
Compiler-assisted Code Randomization

Hyungjoon Koo,∗ Yaohui Chen,† Long Lu,† Vasileios P. Kemerlis,‡ Michalis Polychronakis∗

∗Stony Brook University †Northeastern University ‡Brown University

{hykoo, mikepo}@cs.stonybrook.edu {yaohway, long}@ccs.neu.edu vpk@cs.brown.edu

Abstract—Despite decades of research on software diversi-
fication, only address space layout randomization has seen
widespread adoption. Code randomization, an effective defense
against return-oriented programming exploits, has remained an
academic exercise mainly due to i) the lack of a transparent
and streamlined deployment model that does not disrupt existing
software distribution norms, and ii) the inherent incompatibility
of program variants with error reporting, whitelisting, patching,
and other operations that rely on code uniformity. In this
work we present compiler-assisted code randomization (CCR), a
hybrid approach that relies on compiler–rewriter cooperation
to enable fast and robust fine-grained code randomization on
end-user systems, while maintaining compatibility with existing
software distribution models. The main concept behind CCR
is to augment binaries with a minimal set of transformation-
assisting metadata, which i) facilitate rapid fine-grained code
transformation at installation or load time, and ii) form the basis
for reversing any applied code transformation when needed, to
maintain compatibility with existing mechanisms that rely on
referencing the original code. We have implemented a prototype
of this approach by extending the LLVM compiler toolchain,
and developing a simple binary rewriter that leverages the
embedded metadata to generate randomized variants using basic
block reordering. The results of our experimental evaluation
demonstrate the feasibility and practicality of CCR, as on average
it incurs a modest file size increase of 11.46% and a negligible
runtime overhead of 0.28%, while it is compatible with link-time
optimization and control flow integrity.

I. INTRODUCTION

Diversifying the location and structure of code across

different instances of a program is an effective approach

for challenging the construction of reliable exploits that rely

on return-oriented programming (ROP) [1]. Code diversifica-

tion [2–11] breaks the attackers’ assumptions about the ROP

gadgets present in a vulnerable process, as even if the offsets

of certain gadgets in the original program are known, the

same offsets in a diversified variant of the same program will

correspond to arbitrary instruction sequences, rendering ROP

payloads constructed based on the original image unusable.

In applications with scripting capabilities, however, attackers

can use script code that leverages a memory disclosure

vulnerability to on-the-fly scan the code segments of the

process, pinpoint useful gadgets, and synthesize them into

a dynamically-constructed ROP payload customized for the

given diversified variant. This “just-in-time” ROP (JIT-ROP)

exploitation technique [12] can be used to bypass code

diversification protections, or to just make ROP payloads more

robust against frequent software updates, and is actively used

in the wild [13–17]. Code diversification can also be bypassed

under certain circumstances by remotely leaking [18–20] or

inferring [21,22] what code exists at a given memory location.

As a response, recent protections against JIT-ROP exploits rely

on the concept of execute-only memory (XOM) [23,24] to allow

instruction fetches but prevent memory reads from code pages,

blocking this way the on-the-fly discovery of gadgets [25–33].

In fact, having an efficient way to enforce an “execute-no-read”

policy on memory pages is a capability attractive enough that

prompted hardware vendors to introduce hardware support in

the form of an extra “execute” bit per memory page [34, 35].

As an obvious—but important—observation, we note that any

execute-only scheme is pointless if the protected code has not

been extensively diversified.

Either as a standalone defense, or as a prerequisite of execute-

only hardware and software memory protections, software

diversification is indisputably an important and effective defense

against modern exploits, as also evident by the vast body of

work in this area [36]. Surprisingly, however, despite decades

of research [37, 38], only address space layout randomization

(ASLR) [39, 40] (and lately, link-time coarse-grained code

permutation in OpenBSD [41]) has actually seen widespread

adoption. More comprehensive techniques, such as fine-grained

code randomization [4–10], have mostly remained academic

exercises for two main reasons: i) lack of a transparent

and streamlined deployment model for diversified binaries

that does not disrupt existing software distribution norms;

and ii) incompatibility with well-established software build,

regression testing, debugging, crash reporting, diagnostics, and

security monitoring workflows and mechanisms.

The vast majority of existing code diversification approaches

rely on code recompilation [5, 32, 42, 43], static binary

rewriting [7, 8, 10, 33, 44–46], or dynamic binary instrumenta-

tion [8,10,47,48] to generate randomized variants. The breadth

of this spectrum of approaches stems from tradeoffs related

to their applicability (source code is not always available),

accuracy (code disassembly and control flow graph extraction

are challenging for closed-source software) and performance

(dynamic instrumentation incurs a high runtime overhead) [36].

From a deployment perspective, however, all above approaches

share the same main drawbacks: i) the burden of diversification

is placed on end users, who are responsible for carrying out a

cumbersome process involving complex tools and operations,

and requiring a significant amount of computational resources

and human expertise; and ii) the diversified binaries become

incompatible with patching, crash reporting, whitelisting, and

other mechanisms that rely on software uniformity.

461

2018 IEEE Symposium on Security and Privacy

© 2018, Hyungjoon Koo. Under license to IEEE.
DOI 10.1109/SP.2018.00029

An alternative would be to let software vendors carry

out the diversification process by delivering pre-randomized

executables to end users. Under this model, the availability

of source code makes even the most fine-grained forms of

code randomization easily applicable, while the distribution

of software variants could be facilitated through existing

“app stores” [2, 3]. Although seemingly attractive due to its

transparency, this deployment model is unlikely to be adopted

in practice due to the increased cost that it imposes on vendors

for generating and distributing program variants across millions

or even billions of users [36, 49]. Besides the (orders-of-

magnitude) higher computational cost for generating a new

variant per user, a probably more challenging issue is that

software mirrors, content delivery networks, and other caching

mechanisms involved in software delivery become useless.

Aiming to combine the benefits of both approaches, in this

work we propose compiler-assisted code randomization (CCR),
a hybrid method that involves the cooperation of both end

users and software vendors for enabling the practical and

transparent deployment of code randomization. At the vendor

side, the compilation process of the “master binary” (which

is meant to be released through existing distribution channels)

is extended to collect and embed a set of transformation-
assisting metadata into the final executable. At the client

side, a rewriter component processes the augmented binary

and rapidly generates a hardened variant by leveraging the

embedded metadata, without performing any code disassembly

or other complex binary analysis.

The possibility of a hybrid approach has been identified as

a potentially attractive solution [36], and (to the best of our

knowledge) we are the first to attempt an actual feasibility study

of this concept by designing, implementing, and evaluating

an end-to-end code transformation toolchain. We are not the

first though to identify the benefits of augmenting binaries

with transformation-assisting metadata, as previous works

have proposed load-time diversification schemes based on

self-randomizing binaries [5, 50]. The main drawbacks of

these approaches are: i) the granularity of the performed

randomization, which is limited to whole-function reordering;

and ii) the lack of the backwards compatibility and flexibility

that a separate rewriter component provides, which allows

for selective hardening and fine-tuning according to the

characteristics of each particular system.

Although an improvement over no code randomization at all,

function permutation is not enough to prevent a wide range of

attacks that rely on leaking code pointers to pinpoint gadgets

within function bodies [19, 51–55]. It is indicative that recent

execute-only memory defenses explicitly require much finer-

grained randomization than function reordering for that exact

purpose [20, 25, 27–33]. At the same time, function reordering

is quite simple to perform, by just maintaining the existing

information regarding function boundaries and code references

that object files already contain, which would otherwise be

discarded at link time. In contrast, as we show in this work,

moving to more fine-grained randomization, such as basic block

or instruction reordering, requires keeping a non-trivial amount

of additional information that is stripped before the compiler

generates each object file, let alone at link time.

Our work makes the following main contributions:

• We propose compiler-assisted code randomization (CCR),
a practical and generic code transformation approach that

relies on compiler–rewriter cooperation to enable fast and

robust diversification of binary executables on end-user

systems.

• We have identified a minimal set of metadata that can

be embedded into executables to facilitate rapid fine-
grained code randomization at the basic block level, and

maintain compatibility with existing mechanisms that rely

on referencing the original code.

• We have designed and implemented an open-source

prototype of CCR by extending the LLVM/Clang compiler

and the GNU gold linker to generate augmented binaries,

and developing a binary rewriter that leverages the

embedded metadata to generate hardened variants. Our

prototype supports existing features including (but not

limited to) position independent code, shared objects,

exception handling, inline assembly, lazy binding, link-

time optimization, and even control flow integrity.

• We have experimentally evaluated our prototype and

demonstrate its practicality, as on average it results in a

modest file size increase of 11.46%, and incurs a negligible

runtime overhead of 0.28%.

II. MOTIVATION

Code randomization techniques can be categorized into

two main types according to their deployment model—more

specifically, according to who is responsible for randomizing

the code (software vendor vs. end user) and where the actual

randomization takes place (vendor’s system vs. user’s system).

In this section, we discuss these two types of techniques in

relation to the challenges that so far have prevented their

deployment, and introduce our proposed approach.

A. Diversification by End Users

The vast majority of code randomization proposals shift

the burden of diversification solely to end users, as they are

responsible for diversifying the obtained software on their
systems. For open-source software, this entails obtaining its

source code, setting up a proper build environment, and recom-

piling the software with a special toolchain [4–6,28,32,55,56].

For closed-source software, this entails transforming existing

executables using static binary rewriting, sometimes assisted

by a runtime component to compensate for the imprecisions

of binary code disassembly [7–9, 11, 20, 46, 47, 57]. Interested

readers are referred to the survey of Larsen et al. [36] for

an extensive discussion on the many challenges that code

randomization techniques based on static binary rewriting face.

From a deployment perspective, however, both compiler-level

and rewriter-level techniques share the same main drawbacks:

end users (or system administrators) are responsible for

diversifying an obtained application through a complex and

oftentimes cumbersome process. In addition, this is a process

462

that requires substantial computational and human resources

in terms of the system on which the diversification will take

place, as well as in terms of the time, effort, and expertise

needed for configuring the necessary tools and performing the

actual diversification. Consequently, it is unrealistic to expect

this deployment model to reach the level of transparency that

other diversification protections, like ASLR, have achieved.

At the same time, these approaches clash with operations

that rely on software uniformity, which is an additional

limiting factor against their deployment [3, 36]. When code

randomization is applied at the client side, crash dumps and

debug logs from randomized binaries refer to meaningless code

and data addresses, code signing and integrity checks based on

precomputed checksums fail, and patches and updates are not

applicable on the diversified instances, necessitating the whole

diversification process to be performed again from scratch.

B. Diversification by Software Vendors

Given that expecting end users to handle the diversification

process is a rather unrealistic proposition for facilitating

widespread deployment, an alternative is to rely on software

vendors for handling the whole process and distributing already

diversified binaries—existing app store software delivery plat-

forms are particularly attractive for this purpose [2]. The great

benefit of this model is that it achieves complete transparency

from the perspective of end users, as they continue to obtain

and install software as before [58]. Additionally, as vendors

are in full control of the distribution process, they can alleviate

any error reporting, code signing, and software update issues

by keeping (or embedding) the necessary information for each

unique variant to carry out these tasks [36].

Unfortunately, shifting the diversification burden to the

side of software vendors also entails significant costs that in

practice make this approach unattractive. The main reason

is the increased cost for both generating and distributing
diversified software variants [36]. Considering that popular

software may exceed a billion users [49], the computational

resources needed for generating a variant per user, per install,

upon each new major release, can be prohibitively high from

a cost perspective, even when diversification happens only at

the late stages of compilation [3]. Additionally, as each variant

is different, distribution channels that rely on caching, content

delivery networks, software mirrors, or peer-to-peer transfers,

will be rendered ineffective. Finally, at the release time of a

new version of highly popular software, an issue of “enough

inventory” will arise, as it will be challenging for a server-side

diversification system to keep up with the increased demand

in such a short time span [36].

C. Compiler–Rewriter Cooperation

The security community has identified compiler–rewriter

cooperation as a potentially attractive solution for software

diversification [36], but (to the best of our knowledge) no

actual design and implementation attempt has been made before.

We discuss in detail our design goals and the benefits of the

proposed approach in Section IV-A.

Note that our aim is not to enable reliable code disassembly

at the client side (which Larsen et al. [36] suggested as a

possibility for a hybrid model), but to enable rapid and safe
fine-grained code randomization by simply treating code as a

sequence of raw bytes. In this sense, our proposal is more in

line with the way ASLR has been deployed: developers must

explicitly compile their software with ASLR support (i.e., with

relocation information or using position-independent code),

while the OS (if it supports ASLR) takes care of performing

the actual transformation (i.e., the dynamic linker/loader maps

each module to a randomly-chosen virtual address).

This flexibility and backwards compatibility is an impor-

tant benefit compared to the alternative approach of self-

randomizing binaries [5, 50]. According to the characteristics

of each particular system, administrators may opt for random-

ization at installation or load time (or no randomization at

all), and selectively enable or disable additional hardening

transformations and instrumentation that may be available. On

systems not equipped with the rewriter component, augmented

binaries continue to work exactly as before.

III. BACKGROUND

To fulfill our goal of generic, transparent, and fast fine-

grained code randomization at the client side, there is a range

of possible solutions that one may consider. In this section, we

discuss why existing solutions are not adequate, and provide

some details about the compiler toolchain we used.

A. The Need for Additional Metadata

Static binary rewriting techniques [7, 47, 57] face signifi-

cant challenges due to indirect control flow transfers, jump

tables, callbacks, and other code constructs that result in

incomplete or inaccurate control flow graph extraction [59–61].

More generally applicable techniques, such as in-place code

randomization [9, 11], can be performed even with partial

disassembly coverage, but can only apply narrow-scoped

code transformations, thereby leaving parts of the code non-

randomized (e.g., complete basic block reordering is not

possible). On the other hand, approaches that rely on dynamic

binary rewriting to alleviate the inaccuracies of static binary

rewriting [8,10,47,48] suffer from increased runtime overhead.

A relaxation that could be made is to ensure programs

are compiled with debug symbols and relocation information,

which can be leveraged at the client side to perform code

randomization. Symbolic information facilitates runtime debug-

ging by providing details about the layout of objects, types,

addresses, and lines of source code. On the other hand, it

does not include lower-level information about complex code

constructs, such as jump tables and callback routines, nor it

contains metadata about (handwritten) assembly code [62]. To

make matters worse, modern compilers attempt to generate

cache-friendly code by inserting alignment and padding bytes

between basic blocks, functions, objects, and even between

jump tables and read-only data [63]. Various performance

optimizations, such as profile-guided [64] and link-time [65]

optimization, complicate code extraction even further—Bao et

463

al. [66], Rui and Sekar [67], and others [68–70], have repeatedly

demonstrated that accurately identifying functions (and their

boundaries) in binary code is a challenging task.

In the same vein, Williams-King et al. [46] implemented

Shuffler, a system that relies on symbolic and relocation

information (provided by the compiler and linker) to disas-

semble code and identify all code pointers, with the goal of

performing live code re-randomization. Despite the impressive

engineering effort, its authors admit that they “encountered
myriad special cases” related to inaccurate or missing metadata,

special types of symbols and relocations, and jump table entries

and invocations. Considering that these numerous special cases

occurred just for a particular compiler (GCC), platform (x86-64

Linux), and set of (open-source) programs, it is reasonable to

expect that similar issues will arise again, when moving to

different platforms and more complex applications.

Based on the above, we argue that relying on existing
compiler-provided metadata is not a viable approach for

building a generic code transformation solution. More impor-

tantly, the complexity involved in the transformation process

performed by the aforementioned schemes (e.g., static code

disassembly, control flow graph extraction, runtime analysis,

heuristics) is far from what could be considered reasonable for a

fast and robust client-side rewriter, as discussed in Section II-A.

Consequently, we opt for augmenting binaries with just the

necessary domain-specific metadata needed to facilitate safe

and generic client-side code transformation (and hardening)

without any further binary code analysis.

B. Fixups and Relocations

When performing code randomization, machine instructions

with register or immediate operands do not require any

modification after they are moved to a new (random) location.

In contrast, if an operand contains a (relative or absolute)

reference to a memory location, then it has to be adjusted

according to the instruction’s new location, the target’s new

location, or both. (Note that a similar process takes place during

the late stages of compilation.)

Focusing on LLVM, whenever a value that is not yet concrete

(e.g., a memory location or an external symbol) is encountered

during the instruction encoding phase, it is represented by a

placeholder value, and a corresponding fixup is emitted. Each

fixup contains information on how the placeholder value should

be rewritten by the assembler when the relevant information

becomes available. During the relaxation phase [71, 72], the

assembler modifies the placeholder values according to their

fixups, as they become known to it. Once relaxation completes,

any unresolved fixups become relocations, stored in the

resulting object file.

Figure 1 shows a code snippet that contains several fixups and

one relocation. The left part corresponds to an object file after

compilation, whereas the right one depicts the final executable

after linking. Initially, there are four fixups (underlined bytes)

emitted by the compiler. As the relocation table shows, however,

only a single relocation (which corresponds to fixup 1©) exists

for address 0x5a7f, because the other three fixups were

ADDR Byte Code Instructions Byte Code ADDR

0x5A78
0x5A7B
0x5A7E
0x5A83
0x5A85
0x5A89
0x5A8B
0x5A90
0x5A92
0x5A96
0x5A97
0x5A99
0x5A9B
0x5A9D

48 89 DF
4C 89 F6
E8 49 43 00 00
EB 0D
49 39 1C 24
74 13
49 39 5C 24 08
74 51
48 83 C4 08
5B
41 5C
41 5E
41 5F
C3

mov rdi, rbx
mov rsi, r14
call someFunc
jmp short 0xD
cmp [mh],ctrl
jz short 0x13
cmp [mh+8],ctrl
jz short 0x51
add rsp, 8
pop rbx
pop r12
pop r14
pop r15
retn

48 89 DF
4C 89 F6
E8 8D 30 06 00
EB 0D
49 39 1C 24
74 13
49 39 5C 24 08
74 51
48 83 C4 08
5B
41 5C
41 5E
41 5F
C3

0x412D58
0x412D5B
0x412D5E
0x412D63
0x412D65
0x412D69
0x412D6B
0x412D70
0x412D72
0x412D76
0x412D77
0x412D79
0x412D7B
0x412D7D

�������	
�� 	
�
��������
���

�
�

OFFSET TYPE VALUE
...

0x5a7f R_X86_64_PC32 someFunc-0x4
...

�

�����
�
����
���������������	
�������������
��

Fig. 1. Example of the fixup and relocation information that is involved during
the compilation and linking process.

resolved by the assembler. Henceforth, we explicitly refer

to relocations in object files as link-time relocations—i.e.,

fixups that are left unresolved after the assembly process (to

be handled by the linker). Similarly, we refer to relocations

in executable files (or dynamic shared objects) as load-time
relocations—i.e., relocations that are left unresolved after

linking (to be handled by the dynamic linker/loader). Note

that in this particular example, the final executable does not

contain any load-time relocations, as relocation 1© was resolved

during linking (0x4349→0x6308d).

In summary, load-time relocations are a subset of link-time

relocations, which are a subset of all fixups. Unfortunately,

even if link-time relocations are completely preserved by the

linker, they are not sufficient for performing fine-grained code

randomization. For instance, fixup 2© is earlier resolved by

the assembler, but is essential for basic block reordering, as

the respective single-byte jmp instruction may have to be

replaced by a four-byte one—if the target basic block is moved

more than 127 bytes forward or 126 bytes backwards from

the jmp instruction itself. Evidently, comprehensive fixups are

pivotal pieces of information for fine-grained code shuffling,

and should be promoted to first-class metadata by modern

toolchains in order to provide support for generic, transparent,

and compatible code diversification.

IV. ENABLING CLIENT-SIDE CODE DIVERSIFICATION

A. Overall Approach

Our design is driven by the following two main goals, which

so far have been limiting factors for the actual deployment of

code diversification in real-world environments:

Practicality: From a deployment perspective, a practical

code diversification scheme should not disrupt existing features

and software distribution models. Requiring software vendors

to generate a diversified copy per user, or users to recompile

applications from source code or transform them using complex

binary analysis tools, have proven to be unattractive models

for the deployment of code diversification.

464

Compatibility: Code randomization is a highly disruptive

operation that should be safely applicable even for complex

programs and code constructs. At the same time, code ran-

domization inherently clashes with well-established operations

that rely on software uniformity. These include security and

quality monitoring mechanisms commonly found in enterprise

settings (e.g., code integrity checking and whitelisting), as well

as crash reporting, diagnostics, and self-updating mechanisms.

Augmenting compiled binaries with metadata that enable

their subsequent randomization at installation or load time is an

approach fully compatible with existing software distribution

norms. The vast majority of software is distributed in the

form of compiled binaries, which are carefully generated,

tested, signed, and released through official channels by

software vendors. On each endpoint, at installation time, the

distributed software typically undergoes some post-processing

and customization, e.g., its components are decompressed and

installed in appropriate locations according to the system’s

configuration, and sometimes they are even further optimized

according to the client’s architecture, as is the case with

Android’s ahead-of-time compilation [73] or the Linux kernel’s

architecture-specific optimizations [74]. Under this model, code

randomization can fittingly take place as an additional post-

processing task during installation.

As an alternative, randomization can take place at load time,

as part of the modifications that the loader makes to code and

data sections for processing relocations [75]. However, to avoid

extensive user-perceived delays due to the longer rewriting time

required for code randomization, a more viable approach would

be to maintain a supply of pre-randomized variants (e.g., an

OS service can be generating them in the background), which

can then instantly be picked by the loader.

Note that this distribution model is followed even for open-
source software, as installing binary executables through pack-

age management systems (e.g., apt-get) offers unparalleled

convenience compared to having to compile each new or

updated version of a program from scratch. More importantly,

under such a scheme, each endpoint can choose among

different levels of diversification (hardening vs. performance),

by taking into consideration the anticipated exposure to certain

threats [76], and the security properties of the operating envi-

ronment (e.g., private intranet vs. Internet-accessible setting).

The embedded metadata serves two main purposes. First,

it allows the safe randomization of even complex software

without relying on imprecise methods and incomplete symbolic

or debug information. Second, it forms the basis for reversing
any applied code transformation when needed, to maintain

compatibility with existing mechanisms that rely on referencing

the original code that was initially distributed.

Figure 2 presents a high-level view of the overall approach.

The compilation process remains essentially the same, with

just the addition of metadata collection and processing steps

during the compilation of each object file and the linking of the

final master executable. The executable can then be provided

to users and endpoints through existing distribution channels

and mechanisms, without requiring any changes.

�

�
�

�����
�
�

�����

�
�

����� �

�����������

�� !
����
"##�$%��
�&'

$��
�
�
�������	
��

$��
�
�
�������	
��

$��
�
�
�������	
��

$��
�
�
������
���� #
�(���"&������'

�������	��

��
��
������	�
�

)
�
�*���+�
���

,�!��
���!��

Fig. 2. Overview of the proposed approach. A modified compiler collects
metadata for each object file 1©, which is further updated and consolidated at
link time into a single extra section in the final executable 2©. At the client
side, a binary rewriter leverages the embedded metadata to rapidly generate
randomized variants of the executable 3©.

As part of the installation process on each endpoint, a binary
rewriter generates a randomized version of the executable by

leveraging the embedded metadata. In contrast to existing code

diversification techniques, this transformation does not involve

any complex and potentially imprecise operations, such as

code disassembly, symbolic information parsing, reconstruction

of relocation information, introduction of pointer indirection,

and so on. Instead, the rewriter performs simple transposition

and replacement operations based on the provided metadata,

treating all code sections as raw binary data. Our prototype

implementation, discussed in detail in Section V, currently

supports fine-grained randomization at the granularity of

functions and basic blocks, is oblivious to any applied compiler

optimizations, and supports static executables, shared objects,

PIC, partial/full RELRO [77], exception handling, LTO, and

even CFI.

B. Compiler-level Metadata

Our work is based on LLVM [78], which is widely used in

both academia and industry, and we picked the ELF format and

the x86-64 architecture as our initial target platform. Figure 3

illustrates an example of the ELF layout generated by Clang

(LLVM’s native C/C++/Objective-C compiler).

1) Layout Information: Initially, the range of the trans-

formable area is identified, as shown in the left side of Figure 3.

This area begins at the offset of the first object in the .text
section and comprises all user-defined objects that can be

shuffled. We modified LLVM to append a new section named

.rand in every compiled object file so that the linker can

be aware of which objects have embedded metadata. In our

current prototype, we assume that all user-defined code is

consecutive. Although it is possible to have intermixed code

and data in the same section, we have ignored this case

for now, as by default LLVM does not mix code and data

when emitting x86 code. This is the case for other modern

compilers too—Andriesse et al. [79] could identify 100% of

the instructions when disassembling GCC and Clang binaries

(but CFG reconstruction still remains challenging).

465

��� ���		����
	�� �
����
��������� ����������
��
����� �� ������
	

#0 0x40ABD0 53
0x40ABD1 48 8B 1D 58 F7 0B 00
0x40ABD8 48 85 DB

push rbx
mov rbx, cs:Fun1
test rbx, rbx

#0 (DF)

0x40ABDB 74 2A jz short loc_40AC07 #1 (RF)

#1 0x40ABDD 48 89 DF
0x40ABE0 E8 7B D7 FF FF
0x40ABE5 48 89 DF
0x40ABE8 48 89 C6
0x40ABEB E8 50 D3 00 00
0x40ABF0 48 8B 3D 39 F7 0B 00
0x40ABF7 E8 74 D3 00 00
0x40ABFC 48 C7 05 29 F7 0B 00

00 00 00 00

mov rdi, rbx ; s
call _strlen
mov rdi, rbx ; b
mov rsi, rax ; n
call smemclr
mov rdi, cs:Fun1
call safefree
mov cs:Fun1, 0

#2 (DF)

#2 0x40AC07 31 DB xor ebx, ebx

0x40AC09 0F 1F 80 00 00 00 00 nop dword ptr [rax+0x0h] #3 (AF)

#3 0x40AC10 48 8B BB 40 A3 4C 00
0x40AC17 E8 54 D3 00 00
0x40AC1C 0F 57 C0
0x40AC1F 0F 29 83 40 A3 4C 00
0x40AC26 48 83 C3 10
0x40AC2A 48 83 FB 20

mov rdi, qword ptr ds:Fun2[rbx]
call safefree
xorps xmm0, xmm0
movaps xmmword ptr ds:Fun2[rbx], xmm0
add rbx, 10h
cmp rbx, 20h

#4 (DF)

0x40AC2E 75 E0 jnz short loc_40AC10 #5 (RF)

#4 0x40AC30 5B
0x40AC31 C3

pop rbx
retn

#6 (DF)

0x40AC32 66 66 66 66 66 2E 0F
1F 84 00 00 00 00 00

align 20h #7 (AF)

�#	�
-�
���

.��&�

-�
���

����
��
-�
���

�
����!
��*�/*
��*�/��

����
��*�
����
�!��
�
�
�
�!��

��
�

�&��
!��	�
��//
�/* �
�
�/���
�

!����	�

!	��	

������
��
��
�����&
���

������
��������

"���#
��$�
��
%�&�'	�

0
0

�)1�"i'

0

	2��"j'

	2��"3'
��
�!
����

Fig. 3. An example of the ELF layout generated by Clang (left), with the code of a particular function expanded (center and right). The leftmost and rightmost
columns in the code listing (“BBL” and “Fragment”) illustrate the relationships between basic blocks and LLVM’s various kinds of fragments: data (DF),
relaxable (RF), and alignment (AF). Data fragments are emitted by default, and may span consecutive basic blocks (e.g., BBL #1 and #2). The relaxable
fragment #1 is required for the branch instruction, as it may be expanded during the relaxation phase. The padding bytes at the bottom correspond to a separate
fragment, although they do not belong to any basic block.

When loading a program, a sequence of startup routines

assist in bootstrap operations, such as setting up environ-

ment variables and reaching the first user-defined function

(e.g., main()). As shown in Figure 3, the linker appends

several object files from libc into the executable for this

purpose (crt1.o, cri.o, crtbegin.o). Additional ob-

ject files include process termination operations (crtn.o,

crtend.o). Currently, these automatically-inserted objects

are out of transformation—this is an implementation issue that

can be easily addressed by ensuring that a set of augmented

versions of these objects is made available to the compiler. At

program startup, the function _start() in crt1.o passes

five parameters to __libc_start_main(), which in turn

invokes the program’s main() function. One of the parameters

corresponds to a pointer to main(), which we need to adjust

after main() has been displaced.

The metadata we have discussed so far are updated at link

time, according to the final layout of all objects. The upper part

of Table I summarizes the collected layout-related metadata.

2) Basic Block Information: The bulk of the collected

metadata is related to the size and location of objects, functions,

basic blocks (BBL), and fixups, as well as their relationships.

For example, a fixup inherently belongs to a basic block, a

basic block is a member of a function, and a function is

included in an object. The LLVM backend goes through a very

complex code generation process which involves all scheduled

module and function passes for emitting globals, alignments,

symbols, constant pools, jump tables, and so on. This process

is performed according to an internal hierarchical structure

of machine functions, machine basic blocks, and machine
instructions. The machine code (MC) framework of the LLVM

backend operates on these structures and converts machine

instructions into the corresponding target-specific binary code.

This involves the EmitInstruction() routine, which

creates a new chunk of code at a time, called a fragment.
As a final step, the assembler (MCAssembler) assembles

those fragments in a target-specific manner, decoupled from any

logically hierarchical structure—that is, the unit of the assembly

process is the fragment. We internally label each instruction

with the corresponding parent basic block and function. The

collection process continues until instruction relaxation has

completed, to capture the emitted bytes that will be written

into the final binary. As part of the final metadata, however,

these labels are not essential, and can be discarded. As shown

in Table I, we only keep information about the lower boundary

of each basic block, which can be the end of an object (OBJ),

the end of a function (FUN), or the beginning of the next basic

block (BBL).

Going back to the example of Figure 3, we identify three

types of data, relaxable, and alignment fragments, shown at

the right side of the figure. The center of the figure shows the

emitted bytes as generated by Clang, and their corresponding

code as extracted by the IDA Pro disassembler, for the j-th
function of the i-th object in the code section. The function

consists of five basic blocks, eight fragments, and contains

eleven fixups (underlined bytes).

466

TABLE I
COLLECTED RANDOMIZATON-ASSISTING METADATA

Metadata Collected Information Collection time

Layout Section offset to first object Linking
Section offset to main() Linking
Total code size for randomization Linking

Basic Block BBL size (in bytes) Linking
(BBL) BBL boundary type (BBL, FUN, OBJ) Compilation

Fall-through or not Compilation
Section name that BBL belongs to Compilation

Fixup Offset from section base Linking
Dereference size Compilation
Absolute or relative Compilation
Type (c2c, c2d, d2c, d2d) Linking
Section name that fixup belongs to Compilation

Jump Table Size of each jump table entry Compilation
Number of jump table entries Compilation

As discussed in Section III-B, relaxable fragments are

generated only for branch instructions and contain just a

single instruction. Alignment fragments correspond to padding

bytes. In this example, there are two alignment fragments

(#3 and #7): one between basic blocks #2 and #3, and one

between function j and the following function. For metadata

compactness, alignment fragments are recorded as part of the

metadata for their preceding basic blocks. The rest of the

instructions are emitted as part of data fragments.

Another consideration is fall-through basic blocks. A basic

block terminated with a conditional branch implicitly falls

through its successor depending on the evaluation of the

condition. In Figure 3, the last instruction of BBL #0 jumps

to BBL #2 when the zero flag is set, or control falls through

to BBL #1. Such fall-through basic blocks must be marked

so that they can be treated appropriately during reordering, as

discussed in Section IV-D.

3) Fixup Information: Evaluating fixups and generating

relocation entries are part of the last processing stage during

layout finalization, right before emitting the actual code bytes.

Note that this phase is orthogonal to the optimization level used,

as it takes place after all LLVM optimizations and passes are

done. Each fixup is represented by its offset from the section’s

base address, the size of the target (1, 2, 4, or 8 bytes), and

whether it represents a relative or absolute value.

As shown in Table I, we categorize fixups into four groups,

similar to the scheme proposed by Wang et al. [80], depending

on their location (source) and the location of their target

(destination): code-to-code (c2c), code-to-data (c2d), data-

to-code (d2c), and data-to-data (d2d). We define data as a

universal region that includes all other sections except the

.text section. This classification helps in increasing the speed

of binary rewriting when patching fixups after randomization,

as discussed in Section IV-D.

4) Jump Table Information: Due to the complexity of some

jump table code fragments, extra metadata needs to be kept for

their correct handling during randomization. For non-PIC/PIE

(position independent code/executable) binaries, the compiler

generates jump table entries that point to targets using their

����
��
�
 �

�� !
��� without .,�%.,� �� !
��� with .,�%.,�
)*������� 4
/
//� ��*)*�� ���� 4
/
//� ��*

.text FF 24 D5 A0
39 4A 00

jmp qword
[rdx*8+0x4A39A0]

48 8D 05 5E
84 09 00
48 63 0C 90

48 01 C1
FF E1

…

lea rax,
[rel 0x98465]
movsxd rcx,
dword [rax+rdx*4]
add rcx, rax
jmp rcx

…

���������1����� ���������1�����5
���������1����3 ���������1����35

.rodata D2 C0 40 00
00 00 00 00

JT Entry #0(8B)
0x0040C0D2

AB 7B F6 FF JT Entry #0*(4B)
0xFFF67BAB

D8 C0 40 00
00 00 00 00

…

JT Entry #1(8B)
0x0040C0D8

…

B1 7B F6 FF

…

JT Entry #1*(4B)
0xFFF67BB1

…

� 6

� �

Fig. 4. Example of jump table code generated for non-PIC and PIC binaries.

absolute address. In such cases, it is trivial to update these

destination addresses based on their corresponding fixups that

already exist in the data section.

In PIC executables, however, jump table entries correspond

to relative offsets, which remain the same irrespectively of the

executable’s load address. Figure 4 shows the code generated

for a jump table when compiled without and with the PIC/PIE

option. In the non-PIC case, the jmp instruction directly jumps

to the target location 1© by dereferencing the value of an 8-byte

absolute address 2© according to the index register rdx, as the

address of the jump table is known at link time (0x4A39A0).

On the other hand, the PIC-enabled code needs to compute the

target with a series of arithmetic instructions. It first loads the

base address of the jump table into rax 3©, then reads from

the table the target’s relative offset and stores it in rcx, and

finally computes the target’s absolute address 4© by adding to

the relative offset the table’s base address.

To appropriately patch such jump table constructs, for which

no additional information is emitted by the compiler, the only

extra information we must keep is the number of entries in

the table, and the size of each entry. This information is kept

along with the rest of the fixup metadata, as shown in Table I,

because the relative offsets in the jump table entries should be

updated after randomization according to the new locations of

the corresponding targets.

C. Link-time Metadata Consolidation

The main task of the linker is to merge multiple object files

into a single executable. The linking process consists of three

main tasks: constructing the final layout, resolving symbols,

and updating relocation information. First, the linker maps the

sections of each object into their corresponding locations in the

final sections of the executable. During this process, alignments

are adjusted and the size of extra padding for each section

is decided. Then, the linker populates the symbol table with

the final location of each symbol after the layout is finalized.

Finally, it updates all relocations created by the assembler

according to the final locations of those resolved symbols.

These operations influence the final layout, and consequently

affect the metadata that has already been collected at this point.

It is thus crucial to update the metadata according to the final

layout that is decided at link time.

467

Our CCR prototype is based on the GNU gold ELF linker

that is part of binutils. It aims to achieve faster linking

times compared to the GNU linker (ld), as it does not rely on

the standard binary file descriptor (BFD) library. Additional

advantages include lower memory requirements and parallel

processing of multiple object files [81].

Figure 5 provides an overview of the linking process and

the corresponding necessary updates to the collected metadata.

Initially, the individual sections of each object are merged into a

single one, according to the naming convention 1©. For example,

the two code sections .text.obj1 and .text.obj2 of

the two object files are combined into a single .text section.

Similarly, the metadata from each object is extracted and

incorporated into a single section, and all addresses are updated

according to the final layout 2©.

As part of the section merging process, the linker introduces

padding bytes between objects in the same section 3©. At this

point, the size of the basic block at the end of each object file

has to be adjusted by increasing it according to the padding

size. This is similar to the treatment of alignment bytes within

an object file, which is considered as part of the preceding

basic block (as discussed in Section IV-B2). Note that we

do not need to update anything related to whole functions or

objects, as our representation of the layout relies solely on

basic blocks. Updating the size of the basic blocks that are

adjacent to padding bytes is enough for deriving the final size

of functions and objects.

Once the layout is finalized and symbols are resolved, the

linker updates the relocations recorded by the assembler 4©.

Any fixups that were already resolved at compilation time are

not available in this phase, and thus the corresponding metadata

remains unchanged, while the rest is updated accordingly.

Finally, the aggregation of metadata is completed 5© by

updating the binary-level metadata discussed in Section IV-B,

including the offset to the first object, the total code size for

transformation, and the offset to the main function (if any).

A special case that must be considered is that a single

object file may contain multiple .text, .rodata, .data
or .data.rel.ro sections. For instance, C++ binaries often

have several code and data sections according to a name

mangling scheme, which enables the use of the same identifier

in different namespaces. The compiler blindly constructs these

sections without considering any possible redundancy, as

it can only process the code of a single object file at a

time. In turn, when the linker observes redundant sections,

it nondeterministically keeps one of them and discards the

rest [82]. This deduplication process can cause discrepancies in

the layout and fixup information kept as part of our metadata,

and thus the corresponding information about all removed

sections is discarded at this stage. This process is facilitated

by the section name information that is kept for basic blocks

and fixups during compilation. Note that section names are

optional attributes required only at link time. Consequently,

after deduplication has completed, any remaining section name

information about basic blocks and fixups is discarded, further

reducing the size of the final metadata.

(

�#	�
-�
���

����
��
-�
���

0

.text

.rel.text

.strtab

.rodata

.symtab

%�&�'	��)�

.strtab

��7��
����
��/

.symtab

.text

.rodata

.data

0

0

0

0

0

0

0

��
��	

�
	����	��
*�	���	�

������
.text

����
���
��7��
������/

6 �����
�
��/
2!�
��

8���/� ����"�
/
��
����(�/
9�/:��
��!�
���/��/���� �/���
��:�
/���
����� �;
�'

<

� $��&
�&

Meta-
data(1)

�#	�
-�
���

����
��
-�
���

0

.text

.rel.text

.strtab

.rodata

.symtab

%�&�'	��+�

Meta-
data(N)

.
��
�&/�

�

Fig. 5. Overview of the linking process. Per-object metadata is consolidated
into a single section.

D. Code Randomization

To strike a balance between performance and randomization

entropy, we have opted to maintain some of the constraints

imposed by the code layout decided at link time, due to short

fixup sizes and fall-through basic blocks. As mentioned earlier,

these constraints can be relaxed by modifying the width of short

branches and adding new branches when needed. However,

our current choice has the simplicity and performance benefit

of keeping the total size of code the same, which helps in

maintaining caching characteristics due to spatial locality. To

this end, we prioritize basic block reordering at intra-function

level, and then proceed with function-level reordering.

Distance constraints due to fixup size may occur in both

function and basic block reordering. For instance, it is typical

for functions to contain a short fixup that refers to a different
function, as part of a jump instruction used for tail-call

optimization. At the rewriting phase, basic block reordering

proceeds without any constraints if: (a) the parent function of a

basic block does not have any distance-limiting fixup, or (b) the

size of the function allows reaching all targets of any contained

short fixups. Note that the case of multiple functions sharing

basic blocks, which is a common compiler optimization, is

fully supported.

468

From an implementation perspective, the simplest solution

for fall-through basic blocks is to assume that both child blocks

will be displaced away, in which case an additional jump

instruction must be inserted for the previously fall-through

block. From a performance perspective, however, a better

solution is to avoid adding any extra instructions and keep

either of the two child basic blocks adjacent to its parent—this

can be safely done by inverting the condition of the branch

when needed. In our current implementation we have opted

for this second approach, but have left branch inversion as part

of our future work. As shown in Section VI-E, this decision

does not impact the achieved randomization entropy.

After the new layout is available, it is essential to ensure

fixups are updated accordingly. As discussed in Section IV-B3,

we have classified fixups into four categories: c2c, c2d, d2c

and d2d. In case of d2d fixups, no update is needed because

we diversify only the code region, but we still include them

as part of the metadata in case they are needed in the future.

The dynamic linking process relies on c2d (relative) fixups to

adjust pointers to shared libraries at runtime.

V. IMPLEMENTATION

Our CCR prototype supports ELF executables for the

Linux x86-64 platform. To augment binaries, we modified

LLVM/Clang v3.9.0 [78] and the gold linker v2.27 of GNU

Binutils [83]. At the user side, binary executable randomization

is performed by a custom binary rewriter that leverages the

embedded metadata. In this section, we discuss the main

modifications that were required in the compiler and linker,

and the design of our binary rewriter. We encountered many

challenges and pitfalls in our attempt to maintain compatibility

with advanced features such as inline assembly, lazy binding,

exception handling, link-time optimization, and additional

protections like control flow integrity. Interested readers can

find further details regarding those issues in the Appendix.

a) Compiler: In our attempt to modify the right spots in

LLVM for collecting the necessary metadata, we encountered

several challenges. First, as explained in Section IV-B2, the

assembler operates on an entirely separate view based on

fragments and sections, compared to the logical view of basic

blocks and functions. For this reason, we had to modify the

LLVM backend itself, rather than writing an LLVM pass, which

would be more convenient, as LLVM offers a flexible interface

for implementing optimizations and transformations.

Second, recall that fine-grained randomization necessitates

absolute accuracy when it comes to basic block sizes. A single

misattributed byte can result in the whole code layout being

incorrect. In this regard, obtaining the exact size of each

instruction is important for deriving the right sizes of both

its parent basic block and function. In our implementation,

extracting this information relies on labeling the parents of each

and every instruction. However, we encountered several cases

of instructions not belonging to any basic block. For example,

sequences like cld; rep stos; may appear without any

parent label. These are handled by including the instructions

as part of the basic block of the previous instruction.

parseElfFormat()
readMetadata()
checkDataSanity()

"
'�.
�/���
+��
�

resolveConstraints()
transformLayout()
updateFixups()
performRand()

"�'��
������&
��
buildBinaryInfo()
buildObjectInfo()
buildFunctionInfo()
buildBasicBlockInfo()
buildFixupInfo()

"�'�)�
���/7������
���

checkOrigBinary()
patchSections()
emitInstBinary()

"�'���+�
����
�
�*

���!��
,�!���
)
�
�*

,���&�
���
$��
�
�

�����
��
�

����
�

��
�
�������
�
�
�=
��
*
����
��*�
��*�/*
�/* �
�
��7=��
 �
��7=��
 �=7��

Fig. 6. Overview of the rewriting process. The rewriter parses the augmented
ELF binary (a) and organizes all information required for randomization in a
tree data structure (b). Randomization is performed based on this structure
(c), and the new layout is then written into the final binary (d).

b) Linker: The linker performs several operations that

influence considerably the final binary layout, and many of

them required special consideration. First, there are cases

of object files with zero size, e.g., when a source code file

contains just a definition of a structure, without any actual

code. Interestingly, such objects result in padding bytes that

must be carefully accounted for when randomizing the last

basic block of an object. Besides removing the metadata for

redundant sections due to the deduplication process (discussed

in Section IV-C), there are other sections that require special

handling. These include .text.unlikely, .text.exit,

.text.startup, and .text.hot, which the GNU linker

handles differently for compatibility purposes. The special

sections have unique features including independent positions

(ahead of all other code) and redundant section names within

a single object file (i.e., multiple .text.startup sections),

resulting in non-consecutive user-defined code in the .text
section that must be precisely captured as part of our metadata

for randomization to function properly.

c) Binary Rewriter: We developed our custom binary

rewriter in Python, and used the pyelftools library for

parsing ELF files [84]. The rewriter takes the augmented

ELF executable to be randomized as its sole input. The core

randomization engine is written in ∼2KLOC. The simple nature

of the rewriter makes it easy to be integrated as part of existing

software installation workflows. In our prototype, we have

integrated it with Linux’s apt package management system

through apt’s wrapper script functionality.

As illustrated in Figure 6, binary rewriting comprises four

phases. Initially, the ELF binary is parsed and some sanity

checks are performed on the extracted metadata. We employ

Protocol Buffers for metadata serialization, as they provide

a clean, efficient, and portable interface for structured data

streams [85]. To minimize the overall size of the metadata, we

use a compact representation by keeping only the minimum

amount of information required. For example, as discussed in

Section IV-B2, basic block records denote whether they belong

to the end of a function or the end of an object (or both),

469

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
43

3.
m

ilc
44

4.
na

m
d

44
5.

go
bm

k
44

7.
de

al
II

45
0.

so
pl

ex
45

3.
po

vr
ay

45
6.

hm
m

er
45

8.
sj

en
g

46
2.

lib
qu

an
tu

m
46

4.
h2

64
re

f
47

0.
lb

m
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k
99

9.
sp

ec
ra

nd

��

0

2

4

6

O
ve

rh
ea

d
(%

)

��

0

2

4

6 Function Randomization
Basic Block Randomization

Fig. 7. Performance overhead of fine-grained (function vs. basic block
reordering) randomization for the SPEC CPU2006 benchmark tests.

without keeping any extra function or object information per

block. The final metadata is stored in a special .rand section,

which is further compressed using zlib. Next, all information

regarding the relationships between objects, functions, basic

blocks, and fixups is organized in an optimized data structure,

which the randomization engine uses to transform the layout,

resolve any constraints, and update target locations.

VI. EXPERIMENTAL EVALUATION

We evaluated our CCR prototype in terms of runtime

overhead, file size increase, randomization entropy, and other

characteristics. Our experiments were performed on a system

equipped with an Intel i7-7700 3.6GHz CPU, 32GB RAM,

running the 64-bit version of Ubuntu 16.04.

A. Randomization Overhead

We started by compiling the entire SPEC CPU2006 bench-

mark suite (20 C and C++ programs) with our modified LLVM

and gold linker, using the -O2 optimization level and without

the PIC option. Next, we generated 20 different variants of

each program, 10 using function reordering and 10 more using

function and basic block reordering. Each run was performed

10 times for the original programs, and a single time for each

of the 20 variants.

Figure 7 shows a boxplot of the runtime overhead for

function reordering and basic block reordering. The dark

horizontal line in each box corresponds to the median overhead

value, which mostly ranges between zero and one across all

programs. The top and bottom of each box correspond to the

upper and lower quartile, while the whiskers to the highest

and lowest value, excluding outliers, which are denoted by

small circles (there were 14 such cases out of the total 400

variants, exhibiting an up to 7% overhead). Overall, the average

performance overhead is negligible at 0.28%, with a 1.37

standard deviation. The average overhead per benchmark is

reported in Table II, which also includes further information

about the layout and fixups of each program.

Interesting cases are mcf and milc, the variants of which

consistently exhibit a slight performance improvement, pre-

sumably due to better cache locality (we performed an extra

round of experiments to verify it). In contrast, xalancbmk
exhibited a distinguishably high average overhead of 4.9%.

Upon further investigation, we observed a significant increase

in the number of L1 instruction cache misses for its randomized

instances. Given that xalancbmk is one of the most complex

benchmarks, with a large number of functions and heavy use of

indirect control transfers, it seems that the disruption of cache

locality due to randomization has a much more pronounced

effect. For such cases, it may be worth exploring profile-guided

randomization approaches that will preserve the code locality

characteristics of the application.

B. ELF File Size Increase

Augmenting binaries with additional metadata entails the risk

of increasing their size at levels that may become problematic.

As discussed earlier, this was an issue that we took into

consideration when deciding what information to keep, and

optimized the final metadata to include only the minimum

amount of information necessary for code diversification.

As shown in Table II, file size increase ranges from 1.68%

to 20.86%, with an average of 11.46% (13.3% for the SPEC

benchmarks only). We consider this a rather modest increase,

and do not expect it to have any substantial impact to existing

software distribution workflows. The Layout columns (Objs,

Funcs, BBLs) show the number of object files, functions, and

basic blocks in each program. As expected, the metadata size

is proportional to the size of the original code. Note that

the generated randomized variants do not include any of the

metadata, so their size is the same as the original binary.

C. Binary Rewriting Time

We measured the rewriting time of our CCR prototype by

generating 100 variants of each program and reporting the

average processing time. We repeated the experiment twice,

using function and basic block reordering, respectively. As

shown in Table II (Rewriting columns) the rewriting process is

very quick for small binaries, and the processing time increases

linearly with the size of the binary. The longest processing time

was observed for xalancbmk, which is the largest and most

complex (in terms of number of basic blocks and fixups) among

the tested binaries. All but four programs were randomized in

under 9s, and more than half of them in under 1s.

The reported numbers include the process of updating the

debug symbols present in the .symtab section. As this is not

needed for production (stripped) binaries, the rewriting time

in practice will be shorter—indicatively, for xalancbmk, it

is 30% faster when compiled without symbols. Note that our

rewriter is just a proof of concept, and further optimizations are

possible. Currently, the rewriting process involves parsing the

raw metadata, building it into a tree representation, resolving

any constraints in the randomized layout, and generating

the final binary. We believe that the rewriting speed can be

further optimized by improving the logic of our rewriter’s

randomization engine. Moving from Python to C/C++ is also

expected to increase speed even further.

470

D. Correctness

To ensure that our code transformations do not affect in any

way the correctness of the resulting executable, in addition to

the SPEC benchmarks, we compiled and tested the augmented

versions of ten real-world applications. For example, we parsed

the entire LLVM source code tree with a randomized version

of ctags using the -R (recursive) option. The MD5 hash of

the resulting index file, which was 54MB in size, was identical

to the one generated using the original executable. Another

experiment involved the command-line audio encoding tool

oggenc—a large and quite complex program (58,413 lines

of code) written in C [86]—to convert a 44MB WAV file to

the OGG format, which we then verified that was correctly

processed. Furthermore, we successfully compiled popular

server applications (web, FTP, and SSH daemons), confirming

that their variants did not malfunction when using their default

configurations. Application versions and the exact type of

activity used for functionality testing are provided in Table III

in the Appendix.

E. Randomization Entropy

We briefly explore the randomization entropy that can be

achieved using function and basic block reordering, when

considering the current constraints of our implementation. Let

Fij be the jth function in the ith object, fi the number of

functions in that object, and bij the number of basic blocks in

the function Fij . Suppose there are p object files comprising a

given binary executable. The total number of functions q and

basic blocks r in the binary can be written as q =
∑p−1

i=0 fi and

r =
∑p−1

i=0

∑fi−1
j=0 bij . Then, the number of possible variants

with function reordering is q! and with basic block reordering

is r!. Due to the large number of variants, let the randomization

entropy E be the base 10 logarithm of the number of variants.

In our case, we perform basic block randomization at intra-

function level first, followed by function reordering. Therefore,

the entropy can be computed as follows:

E = log10(

p−1∏

i=0

(

fi−1∏

j=0

bij !) · (
p−1∑

i=0

fi)!)

However, as discussed in Section IV-D, our current imple-

mentation has some constraints regarding the placement of

functions and basic blocks. Let the number of such function

constraints in the ith object be yi. Likewise, fall-through blocks

are currently displaced together with their previous block.

Similarly to functions, in some cases the size of a fixup also

constrains the maximum distance to the referred basic block.

Let the number of such basic block constraints in function

Fij be xij . Given the above, the entropy in our case can be

calculated as:

E = log10(

p−1∏

i=0

(

fi−1∏

j=0

(bij − xij)!) · (
p−1∑

i=0

(fi − yi))!)

Using the above formula, we report the randomization

entropy for function and basic block level randomization in

Table II. We observe that even for small executables like lbm,

the number of variants exceeds 300 trillion. Consequently, our

current prototype achieves more than enough entropy, which

can be further improved by relaxing the above constraints (e.g.,

by separating fall-through basic blocks from their parent blocks,

and adding a relaxation-like phase in the rewriter to alleviate

existing fixup size constraints).

VII. LIMITATIONS

Our prototype implementation demonstrates the feasibility

of CCR by enabling practical fine-grained code randomization

(basic block reordering) on a popular platform (x86-64 Linux).

There are, of course, several limitations, which can be addressed

with additional engineering effort and are part of our future

work.

First, individual assembly source code files (.s) are currently

not supported. Note that assembly code files differ from

inline assembly (which is fully supported), in that their

processing by LLVM is not part of the standard abstract

syntax tree and intermediate representation workflow, and thus

corresponding function and basic block boundaries are missing

during compilation. Still, symbols for functions contained in

.s files are available, and we plan to include this information

as part of the collected metadata.

Second, any use of self-modifying code is not supported, as

the self-modification logic should be changed to account for

the applied randomization. In such cases, compatibility can

still be maintained by excluding (i.e., “pinning” down) certain

code sections or object files from randomization, assuming all

their external dependencies are included.

A slightly more important issue is fully updating all symbols

contained in the debug sections according to the new layout

after rewriting. Our current CCR prototype does update symbol

table entries contained in the .symtab section, but it does not

fully support the ones in the .debug_* sections. Although

in practice the lack of full debug symbols is not a problem,

as these are typically stripped off production binaries, this is

certainly a useful feature to have. In fact, we were prompted

to start working on resolving this issue because the lack of

correct debug symbols for newly generated variants hindered

our debugging efforts during the development of our prototype.

Finally, our prototype does not support programs with custom

exception handling when randomization at the basic block level

is used (this is not an issue for function-level randomization).

No additional metadata is required to support this feature (just

additional engineering effort). Further details about exception

handling are provided in the Appendix.

VIII. DISCUSSION

a) Other types of code hardening: Basic block reordering

is an impactful code randomization technique that ensures

that no ROP gadgets remain in their original locations, even

relatively to the entry point of the function that includes

them—an important aspect for defending against (indirect)

JIT-ROP attacks that rely on code pointer leakage [19, 20, 53].

For a function that consists of just a single basic block,

however, the relative distance of any gadgets from its entry

471

TABLE II
EXPERIMENTAL EVALUATION DATASET AND RESULTS (* INDICATES PROGRAMS WRITTEN IN C++)

Program Layout Fixups Size (KB) Rewriting (sec) Overhead Entropy (log10)

Objs Funcs BBLs .text .rodata .data .init ar. Orig. Augm. Increase Func BBL Func BBL Func BBL

400.perlbench 50 1,660 46,732 70,653 7,872 1,765 0 1,198 1,447 20.86% 7.69 8.05 -0.07% 0.32% 4,530 5,011
401.bzip2 7 71 2,407 2,421 75 0 0 90 101 12.80% 0.19 0.21 -0.23% 0.16% 100 157
403.gcc 143 4,326 118,397 189,543 84,357 367 0 3,735 4,465 19.54% 52.30 53.89 0.82% 0.91% 13,657 16,483
429.mcf 11 24 375 410 0 0 0 22 25 12.02% 0.08 0.09 -1.27% -0.98% 23 44
433.milc 68 235 2,613 5,980 50 36 0 148 170 14.94% 0.48 0.50 -1.53% -1.50% 456 600
444.namd* 23 95 7,480 8,170 24 0 0 312 345 10.49% 0.50 0.56 0.06% 0.07% 148 187
445.gobmk 62 2,476 25,069 44,136 1,377 21,400 0 3,949 4,116 4.23% 21.28 20.43 0.05% 0.35% 7,272 8,271
447.dealII* 6,295 6,788 100,185 103,641 7,954 1 45 4,217 4,581 8.65% 38.08 39.18 0.60% 0.52% 23,064 25,601
450.soplex* 299 889 13,741 15,586 1,561 0 61 467 531 13.76% 1.90 1.99 0.60% 0.28% 2,234 2,983
453.povray* 110 1,537 28,378 47,694 10,398 617 1 1,223 1,406 14.92% 5.67 5.88 -0.08% 0.50% 4,130 4,939
456.hmmer 56 470 10,247 14,265 798 156 0 343 400 16.53% 1.14 1.19 0.00% -0.11% 1,042 1,313
458.sjeng 119 132 4,469 8,978 431 0 0 155 186 19.93% 0.50 0.53 -0.55% -0.38% 221 334
462.libquantum 16 95 1,023 1,373 319 0 0 55 62 13.57% 0.19 0.19 0.40% -0.24% 148 207
464.h264ref 42 518 14,476 23,180 320 321 0 698 782 12.01% 1.97 2.06 0.17% 0.00% 1,180 1,468
470.lbm 2 17 133 227 0 0 0 22 24 8.15% 0.06 0.06 0.25% 0.25% 14 24
471.omnetpp* 366 1,963 22,118 34,212 3,411 240 75 843 952 12.95% 4.73 4.94 0.03% 0.25% 5,560 6,983
473.astar* 14 88 1,116 1,369 6 1 0 56 62 12.03% 0.17 0.17 0.78% 1.08% 134 169
482.sphinx3 44 318 5,557 9,046 26 207 0 213 249 16.54% 0.68 0.72 0.02% 0.23% 656 815
483.xalancbmk* 3,710 13,295 130,691 142,128 19,936 323 0 6,217 6,836 9.95% 88.09 89.94 4.92% 4.89% 48,863 61,045
999.specrand 2 3 11 32 0 0 0 8 9 11.07% 0.03 0.03 -0.32% -0.15% 0.8 1.6

ctags 50 423 8,550 13,618 3,733 507 0 795 851 7.03% 1.17 1.21 - - 915 1,095
gzip 34 103 2,895 5,466 466 21 0 267 289 8.13% 0.40 0.41 - - 164 194
lighttpd 50 351 5,817 9,169 818 98 0 866 903 4.23% 0.96 0.99 - - 732 891
miniweb 7 67 1,322 1,681 65 74 0 56 64 14.54% 0.19 0.19 - - 94 113
oggenc 1 428 7,035 7,746 183 3,869 0 2,120 2,156 1.68% 2.79 2.74 - - 942 2,285
openssh 122 1,135 18,262 29,815 2,442 90 0 2,144 2,248 4.83% 4.04 4.17 - - 3,398 3,856
putty 79 1,288 20,796 31,423 3,126 118 0 1,069 1,184 10.78% 3.71 3.82 - - 2,927 3,610
vsftpd 39 516 3,793 7,148 74 0 0 138 163 18.48% 0.65 0.67 - - 1,147 1,227
libcapstone 42 402 21,454 47,299 13,002 5 0 2,777 2,931 5.69% 10.64 11.31 - - 863 1,040
dosbox* 630 3,127 66,522 124,814 14,906 2,585 18 11,729 12,145 3.54% 37.59 38.12 - - 9,503 10,941

point still remains the same. This issue can be trivially

addressed by modifying our rewriter to insert a (varying)

number of NOPs or junk instructions at the beginning of

the function [32]. Other more narrow-scope transformations,

such as instruction substitution, intra basic block instruction

reordering, and register reassignment [9, 36] can also be

supported effortlessly, since our metadata provides precise

knowledge about the boundaries of basic blocks. In fact, we

have started leveraging such metadata for augmenting our

rewriter with agile hardening capabilities: that is, strip (or not)

hardening instrumentation (e.g., CFI [87], XOM [32]) based on

where the target application is going to be deployed, thereby

enabling precise and targeted protection.

Defending against more sophisticated attacks that rely on

whole-function reuse [53, 88–92] requires more aggressive

transformations, such as code pointer indirection [28,55,93,94]

or function argument randomization. We leave the exploration

of how our metadata could be extended to facilitate such

advanced protections as part of future research.

b) Error reporting, whitelisting, and patching: One of the

main benefits of code randomization based on compiler–rewriter

cooperation is that it allows for maintaining compatibility with

operations that rely on software uniformity, which currently is

a major roadblock for its practical deployment. By performing

the actual diversification on endpoints, any side-effects that

hinder existing norms can be reversed.

For instance, a crash dump of a diversified process can be

post-processed right after it is generated so that code addresses

are changed to refer to the original code locations of the master

binary that was initially distributed (otherwise, it will be of

no use to its developers). Similarly, code integrity checking

and whitelisting mechanisms can be modified to de-randomize

the in-memory or on-disk code before actually verifying it.

This randomization reversal process can be supported by

including a randomization seed within each variant (which

in conjunction with the original metadata will provide all

the necessary information for the task) [36]. The seed can

be kept as part of the on-disk binary (i.e., it does not need

to exist in memory), to prevent attackers from getting any

extra information about the randomized layout, e.g., through a

memory disclosure vulnerability.

Code signing does not require any modification, since master

binaries can continue to be signed normally before distribution.

At the client side, the binary rewriter can proceed only after

verifying the signature. Binary-level software patching is also

not significantly affected. Patches can continue to be released

in the same way as before, based on the master binary. At the

client side, the patch can be applied on the master binary, and

then a new (updated) variant can be generated.

c) Intellectual property: As an outcome of the compi-

lation process, most of the high-level programming language

structure and semantics are lost from the resulting binary code.

Especially for proprietary software, the inherent complexity

of code disassembly combined with the lack of symbolic

information (and the potential use of code obfuscation) can

hinder significantly any attempts of reconstructing the original

code semantics through binary code disassembly, control flow

graph extraction, and decompilation.

472

The metadata needed to facilitate code randomization can

certainly aid in extracting a more accurate view of the assembly

code and the control flow graph of a binary, but does not convey

any new symbolic information that would help in extracting

higher-level program semantics (function and variable names

aid reverse engineering significantly). We do not consider this

issue a major concern, as vendors who care about protecting

their intellectual property against reverse engineering rely on

more aggressive code obfuscation techniques (e.g., software

packing or instruction virtualization). Alternatively, parts of

code or whole modules for which such concerns apply can be

excluded so that no additional metadata is kept for them.

IX. RELATED WORK

Software diversity has been studied for decades in the

context of security and reliability. Early works on software

diversification focused on building fault-tolerant software for

reliability purposes [95,96]. Changing the location of code can

also improve performance, especially when guided by dynamic

profiling [43, 97–99]. In the security field, software diversifi-

cation has received attention as a means of breaking software

monocultures and mitigating mass exploitation [36–38].

Client-side code randomization often involves complex

binary code analysis, which faces significant challenges when it

comes to accuracy and coverage, especially when supplemental

information (e.g., relocation or symbolic information) is not

available [66, 68, 79, 100–102]. Static binary rewriting of

stripped binaries is still possible in certain cases, although

it involves either code extraction heuristics [7–11, 33, 44, 47],

or dynamic binary instrumentation [8, 10, 47, 48]. Other imple-

mentation approaches include compile-time [5, 28, 32, 42, 43],

link-time [6], load-time [7,8,10,33,44,50], and run-time [45,46,

103–105] solutions. On the other hand, the concept of server-

side diversification has been briefly explored, especially as part

of “app store” software distribution models [2, 3].

From the above, probably the closest in spirit to our work are

the technique proposed by Bhatkar et al. [5] and Selfrando [50],

which both rely on a single compilation to generate self-

randomizing binaries. Selfrando, for instance, uses a linker

wrapper script to extract function boundary information from

object files, which is maintained in the resulting executable.

As mentioned earlier, these approaches are limited to function-

level permutation, which is not enough for thwarting exploits

that rely on code pointer leakage to infer the location of

gadgets within functions [51–55]. As we have shown, basic

block reordering is a much more complex process that requires

additional metadata that must be extracted at earlier and later

stages of the compilation process. Compared to function-level

reordering, our approach achieves orders of magnitude higher

randomization entropy, while the space overhead due to the

metadata is actually lower (e.g., just 13.3% on average for the

SPEC2006 benchmarks, compared to 24.7% for Selfrando). We

should also note that due to their fundamental design decisions,

i.e., the extraction of existing information from object files after
they are compiled, these approaches cannot support link-time

optimization, and consequently, any additional features that

rely on it, such as CFI.

Binary rewriting schemes like XIFER [10] suffer from the

problem of imprecision, given that 100% accurate disassembly

and CFG extraction for complex C/C++ binaries (even when

relocation information is available) is not possible. This is

evident by the results of Andriesse et al. [70, 79], or the

multitude of heuristics employed by Shuffler [46].

The recent renewed focus on code diversification led to the

emergence of JIT-ROP attacks [12], which in turn led to the

development of execute-only memory protections [25–33]. A

prerequisite for these techniques is that the protected code

must have been previously diversified using fine-grained ran-

domization, which motivates our work. Although execute-only

memory prevents code discovery, adversaries can still harvest

code pointers from (readable) data sections and indirectly

infer the location of code fragments [19, 20, 53], or in some

implementations [29,30], achieve the same by partially reading

or reloading pieces of code [22, 106]. As a response, leakage-

resilient diversification [28,55] combines execute-only memory

with code pointer hiding through additional control flow

indirection. Still, although the introduced indirection prevents

harvested pointers from revealing anything useful about the

immediate surrounding code area of their target, attackers may

still be able to reuse whole functions, e.g., using harvested

pointers to other functions of the same or lower arity [88,89,92].

X. CONCLUSION

Aiming to combine the benefits of compiler-level and binary-

level code randomization techniques, we have presented a

hybrid approach that relies on compiler–rewriter cooperation to

facilitate fast and robust code diversification at the client side,

by augmenting binaries with transformation-assisting metadata.

We hope our work will alleviate the concerns of the broader

security community regarding to the hurdles that until now

have prevented the actual deployment of protections based

on client-side fine-grained code transformation. We anticipate

(and are currently working on) a first real-world deployment by

integrating our binary rewriter into the apt package manager

through its installation script support. To help the community

reach this goal, we make our CCR prototype publicly available.

AVAILABILITY

Our prototype open-source implementation is available at:

https://github.com/kevinkoo001/CCR.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

valuable feedback, and Christopher Morales for integrating

CCR with apt. This work was supported by the Office of Naval

Research (ONR) under awards N00014-15-1-2378, N00014-

17-1-2788, N00014-17-1-2891, and N00014-18-1-2043. Any

opinions, findings, and conclusions or recommendations ex-

pressed in this paper are those of the authors and do not

necessarily reflect the views of the US government or ONR.

473

REFERENCES

[1] H. Shacham, “The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and Communications Security (CCS),
2007, pp. 552–561.

[2] M. Franz, “E unibus pluram: Massive-scale software diversity as a
defense mechanism,” in Proceedings of the New Security Paradigms
Workshop (NSPW), 2010, pp. 7–16.

[3] P. Larsen, S. Brunthaler, and M. Franz, “Security through diversity:
Are we there yet?” IEEE Security Privacy, vol. 12, no. 2, pp. 28–35,
Mar 2014.

[4] E. Bhatkar, D. C. Duvarney, and R. Sekar, “Address obfuscation: an
efficient approach to combat a broad range of memory error exploits,”
in In Proceedings of the 12th USENIX Security Symposium, 2003, pp.
105–120.

[5] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient techniques for
comprehensive protection from memory error exploits,” in Proceedings
of the 14th USENIX Security Symposium, August 2005, pp. 255–270.

[6] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space
layout permutation (ASLP): Towards fine-grained randomization of
commodity software,” in Proceedings of the 22nd Annual Computer
Security Applications Conference (ACSAC), 2006, pp. 339–348.

[7] R. Wartell, V. Mohan, K. W. Hamlen, Z. Lin, and W. C. Rd, “Binary
stirring: Self-randomizing instruction addresses of legacy x86 binary
code,” in Proceedings of the 19th ACM conference on Computer and
communications security (CCS), 2012, pp. 157–168.

[8] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “ILR:
Where’d my gadgets go?” in Proceedings of the 33rd IEEE Symposium
on Security & Privacy (S&P), 2012, pp. 571–585.

[9] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Proceedings of the 33rd IEEE Symposium on Security
& Privacy (S&P), May 2012, pp. 601–615.

[10] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R. Sadeghi, “Gadge me
if you can: Secure and efficient ad-hoc instruction-level randomization
for x86 and arm,” in Proceedings of the 8th ACM Symposium on
Information, Computer and Communications Security (ASIACCS), 2013,
pp. 299–310.

[11] H. Koo and M. Polychronakis, “Juggling the gadgets: Binary-level code
randomization using instruction displacement,” in Proceedings of the
11th ACM Asia Conference on Computer and Communications Security
(ASIACCS), 2016, pp. 23–34.

[12] K. Z. Snow, L. Davi, A. Dmitrienko, C. Liebchen, F. Monrose, and A.-R.
Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization,” in Proceedings of the 34th IEEE
Symposium on Security & Privacy (S&P), 2013, pp. 574–588.

[13] C. Pierce, “Another 0day, another prevention,” https://www.endgame.
com/blog/another-0day-another-prevention, 2016.

[14] A. Fobian and C.-B. Bender, “Firefox 0-day target-
ing Tor-users,” https://blog.gdatasoftware.com/2016/11/
29346-firefox-0-day-targeting-tor-users, 2016.

[15] M. Labs, “MWR Labs Pwn2Own 2013 Write-up -
Webkit Exploit,” 2013, https://labs.mwrinfosecurity.com/blog/
mwr-labs-pwn2own-2013-write-up-webkit-exploit/.

[16] V. Kotov, “Dissecting the newest IE10 0-day exploit (CVE-
2014-0322),” Feb. 2014, http://labs.bromium.com/2014/02/25/
dissecting-the-newest-ie10-0-day-exploit-cve-2014-0322/.

[17] B. Antoniewicz, “Analysis of a Malware ROP Chain,”
Oct. 2013, http://blog.opensecurityresearch.com/2013/10/
analysis-of-malware-rop-chain.html.

[18] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in Proceedings of the 35th IEEE Symposium on Security
& Privacy (S&P), 2014, pp. 227–242.

[19] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, M. Negro,
M. Qunaibit, and A.-R. Sadeghi, “Losing control: On the effectiveness
of control-flow integrity under stack attacks,” in Proceedings of the
22nd ACM Conference on Computer and Communications Security
(CCS), 2015, pp. 952–963.

[20] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-oriented
programming,” in Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2015.

[21] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks without
memory disclosures: Remote side channel attacks on diversified
code,” in Proceedings of the 21st ACM Conference on Computer and
Communications Security (CCS), 2014, pp. 54–65.

[22] K. Z. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and
M. Polychronakis, “Return to the zombie gadgets: Undermining
destructive code reads via code inference attacks,” in Proceedings
of the 37th IEEE Symposium on Security & Privacy (S&P), May 2016,
pp. 954–968.

[23] F. J. Corbató and V. A. Vyssotsky, “Introduction and overview of the
Multics system,” in Proceedings of the Fall Joint Computer Conference
(AFIPS), 1965, pp. 185–196.

[24] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz, “Architectural Support for Copy and Tamper Resistant
Software,” in Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI), 2000, pp. 168–177.

[25] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny,
“You can run but you can’t read: Preventing disclosure exploits in
executable code,” in Proceedings of the 21st ACM Conference on
Computer and Communications Security (CCS), 2014, pp. 1342–1353.

[26] J. Gionta, W. Enck, and P. Larsen, “Preventing Kernel Code-Reuse
Attacks Through Disclosure Resistant Code Diversification,” in Pro-
ceedings of the IEEE Conference on Communications and Network
Security (CNS), 2016, pp. 189–197.

[27] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the contents
of userspace memory in the face of disclosure vulnerabilities,” in
Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy (CODASPY), 2015, pp. 325–336.

[28] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in Proceedings of the 36th IEEE
Symposium on Security & Privacy (S&P), May 2015, pp. 763–780.

[29] A. Tang, S. Sethumadhavan, and S. Stolfo, “Heisenbyte: Thwarting
memory disclosure attacks using destructive code reads,” in Proceedings
of the 22nd ACM Conference on Computer and Communications
Security (CCS), 2015, pp. 256–267.

[30] J. Werner, G. Baltas, R. Dallara, N. Otternes, K. Snow, F. Monrose, and
M. Polychronakis, “No-execute-after-read: Preventing code disclosure in
commodity software,” in Proceedings of the 11th ACM Asia Conference
on Computer and Communications Security (ASIACCS), 2016, pp. 35–
46.

[31] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, and
A.-R. Sadeghi, “Leakage-resilient layout randomization for mobile
devices,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2016.

[32] M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis, and V. P.
Kemerlis, “kRˆX: Comprehensive Kernel Protection against Just-In-
Time Code Reuse,” in Proceedings of the 12th European conference
on Computer Systems (EuroSys), 2017, pp. 420–436.

[33] Y. Chen, D. Zhang, R. Wang, R. Qiao, A. M. Azab, L. Lu, H. Vijayaku-
mar, and W. Shen, “NORAX: Enabling execute-only memory for COTS
binaries on AArch64,” in Proceedings of the 38th IEEE Symposium on
Security & Privacy (S&P), 2017, pp. 304–319.

[34] ARM, “Execute-only memory,” http://infocenter.arm.com/, 2014.

[35] LWN.net, “Memory protection keys,” https://lwn.net/Articles/643797/,
2015.

[36] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in Proceedings of the 35th IEEE Symposium on
Security & Privacy, May 2014, pp. 276–291.

[37] F. B. Cohen, “Operating system protection through program evolution,”
Computers and Security, vol. 12, pp. 565–584, Oct. 1993.

[38] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer
systems,” in Proceedings of the 6th Workshop on Hot Topics in Operating
Systems (HotOS-VI), 1997.

[39] P. Team, “Address space layout randomization,” 2003, http://pax.
grsecurity.net/docs/aslr.txt.

[40] M. Miller, T. Burrell, and M. Howard, “Mitigating software vulnerabil-
ities,” Jul. 2011, http://www.microsoft.com/download/en/details.aspx?
displaylang=en&id=26788.

[41] J. Edge, “OpenBSD kernel address randomized link,” https://lwn.net/
Articles/727697/, 2017.

[42] K. Anand, M. Smithson, K. Elwazeer, A. Kotha, J. Gruen, N. Giles, and
R. Barua, “A compiler-level intermediate representation based binary

474

analysis and rewriting system,” in Proceedings of the 8th European
conference on Computer Systems (EuroSys), 2013, pp. 295–308.

[43] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-guided automated software diversity,” in Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2013.

[44] S. Crane, A. Homescu, and P. Larsen, “Code randomization: Haven’t
we solved this problem yet?” in Proceedings of the IEEE Cybersecurity
Development Conference (SecDev), 2016, pp. 124–129.

[45] Y. Chen, Z. Wang, D. Whalley, and L. Lu, “Remix: On-demand live
randomization,” in Proceedings of the 6th ACM Conference on Data
and Application Security and Privacy (CODASPY), 2016, pp. 50–61.

[46] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan,
P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello, “Shuffler:
Fast and deployable continuous code re-randomization,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), 2016, pp. 367–382.

[47] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity & randomization
for binary executables,” in Proceedings of the 34th IEEE Symposium
on Security & Privacy (S&P), 2013, pp. 559–573.

[48] E. Shioji, Y. Kawakoya, M. Iwamura, and T. Hariu, “Code shredding:
Byte-granular randomization of program layout for detecting code-
reuse attacks,” in Proceedings of the 28th Annual Computer Security
Applications Conference (ACSAC), 2012, pp. 309–318.

[49] TechCrunch, “Google says there are now 2 billion
active chrome installs,” https://techcrunch.com/2016/11/10/
google-says-there-are-now-2-billion-active-chrome-installs/, 2016.

[50] M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen, P. Larsen,
C. Liebchen, M. Perry, and A.-R. Sadeghi, “Selfrando: Securing the
Tor browser against de-anonymization exploits,” PoPETs, no. 4, pp.
454–469, 2016.

[51] Bulba and Kil3r, “Bypassing StackGuard and StackShield,” Phrack,
vol. 10, no. 56, Jan. 2000.

[52] T. Durden, “Bypassing PaX ASLR protection,” Phrack, vol. 11, no. 59,
Jul. 2002.

[53] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in Proceedings
of the 36th IEEE Symposium on Security & Privacy (S&P), 2015, pp.
745–762.

[54] G. Fresi Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Surgically
returning to randomized lib(c),” in Proceedings of the 25th Annual
Computer Security Applications Conference (ACSAC), 2009.

[55] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz, “It’s a TRaP:
Table randomization and protection against function-reuse attacks,” in
Proceedings of the ACM conference on Computer and Communications
Security (CCS), 2015, pp. 243–255.

[56] Microsoft, “/ORDER (put functions in order),” 2003, http://msdn.
microsoft.com/en-us/library/00kh39zz.aspx.

[57] M. Backes and S. Nürnberger, “Oxymoron: Making fine-grained memory
randomization practical by allowing code sharing,” in Proceedings of
the 23rd USENIX Security Symposium, 2014.

[58] “Polyverse,” https://polyverse.io/, 2017.

[59] R. N. Horspool and N. Marovac, “An approach to the problem of
detranslation of computer programs,” Computer Journal, vol. 23, no. 3,
pp. 223–229, 1980.

[60] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. Thuraising-
ham, “Differentiating code from data in x86 binaries,” in Proceedings
of the European Conference on Machine Learning and Knowledge
Discovery in Databases, 2011, pp. 522–536.

[61] G. Ramalingam, “The Undecidability of Aliasing,” ACM Trans. Program.
Lang. Syst., vol. 16, no. 5, pp. 1467–1471, September 1994.

[62] M. Ludvig, “CFI support for GNU assembler (GAS),” http://www.logix.
cz/michal/devel/gas-cfi/, 2003.

[63] Using the GNU Compiler Collection (GCC), “Common
Function Attributes,” https://gcc.gnu.org/onlinedocs/gcc/
Common-Function-Attributes.html, 2017.

[64] “Profile guided optimization,” https://clang.llvm.org/docs/UsersManual.
html#profile-guided-optimization.

[65] T. Johnson, “ThinLTO: Scalable and Incremental LTO,” http://blog.llvm.
org/2016/06/thinlto-scalable-and-incremental-lto.html, 2016.

[66] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT:
Learning to Recognize Functions in Binary Code,” in Proceedings of
the 23rd USENIX Security Symposium, 2014, pp. 845–860.

[67] R. Qiao and R. Sekar, “Function interface analysis: A principled
approach for function recognition in COTS binaries,” in Proceedings of
the 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2016.

[68] L. C. Harris and B. P. Miller, “Practical analysis of stripped binary
code,” SIGARCH Comput. Archit. News, vol. 33, no. 5, pp. 63–68, Dec.
2005.

[69] K. ElWazeer, “Deep Analysis of Binary Code to Recover Program
Structure,” Dissertation, 2014.

[70] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function
detection in binaries,” in Proceedings of the 2nd IEEE European
Symposium on Security & Privacy (EuroS&P), April 2017, pp. 177–189.

[71] E. Bendersky, “Assembler relaxation,” http://eli.thegreenplace.net/2013/
01/03/assembler-relaxation, 2013.

[72] Y. Li, “Target independent code generation,” http://people.cs.pitt.edu/
∼yongli/notes/llvm3/LLVM3.html, 2012.

[73] M. Sun, T. Wei, and J. C. Lui, “TaintART: A Practical Multi-level
Information-Flow Tracking System for Android RunTime,” in Proceed-
ings of the 23rd ACM Conference on Computer and Communications
Security (CCS), 2016, pp. 331–342.

[74] J. Corbet, “SMP alternatives,” https://lwn.net/Articles/164121/, 2005.

[75] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Dynamic recon-
struction of relocation information for stripped binaries,” in Proceedings
of the 17th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), September 2014, pp. 68–87.

[76] D. Geneiatakis, G. Portokalidis, V. P. Kemerlis, and A. D. Keromytis,
“Adaptive Defenses for Commodity Software Through Virtual Appli-
cation Partitioning,” in Proceedings of the 19th ACM conference on
Computer and communications security (CCS), 2012, pp. 133–144.

[77] T. Klein, “Relro - a (not so well known) memory cor-
ruption mitigation technique,” http://tk-blog.blogspot.com/2009/02/
relro-not-so-well-known-memory.html, 2009.

[78] “The LLVM Compiler Infrastructure,” http://llvm.org.

[79] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos,
“An in-depth analysis of disassembly on full-scale x86/x64 binaries,”
in Proceedings of the 25rd USENIX Security Symposium, 2016, pp.
583–600.

[80] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna, “Ramblr: Making Reassembly
Great Again,” in Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2017.

[81] I. L. Taylor, “Introduction to gold,” http://www.airs.com/blog/archives/
38, 2007.

[82] S. Kell, D. P. Mulligan, and P. Sewell, “The missing link: Explaining
ELF static linking, semantically,” in Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2016, pp. 607–623.

[83] “GNU Binutils,” https://www.gnu.org/software/binutils/.

[84] E. Bendersky, “Pure-python library for parsing ELF and DWARF,”
https://github.com/eliben/pyelftools.

[85] “Protocol Buffers,” https://developers.google.com/protocol-buffers/.

[86] S. McCamant, “Large single compilation-unit C programs,” http://people.
csail.mit.edu/smcc/projects/single-file-programs/, 2006.

[87] “Control flow integrity,” https://clang.llvm.org/docs/
ControlFlowIntegrity.html.

[88] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of
fine-grained control flow integrity,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS), 2015,
pp. 901–913.

[89] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, C. L.
Stephen Crane, P. Larsen, L. Davi, M. Franz, A.-R. Sadeghi, and
H. Okhravi, “Address-Oblivious Code Reuse: On the Effectiveness
of Leakage Resilient Diversity,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2017.

[90] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-flow bending: On the effectiveness of control-flow integrity,”
in Proceedings of the 24th USENIX Security Symposium, 2015, pp.
161–176.

475

[91] E. Bosman and H. Bos, “Framing signals—a return to portable shellcode,”
in Proceedings of the 35th IEEE Symposium on Security & Privacy
(S&P), 2014, pp. 243–258.

[92] V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos,
and C. Giuffrdia, “The dynamics of innocent flesh on the bone: Code
reuse ten years later,” in Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), 2017, pp. 1675–1689.

[93] X. Chen, H. Bos, and C. Giuffrida, “CodeArmor: Virtualizing the code
space to counter disclosure attacks,” in Proceedings of the 2nd IEEE
European Symposium on Security & Privacy (EuroS&P), 2017, pp.
514–529.

[94] M. Zhang, M. Polychronakis, and R. Sekar, “Protecting COTS binaries
from disclosure-guided code reuse attacks,” in Proceedings of the 33rd
Annual Computer Security Applications Conference (ACSAC), 2017, pp.
128–140.

[95] B. Randell, “System Structure for Software Fault Tolerance,” in
Proceedings of the International Conference on Reliable Software,
1975, pp. 220–232.

[96] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE
Trans. Softw. Eng., vol. 11, no. 12, pp. 1491–1501, Dec. 1985.

[97] K. Pettis, R. C. Hansen, and J. W. Davidson, “Profile guided code
positioning,” in Proceedings of the ACM Conference on Programming
Language Design and Implementation, 1990, pp. 16–27.

[98] Google, “Syzygy - profile guided, post-link executable reordering,” 2009,
http://code.google.com/p/syzygy/wiki/SyzygyDesign.

[99] R. Lavaee and D. Chen, “ABC Optimizer: Affinity Based Code Layout
Optimization,” Technical Report, 2014.

[100] G. Balakrishnan and T. Reps, “WYSINWYX: What you see is not
what you execute,” ACM Trans. Program. Lang. Syst., vol. 32, no. 6,
pp. 23:1–23:84, Aug. 2010.

[101] C. Cifuentes and M. V. Emmerik, “Recovery of Jump Table Case
Statements from Binary Code,” in Proceedings of the 7th International
Workshop on Program Comprehension (IWPC), 1999, pp. 192–192.

[102] X. Meng and B. P. Miller, “Binary code is not easy,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
2016, pp. 24–35.

[103] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely
rerandomization for mitigating memory disclosures,” in Proceedings of
the 22nd ACM Conference on Computer and Communications Security
(CCS), 2015, pp. 268–279.

[104] M. Morton, H. Koo, F. Li, K. Z. Snow, M. Polychronakis, and
F. Monrose, “Defeating zombie gadgets by re-randomizing code upon
disclosure,” in Proceedings of the 9th International Symposium on
Engineering Secure Software and Systems (ESSoS), 2017, pp. 143–160.

[105] Z. Wang, C. Wu, J. Li, Y. Lai, X. Zhang, W.-C. Hsu, and Y. Cheng,
“Reranz: A light-weight virtual machine to mitigate memory disclosure
attacks,” in Proceedings of the 13th ACM International Conference on
Virtual Execution Environments (VEE), 2017, pp. 143–156.

[106] J. Pewny, P. Koppe, L. Davi, and T. Holz, “Breaking and fixing
destructive code read defenses,” in Proceedings of the 33rd Annual
Computer Security Applications Conference (ACSAC), 2017, pp. 55–67.

[107] Intel, “System V application binary interface,” https://software.intel.
com/sites/default/files/article/402129/mpx-linux64-abi.pdf, 2013.

[108] “The DWARF debugging standard,” http://dwarfstd.org/.
[109] “LLVM link time optimization design and implementation,” https://llvm.

org/docs/LinkTimeOptimization.html.
[110] “The LLVM gold plugin,” http://llvm.org/docs/GoldPlugin.html.

APPENDIX

ADDITIONAL IMPLEMENTATION DETAILS

A. Exception Handling

Our prototype supports the exception handling mechanism

that the x86_64 ABI [107] has adopted, which includes stack

unwinding information contained in the .eh_frame section.

This section follows the same format as the .debug_frame
section of DWARF [108], which contains metadata for restoring

previous call frames through certain registers. It consists of

one or more subsections, with each forming a single CIE

(Common Information Entry) followed by multiple FDEs

	���"3'

��
�!�����

… 	���"�'

!	��	

!�,-$����-,��
version
en_frame_ptr_enc
fde_count_enc
table_enc
eh_frame_ptr

initial_loc[0]
fde_pointer[0]

…
initial_loc[n]
fde_pointer[n]

!�,-$����

�,��"3'

length
CIE_id
version

augmentation
address_size
segment_size

…

initial_instrs
padding

	4��"3'
length
CIE_ptr

initial_loc
address_range

…

…
	4��"�'
length
CIE_ptr

initial_loc
address_range

…

Fig. 8. Structure of an .eh_frame section for exception handling. Bold
fields must be updated after transformation according to the encoding type
specified in the .eh_frame_hdr section.

TABLE III
APPLICATIONS USED FOR CORRECTNESS TESTING

Application Tested Functionality

ctags-5.8 Index a large corpus of source code
gzip-1.8 Compress and decompress a large file
oggenc-1.0.1 Encode a WAV file to OGG format
putty-0.67 Connect to a remote server through the terminal
lighttpd-1.4.45 Start the server and connect to the main page
miniweb Start the server and connect to the main page
opensshd-7.5 Start an SSH server and accept a connection
vsftpd-3.0.3 Start an FTP server and download a file
libcapstone-3.0.5 Test a disassembly in various platforms
dosbox-0.74 Run an old DOS game within the emulator

(Frame Descriptor Entry). Every FDE corresponds to a function

in a compilation unit. One of the FDE fields describes the

initial_loc of the function that holds the relative address

of the function’s entry instruction, which requires to be patched

during the rewriting phase.

As shown in Figure 8, the range an FDE corresponds to is

determined by both the inital_loc and address_range
fields. Additionally, .eh_frame_hdr contains a table of

tuples (inital_loc, fde_pointer) for quickly resolving

frames. Because these tuples are sorted according to each

function’s location, the table must be updated to factor in our

transformations. Note that our rewriter parses the exception

handling sections directly, with no additional information.

Our current CCR prototype does not support randomization

with custom exception handling at the basic block level

(custom exception handling is fully supported for function-

level randomization). As mentioned above, the .eh_frame
section contains a compact table with entries corresponding to

possible instruction addresses in the program. The exception

handling mechanism triggers a pre-defined instruction sequence,

written in a domain-specific (debugger) language. For example,

DW_CFA_set_loc N means that the next instructions apply

476

to the first N bytes of the respective function (based on

its location). Each FDE may trigger a series of instructions,

including the ones in a language-specific data area (LSDA),

such as .gcc_except_table (if defined), for properly

unwinding the stack. To fully support this mechanism, the

LSDA instructions should be updated according to the new

locations of a functions’ basic blocks. We plan to support this

feature in future releases of our framework.

B. Link-Time Optimization (LTO)

Starting with v3.9, LLVM supports link-time optimiza-

tion [109] to allow for inter-module optimizations at link time.1

Enabling LTO generates a non-native object file (i.e., an LLVM

bitcode file), which prompts the linker to perform optimization

passes on the merged LLVM IR. Our toolchain interposes at

LTO’s instruction lowering and linking stage to collect the

appropriate metadata of the final optimized code.

C. Control Flow Integrity (CFI)

LLVM’s CFI protection [87] offers six different integrity

check levels, which are available only when LTO is enabled.2

The first five levels are implemented by inserting sanitization

routines, while the sixth (cfi-icall) relies, among other

mechanisms, on function trampolines. Our current CCR pro-

totype supports the first five modes, but not the sixth one,

because the generated trampolines at call sites are internally

created by LLVM using a special intrinsic,3 rendering their

boundaries unknown.

D. Inline assembly

The LLVM backend has an integrated assembler

(MCAssembler) that emits the final instruction format, which

is internally represented by an MCInst instance. In general,

the instruction lowering process includes the generation of

MCInst instances. Fortunately, the LLVM assembly parser

(AsmParser) independently takes care of emitting MCInst
information also in case of inline assembly, which allows us to

tag the parents of all embedded instructions generated from the

parser. Moreover, the assembler processes instruction relaxation

for inline assembly as needed.

1Either ld.bfd or gold is needed, configured with plugin support [110].
LLVM’s LTO library (libLTO) implements the plugin interface to interact
with the linker, and is invoked by clang with the -flto option.

2Applying CFI requires the -flto option at all times. Additionally, both
-fsanitize=cfi-{vcall,nvcall,cast-strict,derived-cast,
unrelated-cast, icall} and -fvisibility={default,hidden}
flags should be provided to clang.

3LLVM’s llvm.type.test intrinsic tests if the given pointer and type
identifier are associated.

477

