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Abstract—The use of deceptive techniques in user-generated
video portals is ubiquitous. Unscrupulous uploaders deliber-
ately mislabel video descriptors aiming at increasing their
views and subsequently their ad revenue. This problem, usually
referred to as "clickbait," may severely undermine user experi-
ence. In this work, we study the clickbait problem on YouTube
by collecting metadata for 206k videos. To address it, we devise
a deep learning model based on variational autoencoders that
supports the diverse modalities of data that videos include.
The proposed model relies on a limited amount of manually
labeled data to classify a large corpus of unlabeled data. Our
evaluation indicates that the proposed model offers improved
performance when compared to other conventional models.
Our analysis of the collected data indicates that YouTube
recommendation engine does not take into account clickbait.
Thus, it is susceptible to recommending misleading videos to
users.
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I. INTRODUCTION

Recently, YouTube surpassed cable TV in terms of popu-

larity within teenagers [1]. This is because YouTube offers

a vast amount of videos, which are always available on

demand. However, because videos are generated by the users

of the platform, known as YouTubers, a plethora of them

are of dubious quality. The ultimate goal of YouTubers is

to increase their ad revenue by ensuring that their content

will get viewed by millions of users. Several YouTubers

deliberately employ techniques that aim to deceive viewers

into clicking their videos. These techniques include: (i) use

of eye-catching thumbnails, such as depictions of abnormal

stuff or attractive adults, which are often irrelevant to video

content; (ii) use of headlines that aim to intrigue the viewers;

and (iii) encapsulate false information to either the headline,

the thumbnail or the video content. We refer to videos that

employ such techniques as clickbaits. The continuous ex-

posure of users to clickbaits cause frustration and degraded

user experience ( see Fig. 1 ) .

The clickbait problem is essentially a peculiar form of

the well-known spam problem [2]–[6]. In spam, malicious

users try to deceive users by sending them misleading

messages mainly to advertise websites or perform attacks

(e.g., phishing) by redirecting users to malicious websites.

Nowadays, the spam problem is not as prevalent as a few

years ago due to the deployment of systems that diminish it.

Furthermore, users have an increased awareness of typical

spam content (e.g., emails, etc.) and they can effortlessly

discern it. However, this is not the case for clickbait, which

Figure 1: Comments that were found in clickbait videos. The users’
frustration is apparent (we omit users’ names for ethical reasons).

usually contains hidden false or ambiguous information that

users or systems might not be able to perceive.

Recently, the aggravation of the fake news problem has

induced broader public attention to the clickbait problem.

For instance, Facebook aims at removing clickbaits from

its newsfeed [7], [8]. In this work, we focus on YouTube

for various reasons: i) anecdotal evidence suggests that the

problem exists in YouTube [9] and ii) to the best of our

knowledge, YouTube relies on users to flag suspicious videos

and then manually review them. To this extent, this approach

is deemed to be inefficient. Hence, the need for an automated

approach that minimizes human intervention is indisputable.

To attain this goal, we leverage some recent advances

in the field of Deep Learning [10] by devising a novel

formulation of variational autoencoders (VAEs) [11], [12]

that fuses different modalities of a YouTube video, and

infers latent correlations between them. The proposed model

infers a latent variable vector for each video that encodes a

high-level representation of the content and the correlations

between the various modalities. The significance of learning

to compute such concise representations is that: (i) this

learning procedure can be robustly performed by leveraging

large unlabeled data corpora; and (ii) the obtained represen-

tations can be subsequently utilized to drive the classification

process, with very limited requirements in labeled data.

To this end, we formulate the encoder part of the devised

VAE model as a 2-component finite mixture model [13].

That is, we consider a set of alternative encoder models

that may generate the data pertaining to each video. The

decision of which specific encoder (corresponding to one

possible class) generates each is obtained via a trainable

probabilistic gating network [14]; this constitutes an integral

part of the developed autoencoder. The whole model is

trained in an end-to-end fashion, using the available training

data, both the unlabeled and the few labeled ones. The latter

are specifically useful for appropriately fitting the postulated

gating network that infers the posterior distribution of mix-

ture component (and corresponding class) allocation.
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Contributions. We propose a deep generative model that

allows for combining data from as diverse modalities as

video headline text, thumbnail image and tags text, as

well as various numerical statistics, including statistics from

comments. Most importantly, the proposed model allows

for successfully addressing the problem of learning from

limited labeled samples and numerous unlabeled ones (semi-

supervised learning). This is achieved by postulating a

deep variational autoencoder that employs a finite mixture
model as its encoder. In this context, mixture component

assignment is regulated via an appropriate gating network;

this also constitutes the eventually obtained classification

mechanism of our deep learning system. We provide a large

scale analysis on YouTube; we show that, with respect

to the collected data, its recommendation engine does not

consider how misleading a recommended video is. Hence, it

is susceptible to recommending clickbait videos to its users.

II. METHODOLOGY

By leveraging YouTube’s Data API, between August and

November of 2016, we collect metadata of videos published

between 2005 and 2016. Specifically, we collected the

following data descriptors for 206k videos: (i) basic details

like headline, tags, etc.; (ii) thumbnail; (iii) comments from

users; (iv) statistics (e.g., views, likes, etc.); and (v) related

videos based on YouTube’s recommendation system. We

started our retrieval from a popular (108M views) clickbait

video [15] and iteratively collected all the related videos as

were recommended by YouTube. Note that this approach

enables us to study interesting aspects of the problem, by

constructing a graph that captures the relations (recommen-

dations) between videos.

To get labeled data, we opted for two different approaches.

First, we manually reviewed a small subset of the collected

data by inspecting the headline, the thumbnail, comments

from users, and video content. Specifically, we watched the

whole video and compared it to the thumbnail and headline.

A video is considered clickbait only if the thumbnail and

headline deviate substantially from its content. However,

this task is both cumbersome and time consuming; thus,

we elected to retrieve more data that are labeled. To this

end, we compiled a list of channels (available at [16]) that

habitually employ clickbait techniques and channels that do

not. To obtain the list of channels, we used a pragmatic

approach; we found channels that are outed by other users

as clickbait channels. For each channel, we retrieved up-

to 500 videos, hence creating a larger labeled dataset. The

overall labeled dataset consists of (i) 1,071 clickbaits and

955 non-clickbaits obtained from the manual review process

and (ii) 8,999 clickbaits and 8,470 non-clickbaits obtained

from the distinguished list of channels. The importance of

this dataset is two-fold, as it allow us to study the problem

and is instrumental for training our deep learning model.

A. Manually Reviewed Ground Truth Dataset Analysis
In order to better grasp the problem, we perform a

comparative analysis of the manually reviewed ground truth.
Category. Table 1 reports the categories we find on the

videos. In total, we find 15 categories but we only show the

top five in terms of count for brevity. We observe that most

clickbaits exist in the Entertainment and Comedy categories,

whereas non-clickbaits are prevalent in the Sports category.

This indicates that, within this dataset, YouTubers employ

clickbait techniques on videos for entertainment.
Headline. YouTubers normally employ deceptive techniques

on the headline like the use of exaggerating phrases. To

verify that this applies to our ground truth dataset, we

perform stemming to the words that are found in clickbait

and non-clickbait headlines. Fig. 2 (a) depicts the ratio of

the top 20 stems that are found in our ground truth clickbait

videos (i.e., 95% of the videos that contain the stem “sexi”

are clickbait). In essence, we observe that magnetizing stems

like “sexi” and “hot” are frequently used in clickbait videos,

whereas their use in non-clickbaits is low. The same applies

to words used for exaggeration, like “viral” and “epic”.
Thumbnail. To study the thumbnails, we make use of

Imagga [17], which offers descriptive tags for an image.

We perform tagging of all the thumbnails in our ground

truth dataset. Fig. 2(b) demonstrates the ratio of the top

10 Imagga tags that are found in the manually reviewed

ground truth. We observe that clickbait videos typically use

sexually-appealing thumbnails in their videos in order to

attract viewers. For instance, 81% of the videos’ thumbnail

of which contains the “pretty” tag are clickbaits.
Tags. Tags are words that are defined by YouTubers before

publishing and can dictate whether a video will emerge on

users’ search queries. We notice that clickbaits use specific

words on tags, whereas non-clickbaits do not. Fig. 2 (c)

depicts the ratio of the top 20 stems that are found in

clickbaits. We observe that many clickbait videos use tags

like “try not to laugh”, “viral”, “hot” and “impossible”;

phrases that are usually used for exaggeration.
Statistics. Fig. 2 (d) shows the normalized score of the video

statistics for both classes of videos. Interestingly, clickbaits

and non-clickbaits videos have similar views; suggesting that

viewers are not able to easily discern clickbait videos, hence

clicking on them. Also, non-clickbait videos have more likes

and less dislikes than clickbaits. This is reasonable as many

users feel frustrated after watching clickbaits.
Comments. We notice that users on YouTube implicitly flag

suspicious videos by commenting on them. For instance,

we note several comments like the following: “the title is

misleading”, “i clicked because of the thumbnail”, “where

is the thumbnail?” and “clickbait”. Hence, we argue that

comments from viewers is a valuable resource for assessing

videos. To this end, we analyze the ground truth dataset to

extract the mean number of occurrences of words widely

used for flagging clickbait videos. Fig. 2 (e) depicts the
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(a) (b) (c)

(d) (e)

Category Clickbaits (%) Non-clickbaits (%)

Entertainment 406 (38%) 308 (32%)

Comedy 318 (29%) 228 (24%)

People & Blogs 155 (14%) 115 (12%)

Autos & Vehicles 33 (3%) 49 (5%)

Sports 29 (3%) 114 (12%)

Figure 2 & Table I: Analysis of the manually reviewed ground truth dataset. Normalized mean scores for: (a) stems from headline text;
(b) tags derived from thumbnails; (c) stems from tags that were defined by uploaders; (d) video statistics; and (e) comments that contain
words for flagging suspicious videos. Table 1 shows the top five categories (and their respective percentages) in our ground truth dataset.

Source Destination Norm. Mean

clickbait clickbait 4.1

clickbait non-clickbait 2.73

non-clickbait clickbait 2.75

non-clickbait non-clickbait 3.57

Table II: Normalized mean of related videos for clickbait and non-
clickbait videos in the ground truth dataset

normalized mean scores for the identified words. We observe

that these words were greatly used in clickbait comments but

not in non-clickbaits. Also, it is particularly interesting that

comments referring to the video’s thumbnail were found 2.5

times more often in clickbait than in non-clickbaits.

Graph Analysis. Users often watch videos according to

YouTube’s recommendations. From manual inspections, we

have noted that when watching a clickbait video, YouTube

is more likely to recommend another clickbait video. To

confirm this against our data, we create a directed graph

G = (V ,E), where V the videos andE the connections be-

tween videos pointing to one another via a recommendation.

Then, for all the videos, we select their immediate neighbors

in the graph, and count the videos that are clickbaits and

non-clickbaits. Table II depicts the normalized mean of the

number of connected videos for each class. We apply a

normalization factor to mitigate the bias towards clickbaits,

which have a slightly greater number in our ground truth.

We observe that, when a user watches a clickbait video,

they are recommended 4.1 clickbait videos on average, as

opposed to 2.73 non-clickbait recommendations. A similar

pattern holds for non-clickbaits; a user is less likely to be

served a clickbait when watching a non-clickbait.

YouTube’s countermeasures. To get an insight on whether

YouTube employs any countermeasures, we calculate the

number of offline (either deleted by YouTube or removed

by the uploader) videos in our manually reviewed ground

truth, as of January 10, 2017 and April 30, 2017. We found

that only 3% (January 10th) and 10% (April 30th) of the

clickbaits are offline. Similarly, only 1% (January 10th)

and 5% (April 30th) of the non-clickbaits are offline. To

verify that the ground truth dataset does not consist of only

recent videos (thus, just published and not yet detected) we

calculate the mean number of days that passed from the

publication date up to January 10, 2017. We find that the

mean number of days for the clickbaits is 700, while it is

917 days for the non-clickbaits. The very low offline ratio, as

well as the high mean number of days, indicate that YouTube

is not able to tackle the problem in a timely manner.

III. CLICKBAIT DETECTION MODEL

Processed Modalities. Our model processes the following

modalities: (i) Headline: For the headline, we consider both

the content and the style of the text. For the content of

the headline, we use sent2vec embeddings [18] trained on

Twitter data. For the style of the text, we use the features

proposed in [19]; (ii) Thumbnail: We scale down the images

to 28x28 and convert them to grayscale. This way, we

decrease the number of trainable parameters for our devel-

oped deep network, thus speeding training time up without

compromising achievable performance; (iii) Comments: We

preprocess user comments to find the number of occurrences

of words used for flagging videos. We consider the following

words: “misleading, bait, thumbnail, clickbait, deceptive,

deceiving, clicked, flagged, title”; (iv) Tags: We encode the

tags’ text as a binary representation of the top 100 words

that are found in the whole corpus; and (v) Statistics (e.g.,

likes, views, etc.).

Model Formulation. In Fig. 3, we provide an overview of
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Figure 3: Overview of the proposed model. The dotted rectangle
represents the encoding component of our model.

the proposed model. The thumbnail is initially processed, at

the encoding part of the proposed model, by a CNN [20].

We use a CNN that comprises four convolutional layers,

with 64 filters each, and ReLU activations. The first three

of these layers are followed by max-pooling layers. The

fourth is followed by a simple densely connected layer,

which comprises 32 units with ReLU activations. This initial

processing stage allows for learning to extract a high-level,

32-dimensional vector of the thumbnail, which contains the

most useful bits of information for driving classification.

The overarching goal of the devised model is to limit

the required availability of labeled data, while making the

most out of large corpora of (unlabeled) examples. To this

end, after this first processing stage, we split the encoding

part into two distinct subencoders that work in tandem. Both

these subencoders are presented with the aforementioned 32-

dimensional thumbnail representation, fused with the data

stemming from all the other available modalities. This results

in a 855-dimensional input vector, first processed by one

dense layer network (Fusing Network) that comprises 300

ReLU units. Due to its large number of parameters, this

dense layer network may become prone to overfitting; hence,

we regularize using the prominent Dropout technique [21].

We use a Dropout level of d = 0.5; this means that, at

each iteration of the training algorithm, 50% of the units are

randomly omitted from updating their associated parameters.

The obtained 300-dimensional vector, say h(), is the one

eventually presented to both postulated subencoders.

The rationale behind this novel configuration is motivated

by a key observation; the two modeled classes are expected

to entail significantly different patterns of correlations and

latent underlying dynamics between the modalities. Hence,

it is plausible that each class can be adequately and effec-

tively modeled by means of distinct, and different, encoder

distributions, inferred by the two subencoders. Each of these

subencoders are dense-layer networks comprising a hidden

layer with 20 ReLU units, and an output layer with 10 units.

Since the devised model constitutes a VAE, the output

units of the subencoders are of a stochastic nature; specif-

ically, we consider stochastic outputs, say z̃ and ẑ, with
Gaussian (posterior) densities, as usual in the literature of

VAEs [11], [12]. Hence, what the postulated subencoders

actually compute are the means, μ̃ and μ̂, as well as

the (diagonal) covariance matrices, σ̃2 and σ̂2, of these

Gaussian posteriors. On this basis, the actual subencoder

output vectors, z̃ and ẑ, are sampled each time from

the corresponding (inferred) Gaussian posteriors. Note that

our modeling selection of sharing the initial CNN-based

processing part between the two subencoders allows for

significantly reducing the number of trainable parameters,
without limiting the eventually obtained modeling power.

Under this mixture model formulation, we need to es-

tablish an effective mechanism for inferring which obser-

vations (i.e., videos) are more likely to match the learned

distribution of each component subencoder. This is crucial

for effectively selecting between the samples of z̃ or ẑ
at the output of the encoding stage of the devised model.

In layman terms, this can be considered to be analogous

to a (soft) classification mechanism. This mechanism can

be obtained by computation of the posterior distribution of

mixture component membership of each video (also known

as "responsibility" in the literature of finite mixture models

[22]). To allow for inferring this posterior distribution, in

this work we postulate a gating network. This is a dense-

layer network, which comprises one hidden layer with 100

ReLU units, and is presented with the same vector, h(), as
the two postulated subencoders. It is trained alongside the

rest of the model, and it is the only part of the model that

requires availability of labeled data for its training.

Note that this gating network entails only a modest

number of trainable parameters, since both the size of its

input as well as of its single hidden layer are rather small.

As such, it can be effectively trained even with limited
availability of labeled data. This is a key merit of our

approach, which fully differentiates it from conventional

classifiers that are presented with raw observed data, which

typically are prohibitively high-dimensional.

To conclude the formulation of the proposed VAE, we

need to postulate an appropriate decoder distribution, and a

corresponding network that infers it. In this work, we opt

for a simple dense-layer neural network, which is fed with

the (sampled) output of the postulated finite mixture model

encoder, and attempts to reconstruct the original modalities.

Specifically, we postulate a network comprising one hidden

layer with 300 ReLU units, and a set of 823 output units,

that attempt to reconstruct the original modalities, with the

exception of the thumbnail. The reason why we ignore the

thumbnail modality from the decoding process is the need

of utilizing deconvolutional network layers to appropriately

handle it, which is quite complicated. Hence, we essentially

treat the thumbnail modality as side-information, that regu-
lates the inferred posterior distribution of the latent variables

z (encoder) in the sense of a covariate, instead of an
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observed modality in the conventional sense. It is empirically

known that such a setup, if appropriately implemented, does

not undermine modeling effectiveness [23].
Let us denote as xn the set of observable data per-

taining to the nth available video. We denote as xn =
{xhe

n ,xth
n ,xta

n ,xco
n ,xst

n } the set of five distinct modalities,
i.e., headline, thumbnail, tags, comments, and statistics, re-
spectively. Then, based on the above description, the encoder
distribution of the postulated model reads

q(zn|xn) =q(z̃n|xn)
q(cn=1|xn)q(ẑn|xn)

q(cn=0|xn) (1)

Here, zn is the output of the encoding stage of the proposed
model that corresponds to xn, z̃n is the output of the
first subencoder, corresponding to the clickbait class, ẑn is
the output of the second subencoder, corresponding to the
non-clickbait class, and cn is a latent variable indicator of
whether xn belongs to the clickbait class or not. We also
postulate

q(z̃n|xn) = N (z̃n|μ̃(xn; θ̃), diag σ̃
2(xn; θ̃)) (2)

q(ẑn|xn) = N (ẑn|μ̂(xn; θ̂), diag σ̂
2(xn; θ̂)) (3)

Here, the μ̃(xn; θ̃) and σ̃2(xn; θ̃) are outputs of a deep

neural network, with parameters set θ̃, that corresponds to

the clickbait class subencoder; it comprises a first CNN-type

part that processes the observed thumbnails, and a further

densely-connected network part that fuses and processes the

rest of the observed modalities, as described previously.

Similarly, the μ̂(xn; θ̂) and σ̂
2(xn; θ̂) are outputs of a deep

neural network with parameters set θ̂, that corresponds to

the non-clickbait class subencoder.
The posterior distribution of mixture component alloca-

tion, q(cn|xn), which is parameterized by the aforemen-
tioned gating network, is a simple Bernoulli distribution that
reads

q(cn|xn) = Bernoulli(�(h(xn);ϕ)) (4)

Here, �(h(xn);ϕ) ∈ [0, 1] is the output of the gating

network, with trainable parameters set ϕ. This is pre-

sented with an intermediate encoding of the input modalities

(shared with the subencoder networks), h(xn), as described
previously, and infers the probability of xn belonging to the

clickbait class.
Lastly, the postulated decoder distribution reads

p(xn|zn) = N (xhe
n ,xta

n ,xco
n ,xst

n |μ(zn;φ), diag σ
2(zn;φ))

(5)

where the means and diagonal covariances, μ(zn;φ) and

σ2(zn;φ), are outputs of a deep network with trainable

parameters set φ, configured as described previously.
Model Training. Let us consider a training dataset X =
{xn}Nn=1 that consists of N video samples. A small subset,
X l, of size M of these samples is considered to be labeled,
with corresponding labels set Y = {ym}Mm=1. Then, fol-
lowing the VAE literature [11], model training is performed
by maximizing the evidence lower bound (ELBO) of the
model over the parameters set {θ̃, θ̂,ϕ,φ}. The ELBO of
our model reads:

log p(X) ≥L(θ̃, θ̂,ϕ,φ|X) = −
N∑

n=1

KL
[
q(zn|xn)||p(zn)

]

+ γ

N∑

n=1

E[log p(xn|zn)] +
∑

xm∈Xl

log q(cm = ym|xm)

(6)

Here, KL
[
q||p] is the KL divergence between the distribu-

tion q(·) and the distribution p(·), while E[·] is the (posterior)
expectation of a function w.r.t. its entailed random (latent)

variables. Note also that, in the ELBO expression (6),

the introduced hyperparameter γ is a simple regularization

constant, employed to ameliorate the overfitting tendency of

the postulated decoder networks, p(xn|zn). We have noticed

that this simple trick yields a significant improvement in

generalization capacity.
In Eq. (6), the posterior expectation of the log-likelihood

term p(xn|zn) cannot be computed analytically, due to the
nonlinear form of the decoder. Hence, we must approximate
it by drawing Monte-Carlo (MC) samples from the posterior
(encoder) distributions (2)-(3). However, MC gradients are
well-known to suffer from high variance. To resolve this
issue, we utilize a smart re-parameterization of the drawn
MC samples. Specifically, following the related derivations
in [11], we express these samples in the form of a differen-
tiable transformation of an (auxiliary) random noise variable
ε; this random variable is the one we actually draw MC
samples from:

z̃(s)
n = μ̃n + σ̃n · ε(s)n , ε(s)n ∼ N (0, I) (7)

ẑ(s)
n = μ̂n + σ̂n · ε(s)n (8)

Hence, such a re-parameterization reduces the computed

expectations into averages over samples from a random vari-

able with low (unitary) variance, ε. This way, by maximizing

the obtained ELBO expression, one can yield low-variance

estimators of the sought (trainable) parameters, under some

mild conditions [11]. Turning to the maximization process of

L(θ̃, θ̂,ϕ,φ|X), this can be effected using modern stochas-

tic optimizations, such as AdaGrad [24] or RmsProp [25].

IV. EXPERIMENTAL EVALUATION

MC Samples. To perform model training, we used S = 10
drawn MC samples, ε(s); we found that increasing this value

does not yield any statistically significant accuracy improve-

ment, despite the associated increase in computational costs.

Stochastic optimization. We found that RmsProp works

better than the AdaGrad algorithm suggested in [11]. The

RmsProp hyperparameter values we used comprise an initial

learning rate equal to 0.001, ρ = 0.9, and ε = 10−8.

Prediction generation. To predict the class of a video,

xn, we compute the mixture assignment posterior distribu-

tion q(cn|xn), inferred via the postulated gating network

�(h(xn);ϕ). On this basis, assignment is performed to the

clickbait class if �(h(xn);ϕ) > 0.5.
Baselines. To evaluate our model, we compare it against

two baseline models. First, a simple Support Vector Machine

(SVM) with parameters γ = 0.001 and C = 100. Second,
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a supervised deep network (SDN) that comprises (i) the

same CNN as the proposed model; and (ii) a 2-layer fully-

connected neural network with Dropout level of d = 0.5.
Evaluation. We train our proposed model using the entirety

of the available unlabeled dataset, as well as a randomly

selected 80% of the available labeled dataset, comprising

an equal number of clickbait and non-clickbait examples.

Subsequently, the trained model is used to perform out-

of-sample evaluation; that is, we compute the classification

performance of our approach on the fraction of the available

labeled examples that were not used for model training.

Model Accuracy Precision Recall F1 Score

SVM 0.882 0.909 0.884 0.896
SDN 0.908 0.920 0.907 0.917

Proposed Model (U = 25% ) 0.915 0.918 0.926 0.923
Proposed Model (U = 50% ) 0.918 0.918 0.934 0.926

Proposed Model (U = 100% ) 0.924 0.921 0.942 0.931

Table III: Performance metrics for the evaluated methods. We also
report the performance of our model when using only 25% or 50%
of the available unlabeled data.

Table III reports the performance of the proposed model as

well as the two considered baselines. We observe that neural

network-based approaches, such as a simple neural network

and the proposed model, outperform SVMs in terms of all

the considered metrics. Specifically, the best performance is

obtained by the proposed model, which outperforms SVMs

by 3.8%, 1.2%, 5.8% and 3.5% on accuracy, precision,

recall, and F1 score, respectively. Further, to assess the

importance of using unlabeled data, we also report results

with reduced unlabeled data. We observe that, using only

25% of the available unlabeled data, the proposed model

undergoes a substantial performance decrease, as measured

by all the employed performance metrics. This performance

deterioration only slightly improves when we elect to retain

50% of the available unlabeled data.
Corpus-Level Inference Insights. Having demonstrated the

performance of our model, we now provide some insights

into the obtained inferential outcomes on the whole corpus

of data. From the 206k examples, our model predicts that

84k (41%) of them are clickbaits whereas 122k (59%) are

non-clickbaits. The considerable percentage of clickbaits in

the corpus, in conjunction with the data collection procedure,

suggests that, with respect to the collected data, YouTube

does not consider misleading videos in their recommenda-

tions. Note also that we have performed an analysis of the

whole corpus akin to the ground truth dataset analysis of

Section II.A. The obtained results follow the same pattern

as for the ground truth dataset. Specifically, we have found

that the normalized mean values, reported in Table II for the

labeled data, for the whole corpus become equal to 11.18,

when it comes to pairs of clickbait videos, whereas for

clickbait and non-clickbaits the mean is 2.62. This validates

our deduction that it is more likely to be recommended a

clickbait video when viewing a clickbait video on YouTube.

V. RELATED WORK

The clickbait problem is also identified by prior work

that proposes tools for alleviating the problem in various

web portals. Specifically, Chen et al. [26] provide useful

information regarding the clickbait problem and future di-

rections for tackling the problem using SVM and Naive

Bayes approaches. Rony et al. [27] analyze 1.67M posts

on Facebook in order to understand the extent and impact

of the clickbait problem as well as users’ engagement.

For detecting clickbaits, they propose the use of sub-word

embeddings with a linear classifier. Potthast et al. [28] focus

on the Twitter platform where they suggest the use of Ran-

dom Forests for distinguishing tweets that contain clickbait

content. Furthermore, Chakraborty et al. [29] propose the use

of SVMs in conjunction with a browser add-on for offering

a detection system to end-users of news articles. Moreover,

Biyani et al. [19] recommend the use of Gradient Boosted

Decision Trees for clickbait detection in news articles. They

also demonstrate that the degree of informality in the content

of the landing page can help in discerning clickbait news

articles. To the best of our knowledge, Anand et al. [30]

is the first work that suggests the use of deep learning

techniques for mitigating the clickbait problem. Specifically,

they propose the use of Recurrent Neural Networks in con-

junction with word2vec embeddings for identifying clickbait

news articles. Agrawal [31] propose the use of CNNs in

conjunction with word2vec embeddings for discerning click-

bait headlines in Reddit, Facebook and Twitter. Other efforts

include browser add-ons [32]–[34] and manually associating

user accounts with clickbait content [35]–[37].
Remarks. In contrast to the aforementioned works, we

focus on the YouTube platform and propose a deep learning

model that: (i) successfully and properly fuse and correlate

the diverse set of modalities related to a video; and (ii)

leverage large unlabeled datasets, while imposing much

limited requirements in labeled data availability.

VI. CONCLUSION

In this work, we have explored the use of variational

autoencoders for tackling the clickbait problem on YouTube.

Our approach constitutes the first proposed semi-supervised

deep learning technique in the field of clickbait detection.

This way, it enables more effective automated detection

of clickbait videos in the absence of large-scale labeled

data. Our analysis indicates that YouTube recommendation

engine does not take into account the clickbait problem in

its recommendations.
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