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Abstract—Recently, electromyogram (EMG) has been
proposed for addressing some key limitations of current biomet-
rics. Wrist-worn wearable sensors can provide a non-invasive
method for acquiring EMG signals for gesture recognition
or biometric applications. EMG signals contain individuals’
information and can facilitate multi-length codes or passwords
(for example, by performing a combination of hand gestures).
However, current EMG-based biometric research has two
critical limitations: small subject-pool for analysis and limited
to single-session datasets. In this study, wrist EMG data were
collected from 43 participants over three different days (Days
1, 8, and 29) while performing static hand/wrist gestures.
Multi-day analysis involving training data and testing data
from different days was employed to test the robustness of the
EMG-based biometrics. The multi-day authentication resulted
in a median equal error rate (EER) of 0.039 when the code
is unknown, and an EER of 0.068 when the code is known
to intruders. The multi-day identification achieved a median
rank-5 accuracy of 93.0%. With intruders, a threshold-based
identification resulted in a median rank-5 accuracy of 91.7%
while intruders were denied access at a median rejection rate of
71.7%. These results demonstrated the potential of EMG-based
biometrics in practical applications and bolster further research
on EMG-based biometrics.

Index Terms—Biometrics, electromyogram (EMG), biomet-
ric authentication, personal identification, multi-day dataset,
intruder rejection.

I. INTRODUCTION

B IOMETRICS has become an integral part of current
authentication systems and has found application in con-

sumer electronics, public security, and private security. These
biological and behavioral traits have been utilized to identify
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an individual or verify an individual’s identity. Conventional
biometrics such as fingerprints and facial scans have been
widely used in smartphones and laptops in our daily lives.
However, with technological advancements, there are increas-
ing risks of leakage of biometric data as well as artificial
regeneration (also termed spoof), which can lead to identity
theft. Recently, novel biometric traits based on bio-signals,
such as the electrocardiogram (ECG), electroencephalogram
(EEG), and electromyogram (EMG) have been shown to be
more resilient to spoofing than the conventional biometric
traits [1]. For example, it could be relatively easy to take
pictures and record videos discreetly and use printed pho-
tos to deceive a facial recognition system. On the contrary,
obtaining biosignals would require more coordination and
attaching specialized sensors to unwilling subjects, which
can be used as a liveness detection ability [1]. Among the
bisoignals, surface EMG has been traditionally used in gesture
recognition-based research, specifically for prosthetic control,
where extensive investigation demonstrated EMG-based ges-
ture control has poor cross-user transference performance [2].
In fact, a calibration-free EMG-based gesture recognition
system that does not need new user training has been an
elusive goal in myoelectric control literature. Such difficulty
suggests that there exist inherent individual differences in sur-
face EMG signals. And this is precisely a biometrics trait.
Indeed, multiple recent studies have substantiated EMG as
an accurate biometric trait [3], [4]. In this context, EMG
has an inherent dual-property: gesture recognition and bio-
metrics, providing it with a distinct and important advantage
over other biometric traits. On the one hand, it is more covert
than the traditional traits, such as fingerprint, and less likely
to be compromised and spoofed. On the other hand, it enables
the user to set customized gestures as passcodes for enhanced
security, just like a user-defined password, not possible with
EEG and ECG. Our recent study on multi-code EMG bio-
metrics has provided a framework for the fusion/combination
of these codes and to facilitate such a dual-mode (password
and biometrics) authentication system [5]. Another recent
study used a multi-code framework to incorporate password-
based security and achieved similar results for biometric
authentication [6].

A. State-of-the-Art in EMG-Based Biometrics

There are generally two common biometric modes: authen-
tication and identification [7]. In the authentication mode,
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the biometric system grants or rejects an access request of
the presenting user (claimant) by comparing the presented
biometric data to the template stored in the database. In
this case, the presumed identity of the claimant is a pri-
ori. In the identification mode, however, the presumed
identity of the claimant is unknown, and the biometric
system has to identify the most likely identity from the
database based on the presented biometric information. Some
of the studies have reported a high biometric authentica-
tion [3], [6], [8], [9], [10], [11], [12] and identification
performance [4], [13], [14], [15], [16], [17], [18], [19]. The
number of hand gestures in these studies ranged from 1 to
34. The number of EMG channels varied from as low as one
channel to as high as 256 channels. While most of the stud-
ies had fewer than 25 subjects, only three studies included
larger numbers (>40) of subjects [3], [20], [21], more appro-
priate in the biometric context. In addition, one of the most
important features of a viable biometric trait is its longitudi-
nal robustness across multi-session and multi-day. However,
most studies in the literature were limited to data acquired
within only one session or one day. A few studies with a
small subject pool (<22), with data from a two-day proto-
col [4], [9]. Only one study had five subjects with a four-day
data collection protocol [22]. It has been established in the
EMG processing literature, that in a multi-session protocol
spreading across days, non-stationary factors including elec-
trode shifts, sweat, dry skin, and physical conditions will
affect the accuracy and consistency of the EMG processing
system [23]. Therefore, the multi-day performance with a suf-
ficiently large subject pool is a crucial step for validating the
effectiveness of EMG as a biometric trait. Furthermore, in a
more practical identification mode scenario, intruders (unregis-
tered users) might claim access to a biometric system [13]. An
intruder analysis should be further performed, where an ini-
tial threshold-based grant/reject is employed to check for the
authenticity of a claiming user and then followed by individual
recognition.

Most studies in the literature used EMG data acquired
from the forearm, which is not convenient for consumer-
based applications, such as biometrics. There has a been
recent change in focus from the forearm to the wrist,
specifically for gesture recognition applications for more
general-consumer use [24]. The wrist presents a more feasi-
ble and attractive position for biometrics applications because
wrist-worn devices are well-established and ubiquitous. For
this purpose, the current study utilizes EMG signals col-
lected from the wrist while performing hand gestures. A
wrist electrode setup will facilitate the research and devel-
opment of industry-grade wearable wrist- bands, which have
previously been explored for gesture recognition [25] and bio-
metric authentication applications [21], [26]. For the scope
of this paper, the multi-day biometric analysis was per-
formed on the wrist-worn EMG over three sessions over
the span of 30 days. The biometric benchmarks of both
authentication and identification were presented. Additionally,
the intruder analysis for the identification mode was
investigated.

Fig. 1. Positions of the six electrodes on the wrist (dorsal view, three
electrodes are on the posterior wrist surface). The electrodes were equally
spaced around the wrist at a distance of one cm from the styloid process. The
monopolar EMG of each ring was acquired for subsequent processing and
analysis.

II. METHODS

A. Participants

We recruited 43 healthy participants (23 M, 20 F) for the
study. The average age was 26.4±2.89, and the average fore-
arm length (measured from the styloid process on the wrist to
the olecranon on the elbow) was 25.2±1.74 cm. The average
wrist circumference (measured at a distance of one cm away
from the ulnar styloid process) was 16.2±1.21cm. Before
the experiment, the participants were informed of the proce-
dures and signed an informed consent form. The experiments
were conducted following the Declaration of Helsinki and the
research protocol was approved by the Office of Research
Ethics of the University of Waterloo (ORE# 31346).

B. Acquisition Setup

The experimental setup consisted of a PC and a monitor
mounted on a desk, 0.75 m in front of a height-adjustable
chair. The EMGUSB2+ (OT Bioelettronica, Italy), a bio-
signal commercial amplifier, was used for acquiring the EMG
signals. The signals were bandpass filtered between 10 Hz and
500 Hz, with a gain of 500, and then sampled at 2048 Hz.

Before the experiment, the participant’s forearm length is
measured as the distance between the olecranon process and
the ulnar styloid process. The wrist circumference is measured
at one cm away from the ulnar styloid process in the proxi-
mal direction. After taking these measurements, the electrodes
are placed on the wrist. Prior to electrode placement, the skin
surface was shaved to remove hairs, cleaned with an alco-
hol swab, and abraded with a paper towel. Six monopolar
EMG electrodes (AM-N00S/E, Ambu, Denmark) were placed
in the form of a ring, equally spaced around the wrist. A
detailed pictorial representation is provided in Fig. 1. To main-
tain consistency of the positions of the electrodes across all
participants, the first electrode in the ring was anatomically
positioned on the centerline of the elbow crease and the rest
of the electrodes were numbered in clockwise order from one
to six as shown in Fig. 1 [4], [10]. The electrodes were part
of a multi-ring forearm and wrist setup as described in the
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data descriptor which also provides additional details on the
acquisition setup [27], [28].

C. Experimental Protocol

After the completion of the experimental setup, the partici-
pant is seated comfortably on the chair with both their upper
limbs in a resting position. Visual instructions for performing
the gestures were provided on the computer screen placed in
front of the participants. The following 16 hand and wrist ges-
tures were included in the current study: Lateral prehension
(LP), thumb adduction (TA), thumb and little finger opposition
(TLFO), thumb and index finger opposition (TIFO), thumb
and little finger extension (TLFE), thumb and index finger
extension (TIFE), index and middle finger extension (IMFE),
little finger extension (LFE), index finger extension (IFE),
thumb extension (TE), wrist flexion (WF), wrist extension
(WE), forearm supination (FS), forearm pronation (FP), hand
open (HO), and hand close (HC). A pictorial representation
of the gestures is provided in the Appendix. The order of
the 16 gestures was randomized and a resting (REST) trial
was collected after all 16 gestures were performed once. A
ten-second relaxing period was provided between each trial.
One continuous data acquisition of 17 gestures, including the
REST, is called one run. Each subject performed seven runs,
resulting in 119 trials or contractions (17 x 7). The subject
could also request additional rest when he/she felt necessary.

D. EMG Signal Processing

The monopolar EMG signals from the six channels were
first re-referenced by a common average procedure where for
every sample, the mean of the six channels was subtracted
from each channel. The processed signals were then segmented
into 200 ms width windows, with a 150 ms overlap. Each
window was then processed using the frequency division tech-
nique (FDT) feature extraction [29]. This method calculates
the magnitude of L frequency bands. For the ith band, let fi,1,

and fi,E denote the frequency values of the two endpoints. As
such, for each window, the ith feature is calculated as:

FDTi = F
[∑ni

j=1
|X(fi,j)|

]
, i = 1, 2, . . . L, (1)

where X(·) denotes the magnitude of the FFT spectrum,
and F[·] denotes a logarithm operator to obtain a smooth
value for better classification results. In the current study, the
whole EMG frequency band (20–450 Hz) is subdivided into
six equal-width frequency bands: 20–92, 92–163, 163–235,
235–307, 307–378, and 378–450 Hz, consistent with prior
studies [30]. Therefore, for a single sample recorded from the
six channels, the feature vector extracted from each window
comprises 36 FDT features. For each trial recording of five
seconds long, the extracted features result in P × D matrix
where P equals 33 and D equals 36. Multiple trials from dif-
ferent days were used for training (termed as enrollment) of
biometric models as discussed in a later section (Section II-H).
The testing data involved biometric matching as described
below.

The Mahalanobis distance, which takes into consideration
the correlation between features, was considered for biometric

comparisons [4], [5], [10]. In these studies, the Mahalanobis
distance was robust to the high similarities between the EMG
signals from neighboring channels. For a given feature vec-
tor sample p, which is the input from a specific user (the
claimant) while performing a specific gesture, its matching
score, Si,j, with the ith gesture and the jth user, was defined
as the Mahalanobis distance between the sample and the class
centroid:

Si,j(p) =
√(

p − µi,j
)�

�−1
i,j

(
p − µi,j

)
, (2)

where μi,j is the centroid of the gesture of the class and the
user, and �i,j is the covariance matrix for the specific gesture
and user class. Both the centroid and covariance were esti-
mated from the enrollment data based on the within-day and
cross-day analysis (details in Section II-H).

E. Multi-Code Biometric Framework

A standard biometric system consists of five modules:
1) sensor module which collects the biometric data, 2) feature
extractor for generating feature vectors utilized as biometric
entries, 3) matcher module that compares with the genuine
user’s template to generate a score, 4) ranking module that
produces a rank after sorting the scores for all the users
and 5) decision module to grant access or rejection based
on a pre-set threshold [31]. In the authentication mode, the
ranking module is absent and hence the decision is made
on the scores (access granted or rejected). In the identifica-
tion mode, the usual practice is that the K identities with
the top K highest scores are stored, and if the claimed iden-
tity is one of these K identities, authorization of the claim
is rendered. Fusion strategies at different modules for EMG-
based biometric authentication have been investigated, and the
decision-level fusion approach was found to produce the best
overall performance [5]. The performed hand/wrist gestures
are treated as codes in the context of EMG biometrics. An
example of a user’s authentication code sequence of code-
length M can be denoted as [C1, C2 . . . Cm, . . . , CM], where
Cm is the mth code (gesture). For the analysis presented below,
50 random sequences were generated by combining randomly
selected four gestures out of the 16 gestures performed by each
participant. A decision-level fusion of each code sequence was
employed as described below, and the evaluation metrics were
compared for a single-code (M = 1) and a multi-code con-
figuration (M = 4) based on previous findings [5]. For the
identification mode, an additional parameter rank-K was ana-
lyzed by varying the value of K (K = 1–15) for the single-code
and multi-code configurations for each code sequence.

A weighted majority scheme was used for the M codes
of the multi-code framework. In the authentication mode, the
extracted feature from claimant data is compared to the corre-
sponding template in the database. Hence, the authentication
result is binary: 1 (for genuine user) and 0 (for impostor).

The identification mode is a multi-class problem with J
comparisons between the claimant and all the templates in the
database (total users = J). However, only when the claimant
is within the top K users, a positive identification will be ren-
dered. For M codes, let dm,j be the degree of certainty or the
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mth code (Cm) and jth user defined as

dm,j =
{

1, Cm is correct for j
0, otherwise

. (3)

The discriminant function for each user ‘j’ obtained through
the weighted voting is

gj =
M∑

m=1

wmdm,j, (4)

where wm is the weight attached to the mth code. Here wm is
the single-code recognition accuracy of each gesture, averaged
over the three days. Based on the value of M, wm is then
normalized to 1.

M∑
m=1

wm = 1. (5)

In the case of an authentication system, the claimant
matches with the template if the discriminant g has a majority
(> 50%). For the identification system, the claimant is assigned
with the template with the highest value of g. The weight
wm was previously determined by the recognition accuracy of
individual gestures which are listed in the Appendix.

F. Authentication and Identification Evaluation

The false acceptance rate (FAR) and the false rejection rate
(FRR) were calculated to evaluate biometric authentication.
FAR is the rate of accepting an impostor, and FRR is the
rate of rejecting a genuine user. In principle, the FAR and
FRR should be as small as possible for biometric applications.
The detection error tradeoff (DET) curve is the relationship
between the FAR and FRR. The equal error rate (EER) is the
point on the DET curve where the FAR is equal to the FRR.
The EER is a commonly used authentication metric that can
be used to compare the performance of different biometric
traits: The lower the EER value, the better the performance.
Additionally, the area under the DET curve (AUC) value was
also evaluated. For an accurate assessment of the biometric
authentication capacity of the EMG biometrics, two common
authentication scenarios were investigated: 1) Normal Test:
where the correct code sequence was only known to the gen-
uine user, while the impostor had no knowledge of the code
sequence and presented a random sequence different from the
one used by the genuine user; 2) Leaked Test: where the cor-
rect code sequence for the genuine user was compromised, and
the impostor presented the correct code sequence by perform-
ing the corresponding gestures. This is the scenario where the
knowledge-based security is completely compromised, and the
system is solely dependent on the biometric security.

In both cases, for the mth code in a single-code (M = 1) or
multi-code (M = 4) configuration, the genuine score, Gm, was
obtained from the authentication gesture Cm of the genuine
user. In the normal test, the impostor score Im was obtained
from the other gestures performed by other users. For the
leaked-test scenario, Im was obtained from Cm for all the
other users. The weighted majority decision fusion scheme
was implemented using Gm and Im to obtain the final FARM ,
FRRM , and EERM.

Fig. 2. The normal test and the leaked test scenarios for biometric authenti-
cation. In both the scenarios the target user’s identity is known to the claimant.
The access code is unknown to the claimant in the normal test scenario, while
it is known to the claimant in a leaked test scenario.

For the identification mode, the rank-K accuracy is defined
as the probability of correctly predicting the genuine user
within the top K likely users returned by the system for a
code sequence of codelength M. As the identification is a 1:J
comparison (J = total users), the unknown presenting user
is compared to J templates in the database, and J scores are
generated. The returned identities are sorted according to the
scores and the top-K users are selected. The value of rank-
K accuracy is proportional with respect to the value of K,
i.e., the higher the K, the more likely it is for the genuine
user to be returned. Their relation was summarized by the
cumulative match characteristic (CMC) curve, which plotted
rank-K against K, where K varied from 1–15. This analysis
was repeated 50 times for randomly generated code sequences
for the single-code and multi-code configurations as described
previously in Section II-E. For both the authentication and
identification mode, a cross-validation scheme corresponding
to the multiple days and trials was incorporated as described
in Section II-H. As the commonly used metrics, the values
of rank-1, rank-3 and rank-5 accuracy were reported in this
study.

G. Intruder Analysis for Identification mode

The standard identification analysis does not include the
scenario in which an intruder is an unregistered user. For such
a scenario, an “authentication + identification” approach is
taken, where the intruder can be rejected by a threshold-based
authentication stage before the identification stage [13]. This
threshold-based authentication stage introduces the threshold
value (Thi,j) for the ith gesture and the jth along with tem-
plate parameters μi,j, and

∑
i,j. From N training samples, the
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Fig. 3. (From left to right) Within-day, Single cross-day and Cumulative cross-day analysis. The corresponding training (enrollment) data for each analysis
are represented in green; the testing (claimant) data are represented in dark green (for within-day analysis) and blue (for cross-day analysis). The x-axis
represents the timeline of the study consisting of multiple days; the x-axis tick marks represent the different trials performed in one day. Each of the analysis
is repeated for the three days.

threshold value is defined as the upper limit of the scores
obtained by matching with the template mean and covariance
(Eqn (2))

Thi,j = max
([

Si,j,1, Si,j,2, . . . , Si,j,N
])

(6)

Decreasing the threshold value reduces the number of
intruder matches, however, the correct identification of the
true user also decreases. Based on preliminary results and due
to its simplicity, the maximum training score was chosen as
the threshold value. For the intruder analysis, score Si,jwas
obtained from Eqn. (2) by matching an unknown user with a
template, which is further compared to the threshold Thi,j

Si,j =
{

Si,j, Si,j ≤ Thi,j

False, Si,j > Thi,j.
(7)

For a registered user, only the true matches (Eqn. (3))
were returned, and the scores were further sorted. The rank-5
accuracy was estimated similar to the standard identification
analysis as described previously. In the case of an intruder,
successful rejection (Eqn. (3)) from all the registered users’
contributed to the rank-5 accuracy. A different evaluation met-
ric, the intruder rejection rate (IRR) was defined as the ratio
of correct rejections after matching an intruder’s data with all
the registered users

ORR =
[∑N

i=1 Sj == False
]

∑
j

, j = 1, 2 . . . , J (8)

For the intruder analysis, the data from 42 users were reg-
istered to the biometric system and one user was considered
an intruder. This was repeated 43 times in a leave-one-
out cross-validation scheme and the rank-5 accuracy and
IRR were reported. This was repeated 50 times for ran-
domly generated code sequences used as biometric tokens
for identification. Further, this entire analysis was repeated in
cross-validation schemes corresponding to the multiple days
and trials, which were incorporated as described in the follow-
ing section. The purpose of the intruder analysis is to assess
the performance degradation in the presence of unregistered

users and the threshold-based rejection schemes for reducing
such intrusions.

H. Multi-Day Analysis

In the current study, data was collected from each user
over three different days comprising seven trials each and
16 gestures in each trial. The biometric authentication and
identification performance evaluation was investigated in three
multi-day analyses: within-day analysis and two separate
cross-day analyses, namely single cross-day (SCD) and cumu-
lative cross-day (CCD). For the within-day analysis, six
trials of the gestures each day were used as enrollment
data (training) and the remaining one trial of that day was
used as claimant data (testing), resulting in a leave-one-
out (LOO) cross-validation scheme, equivalent to seven-fold
cross-validation. The biometric performance for each fold was
estimated as described in Section II-F. The cross-validation
was repeated for each of the three days and the average
performance metrics were reported.

For the single cross-day analysis, six trials of the ges-
tures from one day were used as the enrollment data and
the data from one trial from each of the remaining two days
were used as the claimant data. This step was repeated seven
times by varying the enrollment and claimant trials from
the specific days and thus resulting in between-day seven-
fold cross-validation. The cross-validation was repeated three
times each day and the average biometric performance was
reported.

For the cumulative cross-day analysis, six trials of the ges-
tures from two of the three days were used as the enrollment
data and the data from one trial from the remaining one day
was used as the claimant data. Seven-fold cross-validation for
all seven trials was implemented by varying the enrollment
and claimant trials from the specific days. The cross-validation
was repeated three times each day and the average biomet-
ric performance was reported. A graphical representation of
the within-day, single cross-day, and cumulative cross-day
analysis is provided in Fig. 3.



558 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 5, NO. 4, OCTOBER 2023

Fig. 4. Biometric authentication performance using EER (A) and AUC (B). For the multi-day authentication performance (A), the single-code and multi-code
EER values for the normal test and leaked test scenario are shown. The x-axis represents the three multi-day analyses: within-day (WD), single cross-day
(SCD) and the cumulative cross-day (CCD) and the y-axis represents the performance error. Each boxplot represents the interquartile range (IQR, 25th – 75th

percentile) and the center horizontal line represents the median EER value. The whiskers (solid vertical lines) represent the datapoints within the 1.5*IQR
threshold. The outliers (solid black circles) are defined as those individuals whose EER was greater than the 1.5*IQR threshold.

I. Statistical Analysis

The study aimed to investigate the multi-day biometric
performance of the wrist EMG biometric system. The
performance of a multi-code EMG system was compared to
the single-code configuration. For each of the three analysis
scenarios, i.e., within-day, single cross-day, and cumulative
cross-day, a Wilcoxon rank sum test was performed on the
EER and AUC of the authentication mode, rank-1, rank-3 and
rank-5 accuracy of the identification mode, rank-5 accuracy
and IRR of the intruder analysis to determine if there was any
significant difference between the single-code and multi-code
configuration. To compare the performance of each metric
between the three multi-day analyses (WD, SCD, and CCD),
pairwise comparisons were performed using the Wilcoxon
rank sum test, while keeping the configuration level (single-
code and multi-code) fixed. Additionally, for the intruder
analysis, the Wilcoxon rank sum test was used to compare
the rank-5 accuracy to the corresponding values for the stan-
dard identification analysis. All statistical tests were performed
using RStudio 1.0. 136 (RStudio, Boston, MA, USA).

III. RESULTS

Fig. 4 shows the biometric performance in a single-code
and multi-code configuration for the three timeline-specific
analyses (termed as multi-day analysis for further representa-
tion): within-day, single cross-day, and cumulative cross-day
for the biometric authentication. Fig. 4A shows the EER and
Fig. 4A shows the AUC distribution in a normal test and
leaked test scenario of the authentication mode. Fig. 5 presents
rank-1, rank-3 and rank-5 accuracy of the identification mode.

The individual user performance for the identification mode
(rank-5 accuracy) for the three multi-day analyses is shown
in Fig. 6. Fig. 7 shows the DEC curves for the two scenar-
ios of the authentication mode and the CMC curve for the
identification mode.

As expected and evident from Fig. 4, the within-day
performance was significantly higher (p<0.001) than the other
two timeline-specific analyses. Further, the median EER of
the cumulative cross-day analysis was significantly lower than
the single cross-day analysis (p<0.001) which is described in
Section III-C.

While comparing CCD performance to the SCD
performance, an overall dominance of CCD was observed
for the testing scenarios (normal test, leaked test, and iden-
tification). Specifically, for the multi-code configuration in a
normal test scenario, the median EER (0.068, Q1 = 0.041,
Q3 = 0.125) for the CCD was significantly lower (p<0.001)
than the corresponding median EER (0.039, Q1 = 0.029,
Q3 = 0.072) for SCD analysis. For the identification mode,
the multi-code configuration resulted in a median rank-5
accuracy of 93.0% (Q1 = 82.3%, Q3 = 98.0%) for the CCD
which was significantly higher (p<0.001) than the correspond-
ing SCD median rank-5 accuracy of 85.1% (Q1 = 66.6%,
Q3 = 91.6%). This result was particularly encouraging, as it
indicates the training data from two different days were homo-
geneous enough to provide significant benefits for biometric
authentication, providing a basis for further incremental adap-
tive training. For each of the three timeline-based analyses
and the two biometric application modes, the detailed anal-
ysis of single-code and multi-code performance is presented
below.
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Fig. 5. DET and CMC curves for the biometric tests. The averaged detection error DET curves for the two authentication scenarios: normal test (A) and
leaked test (B), in three multi-day analyses: within-day (WD), single cross-day (SCD) and cumulative cross-day (CCD) and the two configurations: single-code
and multi-code. The x axis represents the FAR values, and the y axis represents the FRR values. The averaged CMC curves (B) is shown for the identification
mode in the three multi-day analysis and the two configurations. The x axis represents the Rank (K) of the identification system, and the y axis represents
the identification accuracy.

A. Within-Day Analysis

For the authentication mode, the within-day performance
of the single-code (M = 1) configuration in the normal and
leaked test scenarios had a median EER of 0.028 (Q1 = 0.018,
Q3 = 0.038) and 0.04 (Q1 = 0.026, Q3 = 0.052),
respectively. The performance of the multi-code framework
(M = 4) was significantly improved (p<0.001), as expected
and the performance reached a median EER value of 0.004
(Q1 = 0.001, Q3 = 0.008) for the normal test and median
EER of 0.006 (Q1 = 0.002, Q3 = 0.011) for the leaked test
scenario. A similar trend was observed for the median AUC
values (Fig. 4B). The median AUC values for the multi-code
framework were 0.001 (Q1 = 10−5, Q3 = 0.002) in the nor-
mal test scenario and 10−5 (Q1 = 10−5, Q3 = 0.001) in the
leaked test scenario.

For the identification mode, the within-day performance of
the single-code configuration reported a median rank-1 accu-
racy of 90.0% (Q1 = 86.9% and Q3 = 91.4%) and median
rank-5 accuracy of 97.9% (Q1 = 97.3%, Q3 = 98.4%). For
the multi-code configuration, the median rank-1 accuracy was
99.0% (Q1 = 98.1% and Q3 = 99.5%) and the median rank-5
accuracy was 99.9% (Q1 = 99.8%, Q3 = 99.98%) which
was significantly higher than the corresponding single-code
performances (p<0.001).

B. Single Cross-Day Analysis

For the authentication mode in an SCD analysis, the single-
code configuration had a median EER of 0.133 (Q1 = 0.091,
Q3 = 0.191) for the normal test scenario, which was sig-
nificantly higher (p<0.001) than the median EER (0.72,
Q1 = 0.044, Q3 = 0.115) of the multi-code configuration.
Similarly, for the leaked test scenario, the single-code con-
figuration resulted in a median EER of 0.181 (Q1 = 0.136,

Q3 = 0.256) which was significantly higher (p<0.001) than
the median EER (0.101, Q1 = 0.068, Q3 = 0.189) of the
multi-code configuration. A similar trend was observed for the
median AUC values (Fig. 4B). The median AUC values for the
multi-code framework were 0.026 (Q1 = 0.011, Q3 = 0.053)
in the normal test scenario and 0.043 (Q1 = 0.024,
Q3 = 0.103) in the leaked test scenario. As expected, the
median EER values for the leaked test were significantly higher
(p<0.001) than the median EER values of the normal test, for
both the single-code and multi-code configurations.

For the identification mode in an SCD analysis, it was found
that significantly better performances (p<0.001) were obtained
for the multi-code configuration than for the single-code con-
figuration. The multi-code configuration reported a median
rank-1 accuracy of 45.7% (Q1 = 30.1%, Q3 = 67.6%) and a
median rank-5 accuracy of 85.1% (Q1 = 66.6%, Q3 = 91.6%)
which was higher than the corresponding single-code rank-1
accuracy of 33.6% (Q1 = 21.0%, Q3 = 46.6%) and rank-5
accuracy of 67.7%, (Q1 = 54.1%, Q3 = 76.3%).

C. Cumulative Cross-Day Analysis

For the authentication mode in the CCD analysis, the single-
code configuration had a median EER of 0.09 (Q1 = 0.069,
Q3 = 0.136) for the normal test scenario, which was sig-
nificantly higher (p<0.001) than the median EER of 0.039
(Q1 = 0.029, Q3 = 0.072) of the multi-code configuration.
Similarly, for the leaked test scenario, the single-code con-
figuration resulted in a median EER of 0.145 (Q1 = 0.101,
Q3 = 0.209) which was significantly higher (p<0.001) than
the median EER (0.068, Q1 = 0.041, Q3 = 0.125) of the
multi-code configuration. A similar trend was observed for the
median AUC values (Fig. 4B). The median AUC values for the
multi-code framework were 0.028 (Q1 = 0.012, Q3 = 0.063)
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Fig. 6. Individual identification performance. The rank-5 accuracy for all the
users for the WD (top), SCD (middle) and CCD (bottom) analysis is illus-
trated. The multi-code values are shown in violet color and the corresponding
single-code values are shown in green color.

in the normal test scenario and 0.017 (Q1 = 0.006,
Q3 = 0.033) in the leaked test scenario. Similar to the WD
and SCD analysis, the median EER values for the leaked test
were significantly higher (p<0.001) than the median EER val-
ues of the normal test, for both the single-code and multi-code
configurations.

For the identification mode in a CCD analysis, it was found
that the multi-code configuration performed significantly better
(p<0.001) than the single-code configuration. The multi-code
configuration reported a median rank-1 accuracy of 66.9%
(Q1 = 51.4%, Q3 = 80.9%), median rank-3 accuracy of
88.8% (Q1 = 70.9%, Q3 = 95.9%) and a median rank-5
accuracy of 93.0% (Q1 = 82.3%, Q3 = 98.0%) which was
higher than the corresponding single-code rank-1 accuracy of
48.4% (Q1 = 33.3%, Q3 = 58.1%), median rank-3 accuracy
of 71.5% (Q1 = 54.8%, Q3 = 78.5%) and rank-5 accuracy
of 79.5%, (Q1 = 66.2%, Q3 = 86.0%).

D. Intruder Analysis for Identification Mode

The effect of an intruder was analyzed for the identifica-
tion mode in each of the three multi-day analyses. Fig. 7
shows the rank-5 accuracy and the IRR in a single-code
and multi-code configuration identification mode. As expected,
it was observed that the rank-5 accuracy decreased in all
three multi-day analyses (WD, SCD, and CCD), compared to
the standard identification analysis. Specifically for the CCD
scenario, the multi-code configuration reported a significant
decrease (p<0.001) in median rank-5 accuracy from 93.0%
(Q1 = 82.3%, Q3 = 98.0%) for the standard analysis to 91.7%
(Q1 = 79.3%, Q3 = 96.5%) for the intruder analysis. For
the SCD scenario, the multi-code configuration reported a sig-
nificant decrease (p<0.001) in median rank-5 accuracy from

Fig. 7. Biometric identification performance. The rank-1, rank-3 and rank-5
accuracy for the single-code and multi-code configuration are shown. The
x-axis represents the three multi-day analyses, and the y axis represents the
rank-K accuracy where K = 1,5. Each boxplot represents the interquartile
range (IQR, 25th – 75th percentile) and the center horizontal line represents
the median accuracy value. The whiskers (solid vertical lines) represent the
datapoints within the 1.5*IQR threshold. The outliers (solid black circles) are
defined as those individuals whose accuracy was greater than the 1.5*IQR
threshold.

85.1% (Q1 = 66.6%, Q3 = 91.6%) for the standard analysis to
82.9% (Q1 = 61.7%, Q3 = 90.6%) for the intruder analysis.
For all three multi-day analyses, the multi-code configuration
had significantly higher rank-5 accuracy (p<0.001) than the
single-code configuration.

For the multi-code configuration, the median IRR was sig-
nificantly higher (p<0.001) for the WD (96.1%, Q1 = 95.6%,
Q3 = 96.8%) than the SCD (75.5%, Q1 = 70.4%,
Q3 = 80.8%) which was significantly higher than the CCD
(71.7%, Q1 = 65.7%, Q3 = 77.1%) analysis. For the CCD
analysis, it was observed that the multi-code configuration
had a significantly higher (p<0.001) median IRR (71.7%,
Q1 = 65.7%, Q3 = 77.1%) than the single-code configuration
(67.3%, Q1 = 62.1%, Q3 = 70.7%). This was also consistent
with SCD and WD analysis. For all three multi-day analyses,
the multi-code configuration had significantly higher rank-5
accuracy (p<0.001) than the single-code configuration.

IV. DISCUSSION

The study presented the multi-day performance of bio-
metric authentication and identification on the largest EMG
hand-gesture dataset. The single-code configuration was com-
pared to the multi-code configuration as the latter facili-
tates the fusion of hand gestures for improved biometric
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Fig. 8. Intruder analysis for the identification mode. For the multi-day authen-
tication performance, the single-code and multi-code rank-5 accuracy and IRR
values are shown. The x-axis represents the three multi-day analyses: within-
day (WD), single cross-day (SCD) and the cumulative cross-day (CCD) and
the y-axis represents the rank-5 accuracy (left) and the IRR (right). Each box-
plot represents the interquartile range (IQR, 25th – 75th percentile) and the
center horizontal line represents the median rank-5 accuracy/IRR value.

performance. Two evaluation scenarios for the authentication
mode, i.e., the normal and leaked test, and the identification
mode were investigated. The normal test scenario corre-
sponds to the dual-security comprising both biometric-level
(i.e., individual-specific characteristics in EMG signal) and
knowledge-level (specific hand-gesture/code sequence). The
leaked test scenario corresponds to the situation when the
knowledge-level security (code sequence) is compromised, and
only the biometric-level security is retained. The identification
mode corresponds to the scenario where the system performs
individual recognition from a database. Additionally, a more
practical identification analysis involving intruders and their
rejection was investigated. A within-day (WD) and cross-
day, (SCD and CCD) analyses were performed for each of
the comparisons and the results demonstrated the biometric
performance, as discussed in the following sections.

A. Single-Code vs Multi-Code Biometric Performance

The single-code (or the single gesture) configuration was
compared to the multi-code (code sequence of four randomly
selected gestures) configuration. As expected, there was an
overall reduction in authentication EER and an increase in
identification accuracy with the multi-code configuration than
with the single-code configuration. These findings were in
agreement with multiple password-based studies using EMG
from gestures [4], [6], [9], [13]. The findings in the current
study were also consistent with a previous study that per-
formed only the within-day analysis on a forearm setup [5].
For all the codelengths, it was observed that the leaked test
scenario had a higher EER than the normal test scenario,

thus suggesting that an improved performance is achieved by
leveraging the knowledge-level security mode of EMG, i.e.,
with user-defined code sequences. This is a unique advan-
tage of EMG-based biometrics as compared to other biosignals
such as EEG and ECG, for which such knowledge-level secu-
rity feature is not available [5]. While the identification mode
inherently does not allow customized codes for individuals,
it facilitates the fusion of multiple codes to form a universal
code sequence which can improve personal recognition.

B. Multi-Day Analysis

For both the single-code and multi-code configurations, it
was observed that there was significant degradation in the
authentication and identification performance in the cross-day
analysis as compared to a within-day analysis. This is expected
as the EMG signals are affected by non-stationary factors
such as electrode shift, skin conditions (dry vs sweat), and
physical conditions (rested vs exercising) [32]. While com-
paring the two cross-day analyses for the authentication mode,
the CCD authentication EER was significantly lower than the
SCD authentication EER for both the normal and leaked test
scenarios. Similarly, it was observed that CCD identification
accuracy was significantly higher than the SCD identification
accuracy. This suggests that EMG data from different days
do have enough homogenous information such that training
with data from multiple days improves the biometric authenti-
cation performance. For the CCD analysis (training data from
multiple days), a multi-code configuration resulted in a median
authentication EER of 0.039 for the normal test and a median
accuracy of 93% for the identification mode, which are com-
parable to most conventional biometrics as discussed in the
following section. It was observed that some participants had
an abnormally low identification performance, as compared
to the rest of the participant pool (Fig. 6). This could be
due to the shift in electrode positions causing a mismatch in
the feature vectors. Some strategies to address electrode-shifts
in future studies are discussed in Section IV-E. This would
also help achieve higher rank-1 accuracy than the present
study (66.9%). The cross-day analysis is crucial for evalu-
ating a biometric system, as the results need to be consistent
over multiple days. In the following sections, the CCD anal-
ysis (unless specified otherwise) will be used to discuss the
biometric performance.

C. Comparison With State-of-the-Art EMG Biometrics

A systematic comparison with EMG baseline studies has
been challenging due to the differences in experimental proto-
col, feature extraction strategies, biometric analysis, and fusion
strategies used. The WD performance was comparable to an
identical forearm electrode setup [5], [10], suggesting that the
wrist, a more convenient position for wearable devices can
be considered for biometric applications. This finding was in
agreement with another study where the wrist setup performed
comparably if not better than the forearm setup in a gesture
recognition application [24]. For the cross-day comparisons,
we have focused on comparing the results of those biometric
studies that incorporated a multi-day factor.
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TABLE I
BIOMETRIC TRAITS CHARACTERISTICS [1]

1) Biometric Authentication: One study investigated a
password-based EMG biometrics of codelength eight and
reported a normal-test EER of 0.012 and the leaked-test
EER of 0.1496 [6]. Another study involving a similar multi-
code password of codelength 12 reported a normal-test EER
of 0.0013 and the leaked-test EER of 0.0273 [9]. Another
study incorporated a multi-day investigation, however, dif-
ferent codelengths were not investigated. They reported an
average EER of 0.1634 for eight individual gestures [22].
While comparing these studies, the current study reported a
median EER of 0.039 for the normal test and a median EER
of 0.068 for the leaked test scenario which is in agreement.
These findings can help further ongoing research on unlocking
smartphones, or developing wristband devices for biometric
authentication [20], [21].

2) Biometric Identification: Another identification study
has investigated multiple protocols, codelengths, and electrode
layouts for improving biometric performance [13]. For a fixed
gesture sequence protocol and a codelength four (closest con-
figuration to the present study), a mean rank-1 accuracy of
86.1% was reported which was higher than the current study
(66.9%). This could be mostly due to: 1) the number of users
in the previous study was 22 compared to 43 in the present
study, and 2) the number of electrode channels was 256 com-
pared to six in the present study. Another study with a similar
setup of 22 users and 256 channels reported a rank-1 accuracy
of 85.8%, however, the gesture task of each participant was
different, and they reported a decrease in accuracy (<50%)
with more than 30 inactive electrodes [4]. This further shows
that the increased rank-1 accuracy could be due to the greater
number of channels. The high-density electrode setup (256
channels) can have multiple limitations such as practical via-
bility, inactive channels, and model training time, which are
comparatively low while using a 6-channel setup. Another
study involving a similar setup (22 gestures and 256 chan-
nels) and a codelength of eight used a deep learning model and
reported a rank-1 accuracy of 87.2% and a rank-5 accuracy of
91.2% [17]. The present study reported a slightly higher rank-
5 accuracy of 93%. The performance was also comparable to
two other studies that involved multi-day testing data from
5 subjects and reported an identification accuracy of 74.1%
and 93% [18], [22].

3) Protocols With Intruder Analysis: To the best of our
knowledge, only one study has investigated the effect of
intruders on identification performance [13]. They have
reported a decrease in identification performance from 99%
to 93.1% while introducing unregistered users to the system.
The experimental factors included 22 users, a codelength of
12, and 256 channels. The present study reported a decrease
in rank-5 identification accuracy from 93% to 91.7% for a
codelength of four, which was in agreement with the previous
study. Additionally, we observed that for a database of 42 users
(one user removed as an intruder), an intruder is more likely
to find a match with at least one of the registered users. We
introduced a metric IRR to quantify the number of threshold-
based rejections for each multi-day scenario. It was reported
that for a multi-day analysis, an IRR > 70% was achieved.
The results suggest that the intruder encountered rejection
from most of the registered users’ threshold values. Reducing
the threshold limit might improve intruder rejection, however,
the genuine user might not be correctly identified. Additional
research could explore approaches to enhance both identifica-
tion performance and intruder rejection, ultimately leading to
a more practical and robust biometric system.

D. Comparison With Other Biometrics

Conventional biometric traits such as fingerprint and facial
recognition have already been widely implemented in daily
consumer applications. It can be difficult to compare with con-
ventional benchmarks because research in this area has been
ongoing for several decades [1]. Datasets including thousands
of individuals are available online, which indicates the abun-
dance of resources for researching such traits [33]. However,
with advancing technology, data leakage and spoofing have
become increasingly easier, affecting an important aspect of
our digital society. Therefore, unconventional biometric traits
such as biosignals, gait, keystroke dynamics, etc., have been
investigated to address the limitations associated with con-
ventional biometric traits [1]. The previous studies suggest
that the biometric authentication performance of these traits
ranges from EER = 10−4 − 0.20 [1]. From this review,
it was suggestive that an accurate biometric authentication
EER<0.05, while most of the novel biometric traits reported
rank-5 accuracies > 90% [1]. The findings of the current
study (authentication EER = 0.039 and identification rank-5
accuracy = 93%) suggest that wrist EMG-based biomet-
rics resulted in accurate authentication and identification using
a multi-code framework for combining hand gestures. This
property of customizing a code based on knowledge can be
achieved using some form such as voice, gait, and keystroke
dynamics for improved security. This is an advantage over
other biosignals such as ECG and EEG, which are highly
difficult to be customizable, if possible at all [10]. Overall,
the biosignals are more difficult to spoof and are one of the
main indicators of liveness detection [4], a security feature
requiring the user was physically present while an authentica-
tion claim is attempted. While the EMG signals are affected
by multiple non-stationary factors, the cross-day analysis sug-
gests there are sufficient commonalities in multi-day EMG
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data for biometric authentication. A detailed comparison of
EMG-based biometrics with the other common biometrics
is provided in Table I [1]. As EMG-based biometrics holds
distinct advantages over other common biometrics, further
research involving wearable devices and extensive datasets
will aid its social acceptance. Future research could record
collect EMG as well as another conventional biometric (fin-
gerprint/facial recognition) from individuals to facilitate easier
comparison with baselines in the biometric field.

E. Limitations and Future Research Directions

The results of the study addressed two major challenges in
the current EMG-based research by analyzing a large sample-
size of participants and multi-day (N = 3) recordings of EMG
signals. However, there exist some limitations in the present
study. Multiple force levels for the same gesture could not be
collected. Due to the large sample size, it was not timely fea-
sible to collect different levels of force. The participant was
instructed to perform the gestures at a convenient force level
(as they would normally perform a gesture in their daily lives).
Furthermore, no marks were left on the participants’ skin dur-
ing the multiple sessions. While the electrode positioning was
kept consistent to the best of our ability, there might have been
some electrode shifts between days. Although a limitation,
such a situation is more realistic than tightly controlling elec-
trode positions. It can facilitate research into transfer learning
approaches that are insensitive to electrode shift, and hence,
beneficial for accurate biometric authentication [34]. A dif-
ferent study investigated EEG biometric characteristics such
as permanence and uniqueness by analyzing six recording
sessions over spanning over 3 years [35]. The inclusion of
transfer learning in EMG biometric analysis can facilitate such
a longitudinal investigation.

The 6-channel electrode setup was part of a bigger dataset,
i.e., GRABMyo, which includes 28 channels recorded from
the forearm and wrist region [27], [28]. While preliminary
results suggested no difference between the forearm and
the wrist setup, further investigations could lead to novel
findings [36]. Other strategies to improve the authentication
and identification performance can be further investigated by
implementing different fusion strategies [5]. Recently, deep
learning studies have improved biometric performance and
can be incorporated in similar analyses for more accurate
results [14], [15], [16], [17].

V. CONCLUSION

The study presented the multi-day EMG Biometrics
performance of the largest EMG-based hand gestures dataset
(43 users x 3 sessions = 129 recordings) over the span of
30 days. A detailed multi-day analysis considering within-day
and cross-day scenarios was performed for the feasibility of
EMG-based biometrics as a novel trait for biometric authenti-
cations/identification. A multi-code biometric framework had
superior performance than the single-code system, suggest-
ing enhanced security with customizable gesture passwords.
The authentication mode resulted in an EER value (0.039)

Fig. 9. The 16 gesture classes investigated in the study: (A) lateral
prehension (LP), (B) thumb adduction (TA), (C) thumb and little finger oppo-
sition (TLFO), (D) thumb and index finger opposition (TIFO), (E) thumb
and little finger extension (TLFE), (F) thumb and index finger extension
(TIFE), (G) index and middle finger extension (IMFE), (H) little finger
extension (LFE), (I) index finger extension (IFE), (J) thumb extension (TE),
(K) wrist flexion (WF), (L) wrist extension (WE), (M) forearm supination
(FS), (N) forearm pronation (FP), (O) hand open (HO), (P) hand close (HC).

TABLE II
WITHIN DAY IDENTIFICATION PERFORMANCE OF GESTURES

for the normal test, which is comparable to conventional bio-
metrics. The identification mode presented a rank-5 accuracy
of 93% which is comparable to most novel biometric traits.
In the presence of intruders, a threshold-based identification
was able to achieve a rank-5 accuracy of 91.7%. The find-
ings are close-to-practical due to the more realistic analyses
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such as cross-day, leaked test, and intruder analysis. This
could further facilitate the development of wearable EMG-
based bracelets and wristbands for biometric authentication
and identification purposes. The high cross-day performance
was consistent over multiple days, a necessary characteristic
for biometric authentication. Therefore, the presented findings
could facilitate further research on EMG-based biometrics.

APPENDIX

See Fig. 9 and Table II.
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[14] M. Pleva, Š. Korečko, D. Hladek, P. Bours, M. H. Skudal, and Y.-F. Liao,
“Biometric user identification by forearm EMG analysis,” in Proc. 2022
IEEE Int. Conf. Consumer Electron.-Taiwan, 2022, pp. 607–608.

[15] Y.-H. Byeon and K.-C. Kwak, “Individual identification by late
information fusion of EmgCNN and EmgLSTM from electromyogram
signals,” Sensors, vol. 22, no. 18, p. 6770, 2022.

[16] Q. Hu, A. Sarmadi, P. Gulati, P. Krishnamurthy, F. Khorrami, and
S. F. Atashzar, “X-MyoNET: Biometric identification using deep pro-
cessing of transient surface electromyography,” presented at bioRxiv,
2021.

[17] J. Fan et al., “Cancelable HD-SEMG biometric identification via deep
feature learning,” IEEE J. Biomed. Health Inform., vol. 26, no. 4,
pp. 1782–1793, Apr. 2022.

[18] J.-S. Kim, C.-H. Song, E. Bak, and S.-B. Pan, “Multi-session
surface electromyogram signal database for personal identification,”
Sustainability, vol. 14, no. 9, p. 5739, 2022.

[19] L. Lu, J. Mao, W. Wang, G. Ding, and Z. Zhang, “A study of per-
sonal recognition method based on EMG signal,” IEEE Trans. Biomed.
Circuits Syst., vol. 14, no. 4, pp. 681–691, Aug. 2020.

[20] B. Fan, X. Su, J. Niu, and P. Hui, “EmgAuth: Unlocking smartphones
with EMG signals,” 2021, arXiv:2103.12542.

[21] S. Shin, M. Kang, J. Jung, and Y. T. Kim, “Development of minia-
turized wearable wristband type surface EMG measurement system for
biometric authentication,” Electronics, vol. 10, no. 8, p. 923, 2021.

[22] S. A. Raurale, J. McAllister, and J. M. D. Rincón, “EMG biometric
systems based on different wrist-hand movements,” IEEE Access, vol. 9,
pp. 12256–12266, 2021.

[23] S. Benatti, E. Farella, E. Gruppioni, and L. Benini, “Analysis of robust
implementation of an EMG pattern recognition based control,” in Proc.
BIOSIGNALS, 2014, pp. 45–54.

[24] F. S. Botros, A. Phinyomark, and E. J. Scheme, “Electromyography-
based gesture recognition: Is it time to change focus from the forearm
to the wrist?” IEEE Trans. Ind. Informat., vol. 18, no. 1, pp. 174–184,
Jan. 2020.

[25] S. Jiang et al., “Feasibility of wrist-worn, real-time hand, and surface
gesture recognition via sEMG and IMU sensing,” IEEE Trans. Ind.
Informat., vol. 14, no. 8, pp. 3376–3385, Aug. 2018.

[26] R. Shioji, S.-i. Ito, M. Ito, and M. Fukumi, “Personal authentication and
hand motion recognition based on wrist EMG analysis by a convolu-
tional neural network,” in Proc. 2018 IEEE Int. Conf. IoT Intell. Syst.
(IOTAIS), 2018, pp. 184–188.

[27] N. Jiang, A. Pradhan, and J. He. “Gesture recognition and biomet-
rics electromyogram (GRABMyo).” PhysioNet. Jul. 2022. [Online].
Available: https://doi.org/10.13026/rtfc-np50

[28] A. Pradhan, J. He, and N. Jiang, “Multi-day dataset of forearm and wrist
electromyogram for hand gesture recognition and biometrics,” Sci. Data,
vol. 9, no. 1, pp. 733–743, 2022.

[29] A. Pradhan, N. Jiang, V. Chester, and U. Kuruganti, “Linear regres-
sion with frequency division technique for robust simultaneous and
proportional myoelectric control during medium and high contraction-
level variation,” Biomed. Signal Process. Control, vol. 61, Aug. 2020,
Art. no. 101984.

[30] J. He, D. Zhang, X. Sheng, S. Li, and X. Zhu, “Invariant surface EMG
feature against varying contraction level for myoelectric control based on
muscle coordination,” IEEE J. Biomed. Health Inform., vol. 19, no. 3,
pp. 874–882, May 2015.

[31] W. Kabir, M. O. Ahmad, and M. N. S. Swamy, “A multi-biometric
system based on feature and score level fusions,” IEEE Access, vol. 7,
pp. 59437–59450, 2019.

[32] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, “Techniques of EMG
signal analysis: Detection, processing, classification and applications,”
Biol. Proced. Online, vol. 8, no. 1, pp. 11–35, 2006.

[33] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2:
A dataset for recognising faces across pose and age,” in Proc. 2018
13th IEEE Int. Conf. Autom. Face Gesture Recognit. (FG 2018), 2018,
pp. 67–74.

[34] C. Prahm et al., “Counteracting electrode shifts in upper-limb prosthesis
control via transfer learning,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 27, no. 5, pp. 956–962, May 2019.

[35] E. Maiorana and P. Campisi, “Longitudinal evaluation of EEG-based
biometric recognition,” IEEE Trans. Inf. Forensics Security, vol. 13,
no. 5, pp. 1123–1138, May 2018.

[36] A. Pradhan, J. He, and N. Jiang, “Hand gesture recognition and biomet-
ric authentication using a multi-day dataset,” in Proc. Int. Conf. Intell.
Robot. Appl., 2022, pp. 375–385.

Ashirbad Pradhan received the Bachelor of
Technology degree in biomedical engineering from
the National Institute of Technology Rourkela,
India, in 2016, and the M.Sc. degree in kine-
siology from the University of New Brunswick,
Canada, in 2018. He is currently pursuing the Ph.D.
degree with the Department of Systems Design
Engineering, University of Waterloo. His research
interests include biomedical signal processing, bio-
metrics, myoelectric control of prosthetics, sensor
design, and biomechanics. He received multiple

awards, including the MITACS Globalink Graduate Award in 2016, the Queen
Elizabeth Scholarship in 2017, the Natural Sciences and Engineering Research
Council of Canada Doctoral Award in 2022.



PRADHAN et al.: MULTI-DAY ANALYSIS OF WRIST EMG-BASED BIOMETRICS 565

Jiayuan He (Member, IEEE) received the B.S.
degree in mechanical engineering and automation
from the Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 2010, and the Ph.D.
degree in mechanical engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2016.
From 2016 to 2022, he was a Postdoctoral Research
Fellow and then a Research Assistant Professor with
the Department of Systems Design Engineering,
University of Waterloo, Canada. He is currently
a Full Professor with the West China Hospital,

Sichuan University, Chengdu, China. His research interests include neural
interface and biomechatronics system.

Hyowon Lee received the B.S. and first M.Sc.
degrees in mechanical engineering from Ulsan
University, South Korea, in 2013, and the second
M.Sc. degree in mechanical engineering from the
University of Wisconsin-Madison, USA, in 2017.
He is currently pursuing the Ph.D. degree with
the Department of System Design Engineering,
University of Waterloo, Canada. He did research on
the internal combustion engine and as a Graduate
Research Assistant. His current research interests
include signal processing, physiological signals,

human-robot interaction, and human factors in semi-autonomous vehicles.

Ning Jiang (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Xi’an
Jiaotong University, Xi’an, China, in 1998, and
the M.Sc. and Ph.D. degrees in engineering from
the University of New Brunswick, Fredericton,
NB, Canada, in 2004 and 2009, respectively. He
had research and academic positions in Denmark,
Germany, and Canada, before he was promoted to
a Tenured Associate Professor with the Department
of Systems Design Engineering, University of
Waterloo, Canada. He also held a Canadian Research

Chair (Tier II) in artificial intelligence and human-machine interface. He is
currently a Full Professor with the West China Hospital Sichuan University,
Sichuan, China, leading the Huaxi Smart Wearable Health Systems Lab. His
research interests include signal processing of physiological signals, such
as electromyography, electroencephalogram, and electrocardiography, as well
as advanced brain-computer interfaces, prosthetic control, and neuromuscu-
lar modeling, with a focus on clinical translation of neural technologies in
to clinical rehabilitation applications. He is currently an Associate Editor
of IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, IEEE
TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION, the Brain
Computer Interface, Frontiers in Neuroscience, and Journal of Neuroscience
Methods.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


