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Abstract—Quality assessment algorithms can be used to esti-
mate the utility of a biometric sample for the purpose of biometric
recognition. “Error versus Discard Characteristic” (EDC) plots,
and “‘partial Area Under Curve” (pAUC) values of curves therein,
are generally used by researchers to evaluate the predictive
performance of such quality assessment algorithms. An EDC
curve depends on an error type such as the “False Non Match
Rate” (FNMR), a quality assessment algorithm, a biometric
recognition system, a set of comparisons each corresponding
to a biometric sample pair, and a comparison score threshold
corresponding to a starting error. To compute an EDC curve,
comparisons are progressively discarded based on the associated
samples’ lowest quality scores, and the error is computed for the
remaining comparisons. Additionally, a discard fraction limit or
range must be selected to compute pAUC values, which can then
be used to quantitatively rank quality assessment algorithms.

This paper discusses and analyses various details for this kind
of quality assessment algorithm evaluation, including general
EDC properties, interpretability improvements for pAUC values
based on a hard lower error limit and a soft upper error limit,
the use of relative instead of discrete rankings, stepwise vs. linear
curve interpolation, and normalisation of quality scores to a
[0,100] integer range. We also analyse the stability of quantitative
quality assessment algorithm rankings based on pAUC values
across varying pAUC discard fraction limits and starting errors,
concluding that higher pAUC discard fraction limits should be
preferred. The analyses are conducted both with synthetic data
and with real face image and fingerprint quality assessment data,
with a focus on general modality-independent conclusions for
EDC evaluations. Various EDC alternatives are discussed as well.

Open source evaluation software is provided at https://github.
com/dasec/quality-assessment-evaluatio

Index Terms—Biometrics, biometric sample quality, error
versus discard characteristic.

I. INTRODUCTION

IOMETRIC recognition [[1]] performance depends on the

quality of the used biometric samples [1]] such as face or
fingerprint images. In this context “quality” refers specifically
to biometric utility [1], as opposed to other definitions such
as factor-specific quality (e.g. “How blurry is one image?”’)
or subjective image quality (e.g. “How noticeable are lossy
compression artefacts to a human?”).

There are quality assessment (QA) algorithms that assign
one scalar quality score (QS) [1] to one given biometric
sample, with higher scores implying higher biometric utility.
Biometric comparisons [1[] involve information stemming from
two samples, so a QA algorithm attempts to assess a single
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sample’s quality in terms of its utility for an unknown number
of comparisons against unknown other samples. Thus a QS can
be considered an estimate of the usefulness of the information
that is extractable from the sample, irrespective of other
samples.

This paper is mainly about the quantitative ranking of
QA algorithms with respect to concrete biometric recognition
systems via “Error versus Discard Characteristic” (EDC) plots,
specifically using the “partial Area Under Curve” (pAUC)
values thereof. The EDC has been established as the de facto
standard for QA algorithm evaluations, and is currently being
officially standardised in the next edition of ISO/IEC 29794-
lﬂ Conceptually, an EDC curve for one QA algorithm shows
how some concrete biometric recognition “error” changes
as samples are progressively “discarded” via an increasing
sample QS threshold. The primary insights from the analyses
in this paper do not rely on the properties of specific biometric
modalities and should thus generalise to any modality, when
the quality of individual biometric samples is assessed with
respect to comparisons between these samples. Experiments
with real QA algorithms in this paper were conducted mainly
in the context of face image quality assessment (FIQA) [2],
with additional fingerprint quality assessment experiments
serving as an example for another biometric modality. Various
experiments only show results for one modality to avoid
unnecessary clutter and to stay within the page limit.

The paper is structured as follows:

¢ In the remainder of this introduction the EDC and pAUC
value rankings are described further in and
subsection [-B| respectively.

. details the setup used for the experiments with
real QA algorithm data.

« |Section Ill| discusses why “stepwise” EDC curve interpo-
lation should be preferred.

. examines the effect of quality score normali-
sation, in particular to a [0, 100] integer range.

o [Section V]analyses the stability of QA algorithm rankings
based on FNM-EDC pAUC values across different pAUC
discard limit and starting error configurations, using real
data, and continues the analysis with synthetic
data that enables the comparisons of actual rankings
against expected rankings.

. presents various alternatives to the common
EDC evaluation approach, discusses why this paper fo-
cusses on the EDC, and points out parts of the paper that
also apply to the other approaches.

Zhttps://www.iso.org/standard/79519.html
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o Section VIII| briefly summarises the primary conclusions

from the paper.

A. Error versus Discard Characteristic

The concept of the “Error versus Discard Characteristic”
(EDC) was introduced under the name “Error versus Reject
Characteristic” (ERC) by Grother and Tabassi [3]], and is also
known as “Error versus Reject Curve” in the literature. At the
time of writing the next (third) edition of ISO/IEC 29794-
1 is standardising this concept under the name EDC instead
of ERC to avoid confusion with other meanings of the word
“reject” [1]] in the biometric context.

A concrete EDC instance with real data consists of the
following parts:

o Specific “error”: Often the “False Non Match Rate”
(FNMR) [1]] is selected as the EDC’s error [2][3], a
configuration abbreviated as FNM-EDC, which also is
what we focus on in this paper.

o Set of comparisons: Each comparison corresponds to one
pair of samples as input and one comparison score (CS)
[L] as output. The selected error determines which kind
of comparisons are required to compute the EDC. For
the FNM-EDC only mated [1] comparisons are used,
meaning that the corresponding samples in each pair must
stem from the same biometric capture subject [1] and the
same biometric instance [1]] (e.g. from the same finger).

o One biometric recognition system: The recognition sys-

tem computes the CSs. One can technically involve
multiple recognition systems in a single EDC plot, but
for clarity we will use exactly one recognition system
in each EDC instance within this paper, which also is
common practise in the scientific literature. Additionally
be aware that all CSs used in this paper are similarity
scores [1]], meaning that higher CS values imply higher
similarity.
Besides the recognition system, a CS threshold needs to
be defined to reach one comparison decision (match or
non-match) [1] for each CS. For the FNM-EDC each
non-match counts as one comparison error, the FNMR
being the non-match count divided by the number of
comparisons.

o Set of QA algorithms: Every QA algorithm computes one
QS per sample.

e One pairwise QS function: This function computes a

single pairwise QS from two sample QSs that correspond
to one comparison. The data points of an EDC curve
for one QA algorithm are computed by progressively
discarding comparisons based on the associated pairwise
QS.
It is technically possible to use a different function for
each QA algorithm, or to use multiple different functions
per QA algorithm to effectively create different QA
algorithm variants. But in this paper we use exactly one
function, namely the minimum of each pairs’ sample QSs
as the pairwise QS, which is the de facto standard in the
literature since lower QSs are supposed to indicate lower
biometric utility.
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Fig. 1. FNM-EDC plot examples on different face image datasets with the
same five QA algorithms, 0.05 starting error, and a shaded [0,0.2] pAUC
for the corresponding best curves (MagFace on LFW and CR-FIQA(L) on
TinyFace), minus the “area under theoretical best” (below the lower grey
dashed line). The used datasets and QA algorithms are described in [section 11}
The selected function should typically reflect the discard-
ing of samples, not comparisons, so that the EDC sim-
ulates the operational discarding of samples before any
comparisons could be conducted. Taking the minimum
of the sample QSs does reflect this use case, since a pair
will be counted as discarded when one of the samples
would be discarded in isolation. As an alternative to using
a pairwise QS function for the EDC computation, one
can discard samples (and the associated comparisons) by
their QS, which is functionally equivalent to this pairwise
minimum QS formulation.
Choosing a function that mixes the sample QSs to get
the pairwise QS would instead represent an operational
scenario in which the pairwise QSs are used to discard
already computable comparisons. This would effectively
constitute an augmentation of the biometric comparison
by adding a certainty value. In this scenario the usage of
“pairwise QA algorithms” that utilise information from
both samples as input could also be considered, so this
scenario would not necessarily have to be restricted to
(sample) QA algorithms.

Each EDC curve corresponds to one QA algorithm. Data
points in the curve consist of the error and the discard fraction.
Conventionally the error is plotted on the Y-axis, increasing
upwards, lower values being better, while the discard fraction
(of comparisons) is plotted increasing left to right on the X-
axis. Both the discard fraction and (usually) the error are

inherently constrained to the range [0, 1]. See for
an example. To compute a curve the comparisons are pro-
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Fig. 2. An FNM-EDC plot example analogous to but with the

fingerprint setup described in Dotted lines indicate other possible
non-zero starting errors below the used one, which is approximately 0.1895.
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Fig. 3. An example for “exploding” error values towards the 100% discard

fraction. This EDC plot shows the same curves as in for the LFW
dataset, but for the full discard fraction range.

gressively discarded in increasing order of their pairwise QSs.
Each discard step results in a curve data point with an implicit
X-axis discard fraction, for which the corresponding Y-axis
error value is computed from the remaining comparisons. To
ensure that the curve is accurate, each discard step should
only discard as many comparisons as strictly necessary to
reach the next data point (i.e. the set of comparisons with
the next lowest pairwise QS), as opposed to computing data
points for e.g. fixed QS threshold increments. Note that the
curve data point for discard fraction O is independent of the
QA algorithms, since it only depends on the comparison set
and CS threshold, meaning that there is one “starting error”

per EDC plot in this paper. See for an analysis that
involves varying starting errors.

shows an EDC plot example similar to
except using the fingerprint setup, which is further described
in While the used face image experiment data in
allows for the selection of arbitrary starting errors
with at least two digit precision, such as the used 0.05 value,
the fingerprint data in does not. This fingerprint
data serves as an example for a setup with too few different
comparison scores to enable a flexible starting error selection.
The data is still sufficient to create an EDC plot as shown, but
only using a relatively restricted number of starting errors. In
the possible non-zero starting errors below 0.20 are
indicated by the dotted lines, with the dashed line being the

actually used starting error (approximately 0.1895).

If the full X-axis discard range is plotted, note that the Y-
axis error values can - but do not have to - “explode” near
the 100% discard fraction, meaning that the error values can
be substantially larger than for the lower discard fractions.
shows a real example. This can happen at these
high discard fractions due to the lower number of remaining
comparisons, through which each individual comparison has
a greater influence on the error percentage. Thus even a
low number of error comparisons can yield a high error
percentage.

B. Partial Area Under Curve

To quantitatively rank QA algorithms based on the EDC
curves, “partial Area Under Curve” (pAUC) [4] values can
be computed. A pAUC value is the area under one curve
for a chosen discard fraction range, e.g. the [0,0.2] range
in Note that choosing higher discard fractions, e.g.
beyond 0.3, would not represent an operational scenario and
should therefore be avoided.

Although pAUC values suffice to rank the QA algorithms
relative to each other, the magnitude of the differences might
not necessarily be clearly interpretable, since the raw pAUC
values depend on the EDC starting error and the chosen
discard fraction range.

Olsen et al. [4] proposed to subtract the “area under theo-
retical best” from the (p)AUC. This refers to the area under
the EDC curve for the theoretical best case where the decrease
in the error equals the discard fractimﬂ, i.e. the area under the
line defined by max(0, Starting Error— DiscardFraction),
which is also visible in Note that this is an approx-
imation or lower limit of the theoretical best case, not the
actual best case for the given comparison pairs. The actual
best case curve cannot be strictly monotonically decreasing,
since a real EDC curve can only change by discarding a non-
fractional number of comparisons per data point, which is
further discussed and illustrated in [section TI1l

Subtracting the “area under theoretical best” from the pAUC
values does not change the ranking of QA algorithms, since
the same value is subtracted for each pAUC discard range
configuration in which QA algorithms are ranked. It can
however serve as a straightforwarcﬂ adjustment to make the
pAUC values more easily interpretable, since it removes the
effect of the area that cannot possibly be improved. The
remaining pAUC, which is of interest, is the grey-coloured
area in

In addition to this theoretical (hard) best case lower error
bound line, a theoretical (soft) worst case upper error bound
line can be defined as well: The constant EDC starting error
line approximates the mean of infinite curves for random QSs,
as demonstrated in and a QA algorithm should of
course preferably never increase the error above the starting
error regardless of the discard fraction. Therefore, the pAUC

30lsen et al. [4] more specifically defined the area under theoretical best for
FNM-EDC curves with the X-axis plotting the fraction of discarded samples
instead of comparisons.

4The “area under theoretical best” only depends on the EDC starting error.
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Fig. 4. The mean curve of many (here 100) EDC curves based on randomly
generated QSs approximates the constant starting error (here 0.05), implying
that QA algorithms resulting in curves distinctly above this constant are
ineffective since they behave worse than (averaged) random QS curves.

TABLE I
TWO QA ALGORITHM RANKING EXAMPLES CORRESPONDING TO THE
TWO EDC PLOTS IN|FIGURE 1|FOR THE [0, 0.2] PAUC RANGE. THE
CONSTANT “AREA UNDER THEORETICAL BEST” VALUE HAS BEEN
SUBTRACTED FROM THE SHOWN PAUC VALUES, I.E. HERE (0.05%) /2
SINCE THE STARTING ERROR IS 0.05.

LFW

QA algorithm | pAUC value  Discrete ranking  Relative ranking
MagFace 0.00362 1 0.00
CR-FIQA(L) 0.00383 2 0.07
PCNet 0.00506 3 0.46
CR-FIQA(S) 0.00572 4 0.68
SER-FIQ 0.00672 5 1.00

TinyFace

QA algorithm | pAUC value  Discrete ranking  Relative ranking
CR-FIQA(L) 0.00588 1 0.00
SER-FIQ 0.00589 2 0.00
MagFace 0.00666 3 0.38
CR-FIQA(S) 0.00787 4 0.97
PCNet 0.00793 5 1.00

values for QA algorithms can optionally be made relative to
the pAUC for this upper error bound line for the purposes of
interpretability (i.e. the ranking remains unaffected).

These pAUC value interpretability adjustments are not nec-
essary as long as the main concern of the evaluation is the
performance of each QA algorithm relative to the other QA
algorithms for a given EDC pAUC configuration. In that case
it can suffice to simply compute the QA algorithm ranking
using the raw pAUC values, see for example The
“relative ranking” values are the min-max normalised pAUC
values. It shows how far an algorithm is considered from being
the best (0) or worst (1) relative to the others, in contrast to the
“discrete ranking”. This “relative ranking” approach is used in
the experiments of this paper.

Note that other evaluation types besides comparisons among
multiple QA algorithms are possible, e.g. a certification
scheme that defines a certain pAUC value limit for a tested
QA algorithm’s EDC curve.

II. REAL DATA EXPERIMENT SETUP

This section describes the setup for the experiments that
involve real instead of synthetic data. As noted in the introduc-
tion, there is a primary face image quality assessment (FIQA)
setup and a supporting fingerprint quality assessment setup.

The paper’s general conclusions regarding QA algorithm eval-
uations using EDC curves should apply to scenarios with other
biometric modalities as well, since the underlying principles
such as the FNMR, or the discarding of samples by a quality
score threshold, are not specific to any modality.

A. Used algorithms

The real face image data experiments use one face detector
for face image preprocessing, one face recognition system, and
five (FI)QA algorithms:

e Face detector model: RetinaFace-R50 [5]]

— Images are excluded from the experiments when the
face detection step fails.

— The detected facial landmarks are used to preprocess
the face images. The same preprocessing approach
used for ArcFace [6]] is also used for all FIQA models
here, only the scaling differs since the models require
different input resolutions. Note that specialized pre-
processing methods could be used for the individual
models to possibly enhance their performance, but
that this work is about more general observations on
the EDC, which should apply either way.

o Face recognition feature extraction model: ArcFace-
R100-MS1IMV2 [6].
o FIQA algorithms:

— CR-FIQA(L) [[7]: ResNet100 backbone trained on
MSIMV?2 [6]. 112 x 112 input image size.

— CR-FIQA(S) [7]: ResNet50 backbone trained on
CASIA-WebFace [§]. 112 x 112 input image size.

— MagFace [9]: ResNetl00 backbone trained on
MSIMV2 [6]. 112 x 112 input image size.

— PCNet [10]: Trained on VGGFace?2 [11]]. 224 x 224
input image size.

— SER-FIQ [12f]: “Same model” variant using ArcFace.
112 x 112 input image size.

The PCNet model was provided to us by one of the authors,
the other models are publicly available.

The fingerprint setup is partially based on the MiDeCon
paper by Terhorst et al. [13]:

o Fingerprint comparisons:

— Minutiae extractor: Mindtct (NBIS 5.0.0 [14]).

— Minutiae comparator: Bozorth3 (NBIS 5.0.0 [14]),
using the top 20 (or less) minutiae.

o Fingerprint QA algorithms:
NFIQ v2.2.0 [15].
Mindtct (NBIS 5.0.0 [[14]).
MinutiaeNet [16]].
MiDeCon [13].
Mindtct, MinutiaeNet, and MiDeCon detect minutiae with
confidence values. The mean of the top 20 (or less) minutiae
detection confidence values is used as the sample QS.

B. Used datasets

Two face image datasets are used:
o LFW (Labeled Faces in the Wild) [17]]
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— Type: Web-scraped (varying quality).

— Image width x height: 250 x 250

— Mean face region width x height: 94.98 x 129.63

— Excluded image file duplicates: 2

— Images subsequently excluded due to failed face
detection: 0

— Images remaining: 13,231

— Remaining subjects with only one image (implicitly
excluded from mated pair set): 4,067

— Subjects in mated comparisons: 1,680

— Images in mated comparisons: 9,164

— Mated comparisons used: 242,257

o TinyFace (subsets Testing_Set/Gallery_Match and Test-
ing_Set/Probe) [|18]]
— Type: Web-scraped (varying quality).
— Mean image width x height: 30.64 x 31.74
— Mean face region width x height: 29.22 x 31.50
— Excluded image file duplicates: 184
— Images subsequently excluded due to failed face
detection: 132
— Images remaining: 7,855
— Remaining subjects with only one image (implicitly
excluded from mated pair set): 131
— Subjects in mated comparisons: 2,434
— Images in mated comparisons: 7,724
— Mated comparisons used: 19,478

The number of used mated comparison pairs is the number
of all possible mated pairs for the images which were not
excluded. Lists of the excluded image file duplicates are
provided in supplemental materiaﬂ due to the larger number
of duplicates found in TinyFace.

Some of the example plots in incorporate non-
mated comparisons besides the mated comparisons. A number
of non-mated comparisons equal to the number of mated
comparisons is randomly selected for these cases.

For the fingerprint setup, the “DB2_A” subset of FVC 2006
[19] is used:

o Type: Optical sensor, 596dpi

o Images: 1,680

o Subjects: 140 (12 images each)

e Mated comparisons: 9,240 (all mated pairs are used)

III. CURVE INTERPOLATION

As described in every data point in an EDC

curve corresponds to a discrete number of discarded compar-
isons. This means that the fraction of discarded comparisons
that is plotted on the X-axis technically is the fractional upper
limit of discarded comparisons, which maps to a discrete
number of actually discarded comparisons. To reflect this prop-
erty, we recommend using “stepwise” curve interpolation for
EDC plots, meaning that the curve’s error (Y-axis) value only
changes at each concrete data point. Using linear interpolation
instead may be misleading, which is demonstrated by the

interpolation-dependent curve intersection points in
Note that the curve interpolation choice also affects the pAUC

Shttps://github.com/dasec/dataset-duplicates
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Fig. 5. Stepwise vs. linear EDC curve interpolation example with real data.
computation, and thus QA algorithm rankings based on the
pAUC values.

further shows how a best possible EDC curve
with stepwise interpolation in comparison to the “theoretical
best” line may look. For illustrative purposes the a)
plot shows curves with only ten equally sized ‘“‘steps”, corre-
sponding to an equal number of comparisons for ten discard
steps. The Y-axis error values (FNMR) for the blue curves
are identical to their corresponding X-axis discard fraction
value, which means that the error is computed by dividing the
number of error cases (CSs below the threshold for FNMR)
by the constant total number of comparisons, thus as labelled
the error is computed “With discarded” comparisons included.
For the orange curves the error is instead computed by
dividing the number of error cases by the number of remaining
comparisons, i.e. “Without discarded” comparisons. The latter
“Without discarded” error computation is used within this
paper and should generally be preferred, since it corresponds
to a scenario in which samples are discarded before they would
be involved in comparisons. In contrast, the “With discarded”
computation would be unable to show increasing errors due
to the discarding of non-error (true positive) comparisons, the
denominator being a constant and the numerator being the
error count that cannot increase. As visible in the exaggerated
case in the a) plot, the Y-axis error values for a
best case curve “Without discarded” can technically deviate
more substantially from the lower dashed theoretical best line
than the best case curve “With discarded”, despite the same
X-axis discard steps. This is because the denominator used
to compute the FNMR, i.e. the number of remaining compar-
isons, decreases with increasing discard fraction. An increased
number of discard steps cannot eliminate the difference of the
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Fig. 6. Examples for best possible EDC curves (coloured) in comparison to
the dashed lower grey “theoretical best” line.

“Without discarded” curve to the theoretical best line since
this difference depends on the starting error, as the
b) plot exemplifies. A lower starting error can however reduce
the difference, as the ¢) plot shows. This detail of
the best possible real (“Without discarded”) curve behaviour
may thus not be important to consider in practice when lower
starting errors and larger numbers of comparisons are used,
since these allow for a better approximation of the theoretical
best line. But note that real EDC curves as shown e.g. in
may also involve differently sized discard steps, i.e.
the discarding of different numbers of comparisons, which can
happen in different orders depending on the (pairwise) QSs.

IV. QUALITY SCORE NORMALISATION

The “raw” QSs produced by different QA algorithms can be
numbers that lie in various ranges with different granularity.
For example, the QSs produced by the real FIQA algorithms
described in are floating point numbers in various
ranges. The presence of different QS ranges per QA algorithm
is unproblematic for the computation of EDC curves in a plot,

provided the QSs from different QA algorithms aren’t mixed
for a curve, since the EDC curves depend only on the (discard)
order of the (pairwise) QSs relative to each other. Different
QA algorithm output ranges and QS distributions are however
relevant if the QSs from different algorithms should be made
similarly interpretable (e.g. to apply the same QS threshold
to discard samples across multiple QA algorithms), or to fuse
QSs from different QA algorithms [20]], or because the “raw”
QS output isn’t usable for a certain data format.

A concrete instance of the latter scenario can be found
in ISO/IEC 29794-1:2016 [21]], which prescribes a [0, 100]
integer range for QSs as a mandatory requirement of the
standardised data interchange format [22][23]]. QSs can be
normalised to such integer ranges, and this can also be done
before an EDC evaluation is carried out. This section examines
the effect of this normalisation on the EDC curves across
different normalisation configurations using the real
FIQA data, since this data comprises two datasets with distinct
QS distributions (as will be illustrated).

Note that some QA algorithms do not need any separate
normalisation, as is the case for NFIQ 2 [15] in the fingerprint
setup. NFIQ 2 outputs QSs in the [0, 100] integer range, and
is formally recognized as a reference implementation of the
normative measures presented in ISO/IEC 29794-4 [24ﬂ

To normalise the “raw” QSs to [0,100] integers (i.e. 101
bins), 100 QS boundaries are calibrated based on a certain
calibration function and a set of raw QSs. The set of raw QSs
is used as input for the calibration function. Three different
raw calibration QS set variants are part of the analysis:

e “Same”: The same raw QSs used for the unnormalised
EDC curves are used for calibration. I.e. the raw QSs
for one QA algorithm on one dataset are used both to
compute the EDC curve without normalisation, and to
create the normalised variant thereof. This can therefore
be considered as a best-case scenario in which the cali-
bration data is equivalent to the evaluation data.

e “Other”: Raw QSs from the “other” of the two datasets
(LFW and TinyFace) are used for calibration. Le. to
compute the EDC curve on LFW for one QA algorithm
with normalisation, raw QSs for the same QA algorithm
from TinyFace are used for the calibration (and vice
versa). The QS distributions between these two datasets
can differ substantially, as visible in the following results,
so this represents a calibration scenario in which the
calibration data is suboptimal.

e “Combined”: Here the raw QS sets from “Same” and
“Other” (i.e. from both datasets) are merged for cali-
bration. This represents a scenario wherein a broader
coverage of calibration data across datasets is used, and
where the o