
Time Series Deinterleaving of DNS Traffic

Amir Asiaee T.
Ohio State University

Columbus, OH

asiaeetaheri.1@osu.edu

Hardik Goel
Microsoft Corporation
Redmond, Washington

hagoel@microsoft.com

Shalini Ghosh, Vinod Yegneswaran
SRI International
Menlo Park, CA

{shalini,vinod}@csl.sri.com

Arindam Banerjee
University of Minnesota

Minneapolis, MN

banerjee@cs.umn.edu

Abstract—Stream deinterleaving is an important problem with
various applications in the cybersecurity domain. In this paper,
we consider the specific problem of deinterleaving DNS data
streams using machine-learning techniques, with the objective of
automating the extraction of malware domain sequences. We first
develop a generative model for user request generation and DNS
stream interleaving. Based on these we evaluate various inference
strategies for deinterleaving including augmented HMMs and
LSTMs on synthetic datasets. Our results demonstrate that
state-of-the-art LSTMs outperform more traditional augmented
HMMs in this application domain.

Index Terms—DNS, Deinterleaving, LSTM, Malicious Domain
Detection

I. INTRODUCTION

Deinterleaving temporal data streams is a general machine-

learning problem with important applications to security and

privacy. Specifically, interleaved network data streams are a

common occurrence in cyber-threat monitoring which compli-

cates many analyses. In many instances, the individual stream

identifiers are unavailable due to technical challenges, such

as the vantage point of the data collector or are intentionally

supressed to protect the privacy of users in the network.

For example, consider packet traces collected in a local

area network where the source IP addresses are removed, or

data collected from the external-facing interface of a proxy

server, or a NAT firewall where individual client identifiers are

unavailable. Detecting anomalous behavior, especially stealthy

and low-volume attack patterns, in these aggregated noisy

streams is significantly more challenging than in a traditional

deinterleaved setting.

In this paper, we discuss a variant of this problem, i.e.,

deinterleaving client request streams from recursive DNS

resolvers to mine threat intelligence. Such DNS data streams

are shared among Internet service providers (ISPs) through

mediums such as the Security Information Exchange (SIE) [6]

and are a valuable source of intelligence to the cybersecurity

community. Here, the individual client requests to the recursive

DNS resolver are typically suppressed and what we have are

inter-resolver communications (i.e., communications between

the recursive resolver and the root server, TLD servers and

other secondary resolvers). We are interested in the application

of advanced machine-learning techniques to automate the

extraction of malware domain groups [6] from such resolver

streams.

Malware infections while browsing the Internet have be-

come very prevalent and occur due to various reasons such as

drive-by exploits, phishing attacks etc [15], [17]. In a typical

infection, the user starts from a landing page and then goes

through a sequence of seemingly harmless intermediate web-

sites, until reaching a site that contains the malicious exploit

that harm the user by installing malware or stealing private

data. The intermediate sites are typically redirection chains im-

plemented in JavaScript for the purpose of obfuscation. Even

though many landing and exploit websites are continously

identified and blacklisted, thousands of new malicious domains

emerge daily. However, pieces of the redirection infrastructure

get reused across campaigns and thus the actual sequence of

websites traversed by the user contains information that may

help in quickly identifying new exploit sites.

When a user makes a browser request to visit a website, it

first resolves the domain name by asking its recursive resolver.

If the answer for the query is cached by the resolver the answer

is immediately provided to the client. Otherwise, it initiates a

set of recursive queries, leading to the final queried website’s

IP address. Each webpage may have several embedded objects

from many domains leading to a sequence of domain lookup

requests emanating from the client. Tracking the set of DNS

requests made by each client is thus a useful means to

identifying new and emergent malware infection sequences.

However, to protect user privacy ISPs typically only capture

data from the external facing interface of the recursive resolver,

effectively suppressing the individual client stream identifiers.

As there are hundreds of users making requests at the same

period of time, and all of these requests are pushed to a single

queue of a local DNS resolver, we cannot tell apart individual

user’s sequences of requests and perfectly deinterleaving all re-

quests for deanonymization purposes is impossible. However,

our objective is not deanonymization, but rather extraction

of malware domain sequences which are observed repeatedly

across resolvers. We believe that advanced machine learning

strategies could be in such selective deinterleaving of DNS

time-series for the extraction of malware domain groups.

Prior Work. To the best of our knowledge deinterleaving

has not been applied to DNS resolver queue’s data. Some

earlier work [6] investigates the use of a sliding window

approach to identify new malicious domains by exploring the

domains that typically form neighbors of known malicious

domains in the resolver queue, while ignoring the actual

sequential information. The challenges of applying existing

deinterleaving methods to DNS data is twofold. First, most

of the methods has been designed for deinterleaving Markov

103

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Amir Asiaee T.. Under license to IEEE.
DOI 10.1109/SPW.2018.00024

chains [2], [12]–[14] and HMMs [10], and as we will discuss

in Section II, the dynamics of submitting new queries to

the local resolver is more complicated than simple Markov

chain or HMM. Moreover, the state space of the models and

number of sequence sources are very small in previous work

applications [10], [12], while in our application, huge number

of websites explodes the size of state space and also tens of

users may be active in a network simultaneously. Because of

the nature of our dataset, we need to use tools other than those

adopted in literature [3], [4], [10], [12].

Another very useful model for time-series is Recurrent

Neural Networks (RNN). Recently, RNNs and their variants

(Gated Recurrent Units (GRUs) [5], Long Short-Term Memory

(LSTMs) [8]) have seen a lot of success in modeling time-

series in multiple domains [1], [7], [16]. However, to our

knowledge even simple RNN tools have not been applied to

the deinterleaving problem. Using RNN-type tools for deinter-

leaving mixed DNS request logs is a completely unexplored

area. Motivated by the power of LSTMs to model non-linear

dependencies, we seek to apply LSTMs to such data and start

a new direction of work towards identifying newer malicious

domains more efficiently.

Contributions. This paper presents a preliminary explo-

ration of the utility of various machine-learning models to

address the time series deinterleaving problem for malware

domain group extraction. Specifically, we present a model

for DNS request generation and resolver-sequence interleaving

and evaluate the utility of various inference strategies on sy-

thetic examples including Augmented Hidden Markov Models

(AHMMs) and LSTMs finding that LSTMs outperform AH-

MMs. Extending this analysis to real and large-scale datasets

is future work.

II. PROBLEM FORMULATION

A user starts by visiting a page e.g., a.com. While

launching the webpage, many queries are being generated

from different components of that browsed webpage: a.com,
ad1.com, audio1.org. In another scenario a webpage

can redirect the user to a sequence of other pages and

generate sequence of requests. We refer to this sequence as

a query episode. Next, when the user opens a new web-

site another episode is started. The same process generates

query sequences for other users. For example, a second user

generates: b.com, ad2.com and after the interleaving we

may observe the following sequence in the resolver:b.com,
a.com, ad1.com, ad2.com, audio1.org. We call

this process request interleaving. Our goal is to deinterleave

the two request sequences.

A. User’s Request Generation Model

The browsing process of a user can be modeled as simple

as a Markov chain (MC) of webpages, an HMM, or an HsMM

model. Figure 1 illustrates these three different user model. We

model the browsing process described above using a Hidden

Semi-Markov Model (HsMM). MC and HMM are special

cases of this process. The hidden layer of the HsMM consists

w' w

(a) Markov
Chain

w'

r'

w

r

(b) HMM

w'

r'

d'

w

r

d

(c) HsMM

Fig. 1: User’s browsing models.

of random variables W representing the browsed webpages.

Note that pages are hidden because what we see are only the

DNS requests.

The page transition matrix is different for each user and

is represented by the matrix Pu. The observed state of the

HsMM is the domain name request R which will be put in

the resolver queue. Note that the time between subsequent

browsed pages (which is equal to the time spend in a page

before moving to the next one) in reality is different from

the duration parameter in our model. In real world data, each

user spends an interval on a page but in our model since we

are only interested in the order of queries, we only count the

number of requests that the page will query from the resolver

and represent it by the random variable D. So the duration

parameter D represents the number of outstanding requests

from the current page.

Fig 1c shows the details of the model and Table I sum-

marizes the model parameters. Ou(w, r) is the probability of

submitting (outputting/observing) request r on the webpage

w, for the user u. Conditional probabilities of the model are

as follows:

Pu(w|w′, d′) =
{
[Pu]w′w d′ = 1

δ(w,w′) d′ > 1
,

Pu(d|w, d′) =
{
pw(d) d′ = 1

δ(d, d′ − 1) d′ > 1
,

Pu(r|w) = [Ou]w,r ,

(1)

The duration parameter cannot be zero, when d = 1 (i.e., the

page’s last request is submitted) and the user moves to another

page which resets the duration using pw(d). The duration

probability pw(d) determines the number of requests that the

webpage w will query and is independent of user u.

B. Resolver’s Sequence Interleaving Model

Each time step in our model is a slot in the resolver’s queue.

Since there cannot be two requests in the same slot, only one

user out of m can fill the t-th slot of the queue. Considering

the frequency of request generation, we assume that each user

i has a probability of αi to generate the t-th request where∑m
i=1 αi = 1. So if a user is very active it has higher αi and

submit requests more often.

In a more complicated setting, one can model the the “turn”

of m users as a Markov chain. We name the transition matrix

of the user’s Markov chain as A = [αij] ∈ R
m×m. Therefore

the probability of user j generating the t-th request from the

i-th user is P(U(t) = j|U(t − 1) = i) = αij . The random

104

Symbol Explanation
W RV for the webpage
D RV for the number of requests to be issued on a page
R RV for the issued DNS request

m Number of users
n Total number of pages
q Maximum number of requests per page

Pu ∈ R
n×n Webpage transition matrix of the user u

pw(d), d ∈ [q] Distribution of number of requests d on the page w
Ou ∈ R

n×n Output distribution matrix of the user u

TABLE I: Summary of the model parameters and random

variables (RV). For each random variable the corresponding

small letter represents a realization. Note that W and D
depend on the user but to avoid cluttering we omitted the

index u.

variable U(t) ∈ [m] represents the active user that generated

the t-th request of the resolver queue. As mentioned above,

a simplified variant of the user’s transition matrix A is the

shares vector α that has been used in literature [2], [12] where

∀i, j : P(U(t) = i|U(t− 1) = j) = αi.

To distinguish each user’s corresponding HsMM random

variable in the interleaving process we use both user index

and time index. For example, Wk(t) is the user k’s current

webpage. Note that here the time is different from the real

world time and HsMM duration that discussed in Section II-A.

Time here is just an index into the resolver’s sequence of

queries. For example, Wk(t) shows the webpage of user k
when the tth request was submitted to the resolver.

We model the interleaving process as an Augmented Hidden
Markov Model (AHMM), where the hidden states are aug-
mented states, i.e., combination of variables [12]. To make
the equations more readable, we lump together the variables
corresponding to each user and make the following lumped
variable Lk(t) = (Wk(t), Dk(t)) and the hidden state of the
HMM becomes H(t) = (L1(t), . . . , Lm(t), U(t)) which is a
2m + 1 dimensional vector. Fig 2 illustrates the interleaving
process that leads to sequence generation. For simplicity, we
assume u(t − 1) = u′ and u(t) = u which means that users
u′ and u are active at time steps t − 1 and t respectively.
At the time step t, user u(t) = u ∈ [m] generates the request
v(t) which is the observed (visible) variable of the HMM. The
request v(t) is determined by the next request of the user in its
HsMM model, i.e., ru(t). Therefore, the emission probability
of the AHMM is:

P(V (t) = v(t)|H(t) = h(t)) = Pu(ru(t)|wu(t)) = Ou(wu(t), ru(t)).

Now we derive the entries of the transition probability matrix

of the AHMM:

P(H(t)|H(t− 1)) = αu′u

m∏
k=1

P(lk(t)|lk(t− 1), u), (2)

In the case of k �= u the user k is not active, i.e., stalled.

Substituting the probability distributions from (1), we get:

P(lk(t)|lk(t− 1), u) =

⎧⎪⎨
⎪⎩
k �= u δ(w,w′)δ(d, d′)

k = u

{
d = 0 pw(d)[Pu]w′w

d > 0 δ(d, d− 1)

(3)

wm

dm

w'm

d'm
l'1 w2

d2
l2

w'1

d'1
l'1

v' v

l'm

��������	
���� ��������	
��

u' u
h' h

�
�

��������	
����

w'1

d'1
l'1

w1

d1
l1

lm

Fig. 2: Illustration of the interleaving process. The random

variable u selects the user that generates the query for the

time step t and stalls the others. The selected user proceed

according the user model, HsMM, and outputs the query v.

Symbol Explanation
L The lumped random variable L = (W,D).
H The hyper-hidden state of the HMM H = (L1, . . . , Lm, U).
V The visible state of the HMM which is the requested DN.

TABLE II: Summary of the augmented variables. For each

random variable the corresponding small letter represents a

realization.

III. DEINTERLEAVING METHODS

In the deinterleaving problem, given {v(t)}Tt=1 we are

interested in inferring {u(t)}Tt=1. In other words, we want to

find the users who initiated each request from the sequence

generated by the interleaving process described in Section

II-B.

We present two candidate approaches for inference. One is

based on reducing the interleaving process to an AHMM as

discussed in Section II-B. This approach has been used for

deinterleaving of Markov chains with small number of chains

(users) and state space [12]. Next, we propose to deinterleave

using an LSTM model which have recently been shown to

perform well in many time-series analysis tasks [5], [8].

A. Inference on Augmented HMM

We can model the whole interleaving process as an AHMM

and use learning techniques (like EM) to learn its parameters

and use Viterbi inference to determine the most probable

hidden (augmented) states h(t) from which we can extract the

most probable user u(t). The main difficulty of applying this

framework is that the state space of hidden variable, Figure

1, is very large. More specifically, there are m(nq)m possible

states of h and as we increase number of webpages n or users

m the state space grows exponentially. The huge state space,

makes the inference and learning very hard and as we show in

Section IV-A for synthetic experiments, even when the model

parameters are known, deinterleaving performs (using Viterbi

coding) poorly.

105

B. Inference using an LSTM

RNNs [11] are popular for modeling time series data. Given

the input vt and hidden state ht−1, the RNN computes the

next hidden state representation ht and output ut using the

following recurrent relationships

ht = f(Wvvt +Whht−1 + b) (4)

ut = Wuht (5)

where Wv , Wh, Wu and b are the network parameters, and

f() is some non-linear function. An example of f could be a

sigmoid f(z) = σ(z) = 1/(1 + exp(−z)) or rectified linear

unit f(z) = max(0, z).
For our specific problem of deinterleaving, an RNN can

by posed as a multi-class classification problem, where the

input is the observed webpage and the output will be the

identified user who requested that webpage. Specifically, each

data instantiation consists of a sequence of user-request pairs,

i.e., (u(t), v(t)). This represents who was the user at a given

time t and what request was produced by that user. Both the

user and the request are represented by an integer. The RNN is

unrolled for the entire length of one sequence. The users and

request integers are converted to one-hot encoding to enable

learning. Thus if there are b possible web pages, the requests

become b-dimensional vectors and for m users, it becomes an

m-dimensional vector. The request vectors are fed as input

to the RNN model, while the output is the corresponding

user at each time-step. The RNNs m-dimensional output is

passed through a softmax layer to convert it into probabilities

and the user with higher probability is compared against the

ground truth. Performance is measured in terms of accurately

identifying the user at each instant.

A common variant of RNN is LSTM [8] which we use in

our experiments. We randomly initialize network parameters

Wv,Wh,Wu and apply stochastic gradient descent (SGD) (for

RNNs, it is also referred to as a Backpropagation-through-

time (BPTT) algorithm). In particular, we use a variation

of the standard SGD called Adam [9], which allows for

adaptive learning rates using the past gradients, similar to

using momentum. This results in faster convergence compared

to other adaptive algorithms.

IV. EXPERIMENT

We start with a synthetic toy example and compare our

LSTM algorithm with Viterbi inference as the baseline and

then move to larger experiments. In all experiments, accuracy

is measured as 1
T

∑T
t=1 �(ut = ût) where ut is the actual user

generated query t and ût is the inferred user.

A. Viterbi vs. RNN

Here we generate synthetic resolver queue using the most

complicated user model, i.e., HsMM of Figure 1c and report

the Viterbi and LSTM methods performance. To reduce the

computational burden for the Viterbi algorithm, we restrict

ourselves to 2 pages, 2 users, and 2 possible requests per page.

To make the setup even simpler, user i browse only page i

Method Viterbi LSTM
Mean Accuracy 0.51 0.92

Std of Accuracy 0.02 .17

TABLE III: Comparing accuracy of Viterbi coding and LSTM

methods for the toy example. Results are averaged over 5

realization of the synthetic data. The baseline accuracy based

on the proportion of users α = (.4, .6) is .6.

Parameter Value
m 2 users
n 20 pages
q Maximum of 5 request per page

α (0.4, 0.6)
A Diagonal dominated row stochastic random matrix∗.
Pu A random 20× 20 matrix∗

pw(d) Uniform(1, 5)
Ou A random 20× 20 matrix∗

TABLE IV: Summary of the experimental setup for the

synthetic experiment IV-B. ∗More on the random matrix

generation in the text.

and page i picks from two possible requests at random using

Beta(3+ε,1+δ) where ε and δ are independent and uniform over

[0, 1]. Viterbi is tested on the same sequences of size thousand.

Results are averaged over 5 realizations of the synthetic data.

With this setup the size of the hidden state space of the AHMM

built from the HsMM user model is 32 and the number of

observations is 2. The users shares vector is α = (.4, .6).
LSTM is trained, validated and tested with sequences of size

6, 3, 1 thousands requests, respectively.

Table III summarizes the result: Interestingly, LSTM out-

performs Viterbi by a large margin. Note that we perform

Viterbi assuming that HMM parameters are given and not

learned from data using algorithms like Baum–Welch, and

even with this setup Viterbi performs poorly, worst that the

baseline. Perhaps, the poor performance of Viterbi compared

with LSTM can be explained by the linear nature of Viterbi

coding and the intrinsic power of LSTM in learning non-linear

temporal relations.

B. Synthetic Experiment

Owing to the poor performance of AHMM approach from

now on we focus on LSTM method of Section III-B. We report

the results of seven synthetic experiments only for LSTM

which is trained, validated and tested with sequences of size

60, 30, 10 thousands requests, respectively.

We test the results for 7 different scenarios, in all of them we

want to deinterleave a sequence generated by two users but the

parameters in each experiment is set up differently. Table IV

specifies the shared parameter setup. Specific user transition

and emission matrices are set for different scenarios which

are explained in Section IV-B. Note that in our experiments

we report results on two set of synthetic data set, where in

one we have a users shares vector α determining the share of

each user from the queue’s requests. In the other more general

data generating scheme, we assume that the users transition

106

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 3: Illustration of the disjoint surfing categories for a = 10
and b = 20.

matrix A governs the turn in request submission. Different

distributions for α and A are discussed in Section IV-B.
Sparsity Patterns of Matrices: For each user u we have

two matrices Pu and Ou which are randomly generated. The

generation process assumes that each row of both matrices is

sparse, which is a reasonable assumption. Each user view and

surf a limited number of pages and on each page the possible

requests are from a small subset of the all available pages. The

supports of Pis and Ois can overlap or be disjoint and this

combination generates the different setups of our experiments.

After selecting a support we generate a discrete distribution

over that support, which will be discussed in Section IV-B.
In the following the outer-list determines the different

strategies for generating Pus and the inner-list elaborates the

method of building Ous. Each row of Ous has a non-zero

elements (randomly selected) and the distribution is uniform.

We call O1 �= O2 and O1 = O2 schemes, personalized and

shared outputs respectively.

• Disjoint webpage surfing: In this scenario, users surf

disjoint parts of the web, say user 1 surf inside a group

of first a pages and user 2 surf the remaining n−a pages,

Fig 3.

Case 1) Disjoint personalized outputs - same group-
ing as webpages: Ou and Pu have similar sparsity

patterns, Fig 3a.

Case 2) Disjoint personalized outputs: Ou and Pu

do not have similar sparsity patterns, but support of

O1 and O2 are disjoint, Fig 3b.

Case 3) Shared output: Fig 3c.

• Overlapped webpage surfing with fixed block size:
Each user selects its surfing support of size a at random.

Supports may overlap, Fig 4.

Case 4) Personalized outputs: Fig 4a.

Case 5) Shared output: Fig 4b.

• Overlapped webpage surfing with variable block size
and interaction between blocks: Each user selects

s = Uniform(1, a) pages at random as its main support

(higher probability of surfing in these s pages), and a−s
pages again at random as its auxiliary support (pages that

user seldom visits), Fig 5.

Case 6) Personalized outputs: Fig 5a.

Case 7) Shared output: Fig 5b.

Probability Distributions: Here we explain different dis-

tributions used in our synthetic generator:

(a) Case 4 (b) Case 5

Fig. 4: Illustration of the overlapped surfing without auxiliary

block for a = 10 and b = 20.

(a) Case 6 (b) Case 7

Fig. 5: Illustration of the overlapped surfing with auxiliary

block for a = 10 and b = 20.

• Users shares vector α: We fix α to (.4, .6).
• Rows of user transition matrix A(u): This is a diagonal

dominant matrix, meaning that if user u has submitted the

current request v(t) it is more probable that he submit the

next request. In this way, we capture the fact that because

of the episodic nature of the request submission, close-by

queries are more probable to come from a same user. This

has been exploited in the previous literature [6]. Note that

when instead of matrix A we only consider the vector α
we may not capture this realistic property of the data. For

the toy example, we set αii = .5 + 1
2Uniform(0, 1) and

∀i �= j : αij ∝ (1− αii)Uniform(0, 1)
• Rows of output matrix Ou(w): As mentioned before,

each row Ou(w) has a non-zero elements with each with

probability 1/a.

• Rows of page transition matrix Pu(w): In a nutshell, we

discretize a continuous Beta distribution with different

parameters for each block and normalize the final vector.

The distribution that we use for the (main) support is

Beta(3+ε,1+δ) where ε and δ are random numbers from

[−1, 1]. For the distribution on the auxiliary support of

the cases 6 and 7 above, we use Beta(2+ε,2+δ).

Discussion: Table V shows the error of our method for all

7 cases of Section IV-B for a = 10.

Each row is the average result for five instantiation of the

model parameters Ou and Pu. The error of each instantiation

(each row) is an average of 100 experiments. Note that case 1

and 2 are trivial cases when both Ps and Os are disjoint and

LSTM perfectly dis-interleave. Interestingly, performance in

case 3 is much worse than cases 1 and 2, which confirms

107

Cases 1 2 3 4 5 6 7
α

Mean 1 1 .63 .70 .62 .74 .65
Std 0 0 .02 .02 .02 .05 .04

A
Mean 1 1 .77 .69 .67 .82 .78
Std 0 0 .10 .09 .08 .09 .16

TABLE V: Deinterleaving accuracy of LSTM for different

cases of the synthetic example when user transitions are

determine by either of α = (.4, .6) or random diagonally

dominant A. The baseline for α and A experiments are .6
and .5 respectively.

that in our model having disjoint output matrices is more

important than disjoint surfing pattern. Intuitively, this makes

sense because the final request comes from the output matrices

and if we have personalized outputs the deinterleaving should

be easier. Interestingly, beyond the trivial cases 1 and 2, case

6 has the best accuracy, probably because of personalized

outputs and more complicated Pu for each user (composed

of main and auxiliary block) makes the whole problem more

separable.

V. CONCLUSION

This paper describes our foray into the application of

advanced deep-learning techniques to the problem of dein-

terleaving DNS-based time-series sequences. To this end, we

developed an HsMM-based model of user request generation

and an AHMM-based model of the interleaving process at the

resolver queue. We then evaluated the efficacy of two different

inference strategies for deinterleaving on a synthetic dataset.

Our results suggest that LSTM-based strategies significantly

outperform traditional AHMM-based models. In future work,

we plan to extend this analysis on signficantly larger datasets

to the specific problem of malware domain group extraction.

ACKNOWLEDGMENTS

The work was supported in part by NSF grants CNS-

1314560, IIS-1447566, IIS-1447574, IIS-1422557, CCF-

1451986, and IIS-1563950. SG and VY acknowledge partial

support from NSF Grant CNS-1314956 and CNS-1514503.
REFERENCES

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[2] Tugkan Batu, Sudipto Guha, and Sampath Kannan. Inferring mixtures
of markov chains. In COLT, volume 2004, pages 186–199. Springer,
2004.

[3] Chris Burge and Samuel Karlin. Prediction of complete gene structures
in human genomic dna. Journal of molecular biology, 268(1):78–94,
1997.

[4] Christopher B Burge and Samuel Karlin. Finding the genes in genomic
dna. Current opinion in structural biology, 8(3):346–354, 1998.

[5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

[6] Hongyu Gao, Vinod Yegneswaran, Yan Chen, Phillip Porras, Shalini
Ghosh, Jian Jiang, and Haixin Duan. An empirical reexamination
of global dns behavior. ACM SIGCOMM Computer Communication
Review, 43(4):267–278, 2013.

[7] A. Graves and J. Schmidhuber. Offline handwriting recognition with
multidimensional recurrent neural networks. In NIPS, pages 545–552.
2009.

[8] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, November 1997.

[9] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[10] Niels Landwehr. Modeling interleaved hidden processes. In Proceedings
of the 25th international conference on Machine learning, pages 520–
527. ACM, 2008.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[12] Ariana Minot and Yue M Lu. Separation of interleaved markov chains.
In Signals, Systems and Computers, 2014 48th Asilomar Conference on,
pages 1757–1761. IEEE, 2014.

[13] Gadiel Seroussi, Wojciech Szpankowski, and Marcelo J Weinberger.
Deinterleaving markov processes via penalized ml. In Information
Theory, 2009. ISIT 2009. IEEE International Symposium on, pages
1739–1743. IEEE, 2009.

[14] Gadiel Seroussi, Wojciech Szpankowski, and Marcelo J Weinberger.
Deinterleaving finite memory processes via penalized maximum like-
lihood. IEEE Transactions on Information Theory, 58(12):7094–7109,
2012.

[15] SophosLabs. Looking ahead: Sophoslabs 2017 malware forecast. 2017.
[16] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning

with neural networks. In NIPS, pages 3104–3112, 2014.
[17] Symantec. 2017 internet security threat report. 2017.

108

