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Abstract—Malware is constantly adapting in order to avoid
detection. Model based malware detectors, such as SVM and
neural networks, are vulnerable to so-called adversarial examples
which are modest changes to detectable malware that allows
the resulting malware to evade detection. Continuous-valued
methods that are robust to adversarial examples of images have
been developed using saddle-point optimization formulations.
We are inspired by them to develop similar methods for the
discrete, e.g. binary, domain which characterizes the features
of malware. A specific extra challenge of malware is that the
adversarial examples must be generated in a way that preserves
their malicious functionality. We introduce methods capable of
generating functionally preserved adversarial malware examples
in the binary domain. Using the saddle-point formulation, we
incorporate the adversarial examples into the training of models
that are robust to them. We evaluate the effectiveness of the
methods and others in the literature on a set of Portable
Execution (PE) files. Comparison prompts our introduction of
an online measure computed during training to assess general
expectation of robustness.

Index Terms—Neural Networks, Malware

I. INTRODUCTION

Deep neural networks (DNN) started as extensions of neural

networks in artificial intelligence approaches to computer

vision and speech recognition. They are also used in computer

security applications such as malware detection. A large chal-

lenge in developing malware detection models is the intelligent

adversaries who actively try to evade them by judiciously

perturbing the detectable malware to create what are called

Adversarial Examples (AEs), i.e. malware variants that evade

detection.

Much of the work done to understand and counter AEs has

occurred in the image classification domain. An adversarial

attack on an image classifier perturbs an image so that it

is perceptually no different to a human but now classified

incorrectly by the classifier. To counter them, researchers have

demonstrated how DNN models can be trained more robustly.

These methods assume a continuous input domain [18].

Our interest is malware detection where, in contrast to im-

ages, detectors often use features represented as binary (0, 1)
inputs. Malware AEs must not only fool the detector, they must

also ensure that their perturbations do not alter the malicious

payload. Our preliminary goal is to develop a method that,

as is done in the continuous space, can generate (binary)

perturbations of correctly classified malware that evade the

detector. Our central goal is to investigate how the robust

adversarial training methods for continuous domains can be

transformed to serve the discrete or categorical feature do-

mains that include malware. We can measure the effectiveness

of a robust adversarial malware method on training a classifier

by the evasion rate of AEs and we also seek an online

training measure that expresses the general expectation of

model robustness.

This leads to the following contributions at the intersection

of security and adversarial machine learning: 1) We present

4 methods to generate binary-encoded AEs of malware with

preserved malicious functionality 2) We present the SLEIP-

NIR framework for training robust adversarial malware detec-

tors. SLEIPNIR employs saddle-point optimization (hence its

name1) to learn malware detection models for executable files

represented by binary-encoded features. 3) We demonstrate the

framework on a set of Portable Executables (PEs), observing

that incorporating randomization in the method is most effec-

tive. 4) We use the AEs of an adversarial crafting method [13]

that does not conform to the saddle-point formulation of

SLEIPNIR to evaluate the models from SLEIPNIR. We find that

the model of the randomized method is also robust to them.

5) Finally, we provide the SLEIPNIR framework and dataset

for public use.2

The paper is structured as follows. §.II presents background

and related work. §.III describes the method. Experiments are

in §.IV. Finally, conclusions are drawn and future work is

outlined in §.V.

II. BACKGROUND

Malware detection is moving away from hand-crafted

rule-based approaches and towards machine learning tech-

niques [25]. In this section we focus on malware detection

with neural networks (§.II-A), adversarial machine learning

(§.II-B) and adversarial malware versions (§.II-C).

A. Malware Detection using Neural Networks

Neural network methods for malware detection are increas-

ingly being used. For features, one study combines DNN’s

with random projections [9] and another with two dimensional

binary PE program features [24]. Research has also been

1https://en.wikipedia.org/wiki/Sleipnir
2https://github.com/ALFA-group/robust-adv-malware-detection.
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done on a variety of file types, such as Android and PE

files [5], [16], [22], [29]. While the specifics can vary greatly,

all machine learning approaches to malware detection share

the same central vulnerability to AEs.

B. Adversarial Machine Learning
Finding effective techniques that robustly handle AEs is one

focus of adversarial machine learning [6], [15]. An adversar-

ial example is created by making a small, essentially non-

detectable change to a data sample x to create xadv = x+ δ.

If the detector misclassifies xadv despite having correctly

classified x, then xadv is a successful adversarial example.

Goodfellow et al. [11] provide a clear explanation for the

existence of AEs.
There are a variety of techniques that generate AEs [11],

[26]. One efficient and widely used technique is the fast

gradient sign method (FGSM) [11]. With respect to an input,

this method finds the directions that move the outputs of the

neural network the greatest degree and moves the inputs along

these directions by small amounts, or perturbations. Let x
represent an input, θ the parameters of the model, y the labels,

and L(θ,x, y) be the associated loss generated by the network.

Maintaining the restriction of ε-max perturbation, we can ob-

tain a max-norm output change using η = εsgn(∇xL(θ,x, y)).
Because the technique references the detector’s parameters, it

is known as a white-box attack model [8], [11], [20].
There have been multiple studies focused on advancing

model performance against AEs, e.g. [19], [30]. One obvious

approach is retraining with the AEs incorporated into the

training set. We are attracted to the approach of [18]. It casts

model learning as a robust optimization problem with a saddle-

point formulation where the outer minimization of detector

(defensive) loss is tied to the inner maximization of detector

loss (via AEs) [18]. The approach successfully demonstrated

robustness against adversarial images by incorporating, while

training, AEs generated using projected gradient descent.

C. Adversarial Malware
Security researchers have generated malware AEs using an

array of machine learning approaches such as reinforcement

learning, genetic algorithms and supervised learning including

neural networks, decision trees and SVM [5], [10], [12]–[14],

[22], [24], [27], [28]. These approaches, with the exception

of [12], [13], are black box. They assume no knowledge of

the detector though the detector can be queried for detection

decisions. Multiple studies use binary features, typically where

each index acts as an indicator to express the presence or

absence of an API call, e.g. [23]. One study also includes

byte/entropy histogram features [24]. Studies to date have only

retrained with AEs.
Uniquely, this work generates functional white-box AEs in

the discrete, binary domain while incorporating them into the

training of a malware classifier that is robust to AEs.

III. METHOD

To address the problem of hardening machine learning anti-

malware detectors via adversarial learning, we formulate the

adversarial learning procedure as a saddle-point problem in

line with [18]. Before describing the problem formally and

presenting our proposed approach to tackle the same, we

introduce the notation and terminology used in the rest of the

paper.

A. Notation

This paper considers a malware classification task with an

underlying data distribution D over pairs of binary executable

representations and their corresponding labels (i.e., benign or

malignant). For brevity, we use malicious binary executable
and malware interchangeably. We denote the representation

space of the executables and their label space by X and Y ,

respectively. Based on extracted static features, each binary

executable is represented by a binary indicator vector x =
[x1, . . . , xm] ∈ X . That is, X = {0, 1}m and xj is a binary

value that indicates whether the jth feature is present or not.

On the other hand, labels are denoted by y ∈ Y = {0, 1},
where 0 and 1 denote benign and malignant executables,

respectively. We would like to learn the parameters θ ∈ R
p of a

binary classifier model such that it correctly classifies samples

drawn fromD. Typically, the model’s performance is measured

by a scalar loss function L(θ,x, y) (e.g., the cross entropy

loss). The task then is to find the optimal model parameters θ∗

that minimize the risk E(x,y)∼D[L(θ,x, y)]. Mathematically,

we have

θ∗ ∈ arg min
θ∈Rp

E(x,y)∼D[L(θ,x, y)] . (1)

B. Malware Adversarial Learning as a Saddle Point Problem

Blind spots are regions in a model’s decision space, on either

side of the decision boundary, where, because no training

example was provided, the decision boundary is inaccurate.

Blind spots of malware detection models—such as the one

learned in (1)—can be exploited to craft misclassified adver-

sarial malware samples from a correctly classified malware,

while still preserving malicious functionality. An adversarial

malware version xadv (which may or may not be misclassified)

of a correctly classified malware x can be generated by

perturbing x in a way that maximizes the loss L, i.e.,

xadv ∈ S∗(x) = arg max
x̄∈S(x)

L(θ, x̄, y) , (2)

where S(x) ⊆ X is the set of binary indicator vectors that

preserve the functionality of malware x, and S∗(x) ⊆ S(x)
is the set of adversarial malware versions that maximize the

adversarial loss.

To harden the model learned in (1) against the adversarial

versions generated in (2), one needs to incorporate them into

the learning process. We choose to do so by making use

of the saddle-point formulation presented in [18]. Thus, our

adversarial learning composes (1) and (2) as:

θ∗ ∈ arg min
θ∈Rp

E(x,y)∼D

[ adversarial loss︷ ︸︸ ︷
max

x̄∈S(x)
L(θ, x̄, y)

]
︸ ︷︷ ︸

adversarial learning

. (3)
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Solving (3) involves an inner non-concave maximization prob-

lem and an outer non-convex minimization problem. Never-

theless, this formulation is particularly interesting because of

two reasons. First, in the case of a continuous differentiable

loss function (in the model parameters θ), Danskin’s theorem

states that gradients at inner maximizers correspond to descent

directions for the saddle-point problem—see [18] for a formal

proof. Second, it has been shown empirically that one can still

reliably optimize the saddle-point problem for learning tasks

with continuous feature space—i.e., X ⊆ R
m—even with i)

loss functions that are not continuously differentiable (e.g.,

ReLU units); and ii) using gradients at approximate maxi-

mizers of the inner problem [18]. To find these maximizers,

prior work has used variants of projected gradient descent

on the negative loss function such as the Fast Gradient Sign

Method (FGSM) [11] and its multi-step variant FGSMk [17].

Finding maximizers (or approximations) of the inner problem

for a given malware involves moving from continuous to

constrained binary optimization: flipping bits of the malware’s

binary feature vector x while preserving its functionality.

C. Adapting Gradient-Based Inner Maximization Methods for
Binary Feature Spaces

Our malware-suited methods step off from the empirical

success of gradient-based methods like FGSMk in approxi-

mating inner maximizers for continuous feature spaces [18].

The bulk of prior work has focused on adversarial attacks

against images. In such setups, pixel-level perturbations are

often constrained to �∞-ball around the image at hand [11].

In the case of malware, perturbations that preserve malicious

functionality correspond to setting unset bits in the binary

feature vector x of the malware at hand. As depicted in Fig. 1

(a), we can only add features that are not present in the

binary executable and never remove those otherwise. Thus,

S(x) = {
x̄ ∈ {0, 1}m | x ∧ x̄ = x

}
and |S(x)| = 2m−xT 1.

One could incorporate all the adversarial malware versions in

the training through brute force enumeration but they grow

exponentially in number and blind spots could be redundantly

visited. On the other hand, with gradient-based methods, we

aim to introduce adversarial malware versions in an online

manner based on their difficulty in terms of model accuracy.

In the continuous space of images, projected gradient de-

scent can be used to incorporate the �∞-ball constraint (e.g.,

the Clip operator [17]). Inspired by linear programming

relaxation and rounding schemes for integer problems, we

extend the projection operator to make use of gradient-

based methods for the malware binary space via determin-
istic or randomized rounding giving rise to two discrete,

binary-encoded, constraint-based variants of FGSMk, namely

dFGSMk and rFGSMk, respectively. It is interesting to note

that MalGAN’s black-box system [14] used a deterministic

rounding scheme—with α = 0.5—to craft adversarial malware

versions.

With FGSMk in continuous space, AEs are generated by

moving iteratively in the feasible space (e.g., the �∞-ball

around around an image). In contrast, the crafted adversarial

malware versions are situated at the vertices of the binary

feature space. Instead of multi-stepping through the contin-

uous space to generate just one adversarial malware version

(i.e., dFGSMk or rFGSMk), we can use the gradient to visit

multiple feasible vertices (i.e., adversarial malware versions)

and choose the one with the maximum loss, see Fig. 1 (a).

This suggests a third method: multi-step Bit Gradient Ascent
(BGAk), see Fig. 1 (b). This method sets the bit of the jth

feature if the corresponding partial derivative of the loss is

greater than or equal to the loss gradient’s �2-norm divided

by
√
m. The rationale behind this is that the projection of a

unit vector with equal components onto any coordinate equals

1/
√
m. Therefore we set bits (features) whose corresponding

partial derivative contribute more or equally to the �2-norm of

the gradient in comparison to the rest of the features. After k
steps, the binary indicator vector that corresponds to the vertex

with the maximum loss among the visited vertices is chosen as

the adversarial malware version. A final method: multi-step
Bit Coordinate Ascent (BCAk) updates one bit in each step

by considering the feature with the maximum corresponding

partial derivative of the loss. A similar approach has been

shown effective for Android malware evasion in [12], [13].

Table I presents a formal definition of the methods. In the next

section, we propose a metric to measure their effectiveness in

covering the model’s blind spots.

D. Blind Spots Coverage

With adversarial learning, we aim to discover and address

blind spots of the model while learning its parameters simul-

taneously. In other words, we would like to incorporate as

many members of S∗(x) as possible in training the model.

In line with this notion, we propose a new measure called the

blind spots covering number, denoted NBS , which measures
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(a) (b)

Fig. 1. (a) Two malicious binary executables (malwares) in the 3-dimensional
binary indicator vector space. The set of adversarial malware versions for the
malware at [1, 0, 0] is S([1, 0, 0]) = {[1, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 1]},
and for the malware at [0, 1, 1] is S([0, 1, 1]) = {[0, 1, 1], [1, 1, 1]}. The
arrows point to the set of allowed perturbations. (b) Two-step bit gradient
ascent (BGA2). The solid arrows represent the loss gradient at the arrows
end points, while the dashed arrows represent the bit gradient ascent update
step. At step 1, the contribution to the magnitude of the loss gradient
(�2-norm) is predominantly towards setting the 3rd feature. Thus, x1 is
obtained by setting x0’s 3rd bit. Similarly, x2 is obtained by setting x1’s
2nd bit. After visiting 2 vertices besides our starting vertex, we choose
argmaxx∈{x0,x1,x2} L(θ,x, 1) as the adversarial malware version of x0.

Note that this a special case of BGAk , where only one bit is set at a step.
Two-step bit coordinate ascent (BCA2) would generate the same adversarial
malware version.
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TABLE I
Proposed inner maximizers for the saddle-point problem (3).

Considered inner maximization methods for crafting adversarial versions of a malware given its binary indicator vector x. Denote ∂L(θ,xt, y)/∂xt
j by ∂xt

j
L, the

adversarial malware version by x̄k , the projection operator into the interval [a, b] by Π[a,b] such that Π[a,b] = max(min(x, b), a), the OR operator by ∨, and the XOR

operator by ⊕. Furthermore, for all the methods, the initial starting point x0 can be any point from S(x), i.e., x0 ∈ S(x). In our setup, x0 is set to x. For BGAk and
BCAk , the (1− 2xt

j) term is used to enforce that the gradient is towards 0 if xt
j = 1, and vice versa.

Method Definition

FGSMk with deterministic rounding (dFGSMk)

xt+1
j = Π[0,1]

(
xt
j + εsgn(∂xt

j
L)

)
, 0 ≤ j < m , 0 ≤ t < k

x̄k
j = 1

{
xk
j > α

}
∨ xj , α ∈ [0, 1] , 0 ≤ j < m

xadv ∈ argmax{L(θ,x∗, 1) | x∗ ∈ {x̄k,x}}

FGSMk with randomized rounding (rFGSMk)

xt+1
j = Π[0,1]

(
xt
j + εsgn(∂xt

j
L)

)
, 0 ≤ j < m , 0 ≤ t < k

x̄k
j = 1

{
xk
j > αj

}
∨ xj , αj ∈ U(0, 1) , 0 ≤ j < m

xadv ∈ argmax{L(θ,x∗, 1) | x∗ ∈ {x̄k,x}}

Multi-Step Bit Gradient Ascent (BGAk)
xt+1
j =

(
xt
j ⊕ 1

{
(1− 2xt

j) ∂xt
j
L ≥ 1√

m
||∇xL(θ,xt, y)||2

})
∨ xj , 0 ≤ j < m , 0 ≤ t < k

xadv ∈ argmax{L(θ,x∗, 1) | x∗ ∈ {xt}0≤t≤k ∪ {x}}

Multi-Step Bit Coordinate Ascent (BCAk)

jt+1 ∈ argmax1≤j≤m(1− 2xt
j) ∂xt

j
L

xt+1
j = (xt

j ⊕ 1{j = jt+1}) ∨ xj , 0 ≤ j < m , 0 ≤ t < k

xadv ∈ argmax{L(θ,x∗, 1) | x∗ ∈ {xt}0≤t≤k ∪ {x}}

the effectiveness of an algorithm A in computing the inner

maximizers of (3). The measure is defined as the expected

ratio of the number of adversarial malware versions crafted

by A during training, denoted by S∗A(x), to the maximum

possible number of the same. Formally, it can be written as

follows.

NBS(A) = E(x,y)∼D

[
y|S∗A(x)|
2m−xT 1

]
(4)

Models trained with high NBS have seen more AEs in

training, and because training against multiple AEs implies

more exhaustive approximations of the inner maximization

problem, they are expected to be more robust against adversar-

ial attacks [18]. While it may be computationally expensive to

compute (4) exactly, we provide a probabilistic approximation

of it in §.IV-B.

E. Adversarial Learning Framework

Having specified four methods for approximating the inner

maximizers of (3) and a measure of their effectiveness, we can

now describe SLEIPNIR, our adversarial learning framework

for robust malware detection. Consider a training dataset D
of n independent and identically distributed samples drawn

from D. As outlined in Algorithm 1 and depicted in Fig. 2,

SLEIPNIR groups D into minibatches B of s examples similar

to [17]. However, the grouping here is governed by the

examples’ labels: the first r < s examples are malicious,

followed by s − r benign examples. At each training step,

the model’s parameters θ are optimized with respect to the

adversarial loss (2) of malware executables and the natural

loss (1) of benign executables. This is motivated by the

fact that authors of benign applications have no interest in

having their binaries misclassified as malwares [12]. However,

one should note that a malware author might wish to create

adversarial benign applications to poison the training dataset.

This possibility is considered for future work. As an equation,

our empirical saddle-point problem at each training step has

the form

min
θ∈Rp

1

s

[ r∑
i=1

max
x̄(i)∈S(x(i))

L(θ, x̄(i), 1) +
s∑

i=r+1

L(θ,x(i), 0)

]
.

(5)

IV. EXPERIMENTS

This section provides an empirical evaluation of our propo-

sition in §.III. We conduct experiments to validate and com-

pare the efficacy of the proposed methods in terms of classifi-

cation accuracy, evasion rates, and blind spots coverage. First,

the setup of our experiments is described in §.IV-A, followed

by a presentation of the results in §.IV-B.

A. Setup

Dataset. The Portable Executable (PE) format [2] is a file

format for executables in Windows operating systems. The

format encapsulates information necessary for Windows OS

to manage the wrapped code. PE files have widespread use as

malware. We created a corpus of malicious and benign PE files

from VirusShare [3] and internet download sites, respectively.
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Algorithm 1 SLEIPNIR

Input:
N : neural network model, D : training dataset,

s : minibatch size, r : number of malwares in minibatch,

A : inner maximizer algorithm (any of Table I)

1: Randomly initialize network N
2: repeat
3: Read minibatch B from dataset D

B = {x(1), . . . ,x(s) | yi≤r = 1, yi>r = 0}
4: Generate r adversarial versions {x(1)

adv, . . . ,x
(r)
adv}

from feasible sets of corresponding malware examples
{S(x(1)), . . . ,S(x(r))} by A using current state of N

5: Make new minibatch

B′ = {x(1)
adv, . . . ,x

(r)
adv,x

(r+1), . . . ,x(s)}
6: Do one training step of network N with minibatch B′

7: until training converged
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Fig. 2. Overview of the SLEIPNIR framework. Malware is perturbed by an
inner maximization method (any of Table I) to create AEs. The generated
adversarial malware versions and benign examples are used in an outer
minimization of the adversarial and natural loss (5), which can be solved
in minibatches using any variant of the gradient descent algorithm.

To label the collected PEs, we use VirusTotal’s [4] ensemble

of virus detectors. We require benign files to have 0% positive

detections from the ensemble and malicious files to have

greater than 50% positive detections to avoid false positives.

At the time of writing this paper, we have 34,995 malicious

and 19,696 benign PEs.

Feature Representation. As mentioned earlier, each

portable executable is represented as a binary indicator feature

vector. Each index of the feature vector represents a unique

Windows API call and a ”1” in a location represents the

presence of the corresponding API call. In our dataset of PEs,

we found a total of 22,761 unique API calls. Thus, each PE

file is represented by a binary indicator vector x ∈ {0, 1}m,

with m = 22, 761. We use the LIEF [1] library to parse each

PE and turn it into its representative binary feature vector.3

Neural Net (N ) Architecture. We use a feed-forward

network for our malware classifier N with 3 hidden layers

of 300 neurons each. The ReLU activation function is applied

to all the 3× 300 hidden neurons. The LogSoftMax function

is applied to the output layer’s two neurons which correspond

to the two labels at hand: benign and malicious. The model is

implemented in PyTorch [21].

Learning Setup. We use 19, 000 benign PEs and 19, 000
malicious PEs to construct our training (60%), validation

(20%), and test (20%) sets. The training set is grouped

into minibatches of 16 PE samples according to Line 3 of

Algorithm 1. The classifier N ’s parameters θ are tuned with

respect to (5), where L is the negative log likelihood loss, using

the ADAM optimization algorithm with a 0.001 learning rate

over 150 epochs. Note that one step of ADAM corresponds to

Line 6 of Algorithm 1. To avoid overfitting, model parameters

at the minimum validation loss are used as the final learned

parameters θ∗. With regard to the inner maximizers algorithms

(Table I), all were set to perform 50 steps, i.e., k = 50. This

makes the step size ε for dFGSMk and rFGSMk small enough

(we set it to ε = 0.02) to follow the gradient accurately

while also ensuring that multi-steps could reach close to

other vertices of the binary feature space (Fig. 1) and not be

suppressed by rounding. With 50 steps and 0.02 step size, both

these conditions are met. We run Algorithm 1 with A being

set to each of the inner maximizers from Table I to obtain 4

adversarially trained models in addition to the model trained

naturally. We also used the adversarial sample crafting method

presented by Grosse et al. [13, Algorithm 1] which trains a

model adversarially without using a saddle-point formulation:

the AEs in [13] are tuned with respect to the value of the

benign output neuron rather than the loss L. Though not

directly, this does maximize the adversarial loss value. All

experiments for the six models were run on a CUDA-enabled

GTX 1080 Ti GPU.

B. Results

For brevity, we refer to the trained models by their inner

maximizer methods. Experiment results are presented in Ta-

bles II and III as follows.

Classification Performance. Based on Table II, all the

adversarially trained models achieve a classification accuracy

comparable to the naturally trained counterpart. However, we

observe that models trained using inner maximizers of Table I

tend to have higher false positive rate (FPR) and lower false

negative rate (FNR)—positive denotes malicious. The FPR

increase can be explained by the transforming of malware

samples when models are trained adversarially. Such trans-

formations could turn malware feature vectors into ones more

similar to those of the benign population, and subsequently the

benign test set. Likewise, the FNR decrease can be attributed

to the adversarial versions boosting the model’s confidence

on vertices with less original malicious samples compared to

3The generated feature vectors are available by request.
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the benign samples. With [13]’s method, it is the other way

around. Arguably, the reason is that its adversarial objective is

to maximize just the benign (negative) neuron’s output and it is

indifferent to the malicious (positive) neuron. As a result, the

crafted adversarial malware version does not necessarily end

up at a vertex at which the model’s confidence, with respect

to the malicious label, is low, which consequently improves

the FPR and worsens the FNR.

Robustness to Evasion Attacks. We tried the adversarial

attackers generated by the inner maximizers and [13]’s method

as inputs to each of the trained models to assess their robust-

ness against the adversaries generated during training as well

as other adversaries. It can be seen in Table III that rFGSMk is

our most successful adversarial training method, achieving

relatively low evasion rates across all attack methods. As

expected, all training methods are resistant to attacks using

the same method, but each method aside from rFGSMk has at

least one adversarial method that it performs poorly against.

Evasion rates for Natural training, which uses non-altered

malicious samples, provide a baseline for comparison.

Blind Spots Coverage. Given the high-dimension fea-

ture vectors and the sizeable dataset, it was computationally

expensive to compute NBS exactly. Instead, we computed

an approximate probabilistic measure N̄BS using a Bloom

filter [7]. The computed measures are presented in the last

column of Table II as the ratio of total adversarial malware

versions to original samples over all the training epochs.

Natural training has a ratio of 1.0 since we do not modify

the malicious samples in any way. A coverage value of 4.0
for rFGSMk means that with high probability we explored

4 times as many malicious samples compared to Natural
training. A high coverage value indicates that the adversarial

training explored more of the valid region S(x) for malware

sample x, resulting in a more robust model. This observation

is substantiated by the correlation between coverage values

in Table II and evasion rates in Table III. Note that N̄BS

is computed and updated after each training step. Thus, it

can be used as an online measure to assess training methods’

robustness to adversarial attacks.

V. CONCLUSIONS AND FUTURE WORK

We investigated methods that reduce the adversarial blind

spots for neural network malware detectors. We approached

this as a saddle-point optimization problem in the binary

domain and used this to train DNNs via multiple inner

maximization methods that are robust to adversarial malware

versions of the dataset.

We used a dataset of PE files to assess the robustness against

evasion attacks. Our experiments have demonstrated once

again the power of randomization in addressing challenging

problems, conforming to the conclusions provided by state-

of-art attack papers [8]. Equipping projected gradient descent

with randomness in rounding helped uncover roughly 4 times

as many malicious samples in the binary feature space as those

uncovered in natural training. This performance correlated

TABLE II
PERFORMANCE METRICS OF THE TRAINED MODELS.

In percentage, Accuracy, False Positive Rate (FPR), and False Negative Rate (FNR)
are of the test set: 3800 malicious PEs and 3800 bengin PEs, with k = 50. N̄BS

denotes the probabilistic normalized measure computed during training to approximate
the blind spots covering number NBS . This was obtained using a Bloom filter to track
the number of distinct malware samples presented during training, be they from the
original malware training samples or their adversarial versions. Models corresponding
to bold cells are the best with regard to the corresponding measure/rate. The measures of
the inner maximizers and [13]’s are reported in their relative difference to Natural’s
counterparts.

Model Accuracy FPR FNR N̄BS

Natural 91.9 8.2 8.1 1.0

dFGSMk +0.1 +1.4 −1.7 +1.6

rFGSMk −0.6 +3.6 −2.4 +3.0

BGAk +0.2 +0.0 −0.5 +2.5

BCAk −0.3 +0.9 −0.5 +0.0

[13]’s method −1.1 −3.9 +5.9 +0.6

TABLE III
EVASION RATES.

Evasion rates of adversaries on the test set against the trained models with k = 50.
Models corresponding to bold cells are the most robust models with regard to the
corresponding adversary. Adversaries corresponding to shaded cells are the (or one of
the) most successful adversaries with regard to the corresponding model. Evasion rates of
the proposed inner maximizers are the lowest on their corresponding expected adversary
after the Natural adversary as shown by the corresponding framed cells along the
diagonal. This conforms to their saddle-point formulation, in contrast to [13]’s method
with BCAk being its weakest adversary after the Nautral adversary, as framed below.
This is expected as training with [13]’s method does not follow an exact saddle-point
formulation.

Model
Adversary

Natural dFGSMk rFGSMk BGAk BCAk [13]’s method

Natural 8.1 99.7 99.7 99.7 41.7 99.7

dFGSMk 6.4 6.4 21.1 7.3 27.4 99.2

rFGSMk 5.7 7.0 5.9 5.9 6.8 35.0

BGAk 7.6 39.6 17.8 7.6 10.9 68.4

BCAk 7.6 99.5 99.5 91.8 7.9 98.6

[13] ’s method 14.0 69.3 69.3 37.5 14.1 15.6

with the online measure we introduced to assess the general

expectation of robustness.

There are several future research questions. First, we would

like to study the loss landscape of the adversarial malware

versions and the effect of starting point x0 initialization for

inner maximizers, in comparison to their continuous-domain

counterparts. Second, NBS quantifies how many different

adversarial examples are generated but it does not capture

how they are located with regard to the benign examples and,

subsequently, their effect on the model’s FPR and FNR. We

hope that investigating these directions will lead towards fully

resistant deep learning models for malware detection.
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