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Abstract—Attacks on behavioral biometrics have become in-
creasingly popular. Most research has been focused on pre-
senting a previously obtained feature vector to the biometric
sensor, often by the attacker training themselves to change
their behavior to match that of the victim. However, obtaining
the victim’s biometric information may not be easy, especially
when the user’s template on the authentication device is
adequately secured. As such, if the authentication device is
inaccessible, the attacker may have to obtain data elsewhere.

In this paper, we present an analytic framework that en-
ables us to measure how easily features can be predicted based
on data gathered in a different context (e.g., different sensor,
performed task or environment). This framework is used to
assess how resilient individual features or entire biometrics
are against such cross-context attacks. In order to be able
to compare existing biometrics with regard to this property,
we perform a user study to gather biometric data from 30
participants and five biometrics (ECG, eye movements, mouse
movements, touchscreen dynamics and gait) in a variety of
contexts. We make this dataset publicly available online.

Our results show that many attack scenarios are viable
in practice as features are easily predicted from a variety of
contexts. All biometrics include features that are particularly
predictable (e.g., amplitude features for ECG or curvature
for mouse movements). Overall, we observe that cross-context
attacks on eye movements, mouse movements and touchscreen
inputs are comparatively easy while ECG and gait exhibit
much more chaotic cross-context changes.

1. Introduction

Biometric authentication is a popular approach to ad-
dress the shortcomings of passwords (e.g., bad memorability
and password reuse). The most common approaches are
fingerprint scanning and face recognition, both of which
are used in scenarios ranging from smartphone security to
border controls. However, both can easily be observed and
replicated by an attacker, resulting in a security vulnerabil-
ity. Fingerprints are easily lifted off smooth surfaces (such
as coffee mugs) or captured through high-resolution pho-
tographs. 2D photos of a victim’s face are readily available

through social media profiles. In addition, fingerprints in
particular require specialized sensors.

In recent years, behavioral biometrics using commodity
sensors have become a popular research subject. The oldest
examples are keystroke dynamics (distinctive typing pat-
terns) and mouse movement biometrics. With the increasing
prevalence of smartphones and tablets, the distinctiveness
of touchscreen usage patterns has been investigated. Human
gait has also been demonstrated to be distinctive, its partic-
ular appeal lies in the fact that it is easily captured through
cheap accelerometers which are nowadays provided in most
smartphones and smartwatches.

While these biometrics are often initially evaluated un-
der a zero-effort threat model, the research community
has recently been more focused on active attacks. Typical
attacks are two-fold: (i) the attacker obtains the victim’s
biometric information and (ii) presents it to the authenti-
cation system. The second step can be achieved through
the attacker using the system as intended while modifying
their own behavior (manual imitation attack) or by using
some technical contraption (robotic imitation attack). Most
documented attacks have been focused on the second part
of the attack (i.e., presenting previously obtained data to the
authentication system). In this paper, we more thoroughly
investigate challenges involved in the attacker obtaining the
victim’s biometric information in the first place.

Lots of attention has been given to the protection of
biometric templates, not only for security but also for
privacy reasons (templates are sensitive user data). As a
result, most biometric authentication systems implement
strong measures to protect the user’s template. A classic
example is using secure enclaves to store the templates (e.g.,
Apple Touch ID1). As secure elements offer good security
guarantees (i.e., they are hard to bypass), attackers will
likely need to obtain the victim’s biometric data elsewhere.

The key challenge lies in the fact that the distribution of
biometric features strongly depends not just on the user, but
also on the context of the measurement. We use the term
context to refer to all the factors that influence the outcome
of a biometric signal measurement. Some of these factors

1. https://support.apple.com/en-gb/HT204587
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(a) Gait: total acceleration magnitude for a set of individual
gait cycles produced by different contexts (for the same user).

(b) ECG: voltage of individual ECG waves produced by different
contexts (for the same user).

Figure 1: Biometric signals differences across contexts.

have been already identified by Jain et al. [1]: the authors
find that sensor limitations, type of task and environmental
changes all influence the measurement, making it noisier.
Figure 1a shows how the context of the gait biometric is
expressed through the location of the sensor on the user’s
body (pocket or arm) and walking style (walk or jog). Sim-
ilarly, Figure 1b shows the difference in the voltage of ECG
waves when the measurement occurs in different contexts:
depending on the placement of electrodes on the user’s body
(either wrist, arms and legs, or chest), or the type of activity
(rest or walk). Due to these feature differences, an attacker
using an arbitrary source of biometric information for their
attack (akin to a replay attack in network security) will be
unlikely to succeed. However, differences between contexts
may be partly systematic, i.e., consistent and predictable for
a large number of users.

Key Research Questions.
• How can attackers obtain biometric information without

compromising the template on the authentication device?
• Are context-specific changes in features systematic and

can they be predicted?
• How does this predictability impact the security of bio-

metric authentication?

To answer these questions, we generalize the methodology
of [2] to formalize an approach to automatically derive a
cross-context feature mapping based on population data. The
mapping then enables us to score both individual features
and biometrics with regard to their predictability across
contexts. Unpredictable features contribute to the overall
biometric’s security guarantees, as the attacker struggles
to collect useful biometric information outside the context
where the authentication occurs. The unpredictability score
gives more information than the attack success rate, which
depends on the specific implementation of a biometric sys-
tem (e.g., matching algorithm, decision thresholds). Instead,
this measure of security enables not just the comparison of
different biometrics, but also to harden feature-sets to be
more resilient against this attack. We use our methodology
to assess and compare the security of five biometrics: gait,
touchscreen dynamics, ECG, eye movements and mouse

movements. We collect data through a user study involving
30 participants providing data for all biometrics in different
contexts across two sessions. We choose contexts to reflect
a variety of real-world threat scenarios.

Contributions.

• We identify a number of scenarios that enable attackers
to gain access to sources of biometric information.

• We provide an analytical framework that measures to
what degree biometric features can be predicted across
different contexts.

• We conduct a two-sessions study on 30 users in order to
collect five behavioral biometrics (gait, touch dynamics,
ECG, eye and mouse movements) across a variety of
contexts. We make this dataset publicly available2.

• Based on this dataset, we use our framework to quantify
the predictability of the five biometrics’ features and
discuss the resulting security implications.

Organization. The remainder of the paper is organized as
follows: In Section 2 we summarize related work dealing
with biometric authentication systems and attacks on these.
Section 3 outlines the threat model we use throughout the
paper. Section 4 details how our data collection methodol-
ogy is built on the threat model. Section 5 describes the
mathematical foundation of the cross-context mapping; the
results of applying this mapping to our dataset can be found
in Section 6. We conclude the paper in Section 7.

2. Related Work

Behavioral biometrics have become an increasingly pop-
ular research area, particularly sparked by the availability
of a wide variety of cheap sensors in consumer electronics.
In this section, we give an overview of research regarding
biometric system design and attacks on these systems.

2. https://ora.ox.ac.uk/objects/uuid:0175c157-2c9b-47d0-aa77-
febaf07fca71
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2.1. Biometric Authentication

Frank et al. were amongst the first to investigate the
feasibility of using touchscreen input patterns for user au-
thentication on smartphones [3]. They collect data through
an image comparison game which requires users to swipe
between images, with each swipe (or stroke) generating a
single feature vector. The feature-set is composed of the
pressure distribution across the swipe, the start and stop
coordinates, the swipe’s curvature as well as speed and
acceleration. The authors consider (horizontal) swipes and
(vertical) scrolls but argue that individual taps do not provide
meaningful biometric information. Bo et al. show that a
device’s micro-movements generated by the user’s operation
of the touchscreen [4] contribute further identifying infor-
mation. A recent survey of research on touchscreen input
biometrics can be found in [5].

Electrocardiography (ECG) is the process of measuring
the electrical activity of the heart. While the ECG waveform
follows a typical pattern for all healthy humans, there are
subtle differences between individuals. There is a growing
body of work investigating ECG as a biometric; recent
surveys can be found in [6], [7], [8]. The ECG signal is sub-
divided into P, Q, R, S and T waves. The main features focus
on the (relative) amplitudes of the waves, their duration
and the spacing between their peaks. Research on ECG
biometrics has also resulted in a commercial product, the
Nymi Band3, which serves as a multi-factor authenticator.

Human gait (walking style) has garnered increased inter-
est by the research community in recent years. Information
about a person’s gait can either be obtained through videos
or accelerometers carried by the person. The latter is par-
ticularly compelling for continuous authentication on per-
sonal electronics, as accelerometers are near-ubiquitous in
smartwatches, smartphones and a plethora of wearables. For
accelerometer-based gait biometrics, the signal is typically
first divided into cycles to isolate individual steps. Following
that, features are obtained by dividing the reference cycle
into segments, with each feature representing the accelera-
tion within the corresponding segment [9]. Often, dynamic
time warping is used to adjust for noise in the movement
before template matching [9]. An overview of state-of-the-
art approaches to gait recognition can be found in [10].

Optical eye trackers are available as stand-alone devices,
but are also increasingly integrated in mobile devices. Track-
ing is typically achieved by shining a pattern of infrared light
on the user’s eyes and capturing the reflection of the cornea.
Therefore, an eye tracker only requires a standard webcam
with an attached source of infrared light, although a higher
number of frames per second is needed for higher sampling
rates. While eye tracking has been used in the past for
medical diagnosis (for disorders such as Alzheimer’s [11]
and schizophrenia [12]), it has recently attracted significant
interest as a biometric. Earlier work authenticates users
while they are being shown controlled stimuli, such as
images [13] or moving shapes [14]. Eberz et al. authenticate

3. https://nymi.com

Ref Biometric Type of Attack Knowledge

[18] Keystroke dynamics Assisted manual imitation Perfect
[19] Touch dynamics Assisted manual imitation Perfect
[20] Touch dynamics Automatic (robot) None
[21] Touch dynamics Automatic (robot) Perfect
[22] Gait Assisted manual imitation Perfect
[2] ECG Signal generator Cross-device

TABLE 1: Overview of attacks on biometric systems.

users while they perform standard computer tasks (reading,
typing, browsing and watching videos) [15]. Their feature-
set consists of temporal features reflecting short-term speed
and acceleration, spatial features that measure the steadiness
of the gaze and the changes of the pupil diameter. Their
results show that training and operating the system on
different tasks is possible, but that features show varying
degrees of task dependence which leads to higher error rates.

Using distinctive mouse movements for authentica-
tion has garnered significant attention due to the near-
ubiquitousness of mice in desktop environments. A survey
of mouse movement biometrics can be found in [16]. Key
features reflect the speed of mouse movements, their cur-
vature and properties of mouse clicks (e.g., click duration).
The click duration in particular has been shown to depend
on the physical device [17].

2.2. Imitation Attacks

Typically, biometrics are evaluated under a zero-effort
threat model, any successful attacks are then a result of the
attacker’s biometric features being sufficiently similar to the
victim’s template. With the growing interest in behavioral
biometrics, researchers have turned towards more sophisti-
cated attacks. These imitation (also known as mimicry [23])
attacks can be divided into two categories: manual imitation
attacks and robotic imitation attacks. The former involves an
attacker using the system as intended while modifying their
own behavior to match that of the victim. For the latter,
the attack is not carried out by a human but is instead
automated. This approach may make it necessary to defeat
any liveness detection a system may have and is also usually
trivial to spot by a human observer. A summary of attacks
on biometric systems is given in Table 1.

Tey et al. demonstrate a manual imitation attack against
password authentication that has been hardened through
keystroke dynamics [18]. As such, the user has to type in
the correct password with the correct inter-key timings. The
authors assume the attacker has full knowledge of the model
(i.e., possesses both the password and the timing template).
Users are trained to act as attackers and are provided with a
training interface that gives positive and negative feedback
depending on their closeness to the actual victim’s timings.

Khan et al. develop a similar system to attack touch-
screen input authentication [19]. They investigate two sce-
narios, the first one involves the attacker observing the
victim’s template via shouldersurfing, the second assumes
perfect information gained by the attacker tricking the victim
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Figure 2: A robot imitating a human’s touch dynamics (taken
from [20]).

into using a compromised device. Similar to Tey et al.’s
work, attackers are trained through an interface giving them
feedback before they carry out the actual attack.

Serwadda et al. showcase a robotic imitation attack
against the touchscreen biometric [20] (see Figure 2). The
swipes on the victim’s phone are not carried out by a
human, but by a purpose-built Lego Mindstorm robot. For
the original attack, the feature vectors imitated by the robot
are derived from population data, rather than the specific
victim. This approach significantly increased the system’s
false accept rate, although the baseline equal error rate is
already much higher than that of related work. The authors
also consider a targeted attack, for which they assume the
attacker has obtained a perfect copy of (some) of the victim’s
feature vectors [21].

Rajesh et al. develop a manual imitation attack against
the gait biometric [22]. They assume that the attacker has
obtained the victim’s biometric template. Using a treadmill,
the attacker can modify step length, step width, speed and
thigh lift while carrying out the attack. As most gait features
are highly dependent on these four gait characteristics, the
use of the treadmill makes the attack very effective.

The previous attacks assume that the attacker has ob-
tained a perfect copy of the victim’s template (see Table 1).
However, assuming the actual template is stored securely,
this may not always be a safe assumption as the attacker may
only be able to sample the victim’s biometric in a different
context (e.g., different device or environment). Eberz et al.
demonstrate an attack on ECG biometrics that considers
different sources of information for the attacker, including e-
health and medical devices [2]. The victim’s data is injected
into the authentication system by using a standard audio
player as a signal generator. Their work shows that the
distribution of ECG features depends on the measurement
device and that the success rate of the attack drops when
data is not obtained on the actual authentication device. To
mitigate this, the authors propose a mapping function based
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Figure 3: Example of threat scenario.

on population data that accounts for device-specific feature
differences. This methodology is the foundation of the cross-
context mapping presented in Section 5.

3. Threat Model

In this paper we focus on adversaries that attempt to
bypass a biometric authentication system using incomplete
biometric information about the victim from another context
and combining it with population data.

Overview. Figure 3 shows an example of such a scenario.
The victim is enrolled into a gait authentication system
through their phone. We refer to the system and the context
used by the system as target. The system maintains a
confidence in the user’s identity based on their gait patterns
and allows certain sensitive operations (e.g., authorising
payments) only when the confidence is above a threshold.
The victim’s biometric template is stored on the phone in a
trusted module that cannot be accessed by the adversary.

The adversary knows that the victim uses a smartwatch
that monitors their gait, for example for health or sport
reasons. We refer to the context of the smartwatch as source.
Either the smartwatch, its connected smartphone application
or the wireless link are insecure and the adversary exploits
the smartwatch to obtain the victim’s gait data. However,
as previously illustrated in Figure 1a, the smartwatch data
cannot be used directly to impersonate the user at the target
system, because of feature differences caused by the differ-
ent context. Therefore, the adversary collects biometric data
from a population (which excludes the victim), reproducing
the source and target contexts. Using only population data,
the adversary attempts to learn how to transform gait data
from source to target and uses this information to transform
the stolen victim’s gait. The transformed data allow the
adversary to impersonate the victim at target.

Assumptions. The victim is enrolled into a biometric au-
thentication system (target). The biometric data used by the
target system is measured in a pre-defined context (target
context). The attacker wants to impersonate the victim at
target system. We assume the following:

• Obtaining the victim’s biometric data usable in target
context is hard, because the devices that process target
system data are highly protected;
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• The victim uses another system that makes use of the
same type of biometric data as target, we refer to this
as source system. Data from source are more easily
obtainable, but are measured in a different context
(source context);

• The adversary can obtain biometric data from a popu-
lation for source and target contexts (i.e., same sensor,
task, environment, etc.);

• The adversary knows the biometric features used for
recognition by target system, but does not know any
other detail used by the recognition algorithm;

• The adversary can reconstruct biometric signals from
biometric templates and can inject forged biometric
data into target system.

It should be noted that the biometric data for source and
target can either be raw biometric signals or vectors of
biometric features. In fact, since the adversary knows the
feature extraction algorithm used by the system, they can
easily compute features from raw signals.

The adversaries may obtain population data in different
ways. As an example, they could ask their friends to provide
their biometric samples, or invite members of the general
public for a lab study. For some biometrics, it might also
be possible to use publicly available data (e.g., medical
databases for ECG). Although the adversary may need to
invest time and effort in collecting the population data, it is
a worthwhile investment. In fact, once the universal transfor-
mation is learned, the adversary can use it to impersonate
potentially anyone. In the case of local authentication the
adversary will have to obtain physical access to the device
and, depending on the method of injection, bypass liveness
detection. On the other hand, if authentication is performed
remotely (i.e., on a server), the adversary can perform the
attack in a more scalable way.

In the following subsections, we motivate the threat
model by presenting different scenarios for each of the bio-
metrics. In each scenario, we outline how different factors
contribute to the feature differences between contexts.

3.1. Gait

Little attention is being given to the confidentiality of
accelerometer-based gait data. At the time of writing, ac-
cessing the accelerometer does not require a permission in
the Android Manifest file (Android v8.0), and can be ac-
cessed directly by websites, through the DeviceMotion API.
This means that adversaries might obtain control of an ap-
plication (or make an application or website themselves) and
silently collect data from oblivious users. Furthermore, most
fitness trackers have been proven vulnerable to exploits, both
in the wireless channel [24] or in the firmware [25].

With the adversary being more likely to obtain data from
a fitness tracker (or a fitness application running on the
smartphone), two main factors should be considered. The
first one is the on-body location of the accelerometer sensor
and the second one is the type of movement: either walking
or running. The rationale behind the location is that different
parts of the body are subject to different accelerations (e.g.,

arms, chest, or wrists). On the other hand, the use of fitness
trackers is more popular while running than walking (e.g., to
monitor work-out statistics). Attackers need to consider that
running data looks extremely different from walking due
to the stronger forces generated by the run and the shorter
timing between steps.

3.2. Touch Dynamics

In the case of touchscreen data, there are two main
ways in which the adversary could obtain users’ biometric
data: a malicious mobile application, or a malicious website.
Adversaries could create applications that silently monitor
the touchscreen inputs and trick victims (e.g., through social
engineering) into installing and using these applications on
their smartphones. Similarly, touchscreen data collection
could be carried out on a website through simple Javascript4.

For touch devices, we focus on the scenario where
victims use at least two phones, where one of them is highly
protected. An example for this scenario is where victims
have a company-issued smartphone that contains company-
sensitive information and is secured with different means
(e.g., trusted modules, touchscreen lock, no installation of
arbitrary apps allowed). In particular, the device contin-
uously authenticates the user using touchscreen biometric
while they are using sensitive applications.

The adversary will try to obtain the user biometric from
a less protected device (e.g., their personal smartphone). In
this case, the first factor to account for in the transformation
is the dimension of the touchscreen, as these changes the
span/shape of the swipe gesture. Additionally, the sampling
rate of the touchscreen has a significant effect, as less fine-
grained information changes the meaning of features based
on a subset of the swiping gesture (e.g., initial acceleration
of swipe). Other sensor data, such as pressure or area
covered, might also be different in terms of scale, resolution,
precision and granularity.

3.3. ECG

Similarly to gait (Section 3.1), insecurities in the com-
munication channel or the device firmware can both be
a point of attack for the adversary that is attempting to
obtain ECG data. In addition, computerized medical records
are often handled poorly in terms of their confidentiality.
Reports show that large amounts of sensitive healthcare data
are vulnerable to leakage or theft, or have already been com-
promised because of security lapses at hospitals, insurance
companies or government agencies [26]. Adversaries may
also easily obtain raw ECG signal from photos of ECG
printouts, as has been shown in previous work [2].

It has been previously shown that the type and location
of ECG sensors affect the ECG measurement [2] and there-
fore cause differences in feature distributions. Comparably
to gait, with fitness trackers being more likely to be ex-
ploited, the adversary should also account for the different

4. https://developer.mozilla.org/en-US/docs/Web/API
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Biometric Factors Considered Scenarios Devices

Gait
Activity walking, running

BLU VIVO 6, Movisens ekgMove,
Garmin Vivoactive HR

Sensor Location arm, chest, hand, pocket, wrist
Input Device smartphone, smartwatch, fitness tracker

Touch
Input Device low-, mid-, high-end phone

TTSim M5 Smart, Motorola MotoG3,
BLU VIVO 6dynamics

ECG Sensor Type mobile monitor, medical monitor, fitness tracker, authenticator AliveCor KardiaMobile, Heal Force Prince 180B,
Movisens ekgMove, Nymi BandActivity resting, walking, running

Eye Task reading, watching video, writing, browsing
SMI RED500movements Calibration calibrated, uncalibrated

Mouse
Input Device trackpad, mouse

MSI GT72 6QE Dominator Pro G trackpad,
Dell Laser USB mousemovements

TABLE 2: Factors of feature distribution differences considered for each biometrics and devices used for the measurements.

ECG behavior due to the activity performed by the user dur-
ing the measurement. The ECG signal significantly changes
when the user is exercising, both due to the physical exertion
and noise introduced by imperfect electrode connection.

3.4. Eye Movements

The popularity of eye-tracking is increasing and a num-
ber of consumer electronics are equipped with eye trackers.
With more services implementing eye-tracking, adversaries
can use these services to obtain eye movement data (e.g.,
hijacking browsers and using a Web API, or exploiting ap-
plication weaknesses). Additionally, we consider the threat
of the user being tricked into using an attacker-controlled
machine which is equipped with a covert eye tracker.

For eye movements, it has been shown that gaze data
strongly depend on the type of task performed by the user
(e.g., reading, writing, browsing [27]). Since the adversary
can not easily force the user into performing a specific task,
they might need to adapt the victim’s data to the task that
is used for authentication. Additionally, eye trackers need
to be calibrated before use to provide accurate data. Since
it would be considerably more difficult to trick the user
into calibration (as this procedure would raise suspicion), we
assume that the attacker only possesses data from a device
that is not calibrated for the victim.

3.5. Mouse Movements

As mentioned in Section 3.2, collection of mouse move-
ments data can easily take place on the Web, where it has
been shown that mouse tracking is common-place [28]. In
order to obtain the victim’s data, adversaries may create
websites, or hijack existing ones. It could also be possible
for the adversary to highjack the victims’ browsers (e.g., by
installing malicious extensions [29]).

As users interact (and browse) with an increasing num-
ber of devices, the adversary needs to account for the
different interactions that happen depending on the device
hardware. Previous work shows that changing the pointing
device hardware causes fluctuations in the measured users
behavior, enough to significantly degrade the recognition

performance [17]. Using these observations, we decide to
consider the extreme case where the pointing device is either
a mouse or a trackpad. This fits well the scenario where
mouse data collection happens remotely, that is the most
likely to occur online (as mentioned above).

4. Experimental Design

In order to evaluate the threat model motivated in the
previous section, we conduct a study where we collect
participants’ biometrics for each of the five biometric modal-
ities. The study is designed to reflect the scenarios presented
in the threat model (Section 3). For all biometrics measure-
ments, we stick to state-of-the-art common practices. In the
following, we describe the details of the study and briefly
comment the processing methodologies that we adopt.

4.1. Study Outline

The study consists of two separate but identical sessions
which are at least 5 and not more than 30 days apart. In each
session, participants undergo a series of tasks designed to
collect their biometric traits for a specific context. A single
session lasts approximately one hour and 45 minutes. In
Table 2 we report all the feature difference factors that we
accounted for in the analysis and the devices used for the
measurements. In the remainder of this section, we present
the details of the study procedure for each biometric.

Mouse Movements. The first task is carried out on a laptop
to collect mouse data [30]. Participants are shown a grid of
rectangles and click on the rectangle that contains a picture.
After the user clicks, the picture moves to another rectangle
and users click on this new rectangle. The task ends after
250 total clicks and is repeated with the trackpad.

Eye Movements. The participant is then requested to com-
plete five different tasks on a laptop equipped with an
eyetracker. The study is carried out in a lab in controlled
lighting conditions (blinds closed and light switched on). We
take our tasks from the experimental design of [15]: reading,
writing, watching a movie trailer, browsing and watching an
educational video. Each task continues for 3 minutes before
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the next one automatically starts. Differently from [15],
we include two different videos to account for the number
of scene changes that directly influence the participant’s
gaze: the movie trailer contains lots of fast-paced scene
changes, while the educational video does not. At the end
of the session, the five tasks are repeated on an uncalibrated
eyetracker. To account for the users getting used to the tasks
when they repeat them, we randomly swap the order of the
calibrated and uncalibrated tasks.

Touch Dynamics. Afterwards, the participant uses a smart-
phone to complete a “spot the difference” task (similarly
to [3]). The smartphone shows two images which contain
subtle differences between each other and the user attempts
to find them. Only one image is shown on the smartphone at
a time and the user swipes (either to the left or to the right)
to see the other image. The task lasts 3 minutes in total and
is repeated three times, each time with a different phone and
a different pair of images. To avoid bias generated by the
selection of images and users acclimating to the task, for
each user we randomize the order of the phones.

ECG. Then, the participants ECG is monitored for a set of
devices: an authenticator, a mobile ECG monitor attached
to a smartphone and a medical ECG monitor. For the ECG
monitor measurement, we collect the palm measurement
using the built-in electrodes and use an external 3-lead ECG
cable with disposable electrodes, to obtain Lead I, Lead
II and Lead III [31]. Additionally, at the beginning of the
session, participants wear a chest-strap fitness tracker that
monitors their ECG and gait data throughout the session.

Gait. Finally, the participant goes for a short walk and a
subsequent run in a nearby park (around 700 meters each).
During this time, five different sensors monitor the partic-
ipant’s gait pattern: three smartphones (placed on left arm,
right front pocket and held in the left hand), a smartwatch
worn on the left wrist and the fitness tracker mentioned
above. The fitness tracker also monitors ECG during the
walk and the run.

Participant Recruitment. We recruited a total of 30 (11
female, 19 male) participants through local announcements
and social media. Participants were compensated for their
time and inconvenience. This study was reviewed by and
obtained clearance from the Inter-Divisional Research Ethics
Committee of the University of Oxford, reference number
R50977/RE001.

4.2. Feature Extraction

We adopt state-of-the-art common practices for biomet-
ric data processing and feature extraction. Table 3 reports
the papers we used. For ECG and gait we chose to use
preprocessing steps to allow us to isolate the individual
signals (single heartbeat and single gait cycle, respectively),
rather than frequency domain analysis. The rationale behind
this choice is that feature representation based on frequency
domain does not have a direct and understandable meaning,
while providing similar (if not weaker) performance results.

Biometric Paper(s) Description

Gait M. Derawi et al. [9]
magnitude of acceleration fea-
tures (based on cycle detection)

Touch
M. Frank et al. [3]

pressure, spatial, speed and
dynamics acceleration features

ECG A. Fratini et al. [7]
temporal, amplitude, morphol-
ogy features (based on fiducial
points)

Eye
S. Eberz et al. [15]

pupil, temporal and spatial
movements features

Mouse N. Zheng et al. [32] stroke curvature, speed and
movements A. Weiss et al. [30] acceleration features

TABLE 3: Description and original paper of the pre-
processing and feature extraction methodologies used for
each biometric.

For gait, we ignore the use of dynamic time warping, as
this is only necessary during template matching and does
not have an effect on the raw signal behavior. Due to
limited space, we report all the individual features and their
importance based on Relative Mutual Information (RMI) in
Appendix A. The details of the feature extraction for each
biometric can be found in the cited papers.

5. Mapping Methodology

In this section, we describe the methodology used to
derive the cross-context mapping and discuss how the map-
ping is combined with feature distinctiveness. Finally, we
discuss the evaluation methodology and how these results
should be interpreted.

5.1. Cross-Context Mapping

We generalize the cross-device mapping approach intro-
duced in [2] to cross-context mappings and transformations
chosen from a parametrized family of functions. Given a
source and target context, for each user we have a set of
feature values computed in the source context and a set of
feature values computed in the target context. Notice that
source and target features are computed independently from
each other (i.e., in different experiments). This is different
from function regression in which inputs and output values
are assumed to be measured in a paired way; rather, we have
a set of input values and a set of output values measured in
independent experiments.

For each pair of the source-target context, we com-
pute a mapping on each biometric feature. Intuitively, this
cross-context mapping works by optimizing the intra-user
statistical similarity between the feature values sampled
from the source context and those sampled from the target
context. More formally, given a context and a feature, we
associate to each user a random variable. The latter models
the experiment of observing specific feature values, for each
user. The cross-context mapping then transforms each source
context random variable to maximize statistical similarity
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to its corresponding target context random variable. The
final output of the estimation, for a pair of the source-target
context, is a set of functions (one per feature) that maps the
values of features measured in source to the target.

Problem Setting. Let {ui}i=1,...,n be the set of users from
the population for whom we have observations for both
the source s and the target t contexts, which we refer to

as {x(s)
ui,j
}
j=1,...,n

(s)
ui

and {x(t)
ui,j
}
j=1,...,n

(t)
ui

; and let v be

the victim for whom we have observations only from the

source context s, that is, {x(s)
v,j}j=1,...,n

(s)
v

. For each user

ui in the population and for the victim v, let X
(s)
ui , X

(s)
v

and X
(t)
ui , X

(t)
v be the random variable associated to a

specific feature from the source and the target contexts.
respectively. We seek an optimal transformation function f∗
of the source random variables such that, for i = 1, . . . , n,

f∗(X(s)
ui ) and X

(t)
ui are, statistically speaking, similar. We

then use f∗(X(s)
v ) as an estimation of the unknown target

random variable for the victim, i.e., X
(t)
v . In other words, f∗

transforms each value of the source feature to be as close as
possible to what would be observed for the target feature.

Cross-Context Mapping Estimation. As in function re-
gression in finite dimensional vector spaces, the estimation
of f∗ is composed of three phases: (i) the definition of a
parameterized family of functions {fθ}θ∈Θ which to opti-
mize for, (ii) the definition of an error function for each fθ
and (iii) the solution of an optimization problem in which
the overall error is minimized with respect to the generic
transformation function fθ.

For a generic user u in the population, we evaluate the

dissimilarity between the target random variable X
(t)
u and

the transformed source random variable fθ(X
(s)
u ) as the

statistical distance between two cumulative density functions
associated with the two random variables5. The rationale
is that, if the two variables have the same distribution,
then they are indistinguishable by the template matching
algorithm. Namely, let F

fθ(X
(s)
u )

and F
X

(t)
u

be the two

cumulative density functions, we define the error ε that the
function f makes for user u as:

εfθ (u) = d
(
F
fθ(X

(s)
u )

, F
X

(t)
u

)
, (1)

where d is a generic statistical distance between cumulative
density functions (discussed in the following paragraph).
The optimal function can hence be defined as the trans-
formation function fθ∗ , where θ∗ is the vector of parameter
values that minimizes the across-users average error, that is:

θ∗ = argmin
θ∈Θ

1

n

n∑
i=1

d
(
F
fθ(X

(s)
ui

)
, F

X
(t)
ui

)
. (2)

5. Using the set of target observations {x(t)
u,j}j=1,...,n

(t)
u

and trans-

formed source observations {fθ(x(s)
u,j)}j=1,...,n

(s)
u

we compute the empir-

ical cumulative density function for each random variable using the Kaplan-
Meier estimate.

In the following, we reformulate the estimation problem of
Equation 2 using a specific distance function and Θ.

Optimization Problem. We define the distance d to be the
L2 distance between functions, that is:

d
(
F
fθ(X

(s)
u )

, F
X

(t)
u

)
=

√
w

∫
R

(
F
fθ(X

(s)
u )

(ξ)−F
X

(t)
u
(ξ)

)2

dξ.

(3)
Previous work shows that the precise choice of distance

measure has little influence in cross-device settings [2].
Factor w in Equation 3 is a factor used to normalize the
distance d in the interval [0, 1] (details on the computation
of w are given in Appendix B). Further, we tweak the
objective function of Equation 2 to be robust against noisy
estimations for the distributions of particular users. Namely,
let I = {1, . . . , n}, then for each function fθ we define a
subset of the user population indexes Ifθ ⊆ I as follows: (i)
we compute the distances d(F

fθ(X
(s)
ui

)
, F

X
(t)
ui

) for all users,

(ii) we iteratively apply the Grubbs test to detect a subset
of outlier indexes Iofθ among these distances and (iii) we
remove the users’ labelled as outliers, Ifθ = I \ Iofθ . In
doing this, we set the test significance level to 0.1 and use
10% as the maximum percentage of outliers included in Iofθ .

Implementing outliers detection in the error function of
Equation 2, we obtain a non-linear optimization problem in
the real-valued vector of parameters θ, which we solve by
using a pattern search optimization algorithm [33]:

minimize
θ

1

|Ifθ |
∑
i∈Ifθ

√
w

∫
R

(
F
fθ(X

(s)
ui

)
(ξ)− F

X
(t)
ui

(ξ)
)2

dξ

subject to θ ∈ Θ, (4)

where |Ifθ | is the cardinality of the index set Ifθ . We refer
to Appendix B for the definition of the feasible parameter
region Θ. Naturally, it is not practical to test the perfor-
mance of every conceivable (mapping) function. Due to their
simplicity, linear functions offer good computational perfor-
mance which is particularly important for larger population
sizes. In the analysis of Section 6 we therefore consider
linear functions fθ

6. We have also performed the analysis
using polynomials of degree two, three and four, but none of
these provided results significantly different from the linear
function fθ (all p > 0.01 for one-tailed Wilcoxon rank sum
tests, average error decrease: ∼0.002, average relative error
decrease: ∼2.6%). Full results are discussed in Appendix C.

Unpredictability Score. In order to evaluate the effective-
ness of the mapping, we measure the prediction error on
a per-feature base. Let v be a victim user, {ui}i=1,...,n a
population of users and gj the j-th feature used by the
biometric algorithm. For feature gj , we compute the optimal

6. Note that linear fθ still poses a general non-linear optimization
problem as the function θ �→ F

fθ(X
(s)
ui

)
(ξ) is still non-linear (and non-

convex).
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cross-context mapping f
(gj)
θ∗ (using the population) and the

prediction error for the victim source observations to the

victim target observations as ε
(gj)
fθ∗ (v). This gives an unpre-

dictability score U for feature gj and victim v in the source-
target context transformation:

U (gj)
v = ε

f
(gj)

θ∗
(v) . (5)

Following on from Equation 3, we know that the error

ε
f
(gj)

θ∗
(v) lies in the interval [0, 1]. A small value of U

(gj)
v

implies that for feature gj the cumulative functions of the
victim’s transformed source random variable and of the
target random variable are almost overlapping. This means
that (for the j-th feature) the cross-context mapping approach
is able to accurately map observations from the source
context to samples from the target context (the differences

are systematic). On the other hand, a value of U
(gj)
v close to

1 implies that for feature gj the transformed feature values
from source random variable and from target random vari-
able have highly non-overlapping distributions. This means
that the differences between the j-th feature values in the
source and target contexts cannot be systematically predicted
in this way.

5.2. Weighted Score

Following on from the previous section, we know that
we obtain an unpredictability score for each feature in the
feature-set. We want to aggregate this score to the level
of the whole biometric modality (across the features), so
that it provides an idea of the resilience of a particular
biometric to this transformation. A simple average of the
unpredictability score for each feature is not reasonable,
as features contribute differently to the recognition. For
example, if a non-distinctive feature is very predictable, it
might have a significant negative influence on the overall
score. This is not the desired effect, as an attacker would
gain very little by correctly predicting that feature.

RMI Weights. We weight features based on Relative Mutual
Information (RMI). To avoid problems with the choice of the
number of bins (that may introduce bias in the mutual infor-
mation), we adopt the non-parametric RMI computation of
Ross [34]. In this approach, mutual information is computed
based on the relationship between a data point’s neighbours
and its class neighbours. We weight each feature mapping
result with the feature’s RMI and obtain an aggregated score
that accounts for feature distinctiveness this way.

Formally, given the set of features for a biometric
{gj}j=1,...,m, the victim user v and each feature RMI value
{rj}j=1,...,m we compute a RMI-weighted unpredictability
score Wv:

Wv =

∑m
j=1(εf(gj)

θ∗
(v) · rj)∑m

j=1 rj
. (6)

Score Interpretation. The weighted unpredictability score
Wv of a biometric modality (Equation 6) depends on the
scores of the individual features, with distinctive features
contributing more to it. It should be noted that the score
itself does not directly correspond to a certain success
rate of an actual attack, because the cross-context mapping
effectiveness also depends on the specific template matching
algorithm and false accept and false reject rates thresholds.
The main advantage of the unpredictability score lies in
its comparative capability, rather than in being an absolute
scale. The score can be used to compare different bio-
metrics, with biometrics with higher unpredictability scores
across all sources being judged more secure. Similarly, a
system developer can use the scores to identify vulnerable
target contexts. For example, a biometric might exhibit low
unpredictability scores on specific devices (e.g., due to lower
quality sensors). In that case, a developer could change the
classifier’s decision threshold to account for the increased
danger of cross-context attacks.

Lastly, individual feature unpredictability scores U
(gj)
v

can be a driving factor in the selection and engineering of
features. Higher security can be achieved both by changing
the definition of features and by modifying sensor hardware
(e.g., by making it less similar to common source contexts).

5.3. Evaluation Methodology

Cross-Validation. For the evaluation of the cross-context
mapping, we operate in a leave-one-out cross-validation
fashion. At each step i, we consider one user ui as the victim
and we use the remaining 29 users as the population. With
the population, for each feature, we compute the optimal
cross-context mapping fθ∗ and the prediction error for the
victim source observations to the victim target observations.

We obtain U
(gj)
v (Equation 5) and Wv (Equation 6) this

way. This step is repeated for each user. If not otherwise
specified, the results shown are averages of unpredictability
scores over the users in our dataset. The RMI is computed
on the feature distribution of the population obtained in the
first session, for the target context.

Considered Scenarios. In the evaluation, we select a set of
sources for each biometric and consider the scenario where
the adversary has the information from an individual source,
or for the full set of sources (all). In the second case, the
adversary uses the source with the best performing cross-
context mapping (lowest unpredictability) for each feature.
This scenario constitutes the strongest attacker since some
sources may be useful to predict some features but not oth-
ers. Additionally, we consider two different time scenarios:
same session and cross session. The former represents the
case in which the victim’s source and target data are col-
lected in the same session, which leads to greater similarity.
In the latter, the victim’s source data were collected in a
different session than the victim’s target data. Intuitively,
this reflects the case of the attacker’s source data being older
or newer than the victim’s template.
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Same Session Cross Session
Biometric contexts avg (min, all) avg (min, all)

ECG
target: Authenticator-rest .09 (.07, .06) .12 (.09, .08)

- Lead I-rest .075 ± .010 .093 ± .014
- Lead II-rest .106 ± .011 .128 ± .015

- Lead III-rest .114 ± .008 .144 ± .014
- Palm-rest .080 ± .007 .110 ± .010

- Mobile-rest .075 ± .007 .092 ± .005
- Fitness tracker-rest .104 ± .010 .134 ± .012

- Fitness tracker-walk .100 ± .012 .123 ± .017
- Fitness tracker-jog .103 ± .011 .122 ± .017

Eye movements
target: Calibrated .08 (.07, .07) .10 (.09, .09)

- Intra task-uncalibrated .068 ± .014 .089 ± .023
- Cross task-uncalibrated .084 ± .017 .103 ± .023

Mouse movements
target: Mouse .07 .07

- Trackpad .068 ± .011 .071 ± .010

Touch dynamics
target: Mid-end phone .08 (.07, .07) .08 (.08, .07)

- Low-end phone .084 ± .009 .082 ± .008
- High-end phone .071 ± .008 .075 ± .009

Gait
target: Pocket phone-walking .15 (.15, .13) .14 (.14, .13)

- Smartwatch-walk .155 ± .016 .144 ± .020
- Hand phone-walk .154 ± .021 .145 ± .019

- Smartwatch-jog .148 ± .019 .141 ± .018
- Cheststrap-jog .154 ± .019 .144 ± .020
- Arm phone-jog .156 ± .020 .146 ± .021

TABLE 4: Unpredictability score, for data from the same
and cross session. Rows in bold report the aggregated score,
introduced in Section 5.3. For each source we also show the
95% confidence intervals computed over the unpredictability
scores of individual users.

6. Results

In this section we present the results of our analysis. We
first explain the choice of the source and target contexts and
present high-level results. Afterwards, we show a feature-
level analysis and discuss the effect of the population size.

6.1. Context Choice

In order to present data in a readable way, we select
a subset of target and source contexts, following the most
relevant attack vectors presented in the threat model. Of the
30 possible target contexts coming from our experimental
design (see Table 2), we select five possible targets (one for
each biometric) and a number of representative sources for
each of them. The chosen contexts are the following:

• Gait – Pocket phone-walk: we select the pocket phone
with walking activity as target. We consider five dif-
ferent contexts: Smartwatch-walk, Hand phone-walk,
Smartwatch-run, Chest strap-run and Arm phone-run.

• Touch dynamics – Mid-end phone: the middle-end
phone represents the reasonable choice, as it allows us
to measure the effect of using higher and lower quality
devices as sources.

Figure 4: Unpredictability score for different combinations
of source and target tasks for the eye movement biometric.
Numbers in brackets are the average scores for the respective
source or target. Intuitively, using data collected during the
same task yields the lowest unpredictability scores (shown
on the diagonal).

• ECG – Authenticator-rest: the Authenticator (Nymi
band) uses ECG for authentication purposes and there-
fore represent an ideal target. All the remaining ECG
sensors are considered as the sources, including the dif-
ferent measurements obtained with the medical monitor:
Lead I, Lead II, Lead III, Palm.

• Eye movements – Calibrated: all the calibrated tasks
are considered as target. We consider only uncalibrated
data as the source and separate between uncalibrated
data coming from the same task (e.g., Uncalibrated-
reading to Calibrated-reading) and uncalibrated data
coming from different tasks (e.g., Uncalibrated-writing
to Calibrated-reading).

• Mouse – Mouse: we select Mouse as a target and will
use Trackpad as source.

Hereafter, results will refer to these target contexts.
Additional results are reported in Appendix A.

6.2. Biometrics Overview

In Table 4 we report the resulting RMI weighted scores
for each target and source context considered in Section 6.1.
The first rows report the aggregated results over the sources:
average, minimum and all weighted score (see Section 5.3).
In Table 4, we can see that biometrics rank differently
in terms of unpredictability. The table shows that ECG
and gait are on average more resilient to the cross-context
transformation, in both the same session and cross session
scenarios. Gait in particular is very resilient to cross-context
attacks, with an unpredictability score two times higher
compared to touch dynamics, eye and mouse movements.
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(a) ECG (target: Authenticator-rest). (b) Eye movements (target: Calibrated).

(c) Touch dynamics (target: Mid-end phone). (d) Mouse movements (target: Mouse).

Figure 5: Unpredictability score of the top-ten RMI ranked features for the ECG (Fig. 5a), eye movements (Fig. 5b), touch
dynamics (Fig. 5c) and mouse movements (Fig. 5d) biometric. Features are sorted by RMI (descending from left to right).
RMI is reported in percentage on the x-axis label.

This means that the different placement of the sensors
provide poor information about the gait signal as measured
in other contexts. Comparatively low results are obtained
for eye movements, touch dynamics and mouse. Most of
these biometric features are easily and consistently mapped
across source contexts (see the discussion in Subsection 6.3).
For the eye movements biometric there are also differences
depending on the respective source and target task, shown in
Figure 4. Naturally, intra-task mappings produce the lowest
unpredictability score (as the only difference is the lack of
calibration for the source task), while cross-task mappings
perform particularly poorly for some combinations. The re-
sults show that an attacker could gain a significant advantage
if they are able to choose the source task freely.

Comparing the average, minimum and all score we can
see that: (i) by selecting the appropriate source context
the adversary can expect an improvement of ∼10% on
average, that is, from average to minimum score (consistent
across same and cross session scenarios); (ii) by combining

information from several sources the adversary might obtain
a further improvement up to ∼15% (again consistent across
same and cross session scenarios), that is, from minimum
to all score. This means that it might be worthwhile for
an adversary to obtain biometric information over a higher
number of sources and selectively choose to map individual
features from whichever source provides the lowest unpre-
dictability score for that feature.

The results show that same-session scores are lower
compared to cross-session scores for ECG and eye move-
ments in particular. As a result, an attack would appear to
be more likely to succeed if very recent data (as in the
same-session experiment) is used. However, the authenti-
cation system itself has to cope with the (lack of) time
stability which causes this difference. Most likely, this will
be achieved through either periodic retraining or continuous
template updating. While template updating will make false
rejects as a result of increasing time distance less likely, it
will also enable the attacker to use older data for the attack.
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(a) ECG. (b) Eye movements.

Figure 6: Effect of the mapping population size on unpredictability scores.

6.3. Feature Analysis

In order to understand to what extent individual fea-
tures contribute to the overall score, we analyze them
separately. We report in Figure 5 boxplots for the raw
(non-weighted) cross-context feature unpredictability scores.
Each box shows the unpredictability score for a single fea-
ture from the source context to the target context. Features
are ordered by decreasing RMI on the x-axis and the RMI
value is reported on the x-axis. For conciseness, for each
biometric, we only show a couple of meaningful sources
and present just the top-ten RMI-ranked features, as these
are the ones that contribute the most to the weighted score.

ECG. We notice that the type of sensor used as the source
has a significant impact on the weighted unpredictability
score (confirming the results of [2]). In Figure 5a we can
see how Mobile consistently outperforms Lead III for each
feature. This can be explained by closer similarity of the
ECG signal when measured at the extremity of the subject’s
arms (true for Lead I, Mobile and the target Authenticator)
compared to for example the Lead III measurements, which
measures voltage potential between the left arm and left leg.
The differences in predictability for different sources shown
in Table 4 and Figure 5a highlight that ECG-based authen-
tication might still be secure if the adversary steals ECG
data from dissimilar contexts, but becomes less secure the
easier it is to obtain data from similar contexts. Hand-based
measurements are convenient and common (as shown by the
popularity of e-health devices), this highlights the danger of
using the same type of measurement for authentication.

Eye movements. Figure 5b shows how most eye move-
ments features are highly predictable, both pupil-based and
speed- or acceleration-based ones. The boxplot additionally
shows how Intra task consistently provides relatively lower
unpredictability than Cross task, which show that each task
produces feature changes that depend on the user. Our threat

model considers the case of the victim using a compromised
machine with a covert eye tracker (see Section 3). The
results show that if the attacker can choose the task on
this machine freely (i.e., close to that on the authentication
machine), he will obtain more useful data.

Touch dynamics. In Figure 5c we can see that High-end
phones provide slightly lower unpredictability scores com-
pared to Low-end phones. The low result of stroke duration
shows that such feature is easily predictable across devices.
This is intuitively explained with users adjusting the length
of their swipes to the size of the touchscreen. In a feature se-
lection scenario, a system designer might reasonably decide
to drop stroke duration from the feature-set. In fact, even
if the feature has a decent distinctiveness, it is extremely
predictable compared to other similarly distinctive features.
Overall, it is evident that the lower-end phone is a less useful
source of biometric information. This is mainly due to less
precise sensors (i.e., lower sampling rate and resolution),
which particularly affects acceleration features (low touch-
screen sampling rate) and area covered (low resolution).
Conversely, this shows that high-quality sensors can improve
the security of an authentication device.

Mouse movements. Figure 5d reports on average low un-
predictability results for most mouse movements features.
Curvature-based features in particular seem highly pre-
dictable, while not carrying significant distinctiveness (they
might be dropped in a security-critical scenario). However,
the plot shows a high mean and standard deviation for
click duration. This is due to the the trackpad API returning
a coarse-grained click information, less sensitive than that
returned by the mouse. Conversely, if source and target were
switched, this feature would be very easy to predict as the
set of valid target values would be small. This example
highlights that more accurate sensors with higher resolution
can thwart attacks coming from lower-quality data sources.
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6.4. Population Size Analysis

Collecting a large number of (pairs of) biometric sam-
ples to train the cross-context mapping is a considerable
effort. While it is possible to use publicly available datasets
(see Section 3), this data may not always be available for the
victim’s target context (e.g., when the victim uses an unusual
device). As such, it is important to know how large (in terms
of number of users) the population has to be to produce
acceptable results. Figure 6 shows the relationship between
the number of users in the population and the average score
of the resulting cross-context mapping. All biometrics show
an initial sharp drop in the score and exhibit diminishing
returns beyond a population of size of 10. These results
show that most of the cross-context mapping’s predictive
power can be achieved with a relatively small population. In
addition, Figure 6 suggests that the sample size of our study
(30 participants) is large enough to demonstrate differences
between individual features, contexts and biometrics.

7. Conclusion

In this paper, we have presented an analytical framework
that allows us to measure the unpredictability of biometric
features across different contexts. We define the notion of
an unpredictability score, which can be calculated both for
individual features and complete biometrics. The score pro-
vides fine-grained information about the resilience of bio-
metric systems against cross-context attacks and can be used
to: (i) compare biometric systems, (ii) identify vulnerable
target contexts and for (iii) the selection and engineering of
features. The framework is based on computing a mapping
between a source and target context, where the mapping is
derived from population data.

Our results demonstrate that the five biometrics evalu-
ated in this paper show different degrees of resilience to
cross-context attacks. In particular, we showed that ECG
and gait are up to twice as unpredictable across contexts
compared to touch dynamics, mouse and eye movements.
Our analysis highlights particularly predictable features and
suggests that some of can be reasonably dropped from the
feature-set to achieve greater security against this attack.
Furthermore, our data suggests that improving the quality
of the biometric sensor improves the resilience of the au-
thentication system. The fact that some contexts are more
useful than others for the prediction shows that the sources
of biometric information potentially available to an attacker
need to be an integral part of any biometric threat model.
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Appendix A.
Complete Feature Analysis

In Table 5, 6, 7, 8, 9, we report the results of the
computation of the unpredictability scores (Equation 5) for
individual features, for ECG, gait, touch dynamics, mouse
movements and eye movements, respectively. The tables
also report the complete list of features used in the paper
and their RMI (with the exception for gait that only shows
the results for the 25 most relevant features, for brevity).
We used the methodology described in Section 5.3 and the
target contexts explained in Section 6.1.

Appendix B.
Optimization Problem

Let Dfθ =
{
ξ ∈ R|F

fθ(X
(s)
u )

(ξ)− F
X

(t)
u
(ξ) �= 0

}
be the

set in which the integrand of Equation 3 is non zero. In
general this depends upon the specific choice of the mapping
function fθ. Let lb(t) be the minimum observed value for
the target featureand ub(t) be the maximum, then, we define
a region around the observed target feature space as:

D =
[
lb(t) − qΔ(t), ub(t) + qΔ(t)

]
where Δ(t) = ub(t) − lb(t) and q > 0 is a relaxing factor.
Given a parametrized family of mapping functions {fθ}θ∈Θ,
we then define Θ to be:

Θ = {θ ∈ R
m|Dfθ ⊆ D} . (7)

This constrains the range of the transformed source fea-
ture in a way that it is similar to the range of the tar-
get feature. Additionally, for every ξ ∈ R we have that
0 ≤ (F

fθ(X
(s)
u )

(ξ) − F
X

(t)
u
(ξ))2 ≤ 1, thus for every θ ∈ Θ,

we have that:

0 ≤
∫
D

(
F
fθ(X

(s)
u )

(ξ)− F
X

(t)
u
(ξ)

)2

dξ ≤ m(D)

where m(D) is the measure of D. Thus, by setting w =
1/m(D), we have that the distance function defined in
Equation 3 is normalized in [0, 1].

Finally, notice that the set of constraints 7 is linear if
fθ is linear with respect to the parameter vector θ (e.g. fθ
is a generic polynomial function) and hence can be solved
exactly (and efficiently) by an optimization algorithm. In
fact, in this case we have that fθ(x) = θT · h(x), for a
specific vector valued function h. Hence constraint 7 is
equivalent to checking for each feature value x observed
in the users population:

lb(t) − qΔ(t) ≤ θT · h(x) ≤ ub(t) + qΔ(t)

which is linear in the parameter vector θ.

Appendix C.
Degree Analysis

We list in Table 10 biometric unpredictability scores for
cross-context mappings of degrees from 1 to 4, using source
and target context pairs discussed in Section 6.1. Figure 7
shows how unpredictability scores are affected by different
polynomials fθ in the case of ECG biometric. Figure 7 and
Table 10 show that the relative ranking in terms of average
unpredictability scores for the biometrics is not affected by
the degree of fθ. For the 41 different source context pairs
that we have discussed a linear fθ provides an estimation
of the unpredictability score similar to that of polynomials
fθ.

The score of mouse movement biometrics is the only
one that slightly decreases as the degree of fθ increases,
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SAmplitude 44.3 .05 ± .02 .08 ± .03 .09 ± .04 .05 ± .02 .04 ± .02 .05 ± .02 .05 ± .02 .06 ± .01
TAmplitude 44.1 .11 ± .03 .12 ± .03 .09 ± .02 .06 ± .01 .04 ± .01 .09 ± .02 .09 ± .02 .10 ± .02
STInterval 33.4 .08 ± .02 .11 ± .03 .15 ± .03 .08 ± .02 .09 ± .02 .11 ± .03 .14 ± .02 .15 ± .03
SDuration 32.7 .07 ± .03 .09 ± .02 .10 ± .02 .07 ± .01 .05 ± .02 .08 ± .02 .08 ± .02 .07 ± .02

PAmplitude 31.3 .05 ± .01 .15 ± .03 .15 ± .03 .06 ± .02 .09 ± .02 .15 ± .03 .14 ± .04 .12 ± .04
SDuration R 28.8 .07 ± .03 .09 ± .03 .09 ± .02 .06 ± .01 .05 ± .02 .07 ± .01 .09 ± .02 .08 ± .02

RDuration 27.1 .07 ± .01 .10 ± .03 .13 ± .03 .07 ± .01 .06 ± .01 .13 ± .03 .11 ± .03 .12 ± .03
PQInterval 25.6 .06 ± .01 .09 ± .02 .11 ± .03 .13 ± .03 .07 ± .01 .10 ± .03 .12 ± .03 .13 ± .03

SDuration L 24.7 .08 ± .02 .10 ± .03 .11 ± .02 .07 ± .01 .07 ± .02 .10 ± .03 .10 ± .03 .11 ± .03
RSInterval 23.4 .09 ± .03 .16 ± .06 .14 ± .05 .10 ± .02 .07 ± .02 .17 ± .06 .14 ± .05 .15 ± .06

RDuration R 21.0 .07 ± .01 .11 ± .03 .13 ± .03 .06 ± .01 .07 ± .01 .14 ± .03 .15 ± .03 .13 ± .03
QDuration 20.6 .09 ± .02 .12 ± .03 .11 ± .03 .10 ± .03 .14 ± .04 .11 ± .02 .11 ± .03 .12 ± .03

QDuration L 20.2 .08 ± .02 .11 ± .03 .11 ± .03 .10 ± .03 .13 ± .05 .10 ± .02 .10 ± .03 .11 ± .02
QAmplitude 20.0 .05 ± .02 .04 ± .02 .06 ± .03 .08 ± .01 .04 ± .02 .04 ± .01 .02 ± .01 .04 ± .01

TDuration 18.9 .05 ± .02 .07 ± .02 .09 ± .02 .08 ± .01 .05 ± .01 .11 ± .02 .08 ± .02 .09 ± .02
QDuration R 18.1 .12 ± .02 .11 ± .02 .11 ± .02 .10 ± .02 .13 ± .02 .11 ± .02 .10 ± .03 .09 ± .02

QRInterval 17.8 .14 ± .02 .19 ± .04 .22 ± .04 .18 ± .03 .20 ± .03 .18 ± .04 .16 ± .05 .17 ± .04
RDuration L 17.2 .06 ± .01 .08 ± .02 .11 ± .02 .07 ± .01 .06 ± .01 .11 ± .02 .12 ± .03 .09 ± .02
TDuration R 14.0 .04 ± .01 .07 ± .02 .07 ± .01 .05 ± .01 .05 ± .01 .07 ± .02 .05 ± .01 .05 ± .01
TDuration L 13.1 .07 ± .02 .09 ± .03 .13 ± .02 .08 ± .02 .06 ± .02 .12 ± .02 .10 ± .02 .10 ± .02

PDuration 9.9 .09 ± .02 .13 ± .03 .15 ± .03 .11 ± .02 .10 ± .02 .15 ± .03 .11 ± .03 .12 ± .03
PDuration R 8.4 .08 ± .02 .08 ± .02 .11 ± .02 .10 ± .02 .08 ± .02 .11 ± .02 .10 ± .02 .08 ± .02
PDuration L 5.4 .07 ± .02 .09 ± .02 .10 ± .02 .08 ± .01 .09 ± .02 .09 ± .02 .08 ± .02 .08 ± .02

TABLE 5: Complete RMI values and unpredictability scores for each feature in the ECG biometric, computed on the first
session. The confidence intervals are computed over the result for each user.

though the difference between the linear and the degree
4 unpredictability scores is still not significant as for a
one-tailed Wilcoxon rank sum tests. This happens as the
aggregated distribution of the click duration feature (the
most relevant for the mouse movements biometric) for the
trackpad has several modes depending on whether the user
uses the trackpad click button or simply taps it, whereas the
click duration for mouse device is much more consistent
across users. Hence, using a quadratic polynomial provides
an advantage over linear function, however this quickly
saturates for degrees greater than 3.

Figure 7: Unpredictability score as estimated by polynomials
of degree from 1 (linear) to 4, for ECG biometric. Errorbars
show 95% confidence intervals.
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f 36 19.4 .18 ± .04 .18 ± .04 .18 ± .04 .16 ± .03 .15 ± .04 .11 ± .03 .16 ± .04 .18 ± .03
f 42 19.3 .21 ± .04 .15 ± .04 .14 ± .04 .18 ± .04 .18 ± .04 .15 ± .03 .15 ± .03 .16 ± .03
f 43 19.3 .21 ± .04 .16 ± .04 .15 ± .04 .17 ± .04 .15 ± .04 .17 ± .04 .16 ± .03 .18 ± .04
f 41 19.1 .18 ± .04 .14 ± .03 .13 ± .03 .17 ± .03 .17 ± .04 .14 ± .03 .14 ± .03 .16 ± .03
f 7 19.0 .17 ± .04 .18 ± .04 .15 ± .04 .18 ± .04 .17 ± .05 .12 ± .04 .16 ± .04 .16 ± .03
f 8 18.8 .16 ± .04 .16 ± .04 .17 ± .04 .19 ± .04 .16 ± .05 .12 ± .04 .15 ± .04 .18 ± .04

f 35 18.8 .19 ± .04 .18 ± .04 .18 ± .04 .16 ± .03 .15 ± .03 .11 ± .03 .17 ± .04 .19 ± .03
f 6 18.8 .18 ± .04 .18 ± .04 .15 ± .04 .17 ± .04 .17 ± .04 .12 ± .03 .16 ± .03 .17 ± .03
f 4 18.7 .17 ± .03 .15 ± .04 .18 ± .04 .14 ± .03 .17 ± .04 .13 ± .03 .14 ± .03 .16 ± .03

f 64 18.7 .14 ± .03 .14 ± .03 .15 ± .04 .15 ± .03 .17 ± .04 .13 ± .02 .15 ± .04 .17 ± .04
f 63 18.7 .12 ± .03 .13 ± .04 .14 ± .04 .14 ± .03 .16 ± .04 .12 ± .03 .14 ± .03 .15 ± .04
f 5 18.6 .18 ± .04 .18 ± .04 .17 ± .05 .15 ± .03 .19 ± .04 .13 ± .03 .16 ± .03 .16 ± .03

f 44 18.5 .19 ± .04 .18 ± .03 .16 ± .04 .17 ± .04 .15 ± .04 .15 ± .03 .16 ± .03 .18 ± .03
f 0 18.4 .14 ± .03 .15 ± .03 .16 ± .03 .19 ± .02 .19 ± .03 .11 ± .02 .13 ± .03 .18 ± .03

f 28 18.4 .18 ± .05 .17 ± .04 .17 ± .04 .18 ± .04 .18 ± .05 .13 ± .04 .16 ± .03 .19 ± .04
f 69 18.4 .16 ± .03 .16 ± .03 .13 ± .02 .16 ± .03 .15 ± .03 .12 ± .02 .13 ± .04 .17 ± .03
f 17 18.2 .14 ± .03 .17 ± .04 .16 ± .04 .14 ± .03 .17 ± .04 .14 ± .03 .15 ± .04 .14 ± .04

f 1 18.1 .14 ± .03 .15 ± .03 .17 ± .02 .17 ± .03 .17 ± .03 .12 ± .03 .13 ± .04 .18 ± .04
f 37 18.1 .19 ± .03 .17 ± .03 .18 ± .03 .16 ± .03 .14 ± .03 .11 ± .03 .15 ± .04 .16 ± .03

f 3 18.0 .16 ± .03 .14 ± .03 .17 ± .04 .14 ± .03 .16 ± .04 .12 ± .03 .13 ± .03 .15 ± .03
f 29 17.8 .19 ± .04 .16 ± .03 .17 ± .03 .16 ± .03 .17 ± .04 .12 ± .03 .15 ± .03 .16 ± .03
f 16 17.6 .15 ± .03 .18 ± .04 .15 ± .04 .13 ± .04 .17 ± .04 .14 ± .03 .16 ± .04 .16 ± .04
f 65 17.6 .17 ± .04 .12 ± .03 .14 ± .03 .15 ± .03 .18 ± .04 .11 ± .02 .15 ± .03 .17 ± .04
f 9 17.4 .14 ± .03 .17 ± .04 .17 ± .04 .18 ± .04 .17 ± .04 .13 ± .04 .14 ± .04 .17 ± .03

f 40 17.4 .17 ± .04 .15 ± .03 .12 ± .03 .15 ± .03 .18 ± .04 .12 ± .03 .13 ± .03 .13 ± .03

TABLE 6: Complete RMI values and unpredictability scores for each feature in the gait biometric, computed on the first
session. The confidence intervals are computed over the result for each user.
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mid stroke pressure 16.3 .15 ± .03 .15 ± .03
mid stroke area covered 16.0 .15 ± .03 .11 ± .03

stroke duration 15.8 .04 ± .01 .04 ± .01
y end 14.2 .09 ± .02 .09 ± .02

direct end to end distance 13.7 .09 ± .02 .07 ± .02
length of trajectory 13.5 .07 ± .02 .06 ± .01

direction of end to end line 12.1 .05 ± .02 .04 ± .01
y start 11.9 .09 ± .02 .09 ± .02
x start 11.5 .06 ± .01 .05 ± .01
x end 10.3 .07 ± .02 .06 ± .01

f 20 perc perp distance 8.5 .05 ± .01 .03 ± .01
f 50 perc perp distance 8.4 .06 ± .01 .03 ± .01
f 80 perc perp distance 7.7 .05 ± .01 .03 ± .01

max perp distance 7.5 .06 ± .01 .03 ± .01
median accel first5 7.5 .15 ± .02 .07 ± .01

average velocity 6.8 .07 ± .02 .08 ± .02
average direction 6.7 .05 ± .01 .05 ± .01

median velocity last5 6.0 .08 ± .02 .10 ± .02
f 50 perc accel 5.3 .10 ± .02 .09 ± .02

f 80 perc velocity 4.9 .08 ± .02 .09 ± .02
f 20 perc accel 4.5 .07 ± .01 .08 ± .01

f 50 perc velocity 4.2 .09 ± .02 .08 ± .02
f 80 perc accel 3.6 .13 ± .02 .07 ± .01

mean resultant length 3.0 .05 ± .01 .05 ± .01
f 20 perc velocity 2.6 .14 ± .01 .07 ± .01

distance to traj length 2.4 .04 ± .01 .04 ± .01
median velocity last3 2.0 .08 ± .02 .07 ± .02

TABLE 7: Complete RMI values and unpredictability scores
for each feature in the touch dynamics biometric, computed
on the first session. The confidence intervals are computed
over the result for each user.

Mouse movements
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click duration 15.7 .12 ± .03
curvature distances mean 4.1 .04 ± .01

curvature 3.3 .03 ± .01
curvature distances max 3.2 .02 ± .01
angle of curvature max 2.9 .05 ± .01
curvature distances std 2.6 .03 ± .01

acc dev 2.4 .06 ± .02
angle of curvature mean 2.4 .05 ± .02

speed mean 2.2 .06 ± .02
straight dev std 2.0 .04 ± .01

angle of curvature std 2.0 .07 ± .02
speed max 1.9 .06 ± .01

straight dev max 1.8 .06 ± .02
acc max 1.8 .04 ± .01

speed dev 1.8 .07 ± .02
acc mean 1.6 .03 ± .01

straight dev mean 1.5 .04 ± .01
acc min 0.8 .04 ± .01

curvature distances min 0.7 .02 ± .00
angle of curvature min 0.5 .02 ± .01

TABLE 8: Complete RMI values and unpredictability scores
for each feature in the mouse movements biometric, com-
puted on the first session. The confidence intervals are
computed over the result for each user.

Eye movements
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pupil max 19.5 .03 ± .01 .04 ± .01
pupil mean 19.4 .03 ± .01 .04 ± .01

pupil min 18.8 .06 ± .01 .06 ± .02
pupil range 4.5 .03 ± .01 .04 ± .01
accel mean 4.3 .03 ± .01 .04 ± .01

pupil std 3.8 .06 ± .02 .07 ± .02
speed mean 3.8 .03 ± .01 .03 ± .01
fix duration 2.7 .03 ± .01 .04 ± .01

centredist mean 1.8 .04 ± .01 .05 ± .01
accel max 1.2 .02 ± .01 .03 ± .01
speed std 1.2 .03 ± .01 .03 ± .01

speed max 0.8 .04 ± .01 .05 ± .01
centredist max 0.7 .05 ± .01 .05 ± .01
centredist min 0.6 .08 ± .02 .10 ± .02

maxpwdist y 0.5 .08 ± .02 .10 ± .02
maxpwdist x 0.5 .08 ± .02 .10 ± .02

centredist std 0.3 .04 ± .01 .05 ± .01
maxpwdist 0.3 .03 ± .01 .04 ± .01

TABLE 9: Complete RMI values and unpredictability scores
for each feature in the eye movements biometric, computed
on the first session.The confidence intervals are computed
over the result for each user.

Linear Degree 2 Degree 3 Degree 4

ECG .095 ± .004 .093 ± .004 .092 ± .004 .092 ± .004
Eye .076 ± .014 .078 ± .018 .079 ± .014 .079 ± .014

Mouse .068 ± .010 .062 ± .009 .058 ± .008 .058 ± .008
Touch .077 ± .006 .077 ± .006 .076 ± .006 .076 ± .006

Gait .153 ± .008 .153 ± .008 .152 ± .008 .152 ± .008

TABLE 10: Average unpredictability score for each biomet-
ric, for cross-context functions of degrees from 1 to 4. For
each source we also show the 95% confidence intervals com-
puted over the unpredictability scores of individual users.
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