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3D Face Morphing Attacks: Generation,
Vulnerability and Detection
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Abstract—Face Recognition systems (FRS) have been found vulnerable to morphing attacks, where the morphed face image is
generated by blending the face images from contributory data subjects. This work presents a novel direction toward generating
face-morphing attacks in 3D. To this extent, we have introduced a novel approach based on blending the 3D face point clouds
corresponding to the contributory data subjects. The proposed method will generate the 3D face morphing by projecting the input 3D
face point clouds to depth maps and 2D color images, followed by the image blending and wrapping operations performed
independently on the color images and depth maps. We then back-project the 2D morphing color map and the depth map to the point
cloud using the canonical (fixed) view. Given that the generated 3D face morphing models will result in holes due to a single canonical
view, we have proposed a new algorithm for hole filling that will result in a high-quality 3D face morphing model. Extensive experiments
are carried out on the newly generated 3D face dataset comprised of 675 3D scans corresponding to 41 unique data subjects and the
publicly available Facescape database with 100 unique identities. Experiments are performed to benchmark the vulnerability of the
proposed 3D morph generation scheme against automatic 2D, 3D FRS and human observer analysis. We also present the quantitative
assessment of the quality of the generated 3D face morphing models using eight different quality metrics. Finally, we have proposed
three different 3D face Morphing Attack Detection (3D-MAD) algorithms to benchmark the performance of the 3D face morphing attack
detection techniques.

Index Terms—Biometrics, Face Recognition, Vulnerability, 3D Morphing, Point Clouds, Image Morphing, Morphing Attack Detection

✦

1 INTRODUCTION

FAce Recognition Systems (FRS) are being widely de-
ployed in numerous applications related to security

settings such as automated border control (ABC) gates and
commercial settings like eCommerce and e-banking scenar-
ios. The rapid evolution of FRS can be attributed to the
advances in deep learning FRS [1], [2], which improved
accuracy in real-world and uncontrolled scenarios. These
factors accelerated the use of 2D face images in electronic
machine-readable documents (eMRTD), which are exclu-
sively used to verify the owner of a passport at various
ID services, including border control (both automatic and
human). Because most countries still use printed passport
images for the passport application process, the face mor-
phing attack has indicated the vulnerability of both human
and automatic FRS [3], [4]. Face morphing is the process
of blending multiple face images based on either facial
landmarks [5] or Generative Adversarial Networks [6] to
generate a morphing face image. The extensive analysis
reported in the literature [7], [8], [9], [10] demonstrated
the vulnerability of 2D face morphing images to both deep
learning and commercial off-the-shelf FRS.

There exist several techniques to detect the 2D face
morphing attacks that can be classified as [11] (a) Single
image-based Morph Attack Detection (S-MAD): where the
face Morphing Attack Detection (MAD) techniques will use
the single face image to arrive at the final decision (b)
Differential Morphing Attack Detection (D-MAD): where a
pair of 2D face images are used to arrive at the final deci-
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sion. S-MAD and D-MAD techniques have been extensively
studied in the literature, resulting in several MAD tech-
niques. The reader is advised to refer to a recent survey by
Venkatesh et al. [11] to obtain a comprehensive overview of
existing 2D MAD techniques. Despite the rapid progress in
2D MAD techniques, a recent evaluation report from NIST
FRVT MORPH [12] indicates the degraded detection of 2D
face morphing attacks. Thus, 2D MAD attacks, especially
in the S-MAD scenario, present significant challenges for
reliable detection. These factors motivated us to explore
3D face morphing so that depth information may provide
a reliable cue that makes morphing detection easier. 3D
face recognition has been widely studied over the past
several decades, resulting in several real-life security-based
applications with 3D face photo-based national ID cards
[13], [14], [15], 3D face photo-based driving license cards
[15] and 3D face-based automatic border control gates (ABC)
[16]. The real case reported in [17] demonstrated using a 2D
rendered face image from a 3D face model instead of a real
2D face photo to obtain the ID card bypassing the human
observers in the ID card issuing protocol. Although most
real-life 3D face applications are based on comparing 3D
face models against 2D face images for verification, this is
mainly because e-passports use 2D face images.
However, the use of 3D to 3D comparison will be realistic,
especially in the border control scenario, as both ICAO 9303
[18] and ISO/IEC 19794-5 [19] standards are well defined
to accommodate the 3D face model in the 3rd generation
e-passport. The 3D face ID cards are a reality as they are
being deployed in countries such as the UAE [13], which
can facilitate both human observers and automatic FRS to
achieve accurate, secure, and reliable ID verification. Fur-
ther, the evolving technology has made it possible for 3D
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face imaging on handheld devices and smartphones (e.g.,
Apple Face ID [20] uses 3D face recognition) that can further
enable remote ID verification based on 3D face verification.
These factors motivated us to investigate the feasibility of
generating 3D face morphing and studying their vulnerabil-
ity and detection. An early attempt in [21] (master’s thesis)
employed the 3DMM [22] technique to generate a 3D face
morphing model. However, the reported results indicate
the lowest vulnerability to conventional FRS, indicating the
limitation of the 3DMM..

This work presents a novel method for generating 3D
face morphing using 3D point clouds. Given the 3D scans
from the accomplished and malicious actors, the proposed
method will project the 3D point clouds to the depth maps
& the 2D color images, which are independently blended,
warped, and back-projected to the 3D to obtain 3D face
morphing. motivation for projecting to the 2D for morphing
is to effectively address the non-rigid registration, especially
with the high volume of point clouds ( 85K) that needs to be
registered between two unique data subjects. Further, using
canonical view generation to project from 3D to 2D and back
project to 3D will assure a high-quality depth even for the
morphed face images, thus indicating the high vulnerability
of the FRS. Therefore, this is the first framework to address
the generation of 3D face morphing of two unique face 3D
scans that can result in vulnerability to FRS. More partic-
ularly, we aim to answer the following research questions,
which will be answered systematically in this study:
• RQ#1: Does the proposed 3D face morphing generation

technique yield a high-quality 3D morphed model?
• RQ#2: Does the generated 3D face morphing model in-

dicate the vulnerability for both automatic 3D FRS and
human observers?

• RQ#3: Are the generated 3D face morphing models more
vulnerable when compared to 2D face morphing images
for both automatic 3D FRS and human observers?

• RQ#4: Does the 3D point cloud information be used to
detect the 3D face morphing attacks reliably?

We systematically address these research questions
through the following contributions:

• We present a novel 3D face morphing generation
method based on the point clouds obtained by fusing
depth maps and 2D color images to generate the 3D
face morphing model.

• Extensive analysis of the vulnerability of the generated
3D face morphing is studied by quantifying the attack
success rate to 3D FRS. The vulnerability analysis is also
performed using 2D FRS (deep learning and COTS).

• Human observer analysis for detecting the 3D face
morphing and 2D face morphing is presented to study
the significance of depth information in detecting the
morphing attack.

• The quantitative analysis of the generated 3D morphed
face models is presented using eight different quality
features representing color and geometry.

• We present three different 3D MAD techniques based
on the deep features from point clouds to benchmark
the 3D face MAD.

• A new 3D face dataset with bona fide and morphed
models is developed corresponding to 41 unique data
subjects resulting in 675 3D scans. We collected a new

3D face dataset as we were interested in capturing
high-resolution (suitable for ID enrolment) inner face
data [23] Our 3D face dataset consists of raw 3D scans
(number of 3D vertices between 31289 & 201065) and
processed 3D scans (number of 3D vertices between
35950 & 121088), which is much higher than existing
3D face datasets1.

• The proposed method is benchmarked on a publicly
available dataset from FaceScape and the newly con-
structed dataset.

In the rest of the paper, we introduce the proposed
method in Section 2 and experiments & results in Section 3.
This is followed by a discussion about the different aspects
of the proposed method in Section 4, followed by limitations
& potential future-works in Section 5 and finally conclusions
in Section 6.

2 PROPOSED METHOD

Figure 1 shows the block diagram of the proposed 3D face
morphing generation framework based on the 3D point
clouds. We are motivated to employ 3D point clouds over
traditional 3D triangle mesh for two main reasons. The first
is that connectivity information in a 3D triangle mesh leads
to overhead storage, processing, managing, and manipu-
lating the triangular meshes. Thus, 3D triangle meshes will
significantly increase compute and memory, making them
less suitable for low-compute devices. The second reason
is that the commodity scanning devices (for example, the
Artec Sensor) can reproduce detailed colored point clouds
that capture appearance and geometry. Thus, allowing us to
generate high-quality 3D face-morphing attacks.

However, the 3D face morphing generation using point
clouds introduces numerous challenges (a) Establishing a
dense 3D correspondence between two different bona fide
3D point clouds that are to be morphed. Because 3D face
point clouds from two different subjects are affected by
various factors such as differences in input point density,
reliable detection of 3D facial key points, and estimation
of affine/perspective warping (b) Locally affine deforma-
tion present between two different 3D point clouds to be
morphed is difficult to estimate [24], [25], [26]. (c) The
misalignment of dense 3D correspondence between the two
different 3D point clouds to be morphed increases with non-
rigid deformation [27].

The crucial part of 3D morphing using point clouds is
reliable alignment before performing the morphing oper-
ation. Given the 3D face point clouds on the source and
the target face, the point cloud registration can be defined
as aligning a source point cloud to a target point cloud.
The point cloud registration can be grouped into three
broad categories [28] namely 1) Deformation Field, 2) Extrin-
sic Methods and 3) Learning-based methods. Deformation
Field-based techniques could be defined as the computation
of deformation between the two-point clouds, which can
be achieved either by assuming pointwise position [29]
variables or by pointwise affine transformations [30]. Point-
wise position variables methods are simplistic as they don’t

1. The reader is referred to Table 1 of 3D face datasets (inner face data
only) from the survey by Egger et al. [23])
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Fig. 1: Block diagram of the proposed 3D face morphing generation technique

model deformations compared with pointwise affine trans-
formations, which model local rotations. However, since the
local transformations must be stored and computed at a per-
point level, this results in high computational and memory
costs. This limitation was overcome by deformation field-
based methods using deformation graph embedding over
the initial point set, which consists of fewer nodes than
the underlying point set [31], [32]. Extrinsic methods are
based on optimizing an energy function to compute the
point set correspondence which usually includes an align-
ment term and a regularization term [31]. However, the
optimization-based methods compute deterministic model-
ing of the transformation. Probabilistic modeling of transfor-
mation was done by Myronenko et al. [33] in their algorithm
Coherent Point Drift (CPD) which assumes the source points
to be centroids of equally-weighted Gaussian with isotropic
covariance matrix in Gaussian Mixture Model (GMM). CPD
consists of alignment and regularization terms for the trans-
formation computation and performs non-rigid registration
but has memory and compute costs. However, the main lim-
itation of optimization-based methods is that they produce
good results when the input surfaces are close. Further, they
require good initialization of the correspondences and the
lack of these, leads to convergence to local minima. This was
overcome by learning-based data-driven methods, which
are of two types (1) Supervised methods and (2) Unsuper-
vised methods. Supervised methods require ground-truth
data for training [34] but can work with varying point cloud
density and underlying geometry. Unsupervised methods

don’t require ground-truth data and can be trained using
a deformation module based on CNN, followed by an
alignment module to compute the deformation [35].

However, the use of existing point cloud registration for
this precise application of 3D face morphing point cloud
generation will pose challenges such as: registration using
the same individual: Point cloud registration has mainly
focused on the non-rigid registration of two-point clouds
from the same individual [28]. This is primarily because
high-quality registration aims to produce a globally consis-
tent 3D mesh. Thus, the registration methods have not been
tested when two different point clouds are registered com-
pared to those from the same individual. Vertex accurate
correspondence: 3D Face Morphing requires perfect vertex
correspondence between the source and target point clouds,
which is challenging and has not been evaluated extensively.
Low vertex count point clouds: Point cloud registration,
especially using learning-based methods, has network archi-
tectures based on point clouds with a low number of vertices
( 1024). Thus, registering point clouds with many vertices
( 75K) has not been evaluated extensively and is therefore
suitable for low-resolution face images. To effectively ad-
dress these challenges, the proposed method consists of four
stages, including (1) point cloud reconstruction and cleanup,
(2) 3D morph generation, (3) hole-filling algorithm, and (4)
final cleanup. In the following subsections, these steps are
discussed in detail.
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2.1 Point Cloud Reconstruction & Cleanup

We capture a sequence of raw 3D scans using Artec Eva
sensor [36] from two data subjects to be morphed (S1 and
S2). In this work, we consider the case of morphing two
data subjects at a time because of its real-life applications,
as demonstrated in several 2D face morphing works [3],
[11]. We process both S1 and S2 by performing a series of
pre-processing operations such as noise filtering, texturing,
and fusion of input depth maps to generate the correspond-
ing point clouds P1 and P2. These operations are carried
out using Artec Eva Studio SDK filters together with the
Meshlab filter [37]. The cleaned and process point clouds
are qualitatively shown in Figure 1.

2.2 3D Morph Generation Pipeline

In the next step, we process the point clouds P1 and P2 to
generate a 3D face morphing point cloud by the following
series of operations which are discussed below:

2.2.1 Point-Cloud Centering & Scaling

We first compute the minimum enclosing spheres using
the algorithm from Gärtner et al. [38] to get the two
bounding spheres with centers and radii (C1,r1), & (C2,r2)
corresponding to the point cloud P1, and P2 respectively.
Note P1 = (v11 , . . . , v

n1
1 ) where vi1 is the ith 3D vertex,

and n1 is the number of points in the point cloud P1, and
P2 = (v12 , . . . , v

n2
2 ) where vi2 is the ith 3D vertex, and n2 is the

number of points in the point cloud P2. We then subtract the
sphere center C1 from each 3D vertex of P1 and repeat the
same operation on P2 with C2. Finally, the centered point
clouds are scaled to the common radius, normalizing the 3D
point clouds to the common scale. The resulting centered
and scaled point clouds corresponding to P1 and P2 are
denoted as PC1 and PC2, respectively. Figure 1 shows this
operation’s qualitative result, which shows centered and
scaled 3D point clouds.

2.2.2 Canonical View Generation

This step performs the fine alignment by projecting the 3D
face point clouds PC1 and PC2 to the canonical (fixed)
view. This step aims to keep the view and projection matrix
identical to the 3D face point clouds PC1 and PC2. We then
project PC1 and PC2 to generate 2D color images and depth
maps using the canonical view parameters. The generated
2D color images and depth maps are denoted as (I1,D1)
and (I2,D2) that corresponds to the point clouds PC1, and
PC2 respectively. We particularly choose the canonical view
for the fine alignment because the traditional scheme of
alignment, such as Iterative Closest Point (ICP) [27] doesn’t
provide a good alignment result when used on point clouds
[25]. This can be attributed to the limitations of the ICP to
function when a locally affine/non-rigid deformation exists
between the point clouds [39] The qualitative results of the
canonical view transformation are shown in Figure 1, which
demonstrates the aligned 2D color images and depth maps
zoomed in the inset image.

Algorithm 1 3D Face Morphing Algorithm
Input (I1, I2, D1, D2, CV )
Output (PM )

1: Detect Facial Keypoints on K1 on I1, and K2 on I2 using
Dlib [43], and generate key-points of the
morph using Equation 1.

2: Perform Delaunay Triangulation on KM

which is obtained by blending K1

and K2 using Equation 1.
3: Estimate Affine Warping between corresponding trian-

gles of K1 & KM denoted as wM
1 , and for K2 & KM

denoted as wM
2 .

4: Apply affine warping wM
1 on I1 to obtain I1M ,

and on D1 to obtain D1M .
5: Apply affine warping wM

2 on I2 to obtain I2M ,
and on D2 to obtain D2M .

6: Obtain morphed color image IM using the warped key-
points from the color images I1, and I2 using Equation 1,
and morphed depth map DM using Equation 2.

7: Obtain the morphed point cloud by back-projecting
IM , and DM to obtain the colored 3D point cloud PM

with 3D coordinates ∀i∈{1, · · · , n3}(xi, yi, zi) =
(xi, yi, DM (xi, yi)) and color
∀i∈{1, · · · , n3}Color(xi, yi, zi) = CM (xi, yi)) where
n3 = min(n1, n2).

2.2.3 3D Morph Generation
Given the 2D face color images (I1,I2) and depth-maps
(D1,D2) corresponding to PC1, PC2. We perform the mor-
phing operation as explained in the Algorithm 1. The pri-
mary idea is to perform the morphing in 2D and back-
project to 3D. The primary motivation for using a 2D morph
generation method is to address the challenge of finding
correspondence between PC1 and PC2. The underlining
idea is to perform the steps of morphing (facial landmark
detection, Delaunay triangulation, & warping) on 2D color
images and re-use the same (facial landmark locations, tri-
angulation, and warping) on the depth maps. In this work,
we have used the blending (morphing) factor (α) as 0.5 as it
is well demonstrated to be highly vulnerable in the earlier
works on 2D face morphing [6]. The morphing is carried out
as mentioned in the equation below:

IM = α×I1(K ′
1) + (1− α)×I2(K ′

2)

K ′
1 = wM

1 (K1)

K ′
2 = wM

2 (K2)

KM = α×K1 + (1− α) ∗K2

(1)

where α is the blending factor, K1 denotes 2D facial land-
mark locations corresponding to I1, K2 denotes 2D facial
landmark locations corresponding to I2, KM is generated
by blending K1, & K2, wM

1 denotes the warping function
from K1 to KM , wM

2 denotes the warping function from K2

to KM , and IM is the morphed 2D color image. Similarly,
the same operations are carried out on the depth maps as
shown in the equation below:

DM = α×D1(K
′
1) + (1− α)×D2(K

′
2) (2)

where DM is the morphed depth map.
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(a) (b) (c) (d) (e) (f)

Fig. 2: Qualitative results of the hole filling algorithms (a) Input Point Cloud with holes, (b) Point Cloud with Normals
which has noise, (c) Point Cloud with Screened Poisson Reconstruction [40] where artifacts are shown in the inset, (d) Point
Cloud Reconstructed with APSS [41], (e) Point Cloud Reconstructed with RIMLS [42], (f) Point Cloud Hole Filled using
Proposed Method

In the next step, we back-project IM , and DM to get
the 3D face morphing point cloud PM = (v1M , . . . , vn3M )
where n3 = min(n1, n2) is the number of vertices. Note
each 3D vertex is obtained using i = 1n3(xi, yi, zi) =
(x, y,DM (x, y)) and the qualitative results is shown in
Figure 1. However, generating the 3D face morphing will
result in multiple holes due to a single canonical view.
These holes are visible from other views. Therefore, we
present a novel hole-filling algorithm to further improve the
perceptual visual quality of the 3D face morphing.

Algorithm 2 Hole Filling Point Cloud
Input (n4-views)
Output (Chf,Dhf,Phf)

1: Generate n pairs of color-maps, and depth-maps
{(C1, D1), (C2, D2), . . . , (Cj , Dj), . . . , (Cn4, Dn4)},
translated from the canonical view.

2: for j ← 1 to n4 do
3: Perform Image In-painting [44] on Cj , and Dj .
4: Perform Image Registration of Cj with the

canonical view-point color-map CCV using
the following steps:

5: Feature Computation using Oriented
FAST and Rotated BRIEF (ORB) Descriptor [45].

6: Brute-Force Matching of features using Ham-
ming Distance.

7: Homography computation using inlier
features.

8: Perspectively warp the color and depth maps
using computed homography.

9: end for
10: Average all the registered color-maps (Chf) and the

depth-maps (Dhf).
11: Back-Project the averaged color-map and

depth-map from 2D to 3D to generate
hole-filled point cloud (Phf) using the canonical view
parameters.

2.3 Hole Filling Algorithm
In this step, we propose a new hole-filling algorithm tailored
to this specific 3D face morphing generation problem. Since
the holes are visible from different views, filling the holes

in these views is necessary to improve the perceptual visual
quality. Note that the holes are generated when the bona
fide subject is looked at from a view different from the
canonical camera, especially in high curvature regions such
as the nose, as such areas are not completely visible from
one canonical view. Therefore, we transform the 3D face
morphing point cloud PM multiple times independently to
generate P j

M where j = 1. . .n4 and n4 is the number of
transformations and each transformation is a 3D translation
[46]. In this work, we empirically choose the number of
3D translations to 7 to balance computational cost and the
visual quality achieved after the hole filling. Using more
3D translations will significantly increase the computational
cost and fail to improve the visual quality. We tried the
conventional approach of hole filling using 3D triangulation
of 3D point cloud proposed in [40], [41], [42]. Figure 2 shows
the qualitative results of three different SOTA triangulation
algorithms that indicate non-satisfactory results. This is
because 3D orientation (3D normal) estimation indicates
artifacts in the 3D triangulated mesh. Therefore, filling holes
directly in the 3D point cloud is challenging, as the underly-
ing surface (manifold) is not known in advance. The errors
in 3D orientation estimation make it difficult to employ the
conventional 3D hole-filling approaches.

This has motivated us to devise a new approach to
achieve effective hole-filling. To this extent, we project each
point cloud P j

M to the 2D face morphing color image (Cj)
and its corresponding depth map (Dj). We fill the holes in
Cj & Dj using steps 2 to 9 described in Algorithm 2. Finally,
we obtain the hole-filled 3D face morphing point cloud (Phf)
as indicated in steps 10 and 11 in Algorithm 2. Figure 2 (e)
shows the qualitative results of the proposed hole filling
that indicated the superior visual quality compared to the
existing methods.

2.4 Final Cleanup Algorithm
The final cleanup uses a clipping region outside a portion
of the bounding sphere. The final result corresponding to
the proposed 3D face morphing, a point cloud, is shown in
Figure 3 for an example data subjects 2. On the whole, the
following are the main advantages of the proposed method:

2. Supporting Video is available at https://folk.ntnu.no/jagms/
SupportingVideo.mp4
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Bona fide 1                            Morphed                                Bona fide 2

Fig. 3: Illustration of 2D color image and depth maps for bona fide and morphs generated using the proposed method

• The proposed method performs the alignment based on
2D facial key points, which preserves the identity in the
generated 3D face morphing attack sample.

• The proposed method results in low computation and
memory compared with existing 3D-3D techniques by
overcoming the 3D registration.

• The proposed method results in a high vulnerability
of FRS as the identity features are preserved for con-
tributed data subjects used to generate the morphing
attack. Therefore, the proposed method can cause high-
quality 3D face morphing attacks, resulting in the vul-
nerability of both 2D and 3D face recognition systems.

• The proposed method can handle wide variation in the
3D pose.

2.5 Qualitative and Quantitative Comparison of Pro-
posed Method with SOTA
To illustrate the effectiveness of the proposed method, we
selected a few SOTA methods based on non-rigid point
cloud registration and methods generating a 3D face model
from a 2D face image. Our current evaluation of SOTA
for non-rigid point cloud registration (NRPCR) methods
includes CPD by Myronenko et al. [33] and Corrnet3D by
Zeng et al. [47]. CPD is based on optimization and was
the SOTA method for NRPCR earlier, whereas Corrnet3D
is a more recent unsupervised deep learning-based method
for NRPCR. Further, for evaluating methods generating a
3D face model from a 2D face image, we selected 3DMM
by Blanz et al. [22] and a more recent deep-learning-based

method FLAME by Li et al. [48]. 3DMM introduced the
concept of the morphable model, where the parameters
such as shape and texture can be controlled during 3D face
synthesis. Further, 3DMM provided earlier SOTA results on
3D face generation from a 2D face image. FLAME enhanced
the quality of the generated 3D face model from a 2D face
image by using more controllable parameters such as pose,
expression, shape and texture during the 3D face synthesis
process.

2.5.1 Qualitative Comparison and Analysis

The results of qualitative comparison with SOTA are shown
in Figure 4 and the quantitative vulnerability computed
using MMPMR [49] and FMMPMR [50] (refer Section 3.3
for the definition of these metrics) is indicated in the Table
1. It can be noticed from Figure 4 that SOTA methods don’t
contain identity features of the 3D face morphing model
to a large extent. However, CPD does contain the identity
features of the 3D face morphing model but fails on the
alignment of the two input point clouds, which results
in double features such as eyebrows. Orrnet3D produces
lower-quality results, which can be attributed to the fact that
the authors have yet to focus on face registration exclusively.
Further, 3DMM and FLAME generate a 3D face model from
a 2D face image. Thus, we passed the rendering (2D face im-
age) of the 3D face morphing model as an input. However,
these methods fail to preserve the identity features during
the 3D face model generation, as seen from Figure 4. The
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(b)(a) (c)

Bona fide      Morph      Bona fide              Bona fide      Morph        Bona fide      Bona fide      Morph      Bona fide

(d) (e)

Fig. 4: Illustration of the SOTA Comparison showing Bona fide and Morphs generated using (a) CPD [33], (b) Corr-
net3D [47], (c) 3DMM [22] (d) FLAME [48], (e) Proposed Method. Note that both 3DMM and FLAME need a single image
as input, and in the current evaluation, we pass a 2D rendering generated using the proposed method. Note that the
proposed method shows high-quality rendering and identity features of the 2D face morphing image.

generated 3D model has a low resemblance to the identity
features of the face morphing image.

TABLE 1: Vulnerability of SOTA on Comparison Dataset

Feature 3DMM [22] FLAME [48] CPD [33] Proposed
PointNet++ [51] 0 0 0 100%

LED3D [52] 66.67% 0 0 100%

2.5.2 Quantitative Comparison and Analysis

The results of the quantitative comparison are shown in
Figure 5, where we have evaluated two 3D point feature ex-
traction methods, namely LED3D [52] and Pointnet++ [51].
However, it can be seen that 3D comparison results in
low values for SOTA compared to the proposed method.
This can be attributed to the low-resolution of the identity-
specific depth generation by the SOTA, which is also shown
in Figure 6.

3 EXPERIMENTS AND RESULTS

In this section, we present the discussion on extensive
experiments carried out on the newly acquired 3D face
dataset. We discuss the quantitative results of the various
experiments, including vulnerability study on automatic
FRS and human observer study, quantitative quality esti-
mation based on color and geometry of the generated 3D
face morphing models and automatic detection of 3D MAD
attacks.

TABLE 2: Statistics of newly collected 3D Morphing Dataset
(3DMD)

3D face Bona fide
Total Data Subjects Males Females

41 28 13
Total 3D samples Males Females

330 224 106
3D face Morphs

Total 3D Morphs Males Females
345 278 67

3.1 3D Face Data Collection

In this work, we have constructed a new 3D face dataset
using the Artec Eva 3D scanner [36]. The data collection
is carried out in an indoor lighting environment. The data
subjects are asked to sit on the chair by closing their eyes to
avoid the light’s strong reflection from the 3D scanner. The
3D scanner is moved in the vertical direction to capture the
3D sequence.

We have used the Artec Studio Professional 14 for the
3D data collection and processing. We have collected the
3D face data from 41 subjects, including 28 males and 13
females. We have captured nine to ten samples for each data
subject in three different sessions in three days. The statistics
of the whole 3D face dataset are summarized in Table 2. We
name our newly collected dataset as 3D Morphing Dataset
(3DMD).

We may have used the existing 3D face datasets such as
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Fig. 5: Illustration showing scatter plot of Comparison scores using Bona fide and Morphs generated using Proposed
Method (a) LED3D [52] and (b) Pointnet++ [51] based where SOTA algorithms are 3DMM [22], FLAME [48], CPD [33]

Fig. 6: Illustration showing depth maps using SOTA and proposed method (a) 3DMM [22], (b) CPD [33], (c) FLAME [48]
and (d) Proposed Method.

(a)                                                                                                     (b)

Fig. 7: Screenshots from the GUI of human observer web
page (a) Full Page Screenshot, and (b) Screenshot of 3D
model page.

Fig. 8: Illustration of average accuracy of human observer
study, note that 2D accuracy is always higher than 3D.
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FRGC [53] and BU-3DFE [54]. However, the FRGC dataset
provides a single depth map and a color image. Thus, a
high-quality point cloud cannot be generated. Further, the
dataset has a few misaligned color images and depth maps
[55] that will result in a low-quality 3D morphing genera-
tion. The BU-3DFE [54] dataset does provide 3D models, but
these are perfectly registered, and the capture conditions are
identical for all the subjects. This does not model the real-
world scenario of capturing 3D point clouds with changes in
capture conditions that could happen during data collection.
The quality of our 3D face dataset has a much higher
number of 3D vertices between 35950 & 121088 for the
inner face compared to previous methods [23]. These factors
motivated us to generate a new 3D face dataset to enable a
high-quality 3D face morphing generation suitable for the
ID control scenario.

3.2 Human Observer Analysis

We perform the human observer analysis to evaluate the
human detection performance of the generated 3D morphs.
The survey is set up online3 and is created using PHP, &
HTML-CSS tools. GDPR norms are followed during the
survey creation, and participants’ email (used only for reg-
istration to avoid duplication), gender, & experience with
the morphing problem are only recorded. All measures are
implemented with full consideration of the anonymity of
participants. We have designed the GUI for the human
observer study to benchmark the single image morphing
detection in this work.

Figure 7 shows the screenshot of the web portal used for
the human observer’s study. The GUI is designed to display
two face images simultaneously, such that one corresponds
to the 2D face and another to the 3D face. Then, the human
observer is prompted to independently decide these face
images as either morph or bona fide. The human observers
are provided with an option to rotate the 3D face in different
directions to make their decision effectively. Further, the
opportunities to zoom in and out of the 3D face model
are also provided. We have mainly selected to present both
2D/3D face images for human evaluation simultaneously
to check whether the 3D information might help detect the
morphing attacks. Due to the time factor, we have used 19
bona fide and 19 morph samples independently from 2D
and 3D for the human observer study. Thus, each human
observer spent around 20 minutes on average to complete
this study. The detailed step-wise instructions on using the
web portal are available for every participant beforehand.

The human observer study uses 36 observers with and
without face morphing experience. The quantitative results
of the human observer study are shown in Figure 8. We
summarize the human observer’s results from the survey as
follows:

• The average detection accuracy of human observers for
2D face bona fide samples is 55.83% and 42.5% in a
3D face, respectively. The average detection accuracy
of human observers for morphs in 2D is 58.33% and
51.85% in a 3D face. Thus, detection accuracy is similar
for bona fide and morph in 2D. However, the detection

3. https://folk.ntnu.no/jagms

accuracy in 3D is lower for bona fide when compared
with morph.

• The average detection accuracy is similar for observers
without morphing experience and basic morphing ex-
perience. Human observers with advanced morphing
experience have the highest average detection accuracy.
The observers without morphing experience perform
similarly to observers with basic morphing experience,
which can be attributed to the innate human capacity
to distinguish between bona fide v/s morphed.

• The survey further validates that generated 3D morphs
are challenging to detect from human observations.
The average detection accuracy of human observers
does not exceed 63.15%, which shows that 2D and 3D
morphs developed in this work are high quality and
difficult to detect.

The average detection accuracy in a 2D face is higher than
that in a 3D face, which can be attributed to the following
reasons:

• The fact that 2D morph is more prevalent, and thus ob-
servers generally look for specific artifacts in different
regions of the face, makes the task relatively easy with
a 2D face.

• The aspect of what artifacts to look at in 3D is unclear
to the human observers, as they are not trained for this
task.

• The quality of generated 3D morphs is high, so human
observers find it difficult to distinguish the 3D morphs
from the 3D bona fide.

3.3 Vulnerability Study

In this work, we benchmark the performance of the auto-
matic FRS on both 2D and 3D face models. The 2D face
vulnerability is computed using the color image and the 3D
face vulnerability is calculated based on depth-map/point
cloud. We have used two different metrics to benchmark the
vulnerability assessment that, includes Mated Morphed Pre-
sentation Match Rate (MMPMR) [49] and Fully Mated Mor-
phed Presentation Match Rate (FMMPMR) [50]. MMPMR
can be defined as the percentage of morph samples which
can be verified with all the contributing data subjects [50].
However, MMPMR does not consider the number of at-
tempts made during score computation. This is rectified in
FMMPMR [50], where the morphing image sample should
be verified across all the attempts. The higher value of
MMPMR and FMMPMR indicates the higher vulnerability
of the FRS. The vulnerability analysis is performed by
enrolling the morphing image (2D/3D) and then obtaining
the comparison score by probing both contributory data
subjects’ face images (2D/3D). To compute the vulnerability
of 2D face morphing images, we have used two different
FRS such as Arcface [2] and a Commercial-off-the-Shelf
(COTS) FRS 4. The 3D face vulnerability analysis uses
Deep Learning-based FRS such as Led3D [52] and Point-
Net++ [51]. The thresholds for all FRS used in this work
are set at FAR=0.1% following the guidelines of Frontex for
border control [57].

4. The name of the COTS is not indicated to respect confidentiality
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Fig. 9: Vulnerability Plots using 2D & 3D FRS on 3D Morphing dataset (3FMD) (a) 2D face FRS using Arcface [2], (b) 2D
face FRS using COTS, and (c) 3D face FRS using Led3D [52], and (d) 3D face FRS using Pointnet++ [51]
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Fig. 10: Vulnerability Plots using 2D & 3D FRS on Facescape Dataset (a) 2D face FRS using Arcface [2], (b) 2D face FRS
using COTS, and (c) 3D face FRS using Led3D [52], and (d) 3D face FRS using Pointnet++ [51]

Bona fide Image       Bona fide Depth              Morph  Image           Morph Depth              Bona fide Depth           Bona fide Image

Fig. 11: Illustration of the Color Images and Depth Maps of Bona fide Samples and Face Morphs generated using the
proposed method on Facescape Dataset [56]
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TABLE 3: Vulnerability analysis of 2D and 3D FRS on 3D morphing dataset

Combined Male Female
Algorithm MMPMR% FMMPR% MMPMR% FMMPR% MMPMR% FMMPR%

2D Vulnerability Analysis
COTS 97.45% 89.78% 97.98% 90.65% 94.03% 86.36%

Arcface 63.81% 28.66% 64.92% 27.13% 59.70% 33.33%
3D Vulnerability Analysis

LED3D [52] 81.69% 54.00% 82.67% 51.84% 77.61% 63.64%
PointNet++ [51] 95.65% 80.52% 95.32% 79.42% 95.52% 84.85%

TABLE 4: Vulnerability analysis of 2D and 3D FRS on FaceScape Dataset

Combined Male Female
Algorithm MMPMR% FMMPR% MMPMR% FMMPR% MMPMR% FMMPR%

2D Vulnerability Analysis
COTS 100% 99.9% 100% 99.9% 100% 100%

Arcface 100% 100% 100% 100% 100% 100%
3D Vulnerability Analysis

LED3D [52] 88.8% 88.8% 90.5% 90.5% 84.9% 84.9%
PointNet++ [51] 95.4% 95.4% 94.1% 94.1% 97.5% 97.5%

3.3.1 Quantitative vulnerability results on 3D morphing
dataset
The results are summarized in Table 3, and the vulnerability
plots are shown in Figure 9. Based on the obtained results, it
can be noted that (1) Both 2D and 3D FRS are vulnerable to
the generated face morphing attacks (2) Among the 2D FRS,
the COTS indicates the highest vulnerability compared to
the Arcface FRS. (3) Among the 3D FRS the PointNet++ [51]
indicates the highest vulnerability. Thus, the quantitative
results of the vulnerability analysis indicate the effectiveness
of the generated 3D face morphing attacks.

3.3.2 Quantitative vulnerability results on Facescape
dataset
We have employed 100 unique databases with 56 male and
44 female data subjects. For each data subject, we have
selected two 3D face scans. One is used to generate the 3D
face morphing, and another is used as the probe image to
obtain the comparison score to compute the vulnerability
metrics. We then used the proposed method to get the
3D morphing models, resulting in 2486 morphing models.
Figure 11 shows the example of the proposed 3D morphing
generation samples together with the bona fide 3D scans
from Facescape Dataset [56]. The quantitative vulnerability
results on the Facescape dataset are indicated in Table 4,
and the vulnerability plots are shown in Figure 10. Here
also, it can be noticed that the proposed 3D face morphing
generation samples exhibit a high vulnerability with both
2D and 3D FRS. Among 2D FRS, both COTS and Arcface
indicate a similar vulnerability with MMPMR = 100%. How-
ever, among 3D FRS, PointNet++ [51] shows the highest
vulnerability.

Thus, based on the vulnerability analysis reported on
3DMD and Facescape datasets with 2D and 3D FRS, the pro-
posed 3D face morphing technique indicates a consistently
high vulnerability. The vulnerability is noted high with the
Facescape dataset compared to the 3D morphing dataset.

The variation in the vulnerability performance across differ-
ent FRS can be attributed to the type of feature extraction
and classification techniques employed in individual FRS.
For example, 2D face recognition systems are based on
identity features, whereas 3D-based systems are based on
high-resolution depth and shape.

3.4 Automatic 3D Face Point Cloud Quality Estimation
In this work, we estimate the visual quality based on the
effectiveness of different types of features, including both
color and geometry, as proposed in [58]. This study aims
to quantitatively estimate the quality of the generated 3D
face morphing point clouds and the bona fide 3D face point
clouds to quantify the quality of the proposed morphing
generation. To this extent, five different point cloud features
based on geometry, namely curvature, anisotropy, linearity,
planarity, sphericity, and three color information features,
namely L color component, A color component, B color
component, are computed to benchmark the quality based
on the geometry of the generated 3D morphing models.

TABLE 5: Quantitative values of quality features for 3D face
point clouds corresponding to 3D bona fide and morph
based on color and geometry

3D Face Quality Features (mean ± std. deviation) Data type
Bona fide Morphed

L Color 6.5614±0.2191 6.6076±0.2340
A Color 5.9368±0.3547 5.8546±0.3260
B Color 5.7998±0.5074 5.5326±0.4198

Linearity 2.4708±0.2196 2.4911±0.1776
Sphericity 0.3318±0.0807 0.2936±0.0592
Anisotropy 0.3318±0.0807 0.2936±0.0592
Curvature 0.3330±0.0821 0.2965±0.0606
Planarity 2.4430±0.2176 2.4711±0.1733

Figure 12 shows the box plot of the eight different quality
metrics for both 3D bona fide and 3D morphing point
clouds. The quantitative values (mean and standard devi-
ation) of different quality features are also shown in Table
5. As noted from Figure 9, the quality estimations, mainly
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Fig. 12: Box plots showing the eight different 3D model quality estimation from 3D bona fide and 3D morph based on color
and geometry

based on geometry, indicate the near-complete overlapping
for 3D bona fide and 3D morph. Thus, the proposed 3D
face morphing generation did not degrade the depth qual-
ity. Instead, it has achieved comparable quality based on
geometry from bona fide 3D models used for the morphing
operation. A similar observation can also be noted with the
color image quality estimation.

3.5 3D Face Morphing Attack Detection

In this section, we present our proposed method for a single
3D model-based MAD. Because the 3D face morphing is
extensively presented in this paper for the first time, there
exists no state-of-the-art to detect these attacks. Therefore,
we are motivated to develop 3D MAD techniques to detect
these attacks reliably. The proposed 3D MAD techniques
are based on the pre-trained 3D point-based networks used
to extract the features, as shown in Figure 13. Thus, given
the 3D face point clouds, we first compute the features
from the pre-trained network and in the next step, we feed
the same to the linear support vector machine to make
the final decision on either bona fide or morph. In this
work, we have used three different pre-trained point could
networks such as Pointnet [59], [60], Pointnet++ [51], [60]
and SimpleView [60] independently to benchmark the 3D
MAD performance. All three pre-trained CNNs are trained
on ModelNet40 dataset [61].

The Pointnet [59], [60] is one of the earliest point-based
classifications of deep learning networks invariant to the
permutation of 3D vertices. Given the 3D face point clouds,
we extract the feature from the classification task layer
corresponding to the feature dimension of 4096. The Point-
net++ [51], [60] is the improved version of Pointnet [59],
[60] achieved by introducing a hierarchical neural network
that was applied recursively. In this work, given the 3D face
point clouds, we extract the features from the classification
task layer of Pointnet++ to obtain a 40-dimensional feature
vector. The SimpleView [60] network is based on projecting
the point clouds to multiple view depth maps. In this work,
given the 3D face point clouds, we extract the features from

the classification task layer of the SimpleView network to
obtain a 40-dimensional feature vector.

Fig. 13: Illustration of the proposed 3D face MAD

To effectively benchmark the performance of the pro-
posed 3D MAD, we divide the newly collected dataset into
two independent sets, namely training and testing. The
training set consists of 3D bona fide and morphing samples
from 21 unique data subjects and the testing set consists of
3D samples from 20 unique data subjects. Thus, the training
set consists of 168 bona fide and 194 morphed features and
the testing set consists of 160 bona fide and 151 morphed
features summarized in Table 6. Table 7 shows the quan-
titative performance of the proposed 3D MAD techniques.
Figure 14 shows the performance of individual algorithms
in DET. The performance is benchmarked using ISO/IEC
metrics [62] defined as Attack Presentation Classification
Error Rate (APCER), which is the mis-classification rate of
attack presentations and Bona fide Presentation Classifica-
tion Error Rate (BPCER) is the mis-classification of bona
fide presentation as attacks. Based on the results, the best
performance is obtained with the SimpleView [60] network
with a D-EER of 1.59%.

4 DISCUSSION

Based on the extensive experiments and obtained results
made above, the research questions formulated in Section 1
are answered below.
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Fig. 14: DET Curve for the Proposed 3D Morphing Detection
methods.

TABLE 6: Morphing Attack Detection (S-MAD) Method
Protocol

Train Dataset (21 Subjects)
Bona fide Samples Morphing Samples

168 194
Test Dataset (20 Subjects)

Bona fide Samples Morphing Samples
160 151

TABLE 7: Quantitative performance of the proposed 3D
MAD techniques

Algorithm D-EER (%) BPCER @ APCER =
Proposed Method 5% 10%

Pointnet [59] 2.57 3.12 2.5
Pointnet++ [51] 37.33 81.87 68.12
SimpleView [60] 1.59 2.5 0

• RQ#1. Does the proposed 3D face morphing generation
technique yield a high-quality 3D morphed model?
– Yes, the proposed method of generating the 3D face

morphing has resulted in a high-quality morphed
model almost similar to that of the original 3D bona
fide. The quality analysis reported in Figure 12 and
Table 5 also justifies the quality of the generated 3D
morphs quantitatively as the quality values from 3D
morphing show larger overlapping with the 3D bona
fide. In addition, the human observer analysis reported
in Section 3.2 also justifies the quality of the proposed
3D face morphing generation method as it is found
reasonably difficult to detect based on the artefacts.

• RQ#2. Does the generated 3D face morphing model in-
dicate the vulnerability for both automatic 3D FRS and
human observers?
– Yes, based on the analysis reported in Section 3.3, the

generated 3D face morphing model indicates a high

degree of vulnerability for both automatic 3D FRS and
human observers.

• RQ#3. Are the generated 3D face morphing models more
vulnerable when compared to 2D face images for both
automatic 3D FRS and human observers?
– Equally vulnerable, the 3D face morphing models are

more vulnerable than their 2D counterparts, as shown
in Figure 9 when using automatic FRS.

– However, the vulnerability is almost comparable when
evaluated by a human observer study (see Section 3.2),
where one of the main reasons could be more preva-
lence of 2D morphs, which makes human observers
sensitive about which artifacts to look for.

• RQ#4.Can the 3D point cloud information be used to
detect the 3D face morphing attacks reliably?
– Yes, on using the proposed 3D face morphing attack

Detection approaches (see Section 3.5) the point cloud
information can be used for reliable 3D morphing de-
tection.

5 LIMITATIONS OF CURRENT WORK AND POTEN-
TIAL FUTURE WORKS

Although the work presents a new dimension for face
morphing attack generation and detection, especially in 3D,
this work has a few limitations. In the current scope of
work, the 3D morph generation and detection are carried
out on the high-quality 3D scans collected using the Artec
Eva sensor. We have employed high-quality 3D face scans
to achieve good enrolment quality scans that may reflect
the real-life ID enrolment scenario. Thus, future works
could investigate the proposed 3D morphing generation and
detection techniques using low-quality (depth) 3D scans.
Further, extending the study towards in-the-wild capture
can also be considered in future work. As a second aspect,
the analysis is carried out using 41 data subjects due to
the present pandemic outbreak. However, we have also
presented the results on the publicly available 3D face
dataset, Facescape, with 100 unique IDs. Future work can
benchmark the proposed method on large-scale datasets
with different 3D resolutions. As a third aspect, cleaning
noise from 3D scans is tedious and sometimes requires
manual intervention. Thus, future work can develop a fully
automated noise removal in 3D point clouds to easily the
3D morph generation.

6 CONCLUSION

This work presented a new dimension for face morphing
attack generation and detection, especially in 3D. We have
introduced a novel algorithm to generate high-quality 3D
face morphing models using point clouds. To validate the
attack potential of the newly generated 3D face morphing
attacks, the vulnerability analysis uses 2D and 3D FRS.
Further, the human observer analysis is also presented to
investigate the usefulness of 3D information in morph de-
tection. Obtained results justify the high vulnerability of the
proposed 3D face morphing models. We also presented an
automatic quality analysis of the generated 3D morphing
models that indicate a similar quality as the bona fide 3D
scans. Finally, we have proposed three different 3D MAD
algorithms to detect the 3D morphing attacks using pre-
trained point-based CNN models. Extensive experiments

This article has been accepted for publication in IEEE Transactions on Biometrics, Behavior, and Identity Science. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBIOM.2023.3324684

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

indicate the efficacy of the proposed 3D MAD algorithms
in detecting 3D face morphing attacks.
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