
Another Flip in the Wall of Rowhammer Defenses

Daniel Gruss1, Moritz Lipp1, Michael Schwarz1, Daniel Genkin2,

Jonas Juffinger1, Sioli O’Connell3, Wolfgang Schoechl1, and Yuval Yarom3,4

1 Graz University of Technology
2 University of Pennsylvania and University of Maryland

3 University of Adelaide
4 Data61

Abstract—The Rowhammer bug allows unauthorized modifica-
tion of bits in DRAM cells from unprivileged software, enabling
powerful privilege-escalation attacks. Sophisticated Rowhammer
countermeasures have been presented, aiming at mitigating the
Rowhammer bug or its exploitation. However, the state of the art
provides insufficient insight on the completeness of these defenses.

In this paper, we present novel Rowhammer attack and
exploitation primitives, showing that even a combination of all
defenses is ineffective. Our new attack technique, one-location
hammering, breaks previous assumptions on requirements for
triggering the Rowhammer bug, i.e., we do not hammer multiple
DRAM rows but only keep one DRAM row constantly open.
Our new exploitation technique, opcode flipping, bypasses recent
isolation mechanisms by flipping bits in a predictable and
targeted way in userspace binaries. We replace conspicuous
and memory-exhausting spraying and grooming techniques with
a novel reliable technique called memory waylaying. Memory
waylaying exploits system-level optimizations and a side channel
to coax the operating system into placing target pages at attacker-
chosen physical locations. Finally, we abuse Intel SGX to hide
the attack entirely from the user and the operating system,
making any inspection or detection of the attack infeasible.
Our Rowhammer enclave can be used for coordinated denial-
of-service attacks in the cloud and for privilege escalation on
personal computers. We demonstrate that our attacks evade all
previously proposed countermeasures for commodity systems.

I. INTRODUCTION

The Rowhammer bug is a hardware reliability issue in

which an attacker repeatedly accesses (hammers) DRAM

cells to cause unauthorized changes in physically adjacent

memory locations. Since its initial discovery as a security

issue [44], Rowhammer’s ability to defy abstraction barriers

between different security domains has been extensively used

for mounting devastating attacks on various systems. Examples

of previous attacks include privilege escalation, from native

environments [65], from within a browser’s sandbox [24],

and from within virtual machines running on third-party

compute clouds [70], mounting fault attacks on cryptographic

primitives [10, 59], and obtaining root privileges on mobile

phones [68]. Recognizing the apparent danger, these attacks

have sparked interest in developing effective and efficient

mitigation techniques. While existing hardware countermea-

sures such as using memory with error-correction codes (ECC-

RAM) appear to make Rowhammer attacks harder [44], ECC-

RAM is intended for server computers and is typically not

supported on consumer-grade machines.

Software-based mitigations, which can be implemented on

commodity systems, have also been proposed. These include

ad-hoc defense techniques such as doubling the RAM refresh

rates [44], removing unprivileged access to the pagemap
interface [45, 62, 65], and prohibiting the clflush instruc-

tion [65]. However, recent works have already bypassed these

countermeasures [6, 24, 68]. Other ad-hoc attempts, such as

disabling page deduplication by default [52, 60], only prevent

specific Rowhammer attacks exploiting these features [11, 59],

but not all Rowhammer attacks.

The research community proposed sophisticated defenses

which seemingly have solved the Rowhammer problem. Based

on the underlying primitives of these defenses, we introduce

a new systematic categorization into five defense classes:

• Static Analysis. Binary code is analyzed for specific

behavior, common in side-channel attacks, e.g., using high-

resolution timers or cache flush instructions [28, 35].

• Monitoring Performance Counters. Rowhammer relies

on frequent accesses to DRAM cells, e.g., using a Flush+

Reload loop. These frequent accesses are detected by moni-

toring CPU performance counters [6, 17, 25, 28, 35, 56, 75].

• Monitoring Memory Access Patterns. Rowhammer

causes unusual high-frequency memory access patterns to

two or more addresses in one DRAM bank. Rowhammer

can be stopped by detecting such access patterns [6, 18].

• Preventing Exhaustion-based Page Placement. Row-

hammer requires target pages to be on vulnerable memory

locations. All Rowhammer privilege escalation attacks so

far required memory exhaustion. Thus, preventing abuse of

memory exhaustion thwarts Rowhammer attacks [24, 68].

• Preventing Physical Proximity to Kernel Pages. As a

more complete solution, user and kernel memory cells are

physically isolated through the memory allocator, thwarting

all practical Rowhammer privilege-escalation attacks [12].

Notice that defenses in each class share the same assump-

tions, properties, and introduce the same form of protection.

Defenses from different classes complement each other. Thus,

given the extensive amount of research on Rowhammer coun-

termeasures, in this paper we ask the following question:

To what extent do the approaches above actually prevent
Rowhammer attacks? In particular, is it possible to success-
fully mount Rowhammer privilege-escalation attacks in the
presence of some (or even all) of the countermeasures above?

245

2018 IEEE Symposium on Security and Privacy

© 2018, Daniel Gruss. Under license to IEEE.
DOI 10.1109/SP.2018.00031

A. Our Results and Contributions

In this paper, we show that despite numerous works on

mitigating Rowhammer attacks, much remains to be done

to truly understand their effectiveness and how to mitigate

them. For this purpose, we introduce a new categorization for

Rowhammer defenses (which we already outlined above) as

a foundation for a systematic evaluation. Demonstrating the

insufficiency of existing mitigation techniques, we present a

novel Rowhammer attack and subsequent exploitation tech-

niques for privilege escalation which allows defeating the un-

derlying assumptions of all of the countermeasures mentioned

above. In particular, our attack is still applicable even in the

presence of all of the above countermeasures. We now describe

the four building blocks of our attack and how each building

block invalidates the assumptions of the defense classes.

Defeating Physical Kernel Isolation. The assumption of

physical kernel isolation is that Rowhammer-based privilege

escalation is only practical by flipping bits in kernel pages.

We void this assumption by introducing opcode flipping, a
technique for malicious and unauthorized modification of a

userspace program’s instructions by causing bit flips in its

opcodes. By applying this technique to sudo, we bypass

authentication checks and obtain root privileges.

Defeating Memory Access Pattern Analysis. All known

Rowhammer techniques require frequent alternating accesses

to two or more DRAM cells in the same DRAM bank. Con-

sequently, countermeasures detect when an attacker performs

such alternating accesses to two or more addresses in the same

DRAM bank. We present one-location hammering, a new type

of Rowhammer attack which only hammers one single address.
Since our attack only uses one memory address, it does not

require any knowledge of physical addresses and DRAM

mappings [38, 57, 70], allowing us to perform Rowhammer

attacks with even fewer requirements.

Page Placement Without Memory Exhaustion. Page dedu-

plication is usually disabled for security reasons [52, 60, 68]

as a response to page deduplication attacks [8, 22, 66], includ-

ing deduplication-based Rowhammer attacks [11, 59], Hence,

attacks can only use memory exhaustion [24, 65, 68, 70] to

surgically place a target page on a vulnerable physical memory

location. Consequently, countermeasures aim to prevent adver-

sarial memory exhaustion [24, 68]. We introduce memory way-
laying, a reliable technique exploiting the Operating System

(OS) page cache to influence the physical location of a target

page. Unlike previous techniques, memory waylaying does not

exhaust the system memory and does not cause out-of-memory

situations, i.e., the system remains stable and responsive.

Defeating Countermeasures based on Performance Coun-
ters and Static Analysis. SGX is an x86 instruction-set

extension to securely and confidentially run programs in iso-

lated environments, called enclaves, on potentially adversary-

controlled systems. Enclaves run with regular user privileges

and are further restricted for their own security and safety, e.g.,

no system calls. To protect against compromised or malicious

OSs and hardware, the memory of the enclave is encrypted

to prevent any modification or inspection of the enclave’s

memory contents, even by the OS’s kernel and hardware

components [19]. Furthermore, enclaves are excluded from the

CPU performance counters [64]. Hence, this approach defeats

countermeasures which rely on monitoring performance coun-

ters [6, 25, 28, 56] or on analyzing the application code or

instruction stream for Rowhammer attacks [28, 35].

B. Attack Scenarios

Our attacks apply to personal computers and cloud systems.

Hence, we demonstrate our attacks in both of these scenarios.

• Native Privilege Escalation Attack. Our Rowhammer

enclave can be used on personal computers to gain root

privileges on the system, even in the presence of all of the
defenses mentioned above.

• A Cloud Denial-of-Service Attack. Our Rowhammer

enclave can also be used in the cloud, to shut down a large

number of cloud machines in a coordinated way, i.e., a

“distributed” denial-of-service attack, by abusing Intel SGX

security mechanisms. When SGX detects an error in the

encrypted and integrity-checked memory region, it halts the

entire machine until a manual power cycle is performed. By

coordinating the error injection over multiple machines, an

attacker can potentially take down an entire cloud provider.

C. Paper Outline

Section II provides background. Section III introduces a

new categorization of Rowhammer defenses. Section IV de-

fines our attacker model. Section V overviews our attack

and its building blocks, which are detailed in Section VI

(opcode flipping), Section VII (one-location hammering), and

Section VIII (memory waylaying). Section IX evaluates our

attacks in practical scenarios. Section X discusses limitations

and additional observations. We conclude in Section XI.

II. BACKGROUND

In this section, we overview the Rowhammer bug and

defenses, discuss the prefetch side-channel attack which we

use in Section VIII, and provide background on Intel SGX.

A. The Rowhammer Bug

The increase in density and decrease in size of DRAM cells

leads to smaller capacitance of cells, allowing them to operate

using lower voltages and smaller charges. While these changes

have many advantages, such as an increase in DRAM capacity

and lower energy consumption, they also cause DRAM cells to

become more susceptible to disturbance errors and unintended

physical interactions between multiple cells. Such interactions

and disturbances often cause memory corruption, where the

bit-value of a DRAM cell is unintentionally flipped [54].

In 2014, Kim et al. [44] showed that such bit errors can be

caused in a DRAM row by rapidly accessing memory locations

in adjacent DRAM rows (also known as row hammering [29]).

To achieve these rapid DRAM accesses, data-caching mecha-

nisms need to be bypassed, either by flushing the cache, e.g.,

using clflush [44], cache eviction [1, 6, 24], or uncached

246

memory accesses [58]. We now describe different Rowhammer

techniques to obtain bit flips in the target row.

Single-sided hammering performs frequent memory ac-

cesses (hammering) to only one row which is adjacent to the

target row. In contrast, double-sided hammering hammers two

memory rows, one on each side of the target row. As the

two hammered rows must be on different sides of the target

row, double-sided hammering generally requires at least partial

knowledge of virtual-to-physical mappings while single-sided

hammering does not. Both hammering techniques produce

abnormal memory access patterns as they induce an enormous

number of row conflicts. Bit flips are highly reproducible:

Hammering the same offsets again yields the same bit flips.

Although the name single-sided hammering may suggest

that only a single memory location is hammered, Seaborn

and Dullien [65], who introduced this technique, hammer

8 memory locations simultaneously. On their systems, two

or more randomly selected addresses (i.e., no knowledge

of virtual-to-physical mappings is required) are in the same

DRAM bank in 61.4% of the cases. Hence, in fact, single-

sided hammering aims to hammer two memory locations in

the same bank, but not necessarily neighboring the victim row.

Not a privilege-escalation attack but an escape from the

NaCl sandbox was demonstrated by Seaborn and Dullien [65].

NaCl executes arbitrary generated code directly on the CPU

but sanitizes it using a blacklist, e.g., no system calls. To

bypass the sanitizer, the attacker generates and sprays unpriv-

ileged code over the entire memory and induces an unpre-

dictable random bit flip at an unpredictable random memory

location. With a low probability, the bit flip hits the operand

of an and instruction used to sanitize addresses used by the

sandboxed code. As the code can be read and executed by

the attacker, the attacker can verify whether the random bit

flip modified a random code location such pointers are not

fully sanitized, re-enabling traditional control-flow diversion

attacks. Bhattacharya and Mukhopadhyay [10] exploited ran-

dom Rowhammer bit flips in random memory locations to

produce faulty RSA signatures, to recover the secret key.

However, as bit flips are highly reliable, more deterministic

and reliable attacks have been mounted, including privilege-

escalation attacks, sandbox escapes, and compromise of cryp-

tographic keys were demonstrated using memory spraying [24,

65, 70], grooming [68], or page deduplication [11, 59].

B. Rowhammer Defenses

Rowhammer defenses can be divided into three categories

based on their goal. The first category aims to detect Row-

hammer and, after detection, stop the corresponding processes.

The second category aims to neutralize Rowhammer bit flips

to prevent their exploitation. The third category aims to elim-
inate Rowhammer bugs. We now review previous works on

defending against Rowhammer attacks. We group the proposed

countermeasures using the above-mentioned three categories.

Rowhammer Detection Countermeasures. Static code a-

nalysis could be used to detect microarchitectural attacks in

binaries in a fully automated way, e.g., when tested before

loading them into an app store [35]. Several works detect on-

going attacks using hardware- and software-based performance

counters [17, 18, 25, 28, 56, 75]. Herath and Fogh [28] detect

attacks by monitoring suspicious cache activity of processes

using performance counters and then searching for clflush
instructions near the instruction pointer.

Rowhammer Neutralization Countermeasures. The sys-

tem’s memory allocator only places kernel pages near

userspace pages in near-out-of-memory situations. Hence,

modifying the allocator to prefer the out-of-memory situation

over the proximate placement of kernel and userspace pages,

effectively prevents memory exhaustion in turn of spraying

and grooming [24, 68]. This prevents known Rowhammer

attacks based on memory grooming or memory spraying, as

the target page cannot be evicted or placed anymore, i.e.,

neutralizes Rowhammer bit flips. Generalizing this, Brasser

et al. [12] presents G-CATT, an alternative memory allocator

that isolates user and kernelspace in physical memory ensuring

that the attacker cannot exploit bit flips in kernel memory, thus

neutralizing Rowhammer-induced bit flips. Disabling page

deduplication prevents Rowhammer attacks exploiting these

features [11, 52, 59, 60].

Rowhammer Elimination Countermeasures. ANVIL [6]

uses performance counters to detect and subsequently miti-

gate Rowhammer attacks. More specifically, ANVIL uses the

CPU’s performance counters in order to continuously monitor

the amount of cache misses. When the amount of cache

misses exceeds a predetermined threshold, ANVIL’s second

stage is initiated, logging the addresses of cache misses.

Finally, ANVIL mitigates Rowhammer effects by selectively

refreshing nearby memory rows. However, as refreshing a

row imposes some performance penalties, ANVIL avoids

having a large number of false positives by discarding all

logged cases that do have a significant amount of accesses

to at least two rows in the same memory bank. While this

optimization improves ANVIL’s performance, as we discuss

in Section III, it also prevents ANVIL from detecting one-

location hammering, thus facilitating our attack. Similarly to

ANVIL’s detection approach, Corbet [18] discusses halting the

CPU when cache-miss rates exceed a threshold, slowing down

not only Rowhammer attacks but the entire system.

Brasser et al. [12] also presented B-CATT, a bootloader

extension blacklisting vulnerable locations, thus, effectively

reducing the amount of usable memory, but fully eliminating

the Rowhammer bug. However, Kim et al. [44] observed

that this approach is not practical as it would block almost

the entire memory. We validated this observation and found

more than 95% of the memory would be blocked, on several

of our systems. Eliminating Rowhammer by blacklisting the

clflush instruction [65] was shown ineffective with cache-

eviction-based Rowhammer attacks [1, 6, 24].

Besides building more reliable chips or employing ECC

modules, Kim et al. [44] and Kim et al. [43] proposed

probabilistic methods to eliminate bit flips in hardware. Every

time a row is opened and closed, other adjacent or non-

adjacent rows are opened with a low probability. Thus, if a

247

Rowhammer attack opens and closes rows, statistically the

adjacent rows are refreshed as well and, thus, bit flips are

averted. The LPDDR4 standard [37] specifies two features to

eliminate the Rowhammer bug: Target Row Refresh (TRR)

enables the memory controller to refresh rows adjacent to a

certain row; Maximum Activation Count (MAC) specifies how

often a row can be activated before adjacent rows need to

be refreshed. Furthermore, Ghasempour et al. [21] presented

ARMOR, a cache storing frequently accessed rows in order

to reduce the number of row activations in the DRAM and,

thus, eliminating the Rowhammer bug.

Hence, all elimination-based defenses are either not practi-

cal or require hardware changes, making them not applicable

for commodity systems. Commodity systems should instead be

protected using detection- or neutralization-based approaches.

C. The Prefetch Side-Channel Attack

The prefetch side-channel attack was presented by Gruss

et al. [23] as a way to defeat address-space-layout randomiza-

tion. The timing difference induced by the prefetch instruction

depends on the state of various caches. Prefetch instructions

ignore privileges and permissions. Prefetch side-channel at-

tacks also exploit the OS design. In most OSs, every valid

memory location in a user process is mapped at least twice,

once in the user process virtual memory, and once in the direct-

physical mapping in the kernelspace. The prefetch address-
translation oracle exploits this direct-physical mapping to

determine whether an address in userspace maps to a specific

address in the direct-physical mapping. If the guess was

correct, the attacker learns the physical address of a userspace

virtual address. Hence, the attacker does not have to rely on OS

interfaces to obtain physical addresses for virtual addresses.

D. Intel SGX

Intel SGX is an x86 instruction-set extension for integrity

and confidentiality of code and data in untrusted environ-

ments [19]. For this purpose, SGX executes programs in so-

called secure enclaves which use protected areas of memory

that can only be accessed by the enclaves themselves. With

SGX implemented in the CPU, the enclave remains protected,

even if OS, hypervisor, and hardware have been compromised.

Furthermore, remote attestation allows validating the integrity

of the enclave by proving its correct loading.

Intel SGX explicitly protects against DRAM-based attacks,

e.g., cold-boot attacks, memory bus snooping, and memory-

tampering attacks, by cryptographically ensuring confidential-

ity, integrity, and freshness of data stored in the main memory.

Hence, it removes the DRAM from the trusted computing

base. The memory containing code and data of running

enclaves is a physically contiguous and encrypted block in

the DRAM, called EPC (enclave page cache) area, which is

protected from all non-enclave memory accesses using pro-

tection mechanisms implemented in the CPU. The encryption

by the Memory Encryption Engine (MEE) is transparent to

the processor’s cores [26]. The MEE utilizes a Merkle tree to

detect when the encrypted code and data stored in the DRAM

have been tampered with. The MEE provides freshness to the

integrity tags to mitigate replay attacks, i.e., replacing a new

encrypted page with an old encrypted page.

If an integrity or freshness error occurred, Intel SGX aborts

the execution of the memory fetch immediately, and the MEE

emits an error signal. Thus, the unverified data of the DRAM

will never be loaded into the last-level cache [26]. Moreover,

the MEE locks the memory controller, preventing any future

memory operations (potentially incurring data corruption),

causing the system to halt until it is rebooted.

E. Attacks on (and from) Secure Enclaves

While Intel does not claim to protect against side-channel

attacks that deduce information of collected power statistics,

performance statistics, branch statistics, or information on

pages accessed via page tables [4], several such attacks have

been demonstrated. Xu et al. [72] demonstrated a page fault

side-channel attack from a malicious OS to extract sensi-

tive information, e.g., text documents and images. Brasser

et al. [13] demonstrated a Prime+Probe cache side-channel

attack, extracting 70% of an RSA private key in an enclave.

Furthermore, Schwarz et al. [64] mounted a cache side-channel

attack from within an enclave to extract a full RSA private key

of a co-located enclave. Xiao et al. [71] mounted control-flow

inference attacks on recent SSL libraries running in secure

enclaves. Moghimi et al. [53] presented CacheZoom, a tool

that provides a high-resolution channel to track all memory

accesses of SGX enclaves to mount key recovery attacks.

Wang et al. [69] systematically analyzed side-channel threats

of SGX and identified 8 potential side-channel attack vectors.

However, Intel considers all of these attacks out of scope, due

to their side-channel nature.

Attacks that rely on shared memory (e.g., Flush+

Reload [73]) cannot be mounted, as enclave memory is in-

accessible for other enclaves, processes, and the OS. But as

DRAM rows are shared, Wang et al. [69] showed a cross-

enclave DRAMA attack (cf. [57]) on other enclaves.

In a concurrent and independent work, Jang et al. [36]

propose a denial-of-service attack running Rowhammer in

an SGX enclave. We compare their and our observations in

Section IX-A, where we describe a very similar attack.

III. CATEGORIZATION OF STATE-OF-THE-ART DEFENSES

FOR COMMODITY SYSTEMS

Discussing Rowhammer defenses based on their goal (de-

tection, neutralization, and elimination; cf. Section II-B), does

not allow a thorough analysis and comparison, as the primi-

tives of the different defenses in each category vary widely.

As we have seen in Section II-B, none of the elimination-

based defenses are practical or applicable to commodity sys-

tems. Hence, in this paper, we only focus on detection- and

neutralization-based defenses. In this section, we introduce a

novel systematic categorization for state-of-the-art defenses for

commodity systems.

In our evaluation of defenses we identified the following 5

defense classes which can be applied to commodity systems:

248

TABLE I: Rowhammer defenses for commodity systems.

Methodology
Defense

M
A
S
C
A
T
[3
5]

C
hi
ap
pe
tt
a
et

al
.
[1
7]

Z
ha
ng

et
al
.
[7
5]

H
er
at
h
an
d
F
og
h
[2
8]

H
ex
PA

D
S
[5
6]

G
ru
ss

et
al
.
[2
5]

A
N
V
IL

[6
]

C
or
be
t
[1
8]

N
o
O
O
M

[2
4,

68
]

G
-C
A
T
T
[1
2]

B
-C
A
T
T
[1
2]

T
R
R
[3
7]

M
A
C
[3
7]

PA
R
A
/C
R
A
/P
R
A

[4
3,

44
]

A
R
M
O
R
[2
1]

E
C
C
/C
hi
pk
il
l
[3
0,

44
]

R
ef
re
sh

R
at
e
[4
4]

DETECTION

Static Analysis
Performance Counters

Memory Access Pattern

NEUTRALIZATION

Physical Proximity
Memory Footprint

ELIMINATION

Bootloader
Hardware Modification

BIOS Update

Symbols indicate whether a defense is part of defense class (), optional
aspects of the defense are part of a defense class (), or a defense is not part
of a defense class ().

D1. Detection through static analysis.
D2. Detection through performance counter analysis.
D3. Detection through analysis of memory access patterns.
D4. Prevention by strictly avoiding physical proximity.
D5. Prevention by preventing conspicuous memory footprints.
Other defense classes (bootloader- or BIOS-update-based)

have already been shown to be ineffective (cf. Section II-B), or

cannot be applied to commodity systems (hardware modifica-

tions). Table I provides an overview of Rowhammer defenses

and the corresponding defense classes. We defer a discussion

of hardware-based defenses to Section X-B.

In the following, we briefly describe the assumptions and

implications for each of the defense classes, as well as an

exhaustive list of defenses for each class.

Static Analysis. The underlying assumption of defenses based

on static analysis (D1) is that the attack (binary) code can

be accessed. This defense class is especially interesting for

offline analysis, e.g., before adding software to an app store.

If the detection works, the user cannot be attacked anymore.

Static analysis is used by Irazoqui et al. [35] in MASCAT, an

automated static code analysis tool to detect microarchitectural

attacks on a large scale. Herath and Fogh [28] proposed to

suspend programs with high cache miss rates and analyze

instructions near the instruction pointer.

Performance Counter Monitoring. The underlying assump-

tions of defenses based on performance counter analysis (D2)
are that the performance counters are available and that they

include operations of the attacker program. A typical param-

eter for Rowhammer detection is the number of cache hits

and cache misses. Detecting Rowhammer at runtime leaves

a theoretical chance of missing an attack. If the detection

works, attacks are stopped before they can exploit a bit

flip. The use of performance counters is the basis of several

defenses [25, 28, 56]. The underlying Flush+Reload loop of

Rowhammer is also detected by cache attack defenses [17, 75].

Memory Access Patterns Monitoring. The underlying as-

sumptions of defenses based on memory access patterns (D3)
are that Rowhammer attacks require a large number of cache

misses on one row, and a large cumulative number of accesses

on other rows in the same DRAM bank. Assuming this,

Rowhammer attacks can be detected and stopped before they

cause bit flips [6, 18]. ANVIL [6] detects Rowhammer in

two stages: First, it monitors the last-level cache miss ratio.

Next, if the cache miss ratio exceeds a threshold, ANVIL

uses Intel PEBS to monitor the addresses of cache misses and

distinguish Rowhammer attacks from legitimate work loads.

For every candidate row, “other row access samples from the

same DRAM bank” are checked (cf. Section 3.3 in [6]). Only

if there are enough accesses to other rows of the same bank,

an attack is detected and victim rows are refreshed [6].

Preventing Physical Proximity. The underlying assumption

of defenses based on preventing physical proximity (D4) is that
Rowhammer attacks need to flip bits in page tables or other

kernel pages to take over the system. A memory allocator can

prevent physical proximity of user pages and kernel pages.

G-CATT [12] is the only published defense in this class. G-

CATT isolates kernel pages from user pages by leaving a gap

in physical memory. If the isolation works, the user cannot

take over the kernel and the system anymore.

Memory Footprints. The underlying assumptions of defenses

based on prohibiting conspicuous memory footprints (D5) are
that Rowhammer attacks need to allocate large amounts of

memory to scan for bit flips and almost exhaust the entire

memory to surgically place a page in a specific physical

location to trigger and exploit a Rowhammer bit flip. While

the memory consumption of the attacker can already raise

suspicion, both spraying [24, 65] and grooming [68] easily

exhaust the entire memory in a way that gets the attacker

process killed by the OS. The memory allocator by default

already avoids placing kernel pages near userspace pages,

and it only deviates from this behavior in near-out-of-memory

situations. Not deviating from the default behavior to prevent

adversarial memory exhaustion was mentioned in Rowhammer

attack papers [24, 68]. If the memory allocator prevents

adversarial memory exhaustion, an attacker cannot force target

pages to specific memory locations anymore.

IV. ATTACKER MODEL

Our attacker model makes the following fundamental as-

sumptions about the hardware, the OS, installed defense

mechanisms, and attacker capabilities:

Hardware. The installed DRAM modules are susceptible

to Rowhammer bit flips and no dedicated hardware-based

Rowhammer defense mechanisms are in place.

Operating System. The OS is up-to-date and fully patched,

and no known software vulnerabilities exist that an attacker

could exploit to elevate privileges.

Defenses. The system is protected with state-of-the-art Row-

hammer defenses. Specifically, at least one defense from each

defense class is deployed, including static analysis [35], hard-

ware performance counters [6, 17, 25, 28, 56, 75], memory

access pattern analysis [6], physical proximity prevention [12],

and prevention of near-out-of-memory situations [24, 68].

249

TABLE II: How the different defense classes are bypassed.

Bypass
Defense Class

S
ta
ti
c
A
n
al
y
si
s

P
er
fo
rm

an
ce

C
o
u
n
te
rs

M
em

o
ry

A
cc
es
s
P
at
te
rn

P
h
y
si
ca
l

P
ro
x
im

it
y

M
em

o
ry

fo
o
tp
ri
n
t

Intel SGX
One-location hammering

Opcode flipping
Memory waylaying

Defense class defeated

Attacker Capabilities. We assume that an attacker can start

an arbitrary unprivileged user program and that the attacker

can launch an SGX enclave, which is also unprivileged.

V. HIGH-LEVEL VIEW OF THE ATTACKS

In this section, we provide a high-level overview of the

attack primitives we develop for our privilege-escalation attack

in native environments and our denial-of-service attack in

cloud environments, despite the presence of defenses from all

defense classes from Section IV. Table II summarizes how we

defeat every single defense class.

To defeat defense class D1 (static analysis), we run our

attack inside an SGX enclave. Code in enclaves cannot be

read or inspected, as the processor prevents all accesses to the

enclave memory. By encrypting the code and only decrypting

it after the enclave is launched, a developer can hide arbitrary

code within SGX enclaves. Consequently, MASCAT [35] is

incapable of detecting any microarchitectural or Rowhammer

attack we perform inside the enclave. Furthermore, the instruc-

tion stream cannot be searched for clflush instructions [28].

Defense class D2 (performance counters) is also defeated

by running the attack inside an SGX enclave because the

processor does not include SGX activity in process-specific

performance counters for security reasons [31]. Confirming

this, Schwarz et al. [64] observed that performance counters

are not influenced by cache attacks running in SGX enclaves.

Hence, performance counters do not detect our attack.

One-location Hammering. To defeat defense class D3 (mem-

ory access patterns), we introduce a new attack primitive,

which we call one-location hammering. As older systems used

an “open-page” memory controller policy where a memory

row is kept open and buffered until the next memory row

is accessed, double-sided and single-sided hammering cause

frequent activations of rows by inducing cache misses on

different rows of the same bank [44]. Recently, however,

modern systems employ more sophisticated memory controller

policies, preemptively closing rows earlier than necessary, to

optimize performance (cf. Appendix C). We conjecture that

this change in policy creates a previously unknown Rowham-

mer effect, which we exploit with one-location hammering.

With one-location hammering, the attacker only runs a

Flush+Reload loop on a single memory address at the maxi-

mum frequency. This continuously re-opens the same DRAM

row, whenever the memory controller closes the row. We

observed that one-location hammering drains enough charge

from the DRAM cells to induce bit flips. As one-location

hammering does not access different rows in the same bank,

D3 defenses, such as the second stage of ANVIL [6], do not

detect the ongoing attack (cf. Section III). We describe one-

location hammering in detail in Section VII.

Opcode Flipping. To defeat defense class D4 (physical

memory isolation), we introduce another new attack primitive,

opcode flipping. All previous Rowhammer privilege-escalation

attacks induced bit flips in carefully crafted page tables. If

the page table modification is successful, the attacker gains

unrestricted read and write access to the physical memory,

which is equivalent to having kernel privileges [24, 65, 68, 70].

With opcode flipping, we propose a novel way to exploit

bit flips. In the x86 instruction set, bit flips in opcodes yield

other, in most cases, valid opcodes. We show that with only a

single targeted bit flip in an instruction, we can alter a (setuid)

binary, e.g., sudo, to provide an unprivileged process with

root privileges. As this is a bit flip in a user page, it breaks the

underlying assumption of defense class D4, i.e., G-CATT [12].

Previous attacks on unprivileged code [65] (cf. Section II-A

for a detailed discussion) bypassed sandbox code sanitization

by flipping bits in a bitmask used in a logical and in attacker-

sprayed code. In contrast to their work, we identify potential

target bit flips in any opcode in a shared binary or library,

modifying opcodes and the instruction stream. Consequently,

we illegitimately obtain root privileges by bypassing authen-

tication checks. We detail opcode flipping in Section VI.

Memory Waylaying. To defeat defense class D5 (memory

footprints), we introduce a novel alternative to memory spray-

ing and grooming, called memory waylaying. Rowhammer

attacks modify pages in a predictable way by placing them

in physical memory locations where a known bit flips occur.

There are two techniques to achieve this: With spraying the

attacker fills the entire memory with copies of the generated

data structure; with grooming the attacker allocates the data

structure to exploit in the exactly right moment. Both methods

require exhausting the entire memory and are easily detectable

by monitoring memory consumption. Memory waylaying per-

forms replacement-aware page cache eviction, using only

page cache pages. These pages are not visible in the system

memory utilization as they can be evicted any time and hence,

are considered as available memory. Consequently, memory

waylaying never causes the system to run out of memory.

We observed that page cache pages, after being discarded

from DRAM, are loaded to a new random physical location

upon access, on both Linux and Windows. Through continuous

eviction, the page is eventually placed on a vulnerable phys-

ical location. Memory waylaying leverages the prefetch side-

channel to detect when data in virtual memory is placed on a

specific physical location. By doing so, memory waylaying

consumes a negligible amount of time and memory while

waiting for the target page to be loaded to the target physical

location. Hence, it is difficult to detect. Once the data is located

at the desired position, the attacker hits it with the Rowhammer

250

bit flip and exploits the modified binary to gain root privileges.

We describe memory waylaying in detail in Section VIII.

VI. OPCODE FLIPPING

In this section, we describe opcode flipping, a generic

technique for exploiting bit flips in cached copies of binary

files. All previous generic Rowhammer privilege-escalation

attacks (i.e., obtaining root privileges) induced bit flips in the

page number field of an attacker-generated page table, in order

to change the memory page reference by some page table

entry. Seaborn and Dullien [65] (cf. Section II-A for a detailed

discussion) bypassed sandbox code sanitization by flipping bits

in a bitmask used in a logical and in attacker-sprayed code.

In contrast to previous work, we identify potential target bit

flips in any opcode in a shared binary or library, modifying

opcodes and the instruction stream. In contrast to previous

Rowhammer attacks based on memory spraying, the binary

pages we attack cannot be sprayed and only exist a single

time in the entire memory. In order to find suitable bit

flips in system binaries, we used the following methodology.

First, we manually define ranges within in the binary for

which bits could be flipped. We then automatically test every

single bit flip in these ranges, grouping the modified binaries

by the result of their corresponding execution. Finally we

manually analyze the results, looking for devastating outcomes

(such a obtaining root permissions without knowing the root

password) and target these bits via our Rowhammer attack.

Opcode flipping exploits that bit flips in opcodes can yield

other, yet valid, opcodes. These opcodes are often very similar

to the original opcode but have different, possibly inverted,

semantics. One prerequisite of opcode flipping is the ability

to flip a bit of a target binary page with surgical precision. For

now, we assume that the attacker can cause such a precise bit

flip and discuss the effect of such bit flips, before we show in

Section VIII how a file can be placed in memory accordingly.

Opcode Flipping Case Study. To illustrate opcode flipping

we consider the example of a single bit flip in the x86 opcode

JE = 0x74 (jump if equal). A single bit flip in this opcode

can yield the opcodes JNE = 0x75 (jump if not equal),

JBE = 0x76 (jump if below or equal), JO = 0x70 (jump

if overflow), JL = 0x7C (jump if lower), PUSHQ = 0x54
(push quad word), XORB = 0x34 (xor byte), HLT = 0xF4
(halt), and the prefix 0x64. Only 21 out of 255 two-byte

sequences starting with the prefix 0x64 are illegal opcodes.

Similarly, flips in TEST instructions preceding a conditional

jump have the same effect. For example, with a single bit flip,

the instruction TEST EAX,EAX, which sets the zero flag if

EAX is zero, can be transformed to XCHG EAX,EAX, which
never modifies the zero flag. Tests and conditional jumps are

used in virtually all computer programs, and they control the

decision logic of the programs. Therefore, we focus on flips

in these instructions. As we show, bit flips in such instructions

are sufficient to achieve our goals.

Exploitable Opcodes in Real-World Binaries. To exploit

opcode flipping for privilege escalation, we target userspace

applications with the setuid bit set, which are run as root.

On Ubuntu 17.04, there are 16 setuid binaries owned by

root, all being potential targets for privilege escalation using

a bit flip. We analyzed one of the most prominent targets

for privilege escalation, the sudo binary and sudoers.so
shared library (henceforth sudo binary).
We identified two regions in the sudo binary in which a

bit flip can be exploited. First, the check whether the user is

allowed to use sudo, i.e., if the user is in the sudoers file.

Second, the check whether the entered password is correct. In

this work, we focus on the latter.

We located 29 different offsets in the binary where a bit

flip breaks the password verification logic. All identified bit

flips affect the test or the conditional jump of the password-

verification location. Successful attacks on the conditional

jump change the condition so that it treats an incorrect pass-

word as if it was correct. Attacks on the test instruction result

in different operations which ensure that the zero flag is clear,

either by clearing it, e.g., ADD AL,0xC0, or by maintaining

the previous, clear, value. We provide a list with offsets and

their effect on the opcode at this position, in Appendix A.

As shown in the following section, bit flip positions in

memory are uniformly distributed, allowing exploitation of any

of the 29 offsets in the sudo binary to gain root privileges.

VII. ONE-LOCATION ROWHAMMER

In this section, we describe the hammering technique we

use to induce bit flips. We assume that the attacker already

knows exploitable bit offsets in binaries and only searches

for memory locations where these bit offsets can be flipped

through Rowhammer. We propose one-location Rowhammer

as a novel alternative technique based on previously unknown

Rowhammer effects. The scanning is performed from within

the enclave and hence, cannot be observed through perfor-

mance counters, source-code analysis or binary analysis.

Previous work described two different hammering tech-

niques, double-sided hammering, and single-sided hammering,

as described in more detail in Section II-A.

One-location hammering truly hammers only one memory

location, i.e., the attacker does not directly induce row conflicts

but only re-opens one row permanently. The core of one-

location hammering is a Flush+Reload loop hammering a

single randomly chosen address, voiding the assumptions of

defense class D3. Both, one-location hammering and single-

sided hammering are oblivious to virtual-to-physical address

mappings. Hence, we can also apply both hammering tech-

niques if physical address mappings are not available.

We studied the distribution of bit flips over 4 kB-aligned
memory regions, i.e., pages, as this alignment can be ob-

tained through our memory waylaying technique described in

Section VIII. We performed our analysis on a Skylake i7-

6700K with two 8GB Crucial DDR4-2133 DIMMs. We tested

each technique for eight hours and scanned for bit flips after

each hammering attempt (i.e., after 5 000 000 rounds of Flush+
Reload on two or one address, respectively). Each hammering

attempt hammers random memory locations (randomly-chosen

offsets on more than 100 000 randomly-chosen 4 kB pages).

251

(a) Double-sided (b) Single-sided (c) One-location

Fig. 1: Flippable bit offsets over 4 kB-aligned memory regions

for different hammering techniques. Bit flips from 0 to 1 (blue)

and bit flips from 1 to 0 (red) may occur at any bit offset.

Figure 1 shows the distribution of bit flip offsets accumulated

over 4 kB-aligned memory regions for double-sided hammer-

ing, single-sided hammering, and one-location hammering. We

observe that 25 223 out of 32 768 bit offsets (77.0%) can be

flipped using double-sided hammering on at least one 4 kB-
offset. 51.7% of the bit flips were from 0 to 1.

Single-sided hammering does not induce more bit flips than

double-sided hammering. However, regarding bit offsets, we

observe an even slightly more uniform distribution for single-

sided hammering, with 25 722 bit offsets (78.5%). 54.1% of

the bit flips were from 0 to 1.

One-location hammering only flipped 11 969 out of 32 768
bit offsets (36.5%) on at least one 4 kB-offset. 51.6% of the

bit flips were from 0 to 1. This is worse than double-sided

hammering and single-sided hammering. Still, our results show

for the first time, that one-location hammering drains sufficient

charge from the DRAM cells to induce bit flips.

We validated our results by reproducing them in a short

series of tests on a Haswell i7-4790 with two Kingston DDR3-

1600 DIMMs. We observe bit flips for all hammering tech-

niques, including one-location hammering. On an Ivy Bridge

i5-3230M with two Samsung DDR3-1600 SO-DIMMs we

observe a significantly higher number of bit flips for double-

sided hammering than for single-sided hammering, while bit

flips from one-location hammering were rare and not reliably

reproducible. Our measurements indicate that this machine

uses an open-page memory controller policy, as opposed to

the more efficient policies used on the other two systems (cf.

Appendix C). However, bit flips from 0 to 1 and from 1 to 0

have approximately the same probability on all three systems.

Our data shows that the bit flips over pages generally follow

a uniform distribution if a significant amount of memory is

tested. As our attacker aims at finding bit flips for specific

offsets on 4 kB pages, the runtime of the bit flip templating

phase depends on the number of exploitable bit flip offsets.

In case of the 29 bit offsets we found in sudo, the expected

runtime on our Skylake system is less than 17 minutes per

target bit flip for double-sided hammering, and less than

19 minutes for single-sided hammering. With one-location

hammering the expected runtime increases to 56 minutes until

a target bit flip is found. Hence, one-location hammering is

3.3 times slower in finding the target bit flip than comparable

hammering methods. If evasion of defense class D3 is a goal,

a slow-down factor of 3.3 is practical.

Deciding to run the stealthy templating longer than nec-

essary, i.e., searching for more than one bit flip, reduces the

runtime of the waylaying phase (cf. Section VIII) significantly,

as the attacker learns more addresses suitable for the attack.

The templating only keeps the CPU core of the enclave

busy but causes no other system utilization, i.e., it does not

exhaust memory, as we rely on the memory allocation of our

waylaying technique, that we present in the following section.

VIII. MEMORY WAYLAYING

The attacker knows which bit offsets in pages of binaries to

target to obtain root privileges, and how to hammer physical

memory locations to obtain a bit flip at the right bit offset. The

remaining problem is the inherent challenge of Rowhammer:

Placing the target page at a physical location where the

required bit flip can be induced. The known approaches to

solve this challenge are spraying, i.e., filling the entire memory

with copies of the page, or grooming, i.e., allocating the target

page in exactly the right moment [74]. However, the page

cache keeps every binary page only once in memory. Linux

prioritizes keeping binary pages in memory upon eviction.

Hence, spraying is not applicable in our attack and grooming

would require out-of-memory situations to force eviction of

the binary page. In this section, we present memory waylay-
ing, a reliable approach to solving the challenge of memory

placement. It is a generic stealthy alternative to spraying and

grooming, relying on a prediction oracle to determine whether

a target page is at the right physical memory location.

In Section VIII-A, we show how the prefetch side-channel

attack [23] can be leveraged as an oracle. In Section VIII-B,

we present a technique to evict a target page from the page

cache, forcing relocation at the next access. In Section VIII-C,

we describe how the prefetch attack and the page cache

eviction are combined to the stealthy memory waylaying. We

also present a fast variant, called memory chasing, which

sacrifices stealth for speed, with no sacrifice of reliability.

A. Prefetch-based Prediction Oracle

In our memory waylaying attack, the attacker monitors page

placement to detect mapping of one of the offsets in binaries

and shared libraries to one of the target memory locations. We

use the prefetch address-translation oracle [23] to perform this

monitoring. The oracle exploits the direct-physical mapping in

the Linux kernelspace. The prefetch address-translation oracle

provides an attacker with the information whether two virtual

addresses map to the same physical address, even in the

presence of address-space layout randomization.

The address-translation oracle consists of two steps, a se-

quence of prefetch instructions and a Flush+Reload attack, to

measure the effect of the prefetch. While the attack is prone to

false negatives due to ignored prefetch instructions, the Flush+

Reload attack at its core has virtually no false positives [73],

i.e., there is no cache hit if the address was not actually

cached. While both steps can generally be executed in SGX

enclaves, performing a Flush+Reload attack requires highly

accurate timing measurements. On SGX2, rdtsc is available

252

within enclaves. On SGX1, Schwarz et al. [64] demonstrated

that accurate timing can be obtained by using counting threads

and Wang et al. [69] mirrored rdtsc into the enclave. Our

experiments with both approaches show that we can use either

to obtain sufficiently accurate timing inside enclaves.

The address-translation oracle is first used in our attack to

determine offsets in the direct-physical map with exploitable

bit flips. It is then used a second time, to continuously monitor

the set of target addresses during the memory waylaying.

When an address match is detected, the next step of the attack

is triggered, i.e., hitting the target page with Rowhammer.

Our prefetch address-translation oracle, which we optimized

for stability, experienced no false positives over a time frame

of 3737 seconds and a true positive every 4.5 seconds, i.e.,

the expected value for the true positive rate is 50% when

measuring for 4.5 seconds. When optimized for performance

we can achieve the same performance as Gruss et al. [23], i.e.,

an expected measurement time of less than 50 milliseconds per

address without false positives, but with a higher false negative

rate. The search for the physical addresses is combined into

one prefetch side-channel attack, i.e., one prefetch operation

and as many Flush+Reload loops as page translations the

attacker wants to find. Hence, the runtime does not increase

significantly with the number of addresses, but only linearly

in the amount of system memory.

B. Page Cache Eviction

Both on Windows and Linux, files are cached page-wise in

the file page cache upon the first access to the corresponding

page. Any subsequent access to a page of a file is directly

served from the page cache. Thus, one prerequisite for memory

waylaying is a technique to deterministically evict a page of a

file from the page cache. Eviction ensures that any subsequent

access to the file cannot be served from the page cache

anymore, and the file is mapped to a new physical location.

Any unprivileged process could evict data from the page

cache by simply allocating a large amount of memory, such

that page cache pages must be evicted. This is similar to

the memory exhaustion techniques in previous Rowhammer

attacks and risks system crashes due to out of memory

situations [24, 65, 68]. We examined the behavior of the page

cache replacement algorithm to find a more reliable way to

trigger eviction. While Linux provides privileged interfaces

to do so, we need an approach which works without any

privileges and from within enclaves, i.e., only with regular

memory accesses.

A fundamental observation we made is that the replacement

algorithm of the Linux page cache prioritizes eviction of non-

executable pages over executable pages. However, it does

evict executable pages when filling the page cache with read-
only executable pages. On Windows, executable and non-

executable file-backed pages can be used equally. This forms

a basic primitive that allows us to efficiently and reliably

evict a selected page from the page cache. Because the

page cache only uses otherwise unused memory pages, the

technique does not result in memory pressure and avoids the

40 50 60 70 80 90 100

200

400

600

O
O
M

Memory Usage [%]

#
C
as
es Eviction

Exhaustion

Before Attack

Fig. 2: Our replacement-aware page cache eviction only leads

to negligible memory increase, whereas existing techniques

are close to an out-of-memory situation.

unresponsiveness and out-of-memory situations that memory

exhaustion causes [24, 65, 68].

For both approaches, memory exhaustion and replacement-

aware page cache eviction, the amount of data which has to

be accessed is at most the total amount of main memory in

the system. To evaluate how much memory has to be allocated

for the eviction to be successful, we use the Linux mincore
function. The mincore function tells whether a given page is

in the page cache. An attacker could also use this function to

optimize the page cache eviction during an attack, i.e., abort

the replacement-aware page cache eviction as soon as the page

to be evicted is not in the page cache anymore. However, this

is a trade-off between stealth and performance, as the OS can

monitor calls to the mincore function.

We evaluated our replacement-aware page cache eviction

on an Intel Core i5-6200U with 12GB of main memory. For

the experiment, we kept the system at an typical workload,

namely a browser, a mail client, and a music player were

running during the experiment. Figure 2 compares traditional

memory exhaustion with our replacement-aware page cache

eviction to evict a specific page (in our experiment a page

of the sudo binary) from the page cache. Our replacement-

aware page cache eviction only incurs a slight increase of

used memory, whereas the exhaustion-based technique is close

to an out-of-memory situation. In 0.78% of our exhaustion

tests, the test program was even terminated by the OS due

to excessive memory usage. In contrast, our replacement-

aware page cache eviction never leads to an out-of-memory

situation. On average, for our replacement-aware page cache

eviction, it was sufficient to access 5544MB of data to evict

the target page of the sudo binary from the page cache. The

replacement-aware page cache eviction takes on average 2.68
seconds. For higher workloads, an attacker has to access even

less data to evict a specific page from the page cache, as the

size of the page cache decreases with the memory usage of

active applications. On Windows, the page cache eviction takes

on average 10.10 seconds, as we cannot rely on the Linux

mincore function to abort the eviction process.

C. Positioning Memory Pages

We combine the prefetch translation oracle (cf. Sec-

tion VIII-A) and the replacement-aware page cache eviction

(cf. Section VIII-B) to maneuver a target page on one of

the physical locations with a bit flip (cf. Section VII). As an

extension to memory waylaying, which is slow but stealthy,

we also propose memory chasing, a faster non-stealthy variant.

253

B
X

(a) Start

X

(b) Our Eviction

B

X

(c) Access
Binary

B

X

(d) Repeat: Evict
+ Access

B

X

(e) Repeat: Evict
+ Access

BX

(f) Stop if target
reached

Fig. 3: Memory waylaying. In step (a) some pages are free

(). Our eviction (b) allocates all free pages for the page cache

(), but leaves occupied pages () untouched. Repeating the

eviction, the target page B (B) is relocated, but the occupied

memory remains the same. Eventually, B is placed on the

target physical location X (X) as illustrated (f).

Fig. 4: Distribution of placements of a page in the physical

memory of our test system (12GB). Each square represents

4MB. Hatched (red) areas are unavailable to the system

(e.g., graphics memory). The darker (blue) an area, the more

physical pages were in this area. Even a small number of

relocations covers most of the physical memory.

Both memory waylaying and memory chasing, leverage

the prefetch translation oracle to test whether our exploitable

page is at the correct (i.e., vulnerable) physical page. As the

physical page usually does not change often (i.e., only if there

is high memory pressure or the system is rebooted), memory

waylaying periodically evicts the page cache. On a subsequent

access to the target page, the access cannot be served from the

page cache anymore, and a new physical page is allocated and

mapped. This procedure works the same way on Windows and

Linux, as illustrated in Figure 3.

We evaluate the distribution of physical page numbers used

for a specific binary page on one of our test systems, an

Intel Core i5 with 12GB of main memory. We repeated the

memory waylaying process 57 000 times, i.e., the binary page

was relocated 57 000 times. Out of these 57 000 relocations,

we found 46 720 unique physical page numbers, i.e., the

probability of maneuvering the binary to a physical location

where it was already is only 18% after 57 000 tries. Figure 4

visualizes the distribution of the 57 000 relocations in physical

memory. We observe that even the small number of relocations

we tested (i.e., 1.8% of all pages) covered most of the physical

memory, with the exception of occupied memory regions.

Thus, eventually the target binary page is placed at a physical

memory location where the intended bit flip can be induced.

The advantage of memory waylaying over conventional

techniques, such as grooming or spraying, is that it is stealthy,

as it does not exhaust the memory. The OS page cache is

designed to occupy any unused page in the system. Most

pages are rarely accessed, but it is still more efficient to keep

them in memory than to reload them from the disk. Memory

waylaying exploits this design, and as a consequence, it has

no impact on memory utilization and only negligible impact

on the overall system performance, as the page cache simply

keeps a different set of pages in the otherwise unused memory.

In Section IX-B, we detail the runtime of the waylaying phase

in a practical example.

The disadvantage of memory waylaying is that the runtime

can vary widely, from a few hours up to a few days, until the

target page is placed on the correct physical location. As a

faster solution, we propose memory chasing, an adaption of

memory waylaying which sacrifices stealth for speed. Instead

of waiting for the target page to be placed on a different

physical page, we actively “chase” the binary in physical

memory until it is at the correct physical page. Memory

chasing runs outside of the enclave as it has a stronger

interaction with userspace library functions. To change the

physical page of a target binary, memory chasing exploits the

copy-on-write effect of fork as follows:

1) mmap the binary as private and writable.
2) Fork the current process.

3) In the child process, write to the mapped binary. This

ensures that the page is copied to a new physical page.

4) Kill the parent process to release the old physical page.

5) Repeat until the page is at the intended physical location

(check using the prefetch translation oracle)

Although the binary content is now at the correct physical

location, the page cache still holds the first version of the

binary page, as the current page is dirty (i.e., modified). Thus,

we have to trick the kernel into replacing the old binary page

with the current one. We do this by evicting the page cache as

described in Section VIII-B. This removes the old (cached)

binary page from the page cache. After the page cache is

evicted, we unmap the current binary page and immediately

map it again, however, this time with read-only and execute

permissions. This ensures that the freed physical page is used

to cache the binary in the page cache.

Memory chasing is considerably faster than memory way-

laying, as the page cache has to be evicted only once. Moving

the physical page with memory chasing takes on average

only 36.7 μs, whereas memory waylaying requires 2.68 s. On
Windows, we could not test memory chasing as there is

no equivalent to the fork function. With 10.10 s, memory

waylaying requires slightly more time on Windows. However,

both techniques have the advantage of not exhausting the

memory in contrast to memory spraying and grooming. One

disadvantage of memory chasing is the large number of fork

system calls, occupying one CPU core. Therefore, depending

on how stealthy the attack must be, the attacker chooses which

of the two primitives to use for reliable page cache eviction.

In Section IX-B, we detail the runtime of memory chasing in

a practical example.

IX. EVALUATION OF ATTACKS IN NATIVE AND CLOUD

ENVIRONMENTS

In this section, we summarize our attacks and evaluate them

in practical scenarios. We first consider a cloud scenario with

254

a simple attack, where an attacker is able to run our attack in

virtual machines on multiple cloud servers. We then consider a

local scenario with our full attack, where an attacker is able to

run our attack on personal computers and performs a privilege-

escalation attack. We detail the procedural steps of the attacks

as well as the corresponding runtime.

A. Abusing SGX for Denial-of-Service Attacks in the Cloud

Cloud servers are typically less susceptible to Rowhammer

bit flips due to the presence of ECC, double refresh rates,

and slower DRAM modules [57]. In the cloud scenario, the

attacker uses our attack to identify vulnerable servers and take

these servers down in a coordinated and distributed attack, i.e.,

a denial-of-service attack. In this attack, we do not aim for

privilege escalation and hence, neither perform opcode flipping

nor memory waylaying. The attacker runs an unprivileged

SGX enclave to evade defense classes D1 and D2.
If, as discussed in Section II-D, an attacker induces bit flips

in the encrypted memory area (EPC) of SGX, the CPU locks

the memory controller (potentially incurring data corruption),

causing the system to halt until it is rebooted manually. Note

that only a tiny fraction of 4 kB pages are adjacent to the

128MB EPC memory area. For instance, on a system with

16GB dual-channel dual-rank DDR4 memory, only 256 pages

(0.006% of all pages) are in an adjacent DRAM row. As

different allocation mechanisms are used to allocate EPC

pages and normal world pages, the attacker cannot accidentally

hammer EPC addresses. Hence, it is extremely unlikely to

accidentally flip a bit in the EPC memory region.

Many cloud providers use KVM [27] or Xen [7] to run

multiple virtual machines of different tenants in parallel on

the same physical hardware. To expose SGX features to virtual

machines, Intel published the necessary kernel patches [32, 33,

34]. Recently, Microsoft [51] introduced Azure confidential
computing that enables developers to use SGX in their cloud.

Our “distributed” denial-of-service attack consists of two

phases, seek and destroy:

• Seek. The attacker launches the attack enclave on many

hosts in the cloud (i.e., “distributed”), and templates the

DRAM for possible bit flips. The runtime of this phase is

in the range of multiple hours. As the position of bit flips

is uniformly distributed, an attacker learns from any bit flip

while templating, that the DRAM very likely also vulnerable

to bit flips in the EPC region used by SGX.

• Destroy. The attacker shuts down every vulnerable ma-

chine found in phase 1, by simultaneously triggering bit

flips in EPC memory. The runtime of this phase is in the

range of seconds to minutes.

Besides ethical considerations on performing this exper-

iment on a public cloud provider, we also found that no

public cloud provider offers SGX support. Microsoft’s Azure
confidential computing [51] can only be used as an early access

program, that we have not been granted access to. Instead, we

performed the first part of our experiment on a dual CPU

server system with two Intel Haswell-EP Xeon E5-2630 v3,

a setup commonly found in public clouds. We equipped the

system with two Crucial DDR4-2133 DIMMs known to be

susceptible to Rowhammer bit flips. Our experiments showed

that due to the significantly lower clock frequency (60–76%
of the clock frequency of an Intel Skylake i7-6700K) and

the by-default doubled refresh rate, bit flips are much rarer.

Specifically, we observed only 3 bit flips in an 8 hour test.

However, this is sufficient for our denial-of-service attack.

In the second phase, our Rowhammer enclave starts to

simultaneously hammer DRAM rows in the EPC on all

hosts. By triggering a bit flip within this memory region, the

machine locks the memory controller (potentially incurring

data corruption) and causes the system to halt until reboot.

As our Intel Haswell-EP system does not support Intel

SGX, we performed the second part of our practical analysis

on an Intel Skylake i7-6700K. We verified that we are able

to reproducibly crash the system within 10 seconds when

hammering DRAM rows used by the EPC, as Intel SGX

locked down the memory controller, halting the system and

forcing us to power off the system manually. We observed

that occasionally, after powering on the system again, the

system did not boot beyond the BIOS for several minutes.

After powering the system off and on again another time, the

system regularly booted again.

Our results show that SGX introduces a significant security

risk for cloud providers, allowing an attacker to cause hard-

to-trace denial-of-service attacks and coordinated simultane-

ous take-down of multiple cloud servers, e.g., in the Azure
confidential computing cloud [51]. As the attack hurts the

availability and reliability of the cloud provider, it is especially

interesting for parties with conflicting economic interests.

While the same attack could also be applied to a large num-

ber of personal computers, it is unclear how an attacker would

profit from denial-of-service attacks on personal computers,

especially in the face of the full privilege-escalation attack we

detail in the next subsection.

In a concurrent independent work, Jang et al. [36] propose

a similar attack, making the same observations as we did:

the system reset does not work properly following bit flips in

SGX; any bit flip in the 128MB region causes the system

to halt, making the attack easier than other Rowhammer

attacks; all detection mechanisms are bypassed by hiding the

Rowhammer code inside an enclave; and that just locking

down the processor in case of a bit flip might not be the

best defense scheme. As a defense, they propose that future

work should investigate whether there are non-process-specific

performance counters which allow detection of suspicious

activity in SGX enclaves.

B. Abusing SGX to Hide Privilege-Escalation Attacks

Personal computers are more susceptible to Rowhammer bit

flips, as they usually are not equipped with ECC-RAM. In this

scenario, the attacker uses our full attack for privilege escala-

tion from a regular unprivileged process to root privileges. The

crucial building blocks of this attack are opcode flipping and

memory waylaying. The attacker runs an unprivileged SGX

enclave to evade defense classes D1 and D2.

255

TABLE III: Optimal parameters and runtime of the attack.

Method Bitflips Templating Waylaying Total

Double-sided, waylaying 91 26.1h 69.4h 95.5h
Single-sided, waylaying 87 27.5h 70.6h 98.1h
One-location, waylaying 50 47.3h 90.5h 137.8h

Double-sided, chasing 1 0.7h 43.7h 44.4h
Single-sided, chasing 1 0.7h 43.7h 44.4h
One-location, chasing 1 1.3h 44.0h 45.4h

In our example attack, we apply opcode flipping (cf. Sec-

tion VI) to exploit bit flips in opcodes in the sudo binary

of an up-to-date Ubuntu distribution. Bit flips at some offsets

in the binary (Section VI) cause a skipping of authentication

checks and, thus, provide us with root privileges.

The local attack requires two preparation steps:

• Offline Preparation. The attacker determines which bit

flip offsets in standard system executable binaries and shared

libraries are exploitable. This step is repeated for a large

number of binaries and shared libraries of different distri-

butions and versions. The result of the offline preparation

is a database of files, versions, and bit flip offsets (cf.

Section VI). In this phase, we identified 29 exploitable bit

offsets in sudo.
• Online Preparation. The attacker verifies that the binary

and library versions on the target systems are in the database.

This is very likely the case if the victim uses a default

installation of a popular Linux distribution, e.g., Ubuntu,

as all binaries and libraries are pre-compiled and hence,

identical on virtually every installation.

After the preparation steps are completed, the attacker contin-

ues with the main attack, consisting of four phases:

• Templating phase. Our Rowhammer enclave templates

memory for bit flips. This is done via single-sided ham-

mering or one-location hammering (cf. Section VII), which

both are oblivious to physical addresses and hence, perfectly

suited to be run in our Rowhammer enclave. To defeat

defense class D3, the attacker can use one-location hammer-

ing. The memory is allocated via memory-mapped files (cf.

Section VIII), causing no significant increase in the resident

memory and, thus, avoiding out-of-memory situations.

The runtime of the templating phase and the waylaying

phase pose an optimization problem (see Appendix B).

Table III shows the optimal solution for our scenario, e.g.,

the runtime with one-location hammering is 47.3 hours

if followed by waylaying, and 1.3 hours if followed by

memory chasing. Interruptions during this time frame are

no problem, as the attacker tests independent memory lo-

cations and does not lose data over interruptions. During

the templating, the enclave occupies one CPU core, which

is visible to the OS but which could also be explained

by completely benign enclave operations. The result of the

templating phase is a list of physical pages with bit flips

matching those from the preparation phase.

• Waylaying phase. Our Rowhammer enclave uses a side

channel to wait until one of the vulnerable target binary or

library pages is placed on one of the exploitable memory

locations (cf. Section VIII). The prefetch-based prediction

oracle tells us when the page has been loaded at the correct

position. Next, then we flip the bit in the opcode using one-

location hammering in the hammering phase.
The runtime of the waylaying phase depends on the number

of bit flips found in the templating phase. Table III shows the

optimal solution for our scenario, e.g., the runtime with one-

location hammering is 90.5 hours for memory waylaying

and 44.0 hours for memory chasing. The result of the

waylaying phase is that a target binary page is placed on

the right physical page to trigger a predictable bit flip.

• Hammering phase. The hammering phase only takes

a few milliseconds, as it only induces the predictable bit

flip on the target page using Rowhammer. The attacker can

verify whether a bit was flipped by reading the content of

the binary page. Thus, the result of the hammering phase

is an unauthorized modification of the target binary, i.e., in

our case a malicious sudo binary.

• Exploitation phase. As the binary page in memory

now contains the modified opcodes, the privilege check in

the target binary, i.e., sudo, is circumvented. Hence, the

attacker simply runs the attacked binary and, thus, obtains

root privileges. Consequently, the exploitation phase also has

a negligible runtime.

We performed all attack steps on an i7-6700K, showing that

the attack can be mounted in practice. Furthermore, we vali-

dated the templating on two other systems, an i5-3230M with

Samsung DDR3-1600 memory, and an i7-4790 with Kingston

DDR3-1600 memory. We also validated the waylaying phase

by running it for several days as a background process on

a second machine (an i5-6200U), confirming that the user

does not notice any attack activity and that it does not cause

any system crashes. To eliminate traces or avoid potential

instabilities due to the binary modifications, an attacker can

restore the unmodified binary page by simply evicting the

page cache once more. Upon the next access, the unmodified

version is reloaded from the disk.

Our attack shows that existing countermeasures for com-

modity systems are incomplete and fundamental assumptions

need to be refined to design effective countermeasures.

X. DISCUSSION

In this section, we discuss limitations of our approach and

additional observations we made while conducting our study.

A. Limitations

One limitation of our work is that an attacker in the native

attack scenario likely needs to get a Rowhammer enclave

signed by a signing entity, e.g., Intel or a BIOS vendor, to

be able to launch the enclave. While this sounds like a solid

solution to prevent Rowhammer attacks through enclaves in

practice, investigations on a very similar setting show that

this is not the case [15]. It is very well possible to slip

malware into app stores [15]. Furthermore, most works on

applications of SGX suggest that it can be used to keep

the code and data secret from any third party [5, 49, 63].

256

Especially for secure cloud computation it is not plausible

to run only signed enclaves, i.e., a cloud provider will run

non-signed user enclaves. This would allow an attacker to run

our attack as well. Consequently, a different solution must be

found to prevent Rowhammer attacks through SGX enclaves.

Although far more stealthy than spraying and grooming,

memory waylaying is still observable by the OS. The OS

could prevent allocating too many page cache pages in a sin-

gle process. However, high memory requirements could also

be perfectly reasonable, e.g., trusted video processing [47],

operations on large encrypted database files [14, 42, 55, 63].

Hence, it is unclear whether memory allocation patterns alone

are enough to give away a Rowhammer attack. There is no

further interaction between the enclave and the non-enclave

sides that could be monitored to detect the attack. Finally,

future software defenses may still prevent our attack, e.g., by

checking the integrity of binaries and terminating processes

when an integrity check fails.

SGX enclaves should only be run if they are signed by

Intel or a trusted partner. If Intel or one of the trusted partners

do not thoroughly review the code before singing it, our

attack might slip through the signing process. However, as

this enclave signing process has not yet been deployed, it is

unclear whether such a code review would actually happen.

Perhaps more devastating is that fact that users and businesses

can deliberately run non-signed enclaves. In fact, Microsoft al-

ready does this on the Azure confidential computing cloud [51].

Hence, it is unclear whether a signing process would pose any

limitation for our attack.

Currently, in our opcode flipping technique, the identifica-

tion of target bit flip locations in binaries requires some manual

work. That is, manually defining a range where bit flips should

be tested and manually selecting the groups of successful

execution results. While this is certainly feasible for a small

number of binaries, fully automating this process would allow

a complete analysis of the attack surface. Similarly, compilers

could generate code which guarantees that an attacker requires

at least N bit flips to successfully manipulate the control flow,

i.e., N is a security parameter (cf. [9, 16]). We consider this

an interesting direction of future work, not only for research

on Rowhammer attacks but also on fault attacks in general.

B. Rowhammer mitigations in hardware

While it might be possible to design a practical software-

based Rowhammer countermeasure, the results of our paper

indicate that this is difficult, since not all variants of trig-

gering the Rowhammer bug are known. Furthermore, future

Rowhammer defenses should also be designed with related

fault attacks in mind [40, 46]. We now discuss proposed and

existing countermeasures implemented that require hardware

modifications, but tackle the problem at its root.

ECC RAM can detect and correct 1-bit errors and, thus,

deal with single bit flips caused by the Rowhammer attack.

Furthermore, IBM’s Chipkill error correction [30] allows to

successfully recover from 3-bit errors. However, uncorrectable

multi-bit flips can be exploitable [2, 3, 48] or can result in a

denial-of-service attack similar as described in Section IX-A

depending on how the OS responds to the error. While

only modern AMD Ryzen processors support ECC RAM in

consumer hardware, Intel restricts its support to server CPUs,

thus, making it unavailable in commodity systems.

While the LPDDR4 [37] implements TRR and MAC,

van der Veen [67] still reported bit flips on a Google Pixel

phone with 4GB LPDDR4 memory. Doubling the refresh rate

has been shown to be insufficient [6, 44] and a further increase

would incur a too high performance penalty [44].

Meaney et al. [50] introduced a redundant array of indepen-

dent memory (RAIM) system as a feature of IBM’s zEnterprise

servers, which is basically the memory-equivalent for RAID

systems for hard disks. For an uncorrectable error, an attacker

would have to induce multiple bit flips in different rows of

different modules, making Rowhammer attacks infeasible.

Kim et al. [44] and Kim et al. [43] proposed to eliminate

bit flips in hardware by probabilistically opening adjacent or

non-adjacent rows, whenever a row is opened or closed. As

ongoing Rowhammer attacks open and close a certain row

repeatedly, the vulnerable adjacent rows would be refreshed

before bit flips occur. Their approaches are possible solutions

to mitigate Rowhammer attacks in future hardware.

C. Design of SGX

Intel SGX aims at protecting code from untrusted third

parties. Indeed, we see that it perfectly hides our attack

from different defense mechanisms. While this is intentional

behavior and shows that SGX works, the question arises

how to cope with harmful code within SGX enclaves, which

eventually will happen in the wild.

A more discerning problem of SGX is that it halts the

entire system, e.g., a cloud system. This is a powerful tool

for attackers regardless of whether they run in the normal

world or within an SGX enclave. Taking down entire clouds,

possibly in a coordinated and distributed way, poses a security

risk. Instead of halting the system, it would be less dangerous

for the provider to only stop the running enclaves and return

corresponding error codes to the host application. A similar

design change was also proposed by Jang et al. [36].

XI. CONCLUSION

In this paper, we showed that even a combination of all

state-of-the-art Rowhammer defenses does not prevent Row-

hammer attacks. Our novel attack and exploitation primitives

systematically undermine the assumptions of all defenses.

With one-location hammering, we showed that previous as-

sumptions on how the Rowhammer bug can be triggered are

invalid and keeping only one DRAM row constantly open is

sufficient to induce bit flips. With a slow-down factor of only

3.3, it is still on par with previous (now mitigated) techniques.

With opcode flipping, we bypass all memory layout-based

defenses by flipping bits in a predictable and targeted way

in the userspace sudo binary. We present 29 bit offsets,

each allowing an attacker to obtain root privileges in practice.

With memory waylaying, we present a reliable technique

257

to replace conspicuous and unstable memory spraying and

grooming techniques. Coaxing the OS into relocating any

binary page takes 2.68 s with our stealth-optimized variant,

and only 36.7 μs with our speed-optimized variant. Finally,

we leveraged Intel SGX to hide the full privilege-escalation

attack, making any inspection or detection of the attack infea-

sible. Consequently, our attack evades all previously proposed

countermeasures for commodity systems.

ACKNOWLEDGMENTS

We would like to thank our anonymous reviewers and

Mark Seaborn for their valuable feedback as well as Thomas

Schuster for help with some experiments. This work has been

supported by the Austrian Research Promotion Agency (FFG)

via the K-project DeSSnet, which is funded in the context of

COMET – Competence Centers for Excellent Technologies

by BMVIT, BMWFW, Styria and Carinthia. This project has

received funding from the European Union’s Horizon 2020

research and innovation programme under European Research

Council (ERC) grant agreement No 681402 and under grant

agreement No 644052 (HECTOR). Yuval Yarom performed

part of this work as a visiting scholar at the University of

Pennsylvania, supported by an Endeavour Research Fellow-

ship from the Australian Department of Education and Train-

ing. Daniel Genkin was supported by NSF awards #1514261

and #1652259, financial assistance award 70NANB15H328

from the U.S. Department of Commerce, National Institute of

Standards and Technology, the 2017-2018 Rothschild Postdoc-

toral Fellowship, and the Defense Advanced Research Project

Agency (DARPA) under Contract #FA8650-16-C-7622.

REFERENCES

[1] M. T. Aga, Z. B. Aweke, and T. Austin, “When good

protections go bad: Exploiting anti-DoS measures to

accelerate Rowhammer attacks,” in International Sym-
posium on Hardware Oriented Security and Trust, 2017.

[2] B. Aichinger, “DDR memory errors caused by Row

Hammer,” in HPEC, 2015.
[3] ——, “Row Hammer Failures in DDR Memory,” in

memcon, 2015.
[4] I. Anati, F. McKeen, S. Gueron, H. Huang, S. Johnson,

R. Leslie-Hurd, H. Patil, C. V. Rozas, and H. Shafi, “Intel

Software Guard Extensions (Intel SGX),” 2015, Tutorial

Slides presented at ICSA.

[5] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,

C. Priebe, J. Lind, D. Muthukumaran, D. O′Keeffe, M. L.

Stillwell et al., “SCONE: Secure Linux containers with

Intel SGX,” in OSDI, 2016.
[6] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks,

Y. Oren, and T. Austin, “ANVIL: Software-based protec-

tion against next-generation Rowhammer attacks,” ACM
SIGPLAN Notices, vol. 51, no. 4, pp. 743–755, 2016.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen

and the Art of Virtualization,” ACM SIGOPS Operating
Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[8] A. Barresi, K. Razavi, M. Payer, and T. R. Gross, “CAIN:

silently breaking ASLR in the cloud,” in Usenix WOOT,
2015.

[9] T. Barry, D. Couroussé, and B. Robisson, “Compila-

tion of a countermeasure against instruction-skip fault

attacks,” in Workshop on Cryptography and Security in
Computing Systems, 2016.

[10] S. Bhattacharya and D. Mukhopadhyay, “Curious Case

of Rowhammer: Flipping Secret Exponent Bits Using

Timing Analysis,” in CHES, 2016.
[11] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup

Est Machina: Memory Deduplication as an Advanced

Exploitation Vector,” in S&P, 2016.
[12] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R.

Sadeghi, “CAn’t touch this: Software-only mitigation

against Rowhammer attacks targeting kernel memory,”

in USENIX Security Symposium, 2017.

[13] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,

S. Capkun, and A.-R. Sadeghi, “Software grand expo-

sure: SGX cache attacks are practical,” in Usenix WOOT,
2017.

[14] H. Brekalo, R. Strackx, and F. Piessens, “Mitigating pass-

word database breaches with Intel SGX,” in Workshop on
System Software for Trusted Execution, 2016.

[15] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang,

W. Zou, and P. Liu, “Finding unknown malice in 10

seconds: Mass vetting for new threats at the Google-Play

scale.” in USENIX Security Symposium, 2015.

[16] Z. Chen, J. Shen, A. Nicolau, A. Veidenbaum, N. F.

Ghalaty, and R. Cammarota, “CAMFAS: A compiler

approach to mitigate fault attacks via enhanced SIMDiza-

tion,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2017.

[17] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time

detection of cache-based side-channel attacks using hard-

ware performance counters,” Cryptology ePrint Archive,

Report 2015/1034, 2015.

[18] J. Corbet, “Defending against Rowhammer in the

kernel,” Oct. 2016. [Online]. Available: https://lwn.net/

Articles/704920/

[19] V. Costan and S. Devadas, “Intel SGX explained,” Cryp-

tology ePrint Archive, Report 2016/086, 2016.

[20] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and

O. Mutlu, “Memory power management via dynamic

voltage/frequency scaling,” in ACM International Con-
ference on Autonomic Computing, 2011.

[21] M. Ghasempour, M. Lujan, and J. Garside,

“ARMOR: A Run-time Memory Hot-Row Detector,”

2015. [Online]. Available: http://apt.cs.manchester.ac.uk/

projects/ARMOR/RowHammer

[22] D. Gruss, D. Bidner, and S. Mangard, “Practical mem-

ory deduplication attacks in sandboxed JavaScript,” in

ESORICS, 2015.
[23] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard,

“Prefetch Side-Channel Attacks: Bypassing SMAP and

Kernel ASLR,” in CCS, 2016.

258

[24] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js:

A Remote Software-Induced Fault Attack in JavaScript,”

in DIMVA, 2016.
[25] D. Gruss, C. Maurice, K. Wagner, and S. Mangard,

“Flush+Flush: A Fast and Stealthy Cache Attack,” in

DIMVA, 2016.
[26] S. Gueron, “A memory encryption engine suitable for

general purpose processors,” Cryptology ePrint Archive,

Report 2016/204, 2016.

[27] I. Habib, “Virtualization with KVM,” Linux J., vol. 2008,
no. 166, Feb. 2008.

[28] N. Herath and A. Fogh, “These are Not Your Grand

Daddys CPU Performance Counters – CPU Hardware

Performance Counters for Security,” in Black Hat Brief-
ings, 2015.

[29] R.-F. Huang, H.-Y. Yang, M. C.-T. Chao, and S.-C.

Lin, “Alternate hammering test for application-specific

DRAMs and an industrial case study,” in Annual Design
Automation Conference (DAC), 2012.

[30] IBM, “IBM Chipkill Memory: Advanced ECC Memory

for the IBM Netfinity 7000 M10,” 2019.

[31] Intel Corporation, “Intel Software Guard Extensions

(Intel SGX),” 2016, retrieved on November 7, 2016.

[Online]. Available: https://software.intel.com/en-us/sgx

[32] ——, “kvm-sgx,” 2017. [Online]. Available: https:

//github.com/01org/kvm-sgx

[33] ——, “qemu-sgx,” 2017. [Online]. Available: https:

//github.com/01org/qemu-sgx

[34] ——, “xen-sgx,” 2017. [Online]. Available: https:

//github.com/01org/xen-sgx

[35] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT:

Stopping microarchitectural attacks before execution,”

Cryptology ePrint Archive, Report 2016/1196, 2017.

[36] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb:

Locking down the processor via Rowhammer attack,” in

SysTEX, 2017.
[37] Jedec Solid State Technology Association, “Low Power

Double Data Rate 4,” 2017. [Online]. Available: http:

//www.jedec.org/standards-documents/docs/jesd209-4b

[38] M. Jung, C. C. Rheinländer, C. Weis, and N. Wehn,

“Reverse engineering of DRAMs: Row hammer with

crosshair,” in International Symposium on Memory Sys-
tems, 2016.

[39] O. D. Kahn and J. R. Wilcox, “Method for dynamically

adjusting a memory page closing policy,” Sep. 28 2004,

uS Patent 6,799,241.

[40] N. Karimi, A. K. Kanuparthi, X. Wang, O. Sinanoglu,

and R. Karri, “Magic: Malicious aging in circuits/cores,”

ACM Transactions on Architecture and Code Optimiza-
tion (TACO), vol. 12, no. 1, 2015.

[41] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist

open-page: A DRAM page-mode scheduling policy for

the many-core era,” in International Symposium on Mi-
croarchitecture (MICRO), 2011.

[42] F. Kerschbaum and A.-R. Sadeghi, “HardIDX: Practical

and secure index with SGX,” in Data and Applications

Security and Privacy XXXI: 31st Annual IFIP WG 11.3
Conference, DBSec 2017, vol. 10359, 2017, p. 386.

[43] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural

support for mitigating row hammering in DRAM memo-

ries,” IEEE Computer Architecture Letters, vol. 14, no. 1,
pp. 9–12, 2015.

[44] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,

C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits in

memory without accessing them: An experimental study

of DRAM disturbance errors,” in ISCA, 2014.
[45] Kirill A. Shutemov, “Pagemap: Do Not

Leak Physical Addresses to Non-Privileged

Userspace,” Mar. 2015, retrieved on November

10, 2015. [Online]. Available: https://git.kernel.

org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=

ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce

[46] A. Kurmus, N. Ioannou, N. Papandreou, and T. Parnell,

“From random block corruption to privilege escalation:

A filesystem attack vector for rowhammer-like attacks,”

in Usenix WOOT, 2017.
[47] R. Lal and P. M. Pappachan, “An architecture method-

ology for secure video conferencing,” in IEEE Interna-
tional Conference on Technologies for Homeland Secu-
rity (HST), 2013.

[48] M. Lanteigne, “How Rowhammer Could Be Used to

Exploit Weaknesses in Computer Hardware,” Mar. 2016.

[Online]. Available: http://thirdio.com/rowhammer.pdf

[49] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and

M. Peinado, “Inferring fine-grained control flow inside

SGX enclaves with branch shadowing,” in USENIX Se-
curity Symposium, 2017.

[50] P. J. Meaney, L. A. Lastras-Montano, V. K. Papazova,

E. Stephens, J. S. Johnson, L. C. Alves, J. A. O’Connor,

and W. J. Clarke, “IBM zEnterprise redundant array

of independent memory subsystem,” IBM Journal of
Research and Development, vol. 56, no. 1.2, Jan 2012.

[51] Microsoft, “Introducing Azure confidential computing,”

2017. [Online]. Available: https://azure.microsoft.com/

en-us/blog/introducing-azure-confidential-computing

[52] ——, “Cache and Memory Manager

Improvements,” Apr. 2017. [Online]. Available:

https://docs.microsoft.com/en-us/windows-server/

administration/performance-tuning/subsystem/cache-

memory-management/improvements-in-windows-server

[53] A. Moghimi, G. Irazoqui, and T. Eisenbarth,

“CacheZoom: How SGX amplifies the power of

cache attacks,” in CHES 2017, 2017, pp. 69–90.
[54] O. Mutlu, “The RowHammer problem and other issues

we may face as memory becomes denser,” in Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2017.

[55] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,

S. Nowo zin, K. Vaswani, and M. Costa, “Oblivious

Multi-Party Machine Learning on Trusted Processors,”

in USENIX Security Symposium, 2016.

259

[56] M. Payer, “HexPADS: a platform to detect “stealth”

attacks,” in ESSoS, 2016.
[57] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and

S. Mangard, “DRAMA: Exploiting DRAM Addressing

for Cross-CPU Attacks,” in USENIX Security Sympo-
sium, 2016.

[58] R. Qiao and M. Seaborn, “A new approach for Rowham-

mer attacks,” in International Symposium on Hardware
Oriented Security and Trust, 2016.

[59] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida,

and H. Bos, “Flip feng shui: Hammering a needle in the

software stack,” in USENIX Security Symposium, 2016.

[60] Red Hat, Red Hat Enterprise Linux 7 - Virtualization
Tuning and Optimization Guide, 2017.

[61] H. G. Rotithor, R. B. Osborne, and N. Aboulenein,

“Method and apparatus for out of order memory schedul-

ing,” Oct. 24 2006, uS Patent 7,127,574.

[62] M. Salyzyn, “UPSTREAM: pagemap: do not leak

physical addresses to non-privileged userspace,” 2015.

[Online]. Available: https://android-review.googlesource.

com/#/c/kernel/common/+/182766

[63] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,

M. Peinado, G. Mainar-Ruiz, and M. Russinovich, “VC3:

trustworthy data analytics in the cloud using SGX,” in

S&P, 2015.
[64] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and

S. Mangard, “Malware Guard Extension: Using SGX to

Conceal Cache Attacks,” in DIMVA, 2017.
[65] M. Seaborn and T. Dullien, “Exploiting the DRAM

rowhammer bug to gain kernel privileges,” in Black Hat
Briefings, 2015.

[66] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory

Deduplication as a Threat to the Guest OS,” in EuroSec,
2011.

[67] V. van der Veen, “Drammer: Deterministic rowhammer

attacks on mobile platforms,” 2016. [Online]. Available:

http://vvdveen.com/publications/drammer.slides.pdf

[68] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss,

C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuf-

frida, “Drammer: Deterministic Rowhammer attacks on

mobile platforms,” in CCS, 2016.
[69] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-

schaedler, H. Tang, and C. A. Gunter, “Leaky cauldron

on the dark land: Understanding memory side-channel

hazards in SGX,” in CCS, 2017.
[70] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One

bit flips, one cloud flops: Cross-VM Row Hammer

attacks and privilege escalation,” in USENIX Security
Symposium, 2016.

[71] Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Stacco: Dif-

ferentially analyzing side-channel traces for detecting

SSL/TLS vulnerabilities in secure enclaves,” in CCS,
2017.

[72] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel

Attacks: Deterministic Side Channels for Untrusted Op-

erating Systems,” in S&P, May 2015.

[73] Y. Yarom and K. Falkner, “Flush+Reload: a High Res-

olution, Low Noise, L3 Cache Side-Channel Attack,” in

USENIX Security Symposium, 2014.

[74] K. S. Yim, “The rowhammer attack injection methodol-

ogy,” in IEEE 35th Symposium on Reliable Distributed
Systems (SRDS), 2016.

[75] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-

time side-channel attack detection system in clouds,” in

RAID, 2016.

APPENDIX

A. Bitflips in sudo

Table IV lists exploitable bitflip offsets that modify opcodes

of sudoers.so (Ubuntu 17.04, sudo version 1.8.19p1)

yielding a skip of the privilege check and, thus, elevating an

unprivileged process to root privileges.

B. Computing the Optimal Runtime of our Attack

The runtime of our attack is computed as

P · (W + n · 0.05)
212 · n +

n · 216
F · E +

120 · P
230

seconds, where P is the amount of physical memory installed

in the system, W is the amount of time one waylaying

relocation takes, F is the flip rate (i.e., bit flips per second),

and E is the number of exploitable bit offsets within a 4 kB
page (which depends on the target binary). n ∈ N is the

optimization parameter, the number of bit flips to find in the

templating phase, influencing the runtime of the templating

phase and the waylaying phase. 0.05 seconds is the time

the prefetch address-translation oracle consumes for one test.

120 seconds is the amount of time the prefetch side-channel

attack consumes to translate a virtual to a physical address per

gigabyte (230 bytes) of system memory. The 216 represent the

215 bit offsets of a 4 kB page (212 bytes) which can flip in

both directions each.

On our test system we have P = 12 gigabytes, W = 2.68
seconds for memory waylaying, F = 0.67, and E = 29. With

these values we compute the runtime as

3 · 220 · (2.68 + n · 0.05)
n

+ n · 3373.3 + 24m

seconds. The minimum of this function is reached at n = 50.
Figure 5 shows the expected total runtime of the templating

phase, and memory waylaying and chasing, depending on

which hammering technique is used and how many bit offsets

are exploitable.

C. Memory Basics, Policies, and their Influence on One-
Location Hammering

DRAM is organized in multiple banks, e.g., for a dual-

channel dual-rank configuration 32 banks on DDR3 and 64

banks on DDR4. Each bank consists of an array of rows

of 8 kB each. Thus, the number of rows is typically in the

range of 214 to 216. Since the DRAM cells lose their charge

over time, the DDR standard defines that every row must be

refreshed once per 64 μs. When accessing a memory location,

260

TABLE IV: Exploitable bitflip offsets in sudoers.so.

Binary offset Bitflip offset Original Flipped

1 0x8c1c 4 lea rdi, aUser_is_exempt lea rbp, aUser_is_exempt
2 0x8c32 3 mov eax, ebp mov eax, esp
3 0x8d4e 0 lea rax, off_250860 lea rax, off_250860+1
4 0x8d4f 0 lea rax, off_250860 lea rax, unk_250760
5 0x8d59 0 mov eax, [rax+2C8h] mov eax, [rax+2C9h]
6 0x8d59 1 mov eax, [rax+2C8h] mov eax, [rax+2CAh]
7 0x8d59 2 mov eax, [rax+2C8h] mov eax, [rax+2CCh]
8 0x8d59 3 mov eax, [rax+2C8h] mov eax, [rax+2C0h]
9 0x8d59 6 mov eax, [rax+2C8h] mov eax, [rax+288h]
10 0x8d5a 5 mov eax, [rax+2C8h] mov eax, [rax+22C8h]
11 0x8d5d 7 test eax, eax add eax, 485775C0h
12 0x8d5e 0 test eax, eax test ecx, eax
13 0x8d5f 0 jnz short check_user_is_exempt jz short check_user_is_exempt
14 0x8dbd 3 test al, al mov eax, es
15 0x8dbd 7 test al, al add al, 0C0h
16 0x8dbf 0 jnz short near ptr unk_8D61 jz short near ptr unk_8D61
17 0x8dbf 3 jnz short near ptr unk_8D61 jge short near ptr unk_8D61
18 0x8dc4 3 lea rbp, qword_252700 lea rbp, algn_2526F8
19 0x8dc5 1 lea rbp, qword_252700 lea rbp, dword_252900
20 0x8dc5 2 lea rbp, qword_252700 lea rbp, __imp_fflush
21 0x8dc9 3 mov eax, [rbp+0F0h] mov ecx, [rbp+0F0h]
22 0x8dc9 4 mov eax, [rbp+0F0h] mov edx, [rbp+0F0h]
23 0x8dca 7 mov eax, [rbp+0F0h] mov eax, [rbp+70h]
24 0x8dcb 3 mov eax, [rbp+0F0h] mov eax, [rbp+8F0h]
25 0x8dcf 0 test eax, eax test ecx, eax
26 0x8dcf 3 test eax, eax test eax, ecx
27 0x8dd0 2 jnz loc_8FB0 or eax, [rbp+1DAh]
28 0x8dd1 0 jnz loc_8FB0 jz loc_8FB0
29 0x8e23 6 jz loc_8FE8 jz near ptr algn_8FA7+1

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Exploitable bitflips

R
u
n
ti
m
e
[h
o
u
rs
] One-location Double-sided Single-sided

One-location (MC) Double-sided (MC) Single-sided (MC)

Fig. 5: Expected total runtime (templating and waylaying) until

the attacker has the target page at the target physical location.

the corresponding row is opened, i.e., copied into an internal

array called the row buffer. Closing a row copies the data from

the row buffer back into the actual DRAM cells.

Before a row can be opened, the bank has to be precharged.

Consequently, when accessing a memory location in the cur-

rently opened row, i.e., a row hit, the latency is comparably

low. Accessing a memory location in a different row, i.e., a row

conflict, incurs first closing the DRAM row, then precharging

the bank, and finally opening the new row, copying the data

into the row buffer. The latency in this case is significantly

higher, e.g., 200% of the latency of a row hit.

recently accessed row open and buffered. This is beneficial

The memory controller can optimize the memory perfor-

mance by cleverly deciding when to close a row preemptively.

The two most basic memory controller policies are “open

page” and “closed page”. An open-page policy keeps the

for memory access latency, power consumption, and bank

utilization when the number of memory accesses is low [41].

However, when the number of memory accesses increases

the situation is more complex. A closed-page policy can

then achieve a better system performance, since the row is

immediately closed and the bank is precharged and ready to

open a new row [41].

With modern processors having huge caches and complex

algorithms for spatial and temporal prefetching, the prob-

ability that further memory accesses go to the same row

decreases. Consequently, more complex memory controller

policies have been proposed and are implemented in modern

processors [41]. David et al. [20] noted that closed-page poli-

cies perform especially better on multi-core systems and hence

they assumed that these are implemented in current processor

architectures. Intel also holds patents for dynamically adjusting

memory controller policies [39]. A closed-page policy, but also

other policies which preemptively close rows, would allow

one-location hammering.

Besides these memory controller policies, the memory con-

troller can also reorder and combine memory accesses [61].

Since the Rowhammer bug is related to the number of row

activations [44], a lower number of activations due to reorder-

ing and combining also reduces the probability of bit flips. In

one-location hammering most of the accesses can be expected

to be reordered and combined to reduce the overall number

of row activations, leading to a lower number of bit flips than

with other hammering techniques.

261

