
Security Risks in Deep Learning Implementations

Qixue Xiao1,3, Kang Li2, Deyue Zhang1,4, Weilin Xu5

1 Qihoo 360 Security Research Labs, Beijing, China.
2Dept. of compute Science, University of Georgia, Georgia, USA.

3Dept. of Computer Science and Technology, Tsinghua University, Beijing, China.
4Xidian University, Xi’an, China.

5University of Virginia, Virginia, USA.

Abstract—Advances in deep learning algorithms overshadow
their security risk in software implementations. This paper
discloses a set of vulnerabilities in popular deep learning frame-
works including Caffe, TensorFlow, and Torch. Contrary to the
small code size of deep learning models, these deep learning
frameworks are complex, and they heavily depend on numerous
open source packages. This paper considers the risks caused
by these vulnerabilities by studying their impact on common
deep learning applications such as voice recognition and image
classification. By exploiting these framework implementations,
attackers can launch denial-of-service attacks that crash or
hang a deep learning application, or control-flow hijacking
attacks that lead to either system compromise or recognition
evasions. The goal of this paper is to draw attention to software
implementations and call for community collaborative effort to
improve security of deep learning frameworks.

I. INTRODUCTION

Artificial intelligence has become a focus of attention in

recent years partially due to the success of deep learning

applications. Advances in GPUs and deep learning algorithms

along with large datasets allow deep learning algorithms to

address real-world problems in many areas, from image clas-

sification to health care prediction, and from auto game playing

to reverse engineering. Many scientific and engineering fields

passionately embrace deep learning.

These passionate adoptions of new machine learning algo-

rithms have sparked the development of multiple deep learning

frameworks, such as Caffe [7], TensorFlow [4], and Torch [14].

These frameworks enable fast development of deep learning

applications. A framework provides common building blocks

for layers of a neural network. By using these frameworks,

developers can focus on model design and application specific

logic without worrying about the coding details of input

parsing, matrix multiplication, or GPU optimizations.

In this paper, we examine the implementation of three

popular deep learning frameworks: Caffe, TensorFlow, and

Torch. We collected their software dependencies based on the

sample applications released along with the framework. The

implementation of these frameworks are complex (often with

hundreds of thousands of lines of code) and are often built

over numerous 3rd party software packages, such as image and

video processing, as well as scientific computation libraries.

A common challenge for the software industry is that

implementation complexity often leads to software vulnera-

bilities. Deep learning frameworks face the same challenge.

Through our examination, we discovered multiple implemen-

tation flaws. Among them, 15 of our discovery have been

confirmed by the developers and have been assigned with CVE

numbers. The types of flaws cover multiple common types of

software bugs, including heap overflow, integer overflow, and

use-after-free.

We made a preliminary study on the threats and risks

caused by these vulnerabilities. With a wide variety of deep

learning applications being built on these frameworks, we

consider a range of attack surfaces including malformed data

in application inputs, training data, and models. The potential

consequence of these vulnerabilities include denial-of-service

attacks, evasion attacks, and system compromises. This paper

provides a brief summary of these vulnerabilities and the

potential risks that we anticipate for deep learning applications

built on these frameworks.

Through our study of popular deep learning frameworks,

we make the following contributions:

• This paper presents a study of the attack surface for deep

learning applications.

• Through this paper, we show that multiple vulnerabilities

exist in the implementation of these frameworks.

• We show that security risks can also occur in the data

processing pipeline and deep learning model themselves.

• We also study the impact of these vulnerabilities and

describe the potential security risks to applications built

on these vulnerable frameworks.

II. LAYERED IMPLEMENTATION OF DEEP LEARNING

APPLICATIONS

Deep learning frameworks enable fast development of ma-

chine learning applications. Equipped with pre-implemented

neural network layers, deep learning frameworks allow devel-

opers to focus on the application logic. Developers can design,

build, and train scenario specific models on a deep learning

framework without worrying about the coding details of input

parsing, matrix multiplication, or GPU optimizations.

The exact implementation of deep learning application

varies, but those built on deep learning frameworks usually

consist of software in three layers. Figure 1 shows the layers of

typical deep learning applications. The top layer contains the

application logic, the deep learning model and corresponding

123

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Qixue Xiao. Under license to IEEE.
DOI 10.1109/SPW.2018.00027

��������	��
� ��
�� ����

���������� �����
�����������

�������������	�

��
�����	
���

�����	
��
��
���������

��
�

�

Fig. 1: The Layered Approach for Deep Learning Applica-

tions.

data resulting from the training stage. These are components

usually visible to the developers. The middle layer is the im-

plementation of the deep learning frameworks, such as tensor

components and various filters. The interface between the top

two layers is usually specified in the programming language

used to implement the middle layer. For example, the choices

of programming language interfaces include C++, Python, and

Lua for Caffe, TensorFlow, and Torch respectively. The bottom

layers are building blocks used by the frameworks. These

building blocks are components to accomplish tasks such as

video and audio processing and model representations (e.g.

protobuf). The selection of building blocks varies depending

on the design of a framework. For example, TensorFlow con-

tains its own implementation of video and image processing

built over 3rd party packages such as librosa and numpy,

whereas Caffe chooses to directly use open source libraries,

such as OpenCV and Libjasper, to parse media inputs. Even

the bottom and the middle layers are often invisible to the

developers of the deep learning applications, these components

are essential parts of deep learning applications.

Table I provides some basic statistics of the implementations

of deep learning frameworks. In our study, the versions of

TensorFlow and Caffe that we analyzed are 1.2.1 and 1.0.

The study also includes Torch7. As the default Torch package

only supports limited image formats, we chose to study the

version of Torch7 that combines OpenCV [18] that supports

various image formats such as bmp, gif, and tiff.

We measure the complexity of a deep learning framework

by two metrics, the lines of code and the number of software

dependency packages. We count the lines of code by using

the cloc tool on Linux. As described in Table I, all these

implementation’s code bases are not small. TensorFlow has

more than 887K lines of code, Torch has more than 590K

lines of code, and Caffe has more than 127K. In addition,

they all depend on numerous third party packages. Caffe is

based on more than 130 depending libraries (measured by the

Linux ldd utility), and TensorFlow and Torch depend on 97

Python modules and 48 Lua modules respectively, which are

counted by the import or require modules.

TABLE I: DL frameworks and Their Dependencies

DL

Framework

lines of code number of

dep. package

sample packages

Tensorflow 887K+ 97 librosa,numpy

Caffe 127K+ 137 libprotobuf,libz,opencv

Torch 590K+ 48 xlua,qtsvg,opencv

The layered approach is a common practice for software

engineering. Layering does not introduce flaws directly, but

complexity in general increases the risks of vulnerabilities.

Any flaw in the framework or its building components affects

applications built on it. The next section of this paper presents

some preliminary findings of flaws in implementations.

III. VULNERABILITIES AND THREATS

While there are numerous discussions about deep learning

and artificial intelligence applications, the security of these

applications draws less attention. To illustrate the risks and

threats related to deep learning applications, we first present

the attack surfaces of machine learning applications and then

consider the type of risks resulting from implementation

vulnerabilities.

A. Attack Surfaces

Without losing generality, here we use MNIST handwriting

digits [20] recognition as an example to consider the attack

surfaces of deep learning applications. There are many types

of attacks toward deep learning applications, including DoS

attacks, remote compromises, classification evasion, model

inversion attacks, and membership inference attacks. Although

these attacks differ from each other in terms of their attack

goals, the sources of an attacker’s launch point (attack surface)

against deep learning applications, such as MNIST, are mainly

from the following three angles:

• Attack Surface 1 – Malformed Operational Input: Many

current deep learning applications, once trained, usually

work on input data for classification and recognition

purposes. For an application that reads inputs from files

or the network, attackers can potentially construct mal-

formed input. This applies to the MNIST image recogni-

tion application, which reads input from files. The attack

surface is significantly reduced for applications that take

input from a sensor such as a directly connected camera.

But the risk of malformed input is not eliminated in those

cases as we will discuss in the next section.

• Attack Surface 2 – Malformed Training Data: The train-

ing examples of image recognition applications could be

polluted or mislabeled if they are from external sources.

This is also known as data poisoning attack. Data poi-

soning attacks[1, 3] may not rely on software vulnerabil-

ities. However, flaws in implementations can make data

poisoning easier (or at least harder to be detected). For

example, we have observed inconsistency in the image

parsing procedure in the framework and common desktop

applications (such as image viewer). This inconsistency

124

enables a sneaky data pollution without being noticed by

people monitoring the training process.

• Attack Surface 3 – Malformed Models: Deep learning

applications can also be attacked if the developers use

models developed by others. Although many developers

design and build models from scratch, many models are

made available to developers who do not have deep

machine learning knowledge. In such a case, these models

become potential sources that can be manipulated by

attackers. Similar to data poisoning attacks, attackers can

threaten those applications that carry external models

without exploiting any vulnerabilities. However, imple-

mentation flaws, such as a vulnerability in the model pars-

ing code, help attackers to conceal malformed models.

Note that, the attack surfaces vary based on each specific

application, but we believe these three attack surfaces cover a

majority of attack space through which attackers threaten deep

learning applications.

B. Types of Threats

We studied several deep learning frameworks and found

more than 10 new implementation flaws. We have reported

these flaws to the developers and all of these flaws have

been confirmed as new bugs and have been fixed. Table II

summarizes a portion of these flaws that have been assigned

CVE numbers. These implementation flaws make applications

vulnerable to a wide range of threats. Due to the limitation of

space, here we present only the threats caused by malformed

input. Our analysis is based on the assumption that the

applications take input from files or networks.

TABLE II: CVEs of DL frameworks and dependencies

DL Framework dep. packages CVE-ID Potential Threats

Tensorflow numpy CVE-2017-12852 DOS

Tensorflow wave.py CVE-2017-14144 DOS

Caffe libjasper CVE-2017-9782 heap overflow

Caffe openEXR CVE-2017-12596 crash

Caffe/Torch opencv CVE-2017-12597 heap overflow

Caffe/Torch opencv CVE-2017-12598 crash

Caffe/Torch opencv CVE-2017-12599 crash

Caffe/Torch opencv CVE-2017-12600 DOS

Caffe/Torch opencv CVE-2017-12601 crash

Caffe/Torch opencv CVE-2017-12602 DOS

Caffe/Torch opencv CVE-2017-12603 crash

Caffe/Torch opencv CVE-2017-12604 crash

Caffe/Torch opencv CVE-2017-12605 crash

Caffe/Torch opencv CVE-2017-12606 crash

Caffe/Torch opencv CVE-2017-14136 integer overflow

• Threat 1 – DoS attacks : The most common vulnera-

bilities that we found in deep learning frameworks are

software bugs that cause programs to crash, enter an infi-

nite loop, or exhaust all memory. The direct threat caused

by such bugs are denial-of-service attacks to applications

running on top of the framework. The list below shows

the patch to a bug found in the numpy python package,

which is a building block for the TensorFlow framework.

Listing 1: Patch example for numpy
--- a/numpy/lib/arraypad.py
+++ b/numpy/lib/arraypad.py
@@ -1406,7 +1406,10 @@ def pad(array, pad_width, mode, **kwargs):

newmat = _append_min(newmat, pad_after, chunk_after, axis)

elif mode == ’reflect’:
- for axis, (pad_before, pad_after) in enumerate(pad_width):
+ if narray.size == 0:
+ raise ValueError("There aren’t any elements to reflect in ’array’!")
+
+ for axis, (pad_before, pad_after) in enumerate(pad_width):

... ...
method = kwargs[’reflect_type’]
safe_pad = newmat.shape[axis] - 1
while ((pad_before > safe_pad) or (pad_after > safe_pad)):

... ...

The numpy package is used for matrix multiplication and

related processing. It is commonly used by applications

built on TensorFlow. This particular bug occurs in the

pad() function, which contains a while loop that would

not terminate for inputs not anticipated by the developers.

The flaws occur when an empty vector is passed from a

caller, and consequently the variable safe-pad in the loop

condition is set to a negative value. Because of this bug,

we showed that popular sample TensoFlow applications,

such as the Urban Sound Classification [15], will hang

with specially crafted sound files.

• Threat 2 – Evasion attacks: Evasion attacks occur when

an attacker constructs inputs that should be classified as

a certain category but is misclassified by deep learning

applications as a different category. Machine learning

researchers have spent a considerable amount of research

effort on generating evasion input through adversarial

learning methods [8, 10, 19].

Listing 2: OpenCV patch example
bool BmpDecoder::readData(Mat& img)
{

uchar* data = img.ptr();
....
if(m_origin &=& IPL_ORIGIN_BL)
{

data += (m_height - 1)*(size_t)step; // result an out bound write
step = -step;

}
....
if(color)

WRITE_PIX(data, clr[t]);
else

*data = gray_clr[t];
....

}
index 3b23662..5ee4ca3 100644
--- a/modules/imgcodecs/src/loadsave.cpp
+++ b/modules/imgcodecs/src/loadsave.cpp
+
+static Size validateInputImageSize(const Size& size)
+{

+ CV_Assert(size.width > 0);
+ CV_Assert(size.width <= CV_IO_MAX_IMAGE_WIDTH);
+ CV_Assert(size.height > 0);
+ CV_Assert(size.height <= CV_IO_MAX_IMAGE_HEIGHT);
+ uint64 pixels = (uint64)size.width * (uint64)size.height;
+ CV_Assert(pixels <= CV_IO_MAX_IMAGE_PIXELS);
+ return size;

+}

@@ -408,14 +426,26 @@ imread_(const String& filename,
int flags, int hdrtype, Mat* mat=0)

// established the required input image size
- CvSize size;
- size.width = decoder->width();
- size.height = decoder->height();
+ Size size = validateInputImageSize(Size(decoder->width(),

decoder->height()));

When faced with vulnerable deep learning framework,

attackers can instead achieve the goal of evasion by

exploiting software bugs. We found multiple memory

corruption bugs in deep learning frameworks that

can potentially cause applications to generate wrong

125

classification outputs. Attackers can achieve evasion

by exploiting these bugs in two ways: 1) overwriting

classification results through vulnerabilities that give

attackers the ability to modify specific memory content,

2) hijacking the application control flow to skip or

reorder model execution. The list above shows an

out-of-bounds write vulnerability and the corresponding

patch. The data pointer could be set to any value in

the readData function, and then a specified data could

be written to the address pointed by data. So it can

potentially overwrite classification results.

• Threat 3 – System Compromise: For software bugs that

allow an attacker to hijack control flow, attackers can

potentially leverage the software bug and remotely com-

promise the system that hosts deep learning applications.

This occurs when deep learning applications run as a

cloud service that take inputs from the network.

The list below shows a patch to a simple buffer overflow

found in the OpenCV library. The OpenCV library is a

computer vision library which is designed for compu-

tational efficiency and has a strong focus on real-time

applications. OpenCV supports the deep learning frame-

works, such as TensorFlow, Torch/PyTorch and Caffe.

The buffer overflow occurs in the readHeader function

in grfmt_bmp.cpp. The variable m_palatte represents a

buffer whose size is 256*4 bytes, however, the value

of clrused is taken from an input image which can

be set to an arbitrary value by attackers. Therefore, a

malformed BMP image could result in buffer overflow

from the getBytes() call. Through our investigation, this

vulnerability may lead to arbitrary memory writes and

we have successfully forced sample programs (such as

cpp_classification [6] in Caffe) to spawn a remote shell

based on our crafted image input.

Listing 3: OpenCV patch example
index 86cacd3..257f97c 100644
--- a/modules/imgcodecs/src/grfmt_bmp.cpp
+++ b/modules/imgcodecs/src/grfmt_bmp.cpp
@@ -118,8 +118,9 @@ bool BmpDecoder::readHeader()

if(m_bpp <= 8)
{

- memset(m_palette, 0, sizeof(m_palette));
- m_strm.getBytes(m_palette, (clrused == 0? 1<<m_bpp : clrused)*4);
+ CV_Assert(clrused < 256);
+ memset(m_palette, 0, sizeof(m_palette));
+ m_strm.getBytes(m_palette, (clrused == 0? 1<<m_bpp : clrused)*4);

iscolor = IsColorPalette(m_palette, m_bpp);
}
else if(m_bpp == 16 && m_rle_code == BMP_BITFIELDS)

While doing this work, we found another group of re-

searchers [17] that have also studied the vulnerabilities and

tier impacts on machine learning applications. Although their

idea of exploring OpenCV for system compromise shares

a similar goal with our effort, they did not find or release

vulnerabilities that are confirmed by OpenCV developers [9].

In contrast, our findings have been confirmed by corresponding

developers and many of them have been patched based on our

suggestions. In addition, we have also developed a proof-of-

concept exploitation that has successfully demonstrated remote

system compromise (by remotely gaining a shell) through the

vulnerabilities found by our team.

IV. EXPLOITATION SAMPLES

To illustrate the risks of software security in deep learning

frameworks, we crafted multiple sample inputs to demonstrate

each type of threat.

The following image files are used to demonstrate the

threats of evasion attacks, local and remote exploitation.

Table III shows the MD5 checksum values and notes of these

image files.

TABLE III: PoC Sample Image Information

Image File MD5 Checksum Notes

Bulldog db9179a813df672af9d8c725e753d6f9 Original

Image,

Classified as

bulldog

Bulldog-cr f0ac8ceed1b18cc5069be66da130e12c Causing

Application

Crash

Bulldog-fp 330743ae1beec54f0baa0d6d5415f053 Misclassified

to an non-

exist category

Bulldog-sh 684adcfc0fe9d1fc9bc3f5a069e7836f Generate a lo-

cal shell

Figure 2 presents the four image files. The top left is the

original image obtained from the Internet. The other three

are variations of the original image, which cause a popular

deep learning application to malfunction. The resulting effect

include denial-of-service attack (crash with this particular ex-

ample), evasion attack (image misclassification), and privilege

escalation (e.g. obtaining local or remote shell).

It is worth noticing that, although there are slight visual

differences between the original images (top left) and each of

the other images, the distortion is caused by image meta-data

manipulation (such as changing the number of color palettes

for an integer overflow). The effect is not caused by changes

to the image data itself. None of the threat inputs are results

of any special effort to disturb the images, which is commonly

used in adversarial learning research[5, 11, 13, 16].

Details of these images and their effects on popular deep

learning frameworks are presented in the Appendix.

V. DISCUSSION AND FUTURE WORK

The previous section presents software vulnerabilities in

the implementations of deep learning frameworks. These vul-

nerabilities are only a small set of factors that affect the

overall application security [2, 12]. There are other factors

to consider, such as source of input for an application and

format of training data. Unless input data are strictly checked

and training data are well formatted, they pose security risks.

We briefly discussed a few related issues here.

126

Fig. 2: Original (top left) and crafted image inputs.

A. Security Risks for Applications in Closed Environments

Many sample deep learning applications are designed to be

used in a closed environment, in which the application acquires

input directly from sensors closely coupled with the applica-

tion itself. For example, the machine learning implementation

running on a camera only takes data generated by the built-in

camera sensor. Arguably, the risk of malformed input is lower

compared to when an application takes input from network or

files controlled by users. However, a closely coupled sensor

does not eliminate threats of malformed input. For example,

there are risks associated with sensor integrity which can

be compromised. If the sensor communicates with a cloud

server where the deep learning applications run, attackers

could reverse the communication protocol and directly attack

the backend program running on the cloud server.

B. Vulnerability Detection in Deep Learning Applications

We applied traditional bug finding methods, especially

fuzzing, to find the software vulnerabilities presented in this

paper. We expect all other conventional static and dynamic

analysis methods apply to the deep learning framework im-

plementation. However, we found that coverage-based fuzzing

tools are not ideal for testing deep learning applications,

especially for discovering errors in the execution of models.

Taking the MNIST image classifier as an example, almost all

images cover the same execution path as all inputs go through

the same layers of calculation. Therefore, simple errors such as

divide-by-zero would not be easily found by coverage-based

fuzzers, since the path coverage feedback is less effective in

this case.

C. Security Risks due to Logical Errors or Data Manipulation

Our preliminary work focused on the “conventional” soft-

ware vulnerabilities that lead to program crash, control flow

hijacking or denial-of-service. It will be interesting to consider

if there are types of bugs specific to deep learning and

need special detection methods. The evasion attack or data

poisoning attack does not rely on conventional software flaws,

such as memory corruptions. It is enough to create an evasion

if there is a mismatch between an input to applications and

what a deep learning model actually operates on.

One additional challenge for detecting logical errors in

deep learning applications is the difficulty to differentiate

insufficient training from intended manipulation, which targets

to have a particular group of inputs misclassified. We plan to

investigate methods to detect such type of errors.

VI. CONCLUSION

The purpose of this work is to raise the awareness of

security threats caused by software implementation mistakes.

Deep learning frameworks are complex software and thus,

it is almost unavoidable for them to contain implementation

bugs. This paper presents an overview of the implementation

vulnerabilities and the corresponding risks in popular deep

learning frameworks. We discovered multiple vulnerabilities

in popular deep learning frameworks and libraries they use.

The types of potential risks include denial-of-service, evasion

of detection, and system compromise. Although closed appli-

cations are less risky in terms of full control of the input,

they are not completely immune to these attacks. Considering

the opaque nature of deep learning applications which buries

the implicit logic in its training data, the security risks caused

by implementation flaws can be difficult to detect. We hope

our preliminary results in this paper can alert researchers to

not forget conventional threats and actively look for ways to

detect flaws in the software implementations of deep learning

applications.

REFERENCES

[1] S. Alfeld, X. Zhu, and P. Barford, “Data poisoning attacks against autoregressive
models.” in AAAI, 2016, pp. 1452–1458.

[2] M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar, “The security of machine
learning,” Machine Learning, vol. 81, no. 2, pp. 121–148, 2010.

[3] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector
machines,” arXiv preprint arXiv:1206.6389, 2012.

[4] Gardener and Benoitsteiner, “An open-source software library for Machine Intel-
ligence,” https://www.tensorflow.org/, 2017.

[5] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in International Conference on Learning Representations, 2015.
[Online]. Available: http://arxiv.org/abs/1412.6572

[6] Y. Jia, “Classifying ImageNet: using the C++ API,” https://github.com/BVLC/caffe/
tree/master/examples/cpp_classification, 2017.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv
preprint arXiv:1408.5093, 2014.

[8] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2015.

[9] Opencv Developers, “Opencv issue 5956,” https://github.com/opencv/opencv/
issues/5956, 2017, accessed 2017-09-03.

[10] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
“Practical black-box attacks against machine learning,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security, ser. ASIA
CCS ’17. New York, NY, USA: ACM, 2017, pp. 506–519.

[11] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,
“The limitations of deep learning in adversarial settings,” in Security and Privacy
(EuroS&P), 2016 IEEE European Symposium on. IEEE, 2016, pp. 372–387.

[12] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the science of
security and privacy in machine learning,” arXiv preprint arXiv:1611.03814, 2016.

[13] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense
to adversarial perturbations against deep neural networks,” in Security and Privacy
(SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 582–597.

[14] Ronan, Clément, Koray, and Soumith, “Torch: A SCIENTIFIC COMPUTING
FRAMEWORK FOR LUAJIT,” http://torch.ch/, 2017.

[15] A. Saeed, “Urban Sound Classification,” https://devhub.io/zh/repos/aqibsaeed-
Urban-Sound-Classification, 2017.

[16] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 1528–1540.

127

[17] R. Stevens, O. Suciu, A. Ruef, S. Hong, M. W. Hicks, and T. Dumitras,
“Summoning demons: The pursuit of exploitable bugs in machine learning,” CoRR,
vol. abs/1701.04739, 2017. [Online]. Available: http://arxiv.org/abs/1701.04739

[18] VisionLabs, “OpenCV bindings for LuaJIT+Torch,” https://github.com/VisionLabs/
torch-opencv, 2017.

[19] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in Network and
Distributed System Security Symposium, 2016.

[20] L. Yann, C. Corinna, and J. B. Christopher, “The MNIST Database of handwritten
digits,” http://yann.lecun.com/exdb/mnist/, 2017.

APPENDIX

This appendix provides brief information related to our

experimental setup. All the software implementation and deep

learning model were obtained online. Our team did not make

any modifications to the models and the sample applications.

A. Software Version and Model Information

The Caffe package and the corresponding image classi-

fication examples were checked-out directly from the offi-

cial GitHub on October 25, 2017, and the OpenCV used

was the latest stable version from the following URL:

https://github.com/opencv/opencv/archive/2.4.13.4.zip

We used the BVLC CaffeNet Model in our proof of concept

exploitation. The model is the result of training based on the

instructions provided by the instruction in the original Caffe

package. To avoid any mistakes in model setup, we down-

loaded the model file directly from BVLC’s official GitHub

page. Detailed information about the model is provided in the

list below.

Listing 4: Image Classifier Model
Name: BAIR/BVLC CaffeNet Model
Caffemodel: bvlc_reference_caffenet.caffemodel
Caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel
Caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077

B. Command Lines

The evasion and exploitation threat was demonstrated based

on the default Caffe example CPPClassification. The exact

command line was shown in the list below.

Listing 5: Image Classification Command Line
./classification.bin models/bvlc_reference_caffenet/deploy.prototxt
models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel
data/ilsvrc12/imagenet_mean.binaryproto
data/ilsvrc12/synset_words.txt
IMAGE_FILE

C. Sample Output

The list below provides classification results for the above

sample images presented in the body of this paper.

Listing 6: Sample Classification Results

bullog [Original Image]
./classification.bin models/bvlc_reference_caffenet/deploy.prototxt
models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel
data/ilsvrc12/imagenet_mean.binaryproto
data/ilsvrc12/synset_words.txt
./poc_samples/bulldog
---------- Prediction for ./poc_samples/bulldog ----------
0.5111 - "n02108915 French bulldog"

Threat Example 1 -- DoS attack
bulldog_crash [cause classification binary to crash]
./classification.bin models/bvlc_reference_caffenet/deploy.prototxt
models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel
data/ilsvrc12/imagenet_mean.binaryproto
data/ilsvrc12/synset_words.txt
./poc_samples/bulldog_crash

---------- Prediction for ./poc_samples/bulldog_crash ----------
Segmentation fault (core dumped)

Threat Example 2 -- Evasion attack
bulldog_sh [cause classification to misclassify to an arbitrary category.]
[Here the classification produced a class "Flying Pig" made up by attackers]
./classification.bin models/bvlc_reference_caffenet/deploy.prototxt
models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel
data/ilsvrc12/imagenet_mean.binaryproto
data/ilsvrc12/synset_words.txt
./poc_samples/bulldog_fp
---------- Prediction for ./poc_samples/bulldog_fp ----------
0.98 - "n03770679 flyingpig"

Threat Example 3 -- Exploitation Attack
bulldog_sh [cause classification to generate a local shell]
./classification.bin models/bvlc_reference_caffenet/deploy.prototxt
models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel
data/ilsvrc12/imagenet_mean.binaryproto
data/ilsvrc12/synset_words.txt
./poc_samples/bulldog_sh
---------- Prediction for ./poc_samples/bulldog_sh ----------
$ uname -a
Linux ctf-box 4.4.0-31-generic #50~14.04.1-Ubuntu SMP
Wed Jul 13 01:07:32 UTC 2016 x86_64 x86_64 x86_64 GNU/Linux
$ exit

128

