-scan
compression.

• Among the different types of morph generation tech-
niques, the Landmark-II based morph generation shows
the highest error rates. The attack images created using
StyleGAN and proposed MIPGAN can be efficiently
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TABLE IX
QUANTITATIVE PERFORMANCE OF MAD - TRAINING- LANDMARKS-I [7]

TABLE X
QUANTITATIVE PERFORMANCE OF MAD - TRAINING- LANDMARKS-II [44]

TABLE XI
QUANTITATIVE PERFORMANCE OF MAD - TRAINING- STYLEGAN [1]

TABLE XII
QUANTITATIVE PERFORMANCE OF MAD - TRAINING- MIPGAN-I

detected using both the employed approaches with high
accuracy. This can be attributed to the noises that are
synthesized using GANs due to the computational mod-
ifications performed on the latent space in GAN-based
morph generation methods.

In the following, we discuss the important observations
based on the results obtained from inter-dataset MAD analysis:

• The performance of the MAD techniques are degraded
on all five different case studies as indicated in the
Tables IX, X, XI, XII, and XIII.
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TABLE XIII
QUANTITATIVE PERFORMANCE OF MAD - TRAINING- MIPGAN-II

Fig. 13. Examples of morphed images that failed to attack FRS (a) morphed face images generated using proposed MIPGAN-I (b) morphed face images
generated using proposed MIPGAN-II.

• Training MAD algorithms with one type of landmarks-
based method did not show the improvement in detection
performance of another kind of landmarks-based morph
generation method.

• When MAD mechanisms are trained using the
Landmarks-I [7] method, the degraded performance
is noted for all other morph generation methods except
for the StyleGAN [1] based approach. This fact is
also noted when we train the MAD techniques using
StyleGAN [1] generated samples and test it with
Landmarks-I [7] samples. Thus, the StyleGAN [1] based
morph generation is easy to detect even when MAD
mechanisms are not trained using the images from same
morph generation scheme.

• When MAD algorithms are trained using Landmarks-
II [44] samples, MAD algorithms indicate degraded
performance on all other morph generation techniques.

• When MAD mechanisms are trained using the proposed
MIPGAN-I generated samples. The MAD mechanisms
indicate an excellent detection performance on MIPGAN-
II samples. However, the detection performance of MAD
methods is deceived with other morph generation tech-
niques.

• It is interesting to note that when MAD mechanisms are
trained using MIPGAN-I/MIPGAN-II, higher detection
accuracy can be observed for print-scan and print-scan

with compression data when compared to digital morph
data. A possible reason is that the noise generated
together with the morphed images using the proposed
MIPGAN-I/MIPGAN-II can approximate the generated
noise resulting from the print-scan and print-scan com-
pression process.

• Based on the results of the inter-database MAD anal-
ysis, the detection of Landmarks-II [44] samples are
challenging.

IV. LIMITATIONS OF CURRENT WORK

AND POTENTIAL FUTURE WORKS

Despite this work presenting a new approach to generate
strong morphing attacks, which are empirically evaluated using
COTS FRS, our work has a few noted limitations. In the cur-
rent scope of work, we evaluate the impact of print and scan
(re-digitizing) using one printer reflecting a realistic scenario.
The MAD mechanism employed in this work has not been
investigated with a wide range of printers and scanners that
may impact the MAD performance. While we assert that the
MAD performance may not vary extremely, when tested with
a wider combination of printers and scanners, that empirical
evaluation is yet to be conducted in future works.

A second aspect is that the proposed approach needs pre-
selection of ethnicity for generating stronger attacks. Figure 13
shows example morphed face images generated using the
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proposed method using MIPGAN-I and MIPGAN-II that fail
to get verified to contributing subjects when ethnicity pre-
selection is not performed [7]. We notice that the selection of
contributing subjects plays an important role with the proposed
method to generate stronger attacks with MIPGAN. It is our
assertion that the selection of contributing subjects with sim-
ilar geometric structures (particularly ethnicity and age) can
improve the performance of the proposed system, but that
aspect needs further investigation.

V. CONCLUSION

Addressing the limitations of generating the strong and
severe morphing attacks using GAN, we have proposed a
new architecture for generating face morphed images in this
work. The proposed approach (MIPGAN with two variants)
for devising strong morphing attacks uses identity prior driven
GAN with a customized loss exploiting perceptual quality and
identity factors to generate realistic images that can strongly
threaten FRS. In order to validate the attack potential of the
proposed morph generation method, we have created a new
dataset consisting of 30, 000 morphed images and 15, 240
bona fide images. Both COTS and deep learning based FRS
were evaluated empirically to measure the success rate of
the new approach and vulnerability was reported indicating
the applicability of the new approach and newly generated
database. In a similar direction, the dataset is also validated
for detection performance by studying two state-of-art MAD
mechanisms. Despite the high attack detection success rate
by employed MAD, we note that the morphed images gener-
ated by MIPGAN can severely threaten FRS in a present state
without MAD in FRS.
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