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Abstract—Mobile apps are increasingly created using online
application generators (OAGs) that automate app development,
distribution, and maintenance. These tools significantly lower
the level of technical skill that is required for app development,
which makes them particularly appealing to citizen developers,
i.e., developers with little or no software engineering background.
However, as the pervasiveness of these tools increases, so does
their overall influence on the mobile ecosystem’s security, as
security lapses by such generators affect thousands of generated
apps. The security of such generated apps, as well as their impact
on the security of the overall app ecosystem, has not yet been
investigated.

We present the first comprehensive classification of commonly
used OAGs for Android and show how to fingerprint uniquely
generated apps to link them back to their generator. We thereby
quantify the market penetration of these OAGs based on a corpus
of 2,291,898 free Android apps from Google Play and discover
that at least 11.1% of these apps were created using OAGs. Using
a combination of dynamic, static, and manual analysis, we find
that the services’ app generation model is based on boilerplate
code that is prone to reconfiguration attacks in 7/13 analyzed
OAGs. Moreover, we show that this boilerplate code includes
well-known security issues such as code injection vulnerabilities
and insecure WebViews. Given the tight coupling of generated
apps with their services’ backends, we further identify security
issues in their infrastructure. Due to the blackbox development
approach, citizen developers are unaware of these hidden prob-
lems that ultimately put the end-users sensitive data and privacy
at risk and violate the user’s trust assumption. A particular
worrisome result of our study is that OAGs indeed have a
significant amplification factor for those vulnerabilities, notably
harming the health of the overall mobile app ecosystem.

I. INTRODUCTION

The proliferation of online application generators (OAGs)

that automate development, distribution and maintenance of

mobile apps significantly lowers the level of technical skill

that is required for application development. As a conse-

quence, creating platform-specific apps becomes amenable to

a wide range of inexperienced developers. This trend that

developers with “little or no coding or software engineering
background” [19] create software with low-code or no-code

platforms has become known as citizen developers [19], [28]

and has recently received tremendous momentum across the

industry. Moreover, many OAGs additionally promise to de-

crease the app’s overall development and maintenance costs

since they offer functionality for taking care of various tasks

across all phases of an app’s life cycle.

However, this convenience comes at the cost of an opaque

generation process in which the user/developer has to fully

trust the generated code in terms of security and privacy. A

large body of literature has revealed various security problems

in mobile apps, such as permission management [37], insecure

SSL/TLS deployment [17], [36], misuse of cryptographic

APIs [15], and inter-process communication [12]. These flaws

could be attributed to poorly trained app developers that

implemented application features in an insecure manner. With

the increasing use of OAGs the duty of generating secure code

shifts away from the app developer to the generator service.

This leaves the question whether OAGs can provide safe

and privacy-preserving default implementations of common

tasks to generate more secure apps at an unprecedented scale.

However, if they fail, their amplification effect will have a

drastic negative impact on the already concerning state of

security in mobile apps. As of now, the security implications

of OAGs have not been systematically investigated yet, and,

in particular, their impact on the security of the overall

app ecosystem remains an open question: “Do online app
generators have a positive or negative impact on the overall
app ecosystem?”

Our contribution—In this paper, we present the first clas-

sification of commonly used OAGs for Android apps on

various characteristics including their supported workflows,

automation of the app development life cycle and multi-

platform support. We proceed by showing how to uniquely

fingerprint generated apps in order to link them back to their

generator. We thereby quantify the market penetration of these

OAGs based on a corpus of 2,291,898 free Android apps from

Google Play and discover that at least 11.1% of these apps

were created using online services. This noticeable market

penetration already shows that potential security mistakes

and misconduct by OAGs would impact thousands of apps

and impose a danger for the overall health of the Android

ecosystem.

Analyzing the security of OAGs is non-trivial due to the

absence of a documentation of the development process.

Instead, these services offer a fully-automated, opaque app

generation process without the possibility to write custom

code. App developers have to fully trust that the generated

code follows security best practices and does not violate the

end-users’ privacy. In order to shed light onto the black-

box generation process, we perform a comprehensive security

audit on apps created by these services using a combination

of dynamic, static, and manual analysis. This allows us to
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document their internal workflow and to discover a new

app generation model based on boilerplate code. We then

demonstrate that 7 out of 13 analyzed online application

generators fail to defend against reconfiguration attacks, thus

opening new attack surfaces of their generated apps. We

further analyze whether the generated boilerplate code adheres

to Android security best practices and whether it suffers from

known security vulnerabilities identified by prior research. Our

results, both on self-generated apps as well as apps randomly

picked from Google Play, suggest that OAGs are responsible

for producing vulnerable code including SSL/TLS verification

errors, insecure WebViews, code injection vulnerabilities

and misuse of cryptographic APIs. Within our data set, all

analyzed application generators suffer from at least one of

these vulnerabilities, combined affecting more than 250K apps

on Google Play. Finally, we have a dedicated look onto

the services’ infrastructure security. Online service-generated

apps are typically bound to their providers’ backend servers,

e.g. for license checks when the service charges a monthly

fee. In addition, some services even provide complete user-

management modules that require connections to backend

servers. Any of this functionality requires a secure client-

server communication since either sensitive (user) data is

exchanged or configuration files for the boilerplate code is

transmitted. However, our analysis reveals that many services

build on an insecure and vulnerable infrastructure, e.g. by

using insecure SSL/TLS server configurations, mixed usage

of HTTP/HTTPS and usage of outdated SSL libraries.

We conclude with a thorough discussion of our findings,

including potential alleys worth pursuing in future research on

generating secure code for such module-based app builders. In

summary, we make the following tangible contributions:

● We present the first classification of commonly used

OAGs for Android, accounting for various characteristics

such as the supported workflows, automation of the app

development life cycle, multi-platform support, and their

boilerplate-based app generation model.

● We show how to fingerprint generated apps and how to

quantify the market penetration of OAGs by classifying

2,291,898 free apps from Google Play: at least 255,216

apps (11.1%) are generated using OAGs.

● We derive OAG-specific attacks, such as reconfiguration

and infrastructure attacks and show how these services

fail in protecting against these attacks.

● We conduct a comprehensive security audit to show that

boilerplate code generated by any of the analyzed services

violates security best practices and contains severe secu-

rity vulnerabilities. To estimate the real-world impact, we

validate our findings on real, generated apps on Play.

Outline—This paper is organized as follows. We give a

general overview of mobile app generators in Section II and

a classification of commonly used OAGs in Section III. We

describe the methodology of our security audit in Section IV,

present new, OAG-specific attack classes in Section V and

analyze known security issues in Section VI. Finally, we thor-

oughly discuss our findings in Section VII, before concluding

in Section VIII.

II. OVERVIEW OF MOBILE APPGENS

Application generators are tools for partially or even com-

pletely automating app development, distribution, and main-

tenance. The advantages of using application generators are

manifold. First, they enable developers to abstract away from

implementation aspects and to instead focus only on the

conceptual behavior of the application in terms of high-level

functionality. Second, they provide functionality beyond core

app generation, including support for app compilation, app

dissemination, and distribution of patched versions. Third,

they offer support for making an app equally applicable to

multiple competing architectures, such as Android and iOS.

Finally, they may even provide support for recurring, extended

app functionality such as user management, user login, and

data submission to back-end servers. In this section, we give

an overview of commonly used AppGen types within the

Android ecosystem based on their supported workflows. Our

investigation resulted in three distinct categories of applica-

tion generators: standalone frameworks, online services, and
software development services that we dub Developer-as-a-
Service as explained in the following.

A. Standalone frameworks

Standalone frameworks constitute tools that offer a core set

of abstract application functionality which are then refined by

additional code from the app developer. These frameworks

typically expect a program written in a platform-independent

language as input, e.g., JavaScript and HTML, or C#, and

then package user-provided code together with an execution

engine into a native app. Many of those frameworks offer

plugins that provide commonly used functionality (e.g., in-

app browsers or advertisement) or even skeletons for entire

apps, which are provided by plugin developers. While these

frameworks assist in the creation of an app, they offer little

to no support for further phases of an app’s life cycle such

as app dissemination and distribution of patched versions. To

date, these unsupported tasks are typically performed by the

app developer. Prominent examples of standalone frameworks

are Xamarin, Apache Cordova, and PhoneGap.

B. Online Services

Online services or online application generators (OAGs)

enable app development using wizard-like, point-and-click

web interfaces in which developers only need to add and

suitably interconnect UI elements that represent application

components (e.g., email or login forms, in-app browser, QR

scanner, social networking widgets, etc.). There is no need

and typically also no option to write custom code. For some

of these components, they may even provide the necessary

infrastructure such as user management, user login, and data

submission to back-end servers maintained by the service

provider. These online service tools are thus accessible even

for laymen developers that lack any prior experience in app
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development. Moreover, online services offer support for au-

tomatically distributing apps over popular channels such as

the Google Play Store. In addition to extensively supporting

core tasks of the software development life cycle, online ser-

vices provide business intelligence and analysis features such

as audience reports and dashboard for analytics. Prominent

examples of online services are Andromo and Biznessapps.

C. Developer-as-a-Service

Developer-as-a-Service does not even expect developers to

contribute to the technical development of an app. Instead,

the developer rather acts as a customer that orders the whole

app creation from a contracted app development service,

which then delegates the app creation to a team of app

developers that are expected to develop the application based

on a set of explicitly spelled out customer requirements.

Such requirements are typically collected over the phone or

via emails. Widely known examples are CrowdCompass and

QuickMobile, services specialized to create customized event

and conference apps.

III. ONLINE APP GENERATORS

This section presents a classification of apps of commonly

used OAGs and an analysis of market penetration and charac-

terization of OAG-generated apps.

A. Classification

We used Google search queries to identify a rich set of

common application generators. More concretely, we simu-

lated a user who is searching for an application generator using

search terms including but not limited to: “app maker android”,

“android generate app”, and “{business, free, diy, mobile}

(android) app {generator, creator, maker}”. For each result,

we selected the first five entries after removing duplicates.

We also issued queries to online resources that offer technical

and popularity reviews of application generators such as Ap-

pindex1, Werockyourweb2, Quora3, and Businessnewsdaily4.

We excluded non-online-services and application generators

from our analysis, when we were not able to meaningfully

assess their market penetration, i.e., we could not determine

whether any available app was generated using these particular

application generators, see Section III-B.

We have classified all application generators along four

dimensions: freeware, multi-platform support, components,

and publishing, see the columns on “Classification” in Table 1.

Freeware—Some application generators can be freely used

( ), while others require a monetary investment ( ).

Multi-platform support—While traditional app development

requires developers to write distinct apps for each mobile

platform like Android, iOS, and Windows Mobile, many

1http://appindex.com/blog/app-builders-app-makers-list/
2http://www.werockyourweb.com/mobile-app-builder/
3https://www.quora.com/What-are-the-best-mobile-app-creators-for-non-

coders-both-free-and-paid
4http://www.businessnewsdaily.com/4901-best-app-makers-creators.html

application generators allow developers to develop for one

platform and then automatically generate “native” apps for

additional platforms ( ). We write ( ) if this multi-platform

functionality is not provided.

Components—Many application generators offer supplemen-

tary components for common tasks such as ads, app analytics,

crash reporting, and user management. We write ( ) if features

can be conveniently added via simple web forms, e.g. by

means of checkboxes; ( ) if users have to rely on visual

programming interfaces to add and remove features; and ( )

if supplementary components are not offered.

Publishing support—Conventional app development requires

developers to write code, compile, and sign an APK, and then

distribute it to their users. While writing code, compiling and

signing an APK is arguably a smooth process using dedicated

IDEs (e.g., Android Studio), app distribution usually requires

further manual effort: register a Google Play account (or

an account for an alternative market), upload the app, add

description text and publish. Some application generators offer

to automate this complete chain from producing and signing

an app to publishing it on one or multiple markets ( ) , while

others only automate parts of this support chain( ) or do not

offer support at all ( ).

B. Fingerprinting Application Generators
Once we established and classified our set of online ser-

vices, we aimed at quantifying the market penetration of the

individual application generators. To do this in a meaningful

manner without relying on bold marketing claims, we identify

the number of Android apps generated by the individual

application generators. To this end, we first identified unique

features of application generators as fingerprints, and then

used these features to classify a large corpus of 2,291,898

unique free Android apps. We collected these apps from the

Google Play Store between August 2015 and May 2017 using

a crawler. The crawler starts with a set of URL seeds and

subsequently follows the recommendation links to explore the

store. Our crawler revisits previously found apps once per day

and downloads them only if new versions are available. Our

analysis considered only the latest version of each app.
1) Features: We extracted unique features of application

generators using differential analysis between a baseline app5

and sample apps from each application generator. We then

manually reverse-engineered all sample apps and created a diff

between our baseline app and the sample apps based on the

components of a typical Android app. To create this diff, we

first analyzed the composition of an Android app, and then

identified all parts that can be used to tell apart generated

apps and manually developed apps. Our analysis resulted in

the following four features (the latter two can be sub-classified,

totaling six distinct Fingerprinting Features, see Table 1):

App Package Names—The first distinctive feature of apps

is the app package name. Package names are unique text

5We used the default Android IDE Android Studio to create a single-activity
“Hello World” Android app that did not include any external third-party library
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Table 1: Classification and fingerprinting of online services sorted by category and app count. For each AppGen, we found

multiple distinguishing fingerprint features, but, in all cases, a single feature is already sufficient to uniquely classify an

application generator.

Classification Fingerprinting Features
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Seattle Cloud 60,314 http://seattleclouds.com/
Andromo 45,850 http://www.andromo.com/
Apps Geyser 29,190 http://www.appsgeyser.com/
Biznessapps 27,130 http://www.biznessapps.com/
Appinventor 25,338 http://appinventor.mit.edu/explore/
AppYet 15,281 http://www.appyet.com/
Como 10,894 http://www.como.com/
Tobit Chayns 8,242 http://en.tobit.com/chayns
Mobincube 8,074 http://www.mobincube.com/
Appy Pie 4,445 http://www.appypie.com/
Appmachine 4,409 http://www.appmachine.com/
Good Barber 3,622 http://www.goodbarber.com/
Shoutem 2,638 http://www.shoutem.com/
App Yourself 2,273 http://appyourself.net/
Mippin App Factory 1,785 http://www.mippin.com/appfactory/
Apps Builder 1,191 http://www.apps-builder.com/
Appmakr 1,058 http://appmakr.com/
appery.io 846 https://appery.io/
Apps Bar 700 http://www.appsbar.com/
Mobile Roadie 581 http://mobileroadie.com/
App Gyver 386 http://www.appgyver.io
Appconfector 337 http://www.appconfector.de
Rho Mobile Suite 216 http://rhomobile.com/
Appsme 158 http://www.appsme.com/
App Titan 152 http://www.apptitan.de/
Applicationcraft 100 http://www.applicationcraft.com/
Paradise Apps 3 http://www.paradiseapps.net/
Eachscape 3 http://eachscape.com/

= yes/applies; ; = applies partly; = no/does not apply

strings that are used by Google Play to unambiguously identify

apps. Application generators often use patterns for generated

apps that in turn can be used as a distinctive feature, e.g.,

com.Tobit.* or {com|net}.andromo.dev*.

Code Namespaces—Java code is organized in namespaces

and similar to package names, application generators may

use particular namespaces that we can leverage for our

classification. Andromo apps, for example, include code

namespaces that contain the substring .andromo.dev or

the prefix com.andromo. A similar example are Tobit

Chayns apps, which include code namespaces with the pre-

fix com.Tobit.android.slitte.Slitte. In contrast,

Apps Geyser apps include code namespaces with the prefix

com.w*, which is not suitable for classification purposes due

to its ambiguity (see Section III-B2 for further details).

Signing Keys—Before uploading an app to Google Play,

APKs must be digitally signed. This is a security mechanism

to ensure that app updates are distributed by the same entity

(e.g., developer). A single key is often used to sign multiple

apps, e.g., Seattle Cloud uses a unique key to sign all its

apps. We can use this single-key pattern to fingerprint the

application generator. Whenever application generators use

distinct keys, we can still use further information about

the certificate to fingerprint the app, e.g., if all keys have

the same subject. AppYet apps, for instance, all share the

same certificate subject /C=CA /ST=ON /L=Oakville
/O=AppYet /CN=www.appyet.com.

Files—In addition to an app’s code, apps include a list of files

such as images, CSS, or configuration files. These files can

be used for the classification as well. For example, AppyPie

apps include the file appypie.xml in the assets/www
app folder. We moreover use file content for the classification,

e.g., we identify AppsGeyser apps, by verifying whether

the elements <webWidget> and <registeredUrl>
of res/raw/configuration.xml contain the URL

appgeyser.com.
2) Methodology: We start our classification by extracting

the aforementioned features from our set of sample apps.

We discovered that for each AppGen there are multiple

distinguishing features that allow to link the app back to its

generator. We further found that in all cases a single feature
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Figure 1: Download counts for all apps from the top 5 OAGs

using buckets provided by Google Play.

would already be sufficient to unambiguously determine the

originating service. The overall classification of application

generators with respect to their features is depicted in Table 1

in the “Fingerprinting Features” columns.

As an orthogonal investigation, we also fingerprinted apps

that have not been created by means of application generators.

In this analysis, we considered the two major platforms for

Android app development: Eclipse ADT6—support ended in

August 2015—and Android Studio7. We manually investigated

apps developed with both IDEs similarly as described for ap-

plication generators. Our analysis revealed that Android Studio

apps can reliably be identified based on the files’ structure.

Apps developed and compiled with Android Studio include

a folder res/mipmap that stores launcher images. This

folder structure was introduced in Android Studio 1.18. Hence,

only apps developed with at least version 1.1 of Android

Studio can be identified using this feature. Neither Eclipse

ADT nor application generators apps we analyzed exhibited

this behaviour. In contrast, we could not find any reliable

identification feature for Eclipse ADT apps. To avoid false

positives, we limited our analyses to application generators

apps and Android Studio apps we could reliably identify.

C. Market Penetration

Our app corpus currently consists of 2,291,898 free apps

from Google Play. We managed to successfully classify

255,216 (11.14%) of these apps using our feature detection

as generated by OAGs. This is a lower bound based on the

OAGs we could reliably identify, since OAGs not considered

6http://developer.android.com/tools/help/adt.html
7http://developer.android.com/tools/studio/index.html
8https://androidbycode.wordpress.com/2015/02/14/goodbye-launcher-

drawables-hello-mipmaps/

Figure 2: Distribution OAG generated apps by Google Play

store categories. The Unknown category is for apps that are

not classified by the Google Play store

in our classification might be responsible for additional apps.

Based on meta data from Google Play, these generated apps

account for more than 1.14 bn downloads. Detailed app counts

per online service can be found in the market column of

Table 1. The numbers suggest that the majority of OAGs is

responsible only for a small fraction of the set of generated

apps. In contrast, the five most popular OAGs account for

73% of all generated apps, i.e., 8.12% of our corpus. While

the many OAG-generated apps have a small user base, there

is also a larger number (>17k apps) with a significant number

of at least 10,000 downloads (see Figure 1). Reasons for

this distribution of download counts originate in the limited

set of functionality offered by these services as opposed to

traditional app development. In the following, we characterize

OAG-generated apps based on the offered functionality.

D. OAG App Characterization

To better understand the potential complexity of the applica-

tion logic that can be implemented with OAGs, we inspected

online services’ development IDEs to count the number and

types of app components that can be connected to implement

the indented logic. We call component an app element with

a UI and that implements a specific task or functionality.

For example, components can be simple UI elements (e.g.,

buttons, forms, views) or complex modules/plugins (e.g., QR

scanners, calendar views, and login forms). The number of

components varies across OAGs and it ranges from 12 of

AppYet to 128 components of Seattle Cloud. This variety

indicates the level of customization that each OAG offers. We

also observed a great variety of components. For example,

Biznessapps offers 48 components all suitable for business

apps, e.g., membership management, mortgage calculator, and

loyalty program management components. Another interesting

example is Seattle Cloud which provides general-purpose

components including simple UI elements such as menu items

638



and image areas, as well as complex ones such as complete

PDF readers and barcode scanners.

This variety is also reflected in the different app categories

on Google Play. The app category is a string value in the app

metadata retrieved by our crawlers that identify the type of

app9. The ten most popular categories of OAG-generated apps

are shown in Figure 2. These categories cover apps with non-

trivial logic such as Business (e.g., document editor/reader,

email management, or job search apps), Entertainment (e.g.,

streaming video apps), and Games. These categories contain

all of the top nine OAG apps with 5M+ downloads. An

interesting aspect is that different OAG dominate different

app categories, thus suggesting product specialization. For

example, the most popular category of Seattle Cloud is Enter-
tainment with 11,073 apps, whereas the most popular category

for Biznessapps is Business with 9,030 apps.

IV. ANALYSIS METHODOLOGY

We now focus on the security of apps generated with OAGs.

The naive approach to analyze the security of our dataset

is to test all apps systematically. However, we observe that

OAG apps are produced in a streamlined process in which

app developers do not contribute with source code. We thus

hypothesize that the apps share an OAG-specific boilerplate
code and, as a consequence, either all generated apps share

a vulnerability or none. Accordingly, we first identify the

app generation model for each OAG, before we analyze the

security of the boilerplate code on both self-generated apps

and apps from Google Play.

A. Boilerplate App Model

To identify boilerplate apps, we first build the ground truth

with self-generated apps for different OAG. To this end, we

select the thirteen most popular OAGs based on their market

penetration in Table 1 and register as a customer. Among these,

six online services (Appmachine, Apps Builder, Biznessapps,
Como, Seattle Cloud, and GoodBarber) required us to pay

a subscription fee to be able to generate apps and to rent

backend resources, such as user management. For each online

service we create the same three custom apps to test whether

targeted code is generated depending on the selected modules

or whether boilerplate code with an app-specific configuration

file is output. We create the three custom apps as follows:

● App1: The first app constitutes the minimal app, i.e. the

smallest app that can be generated in terms of functional-

ity. In most cases, this app just displays a “Hello World”

message to the user.

● App2: Builds on the minimal app but additionally per-

forms web requests to a web server we control. We

perform both HTTP and HTTPS requests to analyze the

transferred plaintext data and to test whether we can inject

malicious code and emulate web-to-app attacks [22], [13],

[32].

9A complete list of categories and descriptions can be found https://support.
google.com/googleplay/android-developer/answer/113475?hl=en

Table 2: Online services grouped by generation model: Mono-

lithic boilerplate apps with static/dynamic configuration files

and module-dependent boilerplate apps.

A. Monolithic Boilerplate Code

Static config Dynamic config
A.1 Native application

Apps Builder
Appmachine —
Biznessapps —
GoodBarber
Mobincube

A.2 HTML + Native app
Apps Geyser —
Appy Pie
AppYet —
Como
Seattle Cloud
Tobit Chayns —

B. Module-dependent Boilerplate Code

Andromo
Appinventor

= static config in plain / dyn. config loaded via HTTP
= static config decryptable / HTTPS downgrade

= static config encrypted / dyn. config loaded via HTTPS

● App3: The third app implements either a user login or a

form to submit user data to our server (if the application

generator provides modules for such functionality). We

chose such common functionality as it is supported by

the majority of AppGens and because handling user data

usually requires special care in terms of security. In our

test set, Appinventor, Biznessapps, and Como did not offer

such additional modules.

To test whether an AppGen generates boilerplate code or

module-dependent code we analyze the bytecode file(s) of

App1–App3 as well as 10 randomly selected apps from Google

Play for each service. In the majority of cases, it is sufficient to

compare the hash value of the classes.dex bytecode file to show

that different apps have the exact same code. If the file hash

differs we compute a Merkle hash tree over the class hierarchy

including package, class and method instruction information to

quickly estimate the code overlap (thereby following a similar

approach to the one to detect third-party libraries in [6]). The

results confirm our observation in which apps generated with

OAG are based on a common boilerplate code. In particular,

we can derive two distinct generation techniques: monolithic

boilerplate apps with configuration files and module-dependent

boilerplate code (see Table 2).

1) Monolithic Boilerplate Code: All but two online services

generate apps with the exact same application bytecode, i.e.

apps include code for all supported modules with additional

logic for layout transitions independent of what the app

developer has selected. Apps only differ in a configuration file

that is either statically included in the apk file or dynamically

loaded at runtime. Some OAGs support both options, e.g. to

deliver app updates as config file updates without the need
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to change the apk file. Further this allows to bind the app to

the service providers’ backend servers. In this scenario, apks

only need to be updated when the online service changes its

boilerplate code. Boilerplate apps can be sub-categorized into

pure native applications, i.e., these apps include dex bytecode

and optionally libraries written in C/C++ (see category A.1),

and hybrid applications combining bytecode with HTML/JS

(A.2). For HTML/JS apps, bridge code is generated to interact

with the Android middleware, while HTML and Javascript is

used to render the apps’ user interface in a WebView.

2) Module-dependent Boilerplate Code: Two online ser-

vices, Andromo and Appinventor, generate module-dependent

boilerplate code for apps, i.e., only the boilerplate code for

modules enabled/added by the app developer is stored within

the apk file. Hence, apps share the same code for individual

modules, but the set of enabled modules might differ. Module-

dependent code requires a more complex app generation

process for the online service provider, however, the generated

apk is tailored to the configured modules and the chosen

layout. The app semantics are not controlled by a pre-defined

configuration file. While Andromo’s app assembly is close to

those of the other AppGens, Appinventor builds on GNU Kawa

and offers, besides modules, a kind of visual programming

to give the app developer the choice to implement if-then-

else conditions and loops on a high-level. This gives the app

developer a bit more freedom in customizing the application

but has a slightly steeper learning curve for citizen developers.

B. Security Audit

Following the initial analysis of the app generation model,

we then conduct a security audit on the generated boilerplate

code. To this end, we follow a dynamic-static approach. We

leverage dynamic testing to monitor the test apps’ runtime

behavior, e.g., obtain traces of the contacted domains dur-

ing execution and check the possibility of eavesdropping

or modifying those connections. We complement our tests

with static analysis (e.g., control-flow graphs, program slicing,

backtracking) to overcome the limitations of dynamic analysis,

e.g., code coverage. Similar to the analysis of the boilerplate

app model, we start our analysis with the self-generated

apps of Section IV-A. To remove any bias from our set of

self-generated apps, we cross-validate our findings with 10

randomly selected apps of the same OAG (=130 apps in

total), drawn from our Google Play app corpus. Finally, as the

configuration of apps can be provided dynamically by OAG’s

service, we extend our analysis to the OAG backend servers

and the client-server communication.

Our analysis identifies two new attack vectors which are

specific to the OAG generated apps, specifically reconfig-

uration and infrastructure attacks. We present these attacks

in Section V. We then test the boilerplate apps for well-

known security issues such as code injection vulnerabilities

and insecure WebViews. The results of this analysis are

presented in Section VI.

V. OAG-SPECIFIC ATTACK VECTORS

Given the inherently different generation model as com-

pared to traditional app creation, we now describe new OAG-

specific attack vectors—Application infrastructure attacks that

apply to all OAGs and app reconfiguration attacks that apply

to OAGs with monolithic boilerplate code only—and illustrate

weaknesses that we found during our security audit.

A. Application Reconfiguration Attacks

In our set of tested OAGs (see Table 2), 5/11 services use

either static or dynamically loaded config files exclusively,

while the remaining six OAGs use an hybrid approach. Dy-

namically loaded configs have the advantage that apps can

be updated on-the-fly without having to download an updated

apk file from an app store. Changes are instantly pushed onto

the end-users’ devices on startup. However, two AppGens—

Tobit Chayns and Biznessapps—do not persist their config

locally and thus require a permanent Internet connection to

work. As an example, Biznessapps—a paid service—uses this

as a license enforcement mechanism, i.e., app functionality

is disabled via the config file as soon as the app developer

no longer holds a valid license. In general, we found that

these configuration files carry any app-specific data, potentially

including the entire business logic of the app and secret

credentials. Hence, there is a strong incentive to carefully

protect this file in terms of integrity and confidentiality.

1) Static config files: In our test set, 7/9 static config files

are stored in plain and can be read and modified without

effort. Only AppYet encrypts its config file, however, at the

same time, the passphrase is hard-coded in the bytecode and

is identical for every AppYet app. This allows us to write

a simple encryption/decryption tool to read and modify the

AppYet config files. The Appmachine config was the only one

where we are not able to extract information. Appmachine is

built on top of Mono for Android, thus, most of the app code

is compiled to native code, including the classes that process

the non-human-readable config file10. As for the integrity

protection, we found that in the majority of cases standard

Android APIs are used to read these files directly from assets

or the raw directory. By inspecting the disassembled app code

we can, however, not find any additional integrity checks or

obfuscation logic for these config files. This allows, in all

but one case, to trivially extract the config file from an apk.

Cloning or repackaging apps becomes an easy task, since

no code has to be reverse engineered, only the app features

and properties within the config file–typically a .xml or .
json file—have to be understood once for each application

generator.

2) Dynamically loaded config files: Further, we found

that eight out of eleven OAGs (A.1+A.2) load config data

dynamically at runtime. All but Biznessapps and Tobit Chayns

use a hybrid model of static and dynamic config loading. In

five cases, the config is requested via HTTP and transmitted

10While we abstain from reversing this config file, we assume that, with
enough effort, it should be similarly possible to extract information.
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in plain without any protection. Only three OAGs load the

config via SSL by default. For Mobincube, however, it is

possible to downgrade the request to HTTP. Moreover, none of

these AppGens uses public key pinning to prevent man-in-the-

middle attacks. Similar to static configs, the complete absence

of integrity checks and content encryption allows tampering

with the app’s business logic and data. This is fatal, since

in our tests we could on-the-fly re-configure app modules

(enabling, disabling, modification), disable advertisements (for

free AppGens), compromise app data (localized strings, about

information) or modify the application’s sync URL (AppYet).

Only few settings cannot be compromised when app content is

no longer retrievable from the server due to license expiration

(e.g. we found that 5,137 out of 27,130 Biznessapps in our

app set already expired).

Having the full control over the app’s data and business

logic as a network attacker allows a range of different attacks

to be mounted with moderate effort. Targeted phishing attacks

may allow stealing user data/credentials. On-the-fly replace-

ment of API keys for advertisement may allow an attacker

to steal ad revenue. Or an attacker may simply try to deface

the application which in turn affects the reputation of the app

developer.

B. Application Infrastructure Attacks

A large fraction of app generators bind their customers

to their web services, e.g., for user management or license

validation. Particularly, hybrid apps that make use of web

technology, like WebViews, to deliver the app’s logic, bind

the generated app to the generator service’s web infrastructure.

For instance, in our set of AppGens, Seattle Cloud, Bizness-

apps, and Como bind both their clients and end-users to their

service’s infrastructure, e.g., by managing the client’s user

data or by delivering the client app’s content to a generated

boilerplate app. Thus, the attack surface of the generated app

inherently increases beyond the app and its network connection

to the web service backend. Consequently, when considering

that a single service’s infrastructure can serve many hundreds

or thousands of generated apps, it is paramount that the

app generator service not only follows best practices, such

as correctly verifying certificates, but also that the service’s

infrastructure maintains highest security standards for their

web services. Of particular interest is here, whether such

services are resilient to remote attackers, i.e., against state-

of-the-art attacks against SSL/TLS [14], [33], [5], [3], [10],

[1] that affect content delivery either to generated apps or app

data to the service.

We extract the domains of the different services’ backend

servers from the generated apps and use available online

analysis sites (e.g., Qualys SSL Labs11) to check the SSL/TLS

security of respective backend servers. This particularly in-

cludes checks for trusted and valid certificates, support for

outdated and weak ciphers and protocols, resilience against

recent SSL/TLS vulnerabilities, usage of weak keys, and

11https://www.ssllabs.com/ssltest/

checks whether any domain contacted by default by generated

apps is known to distribute malware (e.g., using Google’s

SafeBrowsing12 service).

The results of analyzing the communication with the server

backend are alarming. First of all, only Tobit Chayns and

Biznessapps use encryption consistently for any communi-

cation with the backend, while Apps Geyser completely ab-

stains from secure communication (i.e., HTTP only) and the

other services secure their communication only partially. For

instance, both Seattle Cloud and Como send sensitive data

from user input forms like a login form completely in plain

text. Moreover, only three services use a valid and trusted

server certificate, while, for instance, Appy Pie uses a self-

signed server certificate and Mobincube uses a certificate that

expired seven years ago. From a cryptographic point of view,

all of the services are running an outdated version of SSL

libraries that are prone to one or more recent attacks such as

POODLE [33], BEAST [14], LOGJAM [3], or FREAK [10].

Mobincube’s server was even vulnerable against all of the

tested SSL vulnerabilities.

Data leakage and Privacy Violations: OAGs typically offer

modules to connect to third-party services, like Google Maps

or social media platforms like Facebook and Twitter. These

modules include code to connect to these services via service-

specific APIs. Using these APIs typically requires an API key

(and secret). Since OAGs do not create third-party accounts

on behalf of the application developer, those AppGens provide

their own API key (and secret) to any app created by its

service. Some keys require a fee for business/volume usage,

like Google Maps keys, hence it is of interest if the OAG

protects these keys from (easy) eavesdropping. The combi-

nation of leaked Twitter key and secret, e.g., hard-coded in

boilerplate code of Biznessapps, allows to send arbitrary au-

thorized requests and in particular to tamper with the account

that is shared across all apps generated with this AppGens.

Although those keys are application-only authentication keys

with limited access rights, the Twitter developer documenta-

tion recommends that these "should be considered as sensitive
as passwords, and must not be shared or distributed to
untrusted parties."13 We found keys and secrets for various

different third-party providers unobfuscated in config files,

hardcoded in boilerplate code, in the AndroidManifest file,

and even in the strings.xml. All identified keys were exactly

the same across all analyzed apps, underlining the security

impact of boilerplate apps. We could not find a single attempt

to obfuscate or protect these keys/secrets.

Besides paid-only services, a large number of AppGens

provide their service for free. Similar to normal app devel-

opment they use different approaches to monetize their apps,

such as advertisement and/or tracking. Since the literature

has shown that such third-party libraries often leak sensitive

user data [27], [43], we especially checked outgoing app

traffic and compared our findings with the privacy policies

12https://developers.google.com/safe-browsing/
13https://dev.twitter.com/oauth/application-only
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provided by the online service. The results suggest that none

of the web domains that the tested apps contacted during our

analyses was known for distributing malware. However, four

application generators (Como, Mobincube, Biznessapps, and

Appy Pie) clearly exhibited questionable tracking behavior.

Apps generated with Mobincube sent more than 250 tracking

requests within the first minute of execution. In addition,

Mobincube includes the third-party library BeaconsInSpace to

perform user tracking via Bluetooth beacons without the user

noticing it. Although BeaconsInSpace strongly recommends

updating the privacy policy of apps using their library, we

could not find any information in Mobincube’s terms and

conditions. Appy Pie apps contacted Google Analytics, Appy

Pie’s backend, and Facebook for tracking. Apps generated by

Como automatically registered with different tracking web-

sites, including Google Analytics, Como-owned servers, and

others. Biznessapps sends device identifier and location to their

backend servers on app launch. While such extensive tracking

behavior is already questionable for the free services of Appy

Pie and Mobincube, one would certainly not expect this for

paid services like Como and Biznessapps.

VI. EVALUATING KNOWN SECURITY ISSUES

In addition to the specific attack vectors of online services

discussed in Section IV, we further analyzed the generated

apps’ boilerplate code for violations of security best practices

on Android [23] and vulnerabilities identified by prior research

on Android application security and privacy [2], e.g., testing

the apps’ device-local attack surfaces, such as unprotected

components. Again, we used our set of self-generated apps

as well as the set of generated apps from Google Play for

cross-validation. Whenever feasible we run static tests against

the entire set of generated apps from Google Play. Table 3

provides an overview of the security analysis results, which

we discuss in more detail in the remainder of this section. We

distinguish apps in vulnerable, non vulnerable, and risky. We

say that an app is vulnerable ( ) when we successfully exploit

the flaw. We say that an app is risky ( ) when an exploitation

scenario exists, but we did not (or could not) reproduce it.

Otherwise, we say that the app is not vulnerable ( ).

A. Best-practice Permission Usage (P1–P3)

Apps may request more permissions than actually

needed [37], [4], which unnecessarily increases the privileges

of third-party code, such as ad libs, that have been shown

to actively exploit such inherited privileges and to exhibit

questionable privacy-violating behavior [26], [11], [40], [43].

The Android security best practices also explicitly recommend

developers to request as few permissions as possible to con-

form to the principle of least privilege.

Moreover, Android apps are by design allowed to engage

in inter-component communication (ICC [16]). However, apps

that (unintentionally) export their components for access by

other applications, but with no or only insufficient protec-

tion, may leak privacy-sensitive data or security-sensitive

methods to unprivileged attacker apps [45], [31], [25]—a

scenario also warned about in the security best practices. In

addition, for certain components, such as Activities or

BroadcastReceivers, the app developer has only very

limited means to identify or authorize the sender app [9].

This opens the opportunity for Intent spoofing attacks [12],

[35] and confused deputy attacks [37], where a vulnerable

component acts on behalf of an ICC message from an attacker

app.

Security analysis: To detect whether an application is

overprivileged, we identify the permission-protected API calls

in the application (using PScout’s [4] and Axplorer’s [8]

permission maps) and derive from those the set of required per-

missions. We complement this list with ContentProvider
and Intent permissions necessary for the app to run

properly. We then compare the resulting set with the set of

actually requested permissions in the application’s manifest.

If the latter one is a strict superset of the former one, we call

the application overprivileged.

We further check applications for explicitly exported

Activity, Service, and ContentProvider compo-

nents or potentially accidentally exported components (e.g.,

by setting an intent-filter without manually setting flag

android:exported to false). If any of those exported

components is not protected with a permission with at least

signature protection level, we consider this app as exposing

an unprotected component. To also detect receivers potentially

prone to Intent spoofing attacks, we conduct the same anal-

ysis as above for BroadcastReceivers , but additionally

considering receivers registered dynamically at runtime via the

app’s context.

Results: All AppGens that generate monolithic boilerplate

code create over-privileged apps by design (P1 in Table 3). As

long as an app developer chooses a subset of modules (from

the set of 12–128 modules across AppGens), the resulting app

has, with a high percentage, more permissions than actually

necessary. For instance, the simple Hello World app (App1)

has between 7–21 permissions for monolithic boilerplate apps,

including camera access, write/read contacts, audio recording,

Bluetooth admin, and location access. At the same time

App1 of Andromo and Appinventor—that generate module-

dependent code—request only a single permission and three

permissions, respectively.

Application generators do not satisfactorily protect gener-

ated apps’ components from illicit access (P2). Except for

Andromo, AppInventor, and Biznessapps, all tested generators

failed to protect one or more components that we identified

through manual analysis (e.g., using their package and class

name) to be intended as internally-accessible only. This can

potentially lead to severe implications for the end-users’ or

app generator clients’ privacy. For example, apps generated

with the Seattle Cloud or Mobincube service expose unpro-

tected components for an InternalFileContentProv-
ider and AppContentProvider, respectively, through

which an attacker can read all files to which the app’s

UID has access, including internal files like databases, pri-

vate shared preferences, or in case of Seattle Cloud the
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Table 3: Categorization of considered attack vectors against generated apps in the Android ecosystem.
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P1. Overprivileged Apps

P2. Unprotected Components

P3. Intent Spoofing and Confused Deputies

P4. Cryptographic API Misuse

P5. SSL/TLS Verification Errors

P6. Fracking Attacks

P7. Origin Crossing

P8. Code Injection (native / WebView) / / / / / / / / / / / / /

= vulnerable; = not vulnerable = risky

asset file app.xml [39] in which Seattle Cloud apps store,

among other things, the user accounts and passwords for

logging into the app. We statically searched for this vulnerable

InternalFileContentProvider in 60,314 apps from

Seattle Cloud and found it in 100% of those apps. We

also discovered the vulnerable AppContentProvider in

7,953 (98.5%) of analyzed 8,074 Mobincube apps in our test

set.14 This underlines the high security impact of application

generators that are using vulnerable boilerplate code. We also

discovered that unprotected components are not always within

the package domain of the application generator service,

but can sometimes be traced back to included third party

packages, e.g., by Radius Networks or ZXing, and it remains

to be determined whether the app generator failed to correctly

protect such third party components or whether the design of

those components prohibits a more secure integration.

A particularly worrisome aspect are unprotected

BroadcastReceivers and Activity components

that might accept spoofed Intents from untrusted senders

and act upon such received data (P3). Eight of the tested

application generators produce code that is prone to such

Intent spoofing attacks. For example, Appinventor apps

react to a fake SMS notification, Mobincube apps can be

triggered to interact with the WiFi service, and Appmachine-

generated apps have a remote command receiver exposed that

forwards received Intents unfiltered to a native command

for execution.

B. Insecure Cryptographic API Usage (P4)

App developers might use cryptographic APIs to secure

their data on the end-user device. However, the security that

cryptographic APIs can actually deliver, strongly depends on

14We believe that the 121 apps without this provider are older, dis-
continued apps, built or last updated prior to the introduction of the
AppContentProvider.

the correct usage of the cryptographic building blocks (e.g., ad-

equate block cipher modes, correct salting, etc.). App develop-

ers frequently make mistakes when using those primitives [15],

such as using ECB mode for encryption, using a non-random

IV for CBC encryption, or using constant salts/seeds (see

also [24]). The Android security best practices documentation

picked up some of these recommendations and, for instance,

advises using SecureRandom instead of Random, initializ-
ing cryptographic keys with KeyGenerator, or using the

Cipher class for encryption with AES and RSA.

Security analysis: To detect misuse of cryptographic APIs,

we re-apply the analysis methodology presented in [15] by

leveraging R-Droid [7] to search for usage of cryptographic

API methods and then track their parameters. To this end,

we focused on APIs in Android’s javax.crypto package.

For symmetric encryption, we analyzed the usage of the

Cipher.getInstance parameter, where developers are

expected to specify a symmetric encryption algorithm, mode

and padding—e.g."AES/CBC/PKCS5Padding". Similar to

related work and security best practices, we rated the use of

the ECB mode of operation as insecure and rated, additionally,

the following outdated algorithms as insecure: (3)DES, IDEA,

RC4, and Blowfish. Moreover, the use of non-random IVs for

CBC mode or in general the use of a static encryption key is

rated as insecure.

To use hash functions, app developers are recommended

to use the MessageDigest class, where the hash func-

tion’s algorithm can be chosen via a string parameter—

-e.g. "SHA-256". App developers can include message

authentication codes (MACs) into their apps by using the

Mac.getInstance API call. Again, MAC algorithms

are expected to be passed as a string parameter—e.g.

"HmacSHA256". For hash functions and MACs, we consider

the use of MD2, MD4, MD5, SHA0, SHA1 and Ripemd128

as insecure.
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Regarding sources of randomness, we consider the usage of

Random instead of SecureRandom as insecure; however,

usage of SecureRandom is also rated as insecure when a

static seed is used.

Results: Seven out of thirteen tested app generators failed to

use Android’s cryptographic APIs securely. A rather patholog-

ical weakness seems to be using an insecure random number

generator. We discovered in five of seven vulnerable AppGens

that Random values are generated with a static initialization

vector, and most frequently used when generating symmet-

ric encryption keys or initialization vectors for CBC-mode

symmetric encryption, rendering the generated apps prone

to cryptanalytic attacks. For instance, Biznessapps creates

predictable session identifiers by concatenating the output of

Random with the current system time. Additionally, three

of those generators relied on the insecure ECB mode for

encryption.

C. Insecure WebViews (P5–P8)

App developers frequently fail in validating SSL/TLS cer-

tificates correctly [17], [18], [41], [21], making their apps

vulnerable against man-in-the-middle attacks. The Android

security best practices have a dedicated, extensive section on

security with HTTPS and SSL, explaining the pitfalls and their

solutions in implementing a secure SSL connection and even

providing tools for testing the SSL configurations of apps.

Moreover, web utility classes, such as WebView, allow

app developers to combine the features of web apps (e.g.,

platform independent languages) with those of native Android

apps (e.g., rich access to the device’s resources). However, the

access controls that govern web code (e.g., JavaScript from

different web domains) and local code (i.e., Android native

code) are not properly composed: the bridge code between web

code and local code can interact with the Android system with

the same access rights as its native host application, but does

not enforce the same origin policy on calls from the web code

to the bridge functions, thus opening this dangerous bridge

interface to all loaded web code. The security best practices

suggest to enable JavaScript only if really necessary, to prevent

cross-site scripting. In addition, it warns that bridges between

web code and local code should be used only for websites from

which all input is trusted, as it allows fracking attacks [22],

[13], [32].

This lack of origin-based protection of the JavaScript bridge

also opens the door for various origin-crossing attacks. A

particularly concerning cross-origin attack is based on the

scheme mechanism. Schemes allow apps on the device to be

invoked through URLs whose scheme part equals the scheme

registered by the app. However, any app can register for

arbitrary schemes. In combination with WebViews this allows

for unauthorized cross-origin attacks [44], when the user clicks

on a malicious link in the WebView, which refers to a local

application that might act on the parameters given by the URL.

Lastly, Android’s programming model allows app develop-

ers to dynamically load code from different sources, such

as public application packages, dex files, or the web via

WebViews. However, if the application does not correctly

verify the integrity and authenticity of loaded code, the app

becomes vulnerable to be compromised by an attacker that

can modify the loaded (or injected) code. This attack has to

be differentiated between platform native code (i.e., dex or

C/C++) [36] and web code (HTML, JavaScript) [29], [34]. In

the former attack, the attacker is able to modify the loaded

code, e.g., dex bytecode on the local file system or inject

malicious code into the download stream of such loaded

code. In the latter attack, the attacker achieves execution

of custom JavaScript code within a trusted website in a

WebView or manages to navigate a WebView away from

a benign, safe website to an attacker-controlled website. As

a result, the attacker can control the web resources within

the compromised WebView (e.g., to exfiltrate credentials) and

further leverage the WebView’s host app’s privileges to the

extent they are exposed through bridge code between host

app and WebView instance. Android’s security best practices

strongly discourages app developers from dynamically loading

code from outside of their application for the aforementioned

reasons and, again, recommends only loading web code from

trusted websites.

Security analysis: We tracked the parameters of the

HTTPUrlConnection and HTTPSUrlConnection
classes respectively. We rated plain HTTP URLs as

insecure and HTTPS URLs as secure. Moreover, we

investigate the use of non-default TrustManager,
SSLSocketFactory, or HostnameVerifier
implementations with permissive verification strategies,

which we deem as insecure. Additionally, for WebViews we

search for custom SSLErrorHandler implementations in

the WebViewClient with a permissive or insecure error

handling, which we deem as insecure.

We classify WebViews that enable JavaScript as in-

secure when the bridge functions expose security- and

privacy-sensitive functionality, and as secure if those op-

tions are disabled or non-critical functionality is exposed.

Since apps with target SDK 19 or higher reject mixed con-

tent by default, we consider those secure, unless develop-

ers used the setMixedContentMode method with the

MIXED_CONTENT_ALWAYS_ALLOW parameter to deviate

from the default; in this case, we consider the app’s behaviour

insecure according to the previously described metrics.

We further investigate the presence and implementa-

tion of the shouldOverrideUrlLoading() method of

WebViewClient. We consider the app prone to origin

crossing if the WebViewClient is missing, i.e., the opening

of the URL is deferred to some installed app registered for

the URL’s scheme. Additionally, we consider the app prone

to this attack if a WebViewClient is present, but it’s

implementation of the shouldOverrideUrlLoading()
defers the URL loading to apps via sending Intents with

the URL as parameter.

To determine whether apps load external code, we check

for API calls to DexClassLoader and subclasses that load

code over (insecure) network connections, which we consider
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insecure behavior. Apps that use the URLClassLoader
with HTTP URLs are of particular danger. In case of

WebViews, we consider code injection possible if ei-

ther the WebView uses insecure Internet connections or

if the WebViewClient is present but does not override

the shouldOverrideUrlLoading() function (or im-

plements a permissive URL overriding that opens attacker

provided links in the WebView). In those cases, an attacker

can potentially lure the WebView to an attacker-controlled

website.

Results: Six of the tested application generators rely on web

technology, i.e., WebViews, to display their client’s content.

Thus, for those app generators it is paramount to prevent

untrusted content from being loaded into the WebView
or securely sandboxing the WebView’s interaction with

the Android system and other installed apps. Out of the

thirteen tested app generators, six failed to correctly handle

SSL certificate verification errors and accept any self-signed

certificate (P5), which also eases the task of an attacker to

inject code into a WebView by manipulating the download

stream (P8). Apps Geyser catches verification errors, defers

the decision about the trustworthiness of the certificate,

however, to the end-user, who has repeatedly been shown

in the literature to be unable to make such trust decisions

correctly [38]. At the same time, we found that none of the

investigated online services implemented measures to enhance

the SSL security, e.g., by pinning the certificate. Similarly, we

discovered that only about half of the tested apps correctly

limited the scope of navigation inside the WebViews or

enforce a same origin policy on the loaded web content,

thus opening the possibility to navigate the WebView to

untrusted web resources that deliver malicious code with

full access to the JavaScript bridge to native platform code.

This is particularly worrisome when considering that almost

all of the tested generators with WebViews expose quite

substantial JavaScript interfaces and hence enable fracking

attacks (P6). For instance, Apps Geyser exposes over 90

JavaScript bridge functions, providing an attacker with all

tools needed, such as camera and microphone access, storage

access, or Intent sending. Mobincube and Appy Pie even

exceed this number by exposing more than 100 functions,

including methods such as createCalendarEvent,
getCurrentPosition, getGalleryImage,
makeCall, sendSMS, takeCameraPicture,
uploadMultipleFiles, or processHTML. Further

noticeable is that several of the tested generators convert the

loading of a custom URL in the WebView (e.g., through a

crafted link provided by the attacker) to an Intent that will

be sent by the generated app to other installed apps. This

opens the possibility for cross-origin attacks (P7).

VII. DISCUSSION

We now interpret the key findings of our online applica-

tion generator study and propose some short and long-term

actionable items to improve the current status quo.

A. Citizen App Developers on the Rise

The first key finding of our study is that citizen developers

are indeed a growing phenomenon in the mobile application

development ecosystem. As AppGens promise to decrease

the app’s development costs, more and more organizations

are interested in this new development paradigm. Financial

reports, already in 2011, expected citizen developers to build

at least 25% of new business applications by 2014 [20], with

an estimated a total revenues of $1.7 Billion in 2015 and

an expected growth of +50% per year [19]. Our analysis is

the first to confirm the growth forecast in terms of market

penetration for the mobile ecosystem, showing that at least

11% of free apps in Google Play (250K apps) are already

generated by Online Services.

B. Pitfalls of the “One Size Fits All” AppGens’ Strategy

Online Services provide simple means of creating apps

without requiring any knowledge about programming or mo-

bile operating systems. This is achieved by abstracting the

implementation task to some kind of drag-and-drop assembly

of predefined modules and by limiting the degree of freedom

of app customization. Such a “One Size Fits All” strategy

led to a new paradigm in app generation, distributing an apk

file with monolithic or module-dependent boilerplate code that

is statically or dynamically configured with an app-specific

config file. While this provides a convenient way to generate

and distribute applications for a large number of clients, from a

security perspective, this creates new points of failures, that, if

not considered carefully, might compromise end-user security

or even online service security.

The results in Section IV show that the majority of OAGs

that base their business model on monolithic boilerplate apps

fail to properly protect config files from tampering and eaves-

dropping. Only 2 out 8 OAGs in Table 2 correctly use HTTPS

to retrieve config files. Moreover, we found that none of

the services applied certificate pinning to prevent man-in-

the-middle attacks. Similarly, only a single service properly

protected its statically included config. However, none of

the services checked the integrity of the config file during

app launch. This opens the door for many attacks such as

reconfiguration attacks, ad revenue theft (through replacing

API keys), and, in general, changing arbitrary app-specific

data.

Boilerplate apps that use HTML/JS for layouting (see cat-

egory A2 in Table 2) are additionally prone to code injection

and fracking attacks (P6–P8 in Table 3). This is caused by the

web-to-app bridge these services use to access the Android

API. Due to the boilerplate app pattern, these bridges expose

more functionality than typically necessary and/or are not

properly protected from being misused.

Following the principle of least privilege, Andromo and

Appinventor (see category B) generate targeted boilerplate

code based on the modules selected by the app developer.

Since their code generation model follows the traditional app

development, they are not prone to OAG-specific security

problems such reconfiguration attacks. However, the trade-off
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is an additional code generation effort, when any combination

of pre-defined modules must be flawlessly composable. This

is why Andromo, with only 19 available modules, is at the

lower end in terms of available modules, while Appinventor

with its community support offers notable 59 modules.

C. Amplification of Security Issues

The increasing use of online services has shifted the duty of

generating secure code from app developers to the generator

service. Users rarely have options to customize or change their

application beyond the ones provided by the service. As a

consequence, users have to fully trust the service to generate

non-vulnerable code and to not include hidden or non-obvious

user tracking or data leakage. Particularly worrisome examples

include the paid service Como, that performs heavy user

tracking although its privacy policy explicitly emphasizes the

importance of the security of the users’ personal information

and Mobincube that silently tracks users via BLE beacons

without explicitly stating this in its terms and conditions.

The results of our security evaluation in Section VI suggest

that OAG-generated apps do hardly adhere to security best

practices and exhibit common app vulnerabilities that have

been identified by prior research. Although these findings are

in line with coding practices of traditional developers, the

worrisome aspect is the amplification effect of online services,

putting millions of users and their private data at risk. Another

key insight is, as opposed to traditional apps, vulnerabilities in

unused boilerplate code can still be exploited when a network

attacker is able to compromise the application config and re-

configure or activate app modules with known security issues

or when ContentProviders can be queried to retrieve

internal data (see Section VI-A).

We conclude that in the current online service ecosystem the

level of security does not depend on whether it is a free or paid

service, but rather on the underlying app generation model.

For the two module-dependent code generators Andromo and

Appinventor we found the least security issues. Particularly for

Appinventor this is unsurprising, since it is open-source and

does not follow commercial interests. The boilerplate model is

not generally insecure, however, from a security perspective,

server communication and config protection require a more

careful design. This could include certificate pinning for

dynamically retrieved configs, obfuscation or encryption of

static configs, and integrity checks to prevent unauthorized

tampering.

D. Missed Opportunity for a Large-Scale Security Impact

A patch to the current situation is to inform online services

about the discovered security issues to allow them to fix

their code generation. We are currently in the process of a

responsible disclosure to allow the respective service providers

to fix the security flaws. However, while this is a short-term

mitigation, it does not address the root cause of these issues,

thus not producing more desirable long-lasting effects. In our

opinion, OAG services need a thorough investigation from

the research community in the way AppGens are built. This

investigation requires a solid understanding of the underly-

ing technique in use. Other areas of research from which

lessons can be learned or transferred are tailored software

stacks. Prior works have shown that the attack surface can

be considerably reduced by compile-time [30] and run-time

configurations [42].

VIII. CONCLUSION

In this paper we present the first classification of commonly

used online services for Android based on various character-

istics and quantify the market penetration of these AppGens

based on a corpus of 2,291,898 free Android apps from Google

Play to discover that at least 11.1% of these apps were created

using online services. Based on a systematic analysis of the

new boilerplate app generation model, we show that online

services fall short in protecting against reconfiguration attacks

and running a secure infrastructure. A subsequent security

audit of the generated boilerplate code reveals that OAGs make

the same security mistakes as traditional app developers. But

in contrast, they carry the sole responsibility of generating

secure and privacy-preserving code. Due to their amplification

effect—a single error by an OAG potentially affects thousands

of generated apps (250K apps in our data set)—we conclude

that Online Services currently have a negative impact on the

security of the overall app ecosystem. But, at the same time,

these services are in the unique position to turn these negative

aspects into positive ones through spending more effort into

securing their application model and infrastructure from which

ultimately millions of users benefit.
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