
SoK: Keylogging Side Channels

John V. Monaco

U.S. Army Research Laboratory
Aberdeen Proving Ground, MD, USA

Abstract—The first keylogging side channel attack was dis-
covered over 50 years ago when Bell Laboratory researchers
noticed an electromagnetic spike emanating from a Bell 131-
B2 teletype terminal. This spike, emitted upon each key press,
enabled up to 75% of plaintext communications to be recovered
in field conditions. Since then, keylogging attacks have come
to leverage side channels emanating from the user’s finger
and hand movements, countless keyboard electromagnetic and
acoustic emanations, microarchitectural attacks on the host
computer, and encrypted network traffic. These attacks can each
be characterized by the type of information the side channel
leaks: a spatial side channel reveals physical key locations or
the similarity between key pairs, and a temporal side channel
leverages key press and release timings. We define and evaluate
the performance of idealized spatial and temporal keylogging
side channels and find that, under the assumption of typing
English words, nontrivial information gains can be achieved even
in the presence of substantial measurement error. For temporal
side channels, we find that the information gained by different
temporal features strongly correlates to typing speed and style.
Finally, to help drive future research, we review the current state-
of-the-art keylogging side channel attacks and discuss some of
the mitigation techniques that can be applied.

I. INTRODUCTION

In 1984, sixteen electromechanical bugs were discovered

inside IBM Selectric II and Selectric III typewriters at the

U.S. Embassy in Moscow and U.S. Consulate in Leningrad [1].

The bugs, developed by the Soviet Union (USSR), contained 6

magnetometers that sensed upon each keystroke the actuation

of 6 individual levers in the Selectric typewriter. The unique

combination of actuated levers enabled the Selectric Bug to

determine which key had been pressed, ignoring Shift, Space,
and some other non-letter keys. Up to 8 key presses were

stored in an 8×4-bit core memory, and when this became full
the memory contents were transmitted via radio bursts to a

nearby listening post. The Soviets developed at least 5 versions

of the Selectric Bug which enabled them to log the keystrokes

of their adversaries for more than 8 years [1].
Keystroke logging, or keylogging, is the practice of record-

ing the keys a person types on a keyboard. This can often be

accomplished by means of a side channel attack, whereby an
unintended information source is leveraged. The Selectric Bug

is one of the first such hardware keyloggers discovered in the

wild and represents a milestone in surveillance technology. It

is perhaps one of the most successfully executed attacks on

keyboard input known to the public and helped raise awareness

to the real possibility of covertly logging keystrokes. The idea

itself of using a side channel attack to log keystrokes dates

back over 50 years to the well-known TEMPEST Program,

prompted by the discovery of Bell Laboratory researchers that

emanating electromagnetic spikes from a teletype terminal

Fig. 1. Selectric Bug, one of the first keylogging side channel attacks
discovered in the wild. Reprinted with permission from [4] and on display in
the National Cryptologic Museum.

could be used to effortlessly decode secure communications

[2], [3]. In the years to come, keylogging side channel attacks

would evolve from typewriter to computer keyboard and grow

to cover a broad spectrum of vulnerabilities. Likewise, rela-

tively sophisticated keylogging defenses have been developed

to address a diverse set of attack scenarios.

There currently exists a number of modalities with which

keystrokes can be detected and identified, including WiFi sig-

nal distortion [5], electromagnetic (EM) emanations [6], CPU

cache usage [7], and network traffic patterns [8]. Conversely,

side channel mitigation can in some cases be achieved by low-

cost countermeasures that aim to reduce emanations [9] and

mask typing behavior [10]. Each attack relies on a side channel

that emanates from either the user, the host computer, the

keyboard, or the network, respectively. And while some attacks

utilize a side channel that leaks only temporal information,

such as the timing of key press and release events, others

leverage spatial information to reveal the location of and

physical distance between keys on the keyboard.

This work aims to establish a framework within which

keylogging side channel attacks and defenses are described

and evaluated. Keylogging performance metrics are defined,

and the effects of spatial measurement error and typing speed

of the victim are determined for idealized spatial and temporal

side channels. To help drive future research, we attempt to con-

solidate much of the core knowledge in keyboard mechanics

and review the current state-of-the-art keylogging side channel

attacks and defensive mitigation techniques.

The rest of this article is organized as follows. Section II

reviews the basic operation and communication protocols of

the keyboard, providing the basis for many side channel

attacks. Timing issues are also considered, including sources

of delay and the effects of process scheduling. Section III

formally defines the problem of keylogging with respective

performance metrics and introduces the concept of idealized

spatial and temporal side channels. Specific keylogging attacks

and defenses are characterized in Sections IV and V, respec-

tively. Section VI discusses privacy concerns and identifies

directions for future research. Section VII concludes and the

Appendix provides a summary of public keystroke datasets.

211

2018 IEEE Symposium on Security and Privacy

© 2018, John Monaco. Under license to IEEE.
DOI 10.1109/SP.2018.00026

Rubber dome Scissor switch Mechanical switch Buckling spring

� ��������	
�

����
��

�	�����

��
�����

�������

�

��������	
��

���	�
�

������	����

�����
�� �

�������

	
��
��

�������

���
��

�����
�
������

�

�������

�������	

�
��

��
���

�������

��
�
���

Fig. 2. Common keyboard switch designs.

II. BACKGROUND

There exist a great variety of keyboard1 types that differ

in the way keys are actuated, sensed, encoded, and reported

to the host. In this section, some of the most widely used

components and communication protocols are reviewed.

A. Keyboard Layout

The modern computer keyboard is the heir to the first

commercially successful typewriter invented by Christopher

Latham Sholes [12]. Today, a distinction can be made between

the logical layout, which defines a mapping of key identifiers
to physical key locations (e.g., QWERTY vs DVORAK), and

the physical layout, regarding the shape and arrangement of

keys on the keyboard. The dimension and placement of keys

is often specified by the relative unit measurement, which is

agnostic to the physical dimensions of the keyboard: 1 unit (u)

is the length and width of the space occupied by square

alphanumeric keys, and on most keyboards, the horizontal

center-to-center key distance. The dimensions of other keys

can be specified in terms of keyboard units: e.g., on the ANSI

101 physical layout, Tab is 1×1.5 u, Caps Lock is 1×1.75 u,
and LShift is 1 × 2.25 u [13]. The physical distance tied to

1 u varies depending on specific keyboard, although the ISO

standard specifies 1 u≡19±1 mm for full-sized keyboards [14].

B. Sensing and Actuation

The sensing method refers to the way in which a keystroke

is physically sensed [15]. Sensing can be performed through

conductance, capacitance, photo-conductance, or even Hall

effect, a method intended for applications that require extreme

reliability, such as aircraft cockpits [16]. Most commodity

keyboards since the mid 1990’s utilize a flexible conductive

membrane with printed circuits to detect keys. The membrane

is comprised of three layered plastic sheets with circuit traces

on the top and bottom sheets. The middle sheet contains

cavities at each key location so that when pressure is applied

to the area above the cavity the circuit is completed.

The switch refers to the actuation mechanism that interfaces

the sensor, also providing tactile and auditory feedback to the

user. Among the common switch types, shown in Figure 2,

are the rubber dome, scissor switch, mechanical switch, and

buckling spring. Most commodity keyboards consist of a

rubber dome switch on top of a membrane layer [17]. The

key cap sits on top of a plunger which, when pushed, causes a

1The focus of this work is on full-size hardware keyboards and not “soft”
touchscreen keyboards. For an example of an attack on the latter, see [11].

rubber dome to apply pressure to the membrane and complete

the circuit. The typical rubber dome switch provides 3.5–4 mm

of travel and requires 50–70 cN of force to actuate, although

the latter varies based on specific manufacturing process [18].
Stabilized, or scissor switch, keys are common in laptops

and low-profile “chiclet” keyboards [19], [20]. Scissor switch

keys are characterized by a set of leveling arms that stabilize

the key cap upon actuation, traveling a distance of up to 2 mm.

Although they have a lower profile than standard rubber dome

keyboards, the actuation force is comparable [18].
Unlike rubber dome and scissor switch keyboards, metal

contact switch, or mechanical switch, keyboards sense

keystrokes through the conductance of metal contacts as op-

posed to an underlying membrane. Most mechanical switches

operate by negative action, whereby the switch assembly

displaces an object that holds metal contacts apart; when

the object is removed, the metal contacts close on their own

accord. This design ensures more consistent closing behavior

than positive action, whereby the switch assembly brings the

metal contacts to together.
Buckling spring switches, which emit a characteristic sound,

predate the modern rubber dome-over-membrane design [21].

Popularized by IBM in the 1970’s and 1980’s, the buckling

spring switch operates by compressing a spring to the point of

catastrophic buckling upon which it pivots a rocking member

that actuates the sensor below, such as a membrane.

C. Matrix Scanning
A major function of the microcontroller is to detect any

pressed keys. To avoid having a dedicated line for each key,

this is usually performed by multiplexing a matrix circuit

design such that the intersection of each column (scanning

line) and row (feedback line) forms a switch for each key [22].

The microcontroller continuously scans the matrix, pulsing

each column for a short duration (up to 3 μs) at a rate

referred to as the matrix scan rate. Any key pressed along

the pulsed column completes a circuit which is detected at

the corresponding row. In this way, a key press can only be

detected when the microcontroller pulses the appropriate col-

umn. Although cost efficient, this design can lead to ghosting,
or the erroneous detection of a fourth key when three adjacent

keys in the matrix are pressed. Similarly, masking occurs when
three adjacent keys in the matrix are simultaneously pressed

and a fourth key cannot be detected. Key arrangement within

the matrix, and some redundancy, can mitigate these effects.

The matrix of a typical 101-key keyboard has up to 24 columns

and 8 rows, which can support up to 192 unique keys [22].

212

D. Communication Protocols

There are predominately two ways in which keyboards

communicate with the host computer, PS/2 and USB, differing

in the way keystrokes are both encoded and transmitted.

1) PS/2: Each physical key is assigned a unique scancode

which is transmitted to the host by the keyboard in an 11-

bit frame comprised of: a start bit (always 0), 8 bits for the

scancode (least significant bit first), odd parity check bit, and a

stop bit. For each bit, the keyboard pulls down the clock signal,

which must be in the range 10–16.7 kHz and is provided by

the keyboard itself, and then sends the bit over the data line,

i.e., data should be sent from the keyboard to the host on the

falling edge of the clock signal [23].

2) USB: Unlike PS/2, USB keyboards are passive in nature

[24]. The universal host controller interface (UHCI) periodi-

cally issues a query to the keyboard and the keyboard responds

with its current state indicating which keys are pressed [25].

The polling interval of the UHCI determines the maximum

rate that the keyboard can report any changes in state, which

ranges anywhere from 100 Hz to 1000 Hz (125 Hz is a

common default). Most USB keyboards implement USB 1.x

since they require relatively low bandwidth. Even low speed

USB devices, which use a 6 MHz clock and non return

to zero inverted (NRZI) encoding, can achieve much higher

transmission rates than PS/2.

The USB keyboard state is an 8-byte packet that contains

a modifier key mask (byte 0), a reserved byte (byte 1), and

up to 6 keys that are currently pressed (bytes 2-7). There is

no way to send a “release” event as the keyboard can only

report that some keys are in a pressed state. Because of this,

the host computer must maintain its own state of the keyboard,

inferring key releases when necessary. The order of keys in the

packet does not matter, and due to the size of the packet, USB

keyboards are limited to 8 modifier keys and 6 non-modifier

keys (commonly referred to as 6-key-rollover, or 6KRO).

3) Keyboard Interrupts: After the key press or release event
is encoded by the keyboard and transmitted to the host, a

hardware interrupt is raised on the host. The hardware interrupt

flags the CPU to respond to the keyboard event, which

typically involves reading the scancode (PS/2) or key identifier

(USB) from the keyboard buffer. Followup processing, such as

making the event available to shared libraries and user appli-

cations, may be performed later since the kernel must respond

as quickly as possible to the hardware interrupt. Until the

keyboard buffer is cleared and the interrupt is acknowledged

by the host, no further keystrokes can be received.

E. Timing: Sources of Delay and Variability

Due to the physical structure of the keyboard, a key press

is always followed by a key release, and together they form

a full keystroke2. From the perspective of the host computer,

a keystroke is a 3-tuple with the physical key identifier k, the
press time tP , and the release time tR.

2This is in contrast to touchscreen keyboards which allow a key to be
pressed without subsequently being released by dragging the pointing device.

A class of keylogging techniques that exploit temporal side

channels, described in Section III-C, rely on the precise timing

of keyboard events. The temporal resolution and precision3 of

each keystroke depends on the sampling rate of the sensor,

where in the processing pipeline it was detected, the speed

and scheduling policy of the host computer, and the keyboard

itself. There are several sources of delay and timing variability

that can affect both the resolution and precision with which

keystrokes are measured. These include:

1) Physical Delay: The time from physical contact between

the user’s finger and key cap to the point of actuation depends

on characteristics of the switching mechanism in the keyboard,

such as travel distance, feedback profile, and actuation force.

As described in Section II-B, these properties vary between

keyboard types. From the perspective of the host, the physical

delay cannot be measured since a keystroke is sensed only

at the point of actuation. However, an external sensor in

proximity to the user, such as a microphone or motion sensor,

can track the user’s hand movements and consider the physical

delay if necessary (see Figure 8).

2) Matrix Scan Rate: The rate at which the microcontroller

pulses the scanning lines in the keyboard matrix varies be-

tween keyboard models, ranging anywhere from 100 Hz to

400 Hz [26]. If a key press or release occurs just after the

corresponding column was pulsed, it will have to wait until

the next pulse arrives. This introduces a maximum delay of

dsc = 1000/fsc ms with, assuming a uniform distribution of

delays, mean dsc/2 ms and standard deviation
√
d2sc/12 ms,

where fsc is the scanning frequency.

3) Debouncing: When a key is pressed, it closes a switch

in underlying the circuit. This does not occur instantaneously,

but rather takes time for the switch to reach a stable closed

state, commonly referred to as switch bouncing. In order to

not generate spurious keystrokes, debouncing must be applied.

Many keyboards have a ≤ 5 ms debounce timeout [27], [28].

4) Encoding: Once the keyboard microcontroller deter-

mines that a key has been pressed, it enters a subroutine to

convert the action into a digital signal for transmission to the

host. This process interrupts the matrix scanning routine after

the last scanning column that was pulsed, causing a small

delay. Some side channels make explicit use of this delay to

infer the column along which a key was pressed, narrowing

down the possibilities to a much smaller subset of keys [6].

5) Polling Rate (USB): USB keyboards have an additional

source of latency that arises from the USB polling rate. Since

USB keyboards are passive in nature, they must wait for

the UHCI to query their state before responding with any

pressed keys. Similar to the matrix scan rate, the USB polling

rate introduces a maximum delay of dpo = 1000/fpo ms,

where fpo is the USB polling frequency. PS/2 keyboards are

interrupt-based, therefore do not suffer from polling delays.

6) Process Scheduling: Once the scancode reaches the

host computer, a hardware interrupt is raised. The kernel

3Resolution is the degree to which a measurement can be made and
precision is the degree to which a measurement can be repeated.

213

Fig. 3. Key press time intervals reveal system timer resolution (top, Windows
64 Hz) and USB polling rate (bottom, Mac OS X 125 Hz). The timer has a
binning effect on the time intervals (left), resulting in peaks at harmonics of
the fundamental frequency in the power spectral density (PSD, right).

must retrieve the scancode and acknowledge the interrupt,

which also takes time, adding an additional constant delay.

However, when the interrupt is actually handled depends on the
scheduling policy of the kernel. This is largely determined by

the scheduling clock tick, which specifies the time resolution

with which the scheduler advances. As keystroke events are

only handled on each timer interrupt, from the perspective

of an application running on the host, keystroke timings will

generally align to some multiple of the scheduling clock tick.

The effects of process scheduling and USB polling are

apparent when keystroke events are detected on or downstream

from the host, such as with CPU load [29] and network

traffic [8]. Figure 3 shows the histogram and power spectral

density (PSD) of key press time intervals recorded in a web

browser on several different platforms. The system timer

has a binning effect on the time intervals, which are tightly

clustered around multiples of the scheduling clock tick. Peaks

in the PSD correspond to harmonics of the fundamental timer

frequency, which also reveals the scheduling clock tick. These

PSD signatures could be used to perform coarse-grained host

identification: 64 Hz, or a 15.625 ms tick, is characteristic of

the Windows family [30] and 100 Hz of Mac OS X [31].

The Linux kernel has traditionally provided the option of

100, 250, 300, and 1000 Hz ticks through the CONFIG HZ

Kconfig parameter. On newer kernels, CONFIG NO HZ is

set by default, enabling a “tickless” system more suitable for

multimedia applications and power-constrained devices [32].

III. SIDE CHANNELS

A keylogging side channel attack involves leveraging an

unintended information source to determine which keyboard

keys were pressed. By this definition, a device or program that

senses keystrokes by directly intercepting the PS/2 or USB

signal [33], registering a system hook on the host computer

[34], or querying the keyboard state table [35], are not side

channel attacks since these methods operate through a channel

intended to provide information about the keyboard state.

An unintended information source is an information source

outside of the keyboard communication pipeline described in

Section II-D. Such a side channel may utilize either a hardware

or software sensor, e.g., a microphone to capture acoustic

emanations or a program that runs on the host to measure

CPU load. Keylogging side channel modalities can broadly

be characterized as being either spatial or temporal: spatial
side channels use spatial information to reveal physical key

locations on the keyboard, and temporal side channels use

keystroke timings to determine individual keys or key pairs.

A. Metrics

Keylogging is a two-step process comprised of two distinct

problems: keystroke detection and key identification. Keystroke
detection is the act of detecting that a keystroke has occurred

at some point in time, specifically in determining tP and/or

tR. Key identification is the act of determining k, the phys-

ical key that was pressed, given that a keystroke has been

detected. While some metrics, such as Damerau–Levenshtein

edit distance [36], can simultaneously capture the performance

of both tasks, here we evaluate each task separately.

1) Keystroke Detection: Before a physical key is identified,

the presence of a keystroke must be established. If time is

sliced into successive windows of equal size, the problem of

keystroke detection amounts to deciding whether each window

contains a keystroke. As a binary classification problem,

performance can be measured by standard metrics. The true

positive rate (TPR) is the rate at which keystrokes are correctly

detected and the true negative rate (TNR) is the rate at which

time windows that don’t contain a keystroke are correctly

labeled as such. Too many false negatives will lead to sparse

acquisition and provides little information, and too many false

positives will obfuscate the true keystrokes.

While perfect keystroke detection has TPR=TNR=1, there is

typically a tradeoff between TPR and TNR. With an acoustic

side channel, keystroke detection may be performed using an

energy threshold within a sliding window [37]. A threshold too

low will generate many spurious results, and a threshold too

high will fail to capture most true keystrokes. Similar tradeoffs

exist for WiFi signal distortion [5], memory access footprints

[7], and CPU load measurements [29].

2) Key Identification: Unlike keystroke detection, key iden-
tification is a multiclass classification problem. Given a

keystroke has been detected, the problem of key identification

is to determine which physical key on the keyboard was

pressed. In case of a keystroke sequence, this can also be

performed at the word level. There are |K|n ways to label a

sequence of n unknown keystrokes, where |K| is the cardinal-
ity of the set of all possible keys K.
The intrinsic entropy of a single keystroke with unknown

key k depends on the probability P [k] of each key k ∈ K,

H0 [k] = −
∑
k∈K

P [k] log2 P [k] (1)

Maximum entropy is achieved when each key has an equal

probability of occurrence, i.e., for uniform random input,

H0 = log2 |K|. Comparatively, the entropy of written English

214

� � � �

Fig. 4. Isomorphic 3-letter words in 1st order (left) and 2nd order (right) spatial side channels. Shaded blue circles denote measurement error.

is about 2 bits per character for 5-letter words and 1 bit per

character for sequences beyond 100 characters [38].
After an attacker has observed some side channel mea-

surement y, the probability of each key having occurred

may change. This could be due to, e.g., the localization

of an acoustic emanation to either the left or right side of

the keyboard. The relative entropy of a keystroke, given a

measurement y from a side channel, is

H1 [k|y = y0] = −
∑
k∈K

P [k|y0] log2 P [k|y0] (2)

where P [k|y0] = P [y0|k]P [k]∑
k∈K P [y0|k]P [k] according to Bayes’ The-

orem. The total relative entropy is given by

H1 [k|y] =
∫

P [y0]H1 [k|y = y0] dy0 (3)

where P [y0] =
∑

k∈K P [y0|k]P [k]. The side channel infor-
mation gain, or mutual information, is the difference between
the intrinsic entropy and relative entropy,

I [k; y] = H0 [k]−H1 [k|y] (4)

which specifies how many bits of entropy are leftover after

learning a measurement from the side channel. One may also

calculate the relative information gain,

IR [k; y] = I [k; y] /H0 (5)

which is the ratio of information gained to the intrinsic infor-

mation: IR = 0 indicates no change from the intrinsic entropy

and IR = 1 indicates that a single key has been positively

identified, analogous to perfect classification accuracy.

B. Spatial Side Channels
A spatial side channel reveals the physical locations of

keys on the keyboard through spatial measurements. Attacks

of this kind may be performed through acoustic localization

[39], video of the keyboard [40], or WiFi signal distortion

induced by hand motion [5], to name a few. While most spatial

side channels require an external sensor to obtain spatial

measurements, physical key locations can also be sensed

through a side channel on the host computer, such as through

cache patterns correlated to specific keyboard keys [7].
There exist two types of spatial side channels: 1st order

spatial side channels are those that indicate physical key

locations, for example by localizing the source of acoustic

emanations [39]; 2nd order spatial side channels provide only

the distances between physical keys, for example by measuring

the acoustic similarity between two different key presses [37].

1) 1st Order Spatial: In a 1st order spatial side channel,

sensor measurements reveal physical key locations. However,

these measurements may not be exact. That is, the key

locations might be known only to within some error. This

error could be due either to noise or the resolution of the

sensor. For example, attempting to localize the sound of a key

press with a microphone that has a 16 kHz sampling rate is

accurate only to within 2.1 cm since sound travels at 343 m/s.

The error could instead reflect a logical grouping of keys,

such as which scan column a key resides within [6]; in this

case, each measurement corresponds the set of keys along the

same scan column, and these keys may or may not be in

spatial proximity. Despite this, substantial information gains

can be achieved even with considerable measurement error as

demonstrated in this section.

As an example, Figure 4 (left) shows three spatial mea-

surements with ±1 u error observed when the user types the

word “com”. Let k1, k2, k3 be the sequence of unknown keys
to an adversary. Assuming uniform error in every direction,

each measurement covers an area with radius 1 u, limiting

the number of possibilities for each ki. That is, k1 ∈{X,C,V},
k2 ∈{I,O,P}, and k3 ∈{N,M}. For randomly-typed letter-only

input, such as a password, this limits the number of possible

sequences from 26 × 26 × 26 = 17576 (H0 = 14.10 bits) to

3× 3× 2 = 18 (H1 = 4.17 bits), an information gain of 9.93

bits (0.70 relative information gain).

If we assume the user is typing an English word, the number

of possible sequences is limited even further. Only English

words with letter sequences that fall within the measurement

error need to be considered. One possibility, shown by the

red dots in Figure 4 (left), is the word “vpn” since the V,
P, and N keys are each within 1 u proximity to the C,
O, and M keys. Generally, the spatial constraints given by

this particular measurement can be captured by the regular

expression (regex): “ˆ[xcv][iop][nm]$”. Matching this regex

to a dictionary of the 10k most common English words gives

4 possible results: “com”, “con”, “von”, and “vpn”, out of

672 3-letter words, a reduction of 9.39 − 2.00 = 7.39 bits

(0.79 relative information gain, assuming each word occurs

with probability P [w] = 1
672).

To get a sense of how spatial measurement error affects

information gain, the above procedure is used to calculate

the relative information gain for each word in a dictionary

comprised of the 10k most common words since year 2000

from the Google Web Trillion Word Corpus [41]. Figure 5

(top left) shows the relative information gain as word length

215

Fig. 5. Spatial info gain vs word length (left) and measurement error (right).

increases given ±1 u measurement error. At 6 letters, words are

almost determined with certainty, reflected by the near perfect

relative information gain.

Figure 5 (top right) shows the relative information gain of

different word lengths for increasing measurement error. At

±4 u, gains begin to drop below 0.50, and beyond ±7 u error,

almost no information is gained. Note that 0 information gain

is achieved for ±10 u since this radius spans the length of letter

keys on the keyboard, and error less than ±1 u can achieve

perfect accuracy since no error radius overlaps any other key.

2) 2nd Order Spatial: A spatial side channel is 2nd order

if it provides the distances between key locations as opposed

to the key locations themselves. This may occur if an attacker

observes a function that measures the distance or similarity

between pairs of physical keys. For example, consider the

acoustic emanations captured by a single microphone. Al-

though localization is not possible, different keys have been

shown to retain different acoustic signatures [39]. Comparing

the acoustic waveform of two different key presses enables

an adversary to differentiate between pairs of keys, despite

not knowing the key identities. Further, keys that are within

spatial proximity typically produce similar sounds which can

actually reveal the physical inter-key distances [37]. In this

way, a context-free attack can be performed, omitting the need

for a pre-trained classifier.

Since a 2nd order spatial side channel uses the distances

between keys, it is the key pairs and not individual keys that

are recognized. As shown in Figure 4 (right), consider typing

the word “com” with distances 5.6 u, 2.4 u, and 4.0 u between

keys C-O, O-M, and C-M, respectively. With a measurement

error of ±0.5 u, the word “sky” is isomorphic to “com” since

it has distances 6.0 u, 2.5 u, and 3.9 u between keys S-K,
K-Y, and S-Y, respectively. Generally, for a sequence of n
keystrokes, there are

n(n−1)
2 unique distances in the distance

matrix formed by the key pairs.

Using the same dictionary in the previous section, the

relative information gain for each word is calculated. First,

the inter-key distance matrix for each word is computed. This

distance matrix is compared to the distance matrix of every

other word of same length in the dictionary, matching words

that are within the measurement error. Note that unlike a 1st

order spatial side channel, the 2nd order spatial measurement

error is over distances and not locations. Figure 5 (bottom left)

shows the relative information gain for a 2nd order spatial

side channel with ±0.5 u error. The relative information gain

for words of 1 letter is 0 since no distances are observed.

Figure 5 (bottom right) shows the relative information gain as

measurement error increases.

In the worst case, a distance function can be binary valued,

in that it indicates only whether two keys are the same or

different. This effect could be achieved by thresholding the

distance matrix [42], revealing the unique characters in a word

but not the characters themselves, much like a monoalphabetic

substitution cipher. In this case, words can be matched using

an extended regular expression. For example, the regex for “at-

tack” would be “ˆ(.)((?!\1).)\2\1((?!\1|\2).)((?!\1|\2|\3).)$”
which matches the words “effect”, “attach”, “affair”, “at-

tain”, and “oppose”. Note that this method only provides a

substantial reduction in the search space if there are letter

repetitions. The number of matches for “social” (or any 6 letter

word without character repetitions, which have the same regex

pattern) is 784 out of 1543 6-letter words, an information gain

of about 1 bit.

C. Temporal Side Channels

There are two events associated with every keystroke: press

and release, with respective timings given by tP and tR.
A temporal keylogging side channel uses the sequence of

keystroke timings, tP and/or tR, to predict which keys were

pressed, exploiting the consistent and predictable way in which

a victim types. As noted by Salthouse, touch typists exhibit a

number of phenomena related to the dependence of keystroke

timings on physical key placement [43], [44], such as:

• Keys that are far apart are pressed in quicker succession

than keys that are close together.

• Letter pairs that occur frequently in language are typed

in quicker succession than infrequent letter pairs.

• Practicing a specific keystroke sequence can significantly

reduce inter-key timings.

These phenomena, among others, are the basis for exploiting

the relative information between physical key locations and

keystroke timings. Analogous to spatial side channels, a tem-

poral side channel can reveal either individual keys, through

the key-hold duration, or key pairs, through the time intervals

between successive keystrokes.
1) Duration: The duration of a keystroke is the time

interval from press to release, with the ith duration given by

di = tRi − tPi (6)

which can be used to identify individual keys. Typists may

generally hold down different keys for different lengths of

time, permitting an adversary to infer which key was pressed

(or which keys were more likely pressed) based on the ob-

served duration. This phenomenon is shown in Figure 6 (left)

216

Fig. 6. Duration (left) and latency (right) Gaussian PDFs for a single user.

Fig. 7. Info gain for a single user (left) and total info gain per user (right).

with Gaussian PDF estimates for each of 22 unique keys

in a sample of English text from a single user in a large

keystroke dataset [45] (see Appendix A for dataset details

and Appendix B for a summary of public keystroke datasets).

The information gain is determined with P [d|k] given by the
Gaussian PDF estimate for each key and P [k] = 1

22 to reflect

a uniform prior (maximum intrinsic entropy with 22 observed

keys). Thus, H0 = 4.46 bits since there are 22 unique keys.

In Figure 7 (left), more information is gained for relatively

high or low durations since these are rare; information gain

is lowest where the durations tend to cluster around 120 ms.

The total information gain is 0.36 bits per key.

In many side channels, the time interval between successive

keystrokes is of interest. This is especially true for those

attacks described in Section IV-D that exploit network traffic

timings in which only key press timestamps are available. For

these attacks, duration cannot be computed because release

times are not available.

2) Latency: The latency between successive keystrokes

can be utilized to identify key pairs. There are exactly four

different latency features formed by each combination of key

press and release from two successive keystrokes, given by

Press-Press (PP): τPP
i = tPi − tPi−1

Press-Release (PR): τPR
i = tRi − tPi−1

Release-Press (RP): τRP
i = tPi − tRi−1

Release-Release (RR): τRR
i = tRi − tRi−1 (7)

Unlike duration, the latencies correspond to pairs of keys, or

bigrams. Despite the intrinsic entropy being much larger (there

are 26 × 26 = 676 possible bigrams from letter keys alone),

information gained from latency can be substantial due to a

greater separation between bigram latency distributions.

Figure 6 (right) shows the Gaussian PDF estimates for

RP latency from the same user in the previous section. Like

duration, PP and PR latencies are nonnegative. However, RP

TABLE I
PEARSON’S CORRELATION BETWEEN INFORMATION GAIN AND TYPING

SPEED. BOLD p-VALUES INDICATE SIGNIFICANCE AT A 0.05 THRESHOLD.

Du PP PR RP RR
Pearson’s r -0.156 -0.011 -0.113 0.211 0.107

p-value 3.6e-07 7.3e-01 2.3e-04 3.9e-12 5.7e-04

and RR latencies can be negative when the release of the first

key overlaps the press or release of the second key, respectively

(commonly encountered for modifier keys, such as Shift). The
information gain for each latency feature is shown in Figure 7

(left), where intrinsic entropyH0 = 6.57 bits since there are 95
unique bigrams. For this particular user, each latency feature

provides about twice as much total information as duration.

Again, information gains are greatest for extremely large or

small latency values since these occur less frequently.

3) Users and Typing Speed: The previous sections exam-

ined information gain for a single representative user. How-

ever, since a temporal side channel exploits the predictable

way a user types, information gain could vary with different

users based on different typing speeds and styles [46]. Using

the same procedure to calculate I , Figure 7 (right) shows the

per-user information gains for each of the 1060 users in the

same dataset [45]. For the majority of users, duration provides

between 0.15 and 0.30 bits of information and each latency

between 0.5 and 0.9 bits with RP latency usually providing

the most. These results suggest that temporal side channel

information gain is highly user-dependent.

A question then arises as to what user-dependent factors

might determine the amount of information that can be gained

through a temporal side channel. We examined the relationship

between information gain and typing speed as given by the

number of keystrokes per minute (KPM), excluding non-letter

keys and latencies over 1 s. We found that the information

gained from duration decreases with increasing typing speed,

and for latency features, the opposite is generally true. Except

for PP latency, the correlations are significant, with Pearson’s

r and the corresponding p-value for each feature summarized

in Table I. Corroborating this relationship, an examination

of the data reveals that as typing speed increases, keystroke

durations become more uniform and consistent leading to

reduced information gain. Conversely, the dependence of inter-

keystroke timings on key distance and location becomes more

evident with increased typing speed, as previously noted by

Salthouse and others [43], [47].

IV. ATTACKS

A keylogging side channel attack can target either the

user, the keyboard itself, the host computer, or the network.

Table II provides a summary of specific keylogging side

channel attacks for each of these targets where each attack

is characterized by the following attributes.

Modality is the medium through which the side channel is

sensed, such as a physical medium (e.g., sound), a hardware

component (e.g., shared memory), or an application protocol.

217

TABLE II
KEYLOGGING SIDE CHANNEL ATTACKS. RAD=RADIATIVE, CAP=CAPACITIVE; S1=1ST ORDER SPATIAL, S2=2ND ORDER SPATIAL, T=TEMPORAL;�=SLOW (≤120 KPM), �=NORMAL (>120 KPM); �=WITHIN-SUBJECT, �=BETWEEN-SUBJECT, �=NONE; -=UNKNOWN/NOT PROVIDED.

Modality Attack Vulnerability Proximity Channel Typing Requires Performance Ref.Type Speed Training Detection Identification

U
se
r

EEG Decode brain electrical activity Headset S1 � � - 63% key ACC [48]

Motion Hand location over keyboard Smartwatch S1/T � � 57% TPR 30% word ACC5 [49]

Motion Hand movement over keyboard Smartwatch S1/S2 � � - 80% PIN ACC [50]

Motion Hand movement+key acoustics Smartwatch S1/S2 � � - 55% word ACC5 [51]

Motion Hand movement+key acoustics Smartwatch S1/S2 � � - 51% word ACC10 [52]

Video Line of sight to keyboard < 1 m S1 � � - 46% word ACC [40]

WiFi WiFi CSI distortion patterns 4 m S1 � � 98% TPR 96% key ACC [5]

WiFi WiFi multipath localization 5 m S1 � � - 92% key ACC5 [53]

K
ey
b
o
ar
d

Acoustic Keyboard acoustics 1 m S1 � � - 79% key ACC [54]

Acoustic Keyboard acoustics - S1 � � - 64% key ACC [55]

Acoustic Keyboard acoustic differences - S2 - � - 73% word ACC50 [37]

Acoustic Bootstrapped keyboard acoustics - S1/S2 � � - 90% word ACC [56]

Acoustic TDoA localization (3 mics) < 1 m S1 � � - 72% key ACC [39]

Acoustic TDoA localization (2 mics) < 1 m S1/S2 � � - 94% key ACC [57]

Acoustic Keyboard acoustics through VoIP Remote S1 � � - 83% key ACC [58]

Acoustic Keyboard acoustics through VoIP Remote S1 � � - 74% key ACC [9]

EM Cap. PS/2 wire crosstalk 15 m S1 - � - - [42]

EM Rad. PS/2 signal radiation 15 m S1 - � - 95% key ACC [6]

EM Rad. Matrix scan delay position 5 m S1 - � - 95% key ACC5 [6]

Seismic Vibration sensed by acoustic laser 30 m S2 - � - - [42]

Seismic Vibration sensed by smartphone 50 mm S2 � � - 43% word ACC10 [59]

H
o
st

procfs procfs stats (ESP and EIP) Kernel T - � 100% TPR 40% word ACC10 [60]

procfs procfs schedstat Kernel T - � - - [61]

CPU Shared event loop time differences Browser T � � 98% TPR - [62]

CPU Instruction throughput differences Browser T � � - 79% word ACC [29]

CPU rdtsc differences Core T � � 100% TPR - [10]

CPU X11 event duration Core S2 - � - 2.5bits/key [63]

CPU Keyboard interrupt duration Core T - � - 1bit/key [63]

Memory Prime+Trigger+Probe Cache T - � 95% TPR - [64]

Memory Cache-hit ratio pattern Cache S1 - � - 3.3bits/key [7]

Memory clflush latency Cache T � � 92% TPR - [65]

Memory DRAM row buffer latency DRAM T - � 100% TPR - [66]

Memory Multi-Prime+Probe Cache T � � 92% TPR - [10]

EM Cap. USB hub crosstalk USB hub S1 � � - 97% key ACC [67]

N
et
. HTTP HTTP response size Remote S1 � � - 3.6bits/key [68]

SSH Packet timing (interactive shell) Remote T � � - 1bit/key [8]

VoIP RTP event packet timing Remote T � � - 1.7bits/key [69]

Proximity indicates either the physical distance of the sensor
to the victim, or the shared resources required by the attack,

such as being resident on the same CPU core. Network-based

attacks are considered remote since they don’t require any any
physical sensor or code execution on the victim’s host.

Channel Type can be either 1st order spatial (S1), 2nd order
spatial (S2), temporal (T), or combination thereof, as described

in Section III. The type of side channel is determined by both

what information is sensed and how that information is used.
To demonstrate this, consider how the acoustics from a single

microphone can be used in three different ways:

• S1: the attacker identifies individual keys or groups of

keys using a classifier that was trained on a separate

labeled dataset (supervised approach).

• S2: the attacker compares the acoustics between pairs of

keys to form a set of constraints and then performs a

dictionary lookup (unsupervised approach).

• T: the attacker extracts the key press and release timings

from the acoustic signal and then identifies keys and key

pairs based on the time intervals.

Typing Speed refers to the typing speed of the victim during

an attack. Some attacks have been demonstrated as a proof of

concept by making restrictive assumptions on the typing speed

of the victim, such as pressing only a single key at a time in a

slow manner, i.e., the “straw man” approach [55], while other

attacks operate at a normal typing speed. The exact conditions

of each attack vary in many ways besides typing speed, but this

metric provides a general idea as to the use case considered.

Requires Training indicates whether the attack requires a

separate labeled dataset for supervised training. Some attacks

require a classifier trained on keystrokes collected from the

same victim or keyboard, e.g., obtained through social en-

gineering, as opposed to a dataset which has been crowd-

sourced. These scenarios are referred to as within-subject and
between-subject, respectively, to reflect whether the victim or

keyboard must be present in the training dataset.

Performance is reported using the metrics described in

Section III-A: the TPR for keystroke detection (most attacks

either do not report a TNR or assume this to be 100%) and

information gain for key identification. Instead of information

218

gain, some attacks report the rank-n identification accuracy

(ACCn), which is the probability of correctly identifying the

correct key or word among the top-n choices as ordered by

the classifier. Note that key, as opposed to word, identification

operates at the character level and implies the method can

be applied to arbitrary (e.g., password) input, while word

identification assumes the user types a dictionary word.

A. Attack the User

A side channel attack targeting the user relies on sensing

the user’s physical state during typing. Four such modalities

have been exploited, including electroencephalography (EEG),

the motion of the wrist as sensed through a smartwatch, video

with keyboard line-of-sight, and WiFi signal distortion.

1) Wearable Devices: Electrical potential differences em-

anating from the superficial layers of the brain are detected

on the scalp by an EEG cap, which are becoming more

prevalent as they decrease in cost. EEG has long been thought

to reflect a user’s cognitive state [70], such as by detecting the

characteristic P300 response to known stimuli [71], and just

recently has been considered as a modality for eavesdropping

keyboard input [48]. Other wearable devices that exploit the

motion of a victim’s hands while typing, such as smartwatches

and fitness trackers, present similar privacy concerns [72].

Such devices are equipped with most of the same sensors

found in smartphones, and despite the sampling rates being

slightly lower (on the order of 50 Hz, compared to 100 Hz

on smartphones), the accelerometer enables a fairly precise

estimate of relative hand distance traveled with less than 1 cm

error [50]. However, there are some unique challenges, notably

that when worn on the left hand a smartwatch is essentially

blind to the movements of the right hand.

2) Video: The ability to simply view the keyboard while

a victim types might seem like the ideal method to obtain

perfect key identification, but in practice this is more difficult

to achieve. It takes a human analyst anywhere from 1–2 hours

to identify the keystrokes in a 3 minute video, and only with

about 90% key identification accuracy [40]. Such difficulties

arise from occlusions by the hand, simultaneous movement

of alternate hand and fingers, and the typing speed of the

victim. This process can be automated using traditional com-

puter vision processing techniques (segmentation and motion

detection), assuming the attacker has access to a compromised

webcam pointed at the keyboard in close proximity (<1 m).

3) WiFi: WiFi signals have traditionally been used for

coarse grained gesture recognition [73] and only recently

considered as a keylogging side channel whereby the user’s

finger and hand movements are localized with high enough

resolution. In a “straw man” approach, finger location can be

detected through the induced changes in signal delay at two

receiving antennas [53] or by fluctuations in the instantaneous

channel state information (CSI) [5], [74], which describes the

signal propagation characteristics. The former method requires

a software-defined radio (SDR) and multiple antennas at fixed

distance, in the same spirit as sound source localization, and

the latter approach uses commercially-available hardware.

� �� ��� ��� ��� ��� ���
��	
��	
�

����

����

����

����

����

�
�
	
�
�

��
�
��

�
�
����
���������

������
��

!���
�� "
�
�

�
��

Fig. 8. Keystroke acoustics. Peaks occur at the touch, press, and release.

B. Attack the Keyboard

The keyboard emits a variety of unintended signals, in-

cluding acoustic, seismic, and electromagnetic emanations. As

such, there are a range of attacks that exploit side channels

emanating from the keyboard. For these attacks, a physical

sensor external to the host computer is almost always utilized.

1) Acoustic: Acoustic side channels represent a majority

of keylogging side channel attacks. Under normal typing con-

ditions, most keyboards emit a characteristic acoustic signal

upon each keystroke, which can be captured up to several

meters away with a omnidirectional microphone and up to

15 meters with a directional microphone [54]. An example of

this waveform, shown in Figure 8, has three distinct parts: the

touch, press, and release. The touch peak (42 ms) occurs when

the user’s finger makes contact with the surface of the key, but

before the key is pressed; the press peak (64 ms) occurs when

the key is pressed and makes contact with the underlying plate

in the keyboard; and the release peak (165 ms) occurs when

the key settles back into its upright resting position.

Due to the characteristic peaks emitted, keystroke detection

rates using acoustic methods are generally high and assumed to

be 100% TPR in many works. Without too much background

noise, simple detection methods, such as the energy in a sliding

window exceeding a given threshold, are effective [37], [55]–

[57]. Despite the ability to extract high-resolution timings from

an acoustic signal, most acoustic side channel attacks only

utilize spatial information. Keys are identified in primarily two

ways: through sound source localization and by comparing the

acoustics produced by different keys.

With at least three microphones, acoustic emanations can

be localized by multilateration, leveraging the time difference
of arrival (TDoA) of the key acoustics to each receiver [39].

The key identification accuracy of such an approach depends

on the sampling rate of the microphones which introduce an

inevitable error, the degree to which noise-free localization

can be performed. A 44.1 kHz microphone, common on most

smartphones, has about 0.77 cm localization error [39], calcu-

lated by (343m/s) / (fsHz) where fs is the sampling frequency
and 343 m/s is the speed of sound. Partial localization can

be performed with two microphones (conveniently located on

most smartphones), albeit with much higher error, narrowing

down the possibilities to a subset of keys that fit within a

hyperbolic window over the keyboard [57].

Different keys on a keyboard tend to emit different acoustic

219

signatures and can be identified in this way using only a single

microphone [54]. Having previously recorded the acoustics

of a specific keyboard, i.e., supervised approach, individual

keys can generally be identified by comparing the unknown

waveforms to the known waveforms collected during training

[54]. The acoustic signature of each key has been demonstrated

to be consistent enough to log keystrokes not just across users,

but across devices of the same model [58] and over VoIP

services [9], [58]. Alternatively, a set of constraints on the

keystroke sequence can be specified by the acoustic similarity

of key pairs. This implies a 2nd order spatial side channel in

which the constraints are used to perform a dictionary lookup.

2) Seismic: Similar to acoustic emanations, the motion of

the keyboard induced from typing causes minute vibrations

in the underlying surface which may be carried over short

distances. The detection and recognition of keystrokes based

on vibrations can be performed either with a laser microphone,

up to 30 m away [42], or through a compromised mobile

device in close proximity to the keyboard. Only recently has

the sampling rate of such mobile sensors increased to the

point at which keystrokes can be reliably identified, with most

modern devices capable of reaching 100 Hz [59]. At 50 Hz,

previous generation devices were unable to detect, let alone

identify, keystrokes from seismic activity.

3) Electromagnetic: There are primarily two sources of EM
emanations in a standard keyboard: the keyboard scanning

matrix (described in Section II-C), and the communication

protocol (PS/2 and USB, described in Section II-D).

As the microcontroller pulses each column in the matrix,

an EM spike is emitted. This occurs continuously, and when

no keys are pressed, the time interval between EM spikes is

about the same. However, when a keystroke is detected, the

microcontroller enters a subroutine to encode and transmit the

keystroke event. Thus, a short delay is produced, and based

on the position of this delay, an attacker can determine which

column the keystroke occurred within [6].

Attacks on the communication protocol are particularly

effective, often narrowing down to a single key or very small

subset of keys by decoding the unencrypted signal, which

is carried either through the air or a conductive ground. In

PS/2, a strong EM spike is emitted upon each falling edge

of the data signal, enabling keys to be identified by their

“falling edge” scancode patterns. For example, the bit pattern

for E (scancode 0x24) is: 00010010011 which has falling

edge pattern: ↓↑↑↑↓↑↑↓↑↑↑, where ↓ denotes the presence of
a falling edge in the data signal and ↑ an absence. The G key

(scancode 0x34) has the same falling edge pattern since its bit

pattern is 00010110001. This spatial attack narrows down to

a subset 2.1 alphanumeric keys on average [6].

C. Attack the Host

With the ability to execute code on the victim’s machine,

there exist a variety of exploitable side channels at the attack-

ers disposal, most of which are in the realm of microarchitec-

tural attacks. The three main modalities are: process footprint

as reported by the kernel, CPU load, and memory access

patterns. For a full survey of microarchitectural attacks, which

include the latter two modalities, see [75].

1) Process Footprint: The kernel itself can leak a consid-

erable amount of information through process state and usage

statistics. On Linux, the virtual file system procfs is the

source of several side channels. Monitoring the values of the

extended stack pointer (ESP) and extended instruction pointer

(EIP) as reported by /proc/[pid]/stat reveal system call

patterns to known locations in memory. The way an applica-

tion responds to keyboard interrupts induces a specific pattern

of system calls such that keystroke events can be detected. This

attack works on multi-user systems and despite the relatively

slow update rate of procfs [60]. The scheduling statistics

as reported by /proc/[pid]/schedstat can also indicate

when a process responds to keyboard events since most text-

editing applications remain idle until user input is available

[61]. An attacker simply counts the number of time slices that

a process has been allocated, which, for textual applications,

will generally only increase upon each keystroke.

2) CPU Load: The general approach of CPU load-based

attacks is to detect spikes in CPU activity induced by IO inter-

rupts. On an otherwise idle system, a key press or release event

(or any IO event for that matter), causes a spike in CPU load.

The first kind of such an attack measured the duration of each

interrupt with a high-resolution timer and found that interrupts

for key press and release events had distinct durations when

compared to, e.g., scheduling interrupts [63]. Cache usage can

also be used to detect spikes in CPU load induced by keystroke

events [64], and in some cases the memory footprint can

actually reveal individual keys (described in the next section).

CPU load attacks can be performed in sandboxed environ-

ments despite being unable to execute native instructions and

without access to pointers and high-resolution timers. As an

alternative to an explicit high-resolution timer, an attacker can

increment a variable inside a (possibly segmented) loop and

then measure the number of variable increments at coarser-

grained intervals. This effectively measures the number of

instructions executed within a given time interval, which offers

relatively high-resolution timestamps of keyboard events [29].

Measuring the time between event processing in a shared

event loop additionally provides some insight to spikes in web

browser activity which may result from keystroke input [62].

Most CPU load attacks are categorized as temporal side

channels since they merely indicate the presence of a keystroke

and provide little or no spatial information. An exception to

this is an attack in which the key map is modified by the

attacker such that a particular key takes longer to process than

any other [76]. The presence of this key can then be detected

in a password by monitoring the target application execution

time (e.g., xlock) when a keystroke event is received: a long

execution time indicates the modified key was typed by the

victim and a short execution time implies its absence. This

process is repeated for each key in the key map or until all

the keys in a password have been identified. However, this

intentionally causes the wrong character to be typed, possibly

alerting to the victim to the presence of the attack.

220

3) Memory Footprint: Cache attacks leverage the nearly-

ubiquitous design of shared cache and memory to detect the

use of specific memory addresses by a target application. An

attacker can discern which locations are or are not accessed by

a target application by measuring the time it takes to access

a specific address mapped to the same cache set. There are

several variations of this general approach in which the cache

set is primed by the attacker before invoking (or waiting for)

the target application and then later probed to measure latency

[77]. Since cache attacks can detect which memory locations

are accessed, as opposed to just CPU load, they can be used

as a spatial side channel and potentially determine which keys

were pressed. Such is the approach of the cache-hit ratio

template that characterizes which addresses are frequently

accessed by a target library or binary for each key [7]. Even

the row buffer in DRAM, which acts as a kind of cache, is

susceptible to this type of attack [66].

4) USB Crosstalk: Unlike radiative coupling, capacitive

coupling exploits the undesirable transfer of energy between

electrical components in close proximity. The keyboard state,

transmitted in 8-byte frames using NRZI encoding (see Sec-

tion II-D), is clearly visible to neighboring USB devices

through both the data and power lines [67]. Using relatively

simple signal processing techniques, a malicious USB device

is capable of eavesdropping on upstream USB 1.x and 2.0

traffic from neighboring devices connected to the same hub.

D. Attack the Network

The client-server programming model has come to domi-

nate web-based interactive applications. Although many web

applications utilize encrypted communications, most do not

take any measure to obfuscate the communication patterns

that manifest. This is especially problematic for applications

that wait for user input, as each network packet itself may

correspond to a keystroke revealing both the key press time

of the victim and the payload size of the server response.

1) Payload: In some cases, keystrokes can be identified

by the size of a response from the server in a web-based

application [68]. This affects applications that implement real-

time autocomplete suggestions, whereby each suggestion has

a unique size. As the server responds to each query consisting

of only a single keystroke, it provides a uniquely-sized list of

responses which yield considerable information gains.

2) Timing: Network timing attacks implicate a broad range

of real-time client-server applications, including those not

susceptible to any form of payload analysis. As the victim

types in an otherwise idle application, the client emits bursts

of network traffic which, to any listening adversary, can reveal

the key press timings of the victim. The key press latencies

can be used to either reconstruct the victim’s input from a

dictionary, or to guide a search in password cracking [8], [69].

There is, however, some debate as to whether this temporal

keylogging side channel is damaging in practice. The attacker

must be able to distinguish between network traffic generated

by key presses and other unrelated traffic. With background

traffic, such a task may become impractical [78], [79].

E. Exfiltration

Attackers face the additional problem of data exfiltration

which, often neglected, can be more challenging than key-

logging itself. Methods of exfiltration differ primarily based on

whether the attack was mounted on a device controlled by the

user (e.g., smartwatch or host computer) or the attacker (e.g.,

a microphone or antenna). The former scenario is especially

challenging since exfiltration must be performed without alert-

ing the user to the attacker’s presence. So as to minimize the

risk of being detected, a covert channel may be established to

retrieve the logged keystrokes. Of particular note is JitterBugs,

a class of covert channels designed specifically for keystroke

exfiltration [80]. JitterBugs establishes a covert channel by

modulating the keystroke timings themselves, which can later

be remotely detected over a network during an interactive

application. In a base-2 encoding scheme, each key press

transmits a single bit by aligning its time interval to a multiple

of some modulus m: time intervals close to 0 mod m are bit

0 and close to m
2 mod m are bit 1. This could be performed

either in software at the driver level, or in hardware as a

buffering device placed between the keyboard and the host.

V. DEFENSES

Completely eliminating some keylogging side channels has

proved to be an elusive goal [91], necessarily a consequence

of the difficulty to analytically describe any physical system

[92]. While protocols and design specifications may be built

deductively from a set of axioms, the physical components that

embody such a system are subject to noise, interference, and

unforeseen side effects. This leaves the possibility, however

small, that the system may not behave as intended. In this

sense, a keylogging side channel defense mitigates the possi-
bility of an attack under a specific set of assumptions, and not

in general. There are primarily three different approaches.

Impediment: A defense that restricts access to a sensor

or eliminates unwanted emanations can be said to impede
an adversary from observing the compromising signal. This

can be implemented digitally, such as through permissions-

based access control, or physically, such as by shielding or

suppressing the compromising emanations.

Obfuscation: Decreasing the signal-to-noise ratio can obfus-
cate the side channel, rendering a particular attack ineffective.
With this approach, an adversary may still observe the signal,

but the information content is too low for keystroke detection

and/or key identification. Obfuscation can be achieved by in-

creasing background noise or decreasing the sensor resolution.

Concealment: The presence of superfluous information may
conceal the side channel from an adversary. With this ap-

proach, the original signal is left intact but becomes in-

distinguishable from irrelevant overlapping signals aimed to

mask the true keyboard events, consequently making keystroke

detection much more difficult. Since keystroke detection is a

prerequisite for key identification, a defense that mitigates the

former is also generally effective against the latter. Like the

other approaches, concealment could be implemented digitally,

221

TABLE III
KEYLOGGING SIDE CHANNEL DEFENSES. DET=KEYSTROKE DETECTION, ID=KEY IDENTIFICATION.

Modality Defense Method Target Channels Protected Noticeable Ref.S1 S2 T to User?

U
se
r EEG Induce covert responses to irrelevant stimuli Obfuscate ID � � � [71], [81]

EEG Filter keystroke-identifying features Impede DET � � � [71], [82]
Motion Limit sensor permissions during typing Impede DET � � � [51]

K
ey
b
o
ar
d

Acoustic Reduce keyboard acoustic emanations Impede DET � � � � [54]
Acoustic* Keys produce homomorphic sounds Obfuscate ID � � [54]
Acoustic* Emit synthetic keyboard sounds Conceal DET � � � � [9], [83]

EM Rad./Cap. Filter/shield EM emanations Impede DET � � � [3], [84]
EM Rad. Randomly delay matrix scan routine Obfuscate DET � � � [85]
EM Rad. Randomize matrix scan pattern Obfuscate ID � � [86]

H
o
st CPU/Memory Generate spurious key press/release events Conceal DET � � � [10]

CPU/Memory Decrease timer resolution Obfuscate DET � [87], [88]

N
et
. HTTP Obfuscate packet size through padding Obfuscate ID � � [68]

SSH/VoIP Randomly delay key press/release events Obfuscate ID � Maybe [89], [90]

*Not including acoustic TDoA localization attacks.

by generating spurious keyboard events, or physically, such as

emitting synthetic keyboard sounds.

In addition to methodology, each defense in Table III is

characterized by the types of side channels they protect against
(spatial and/or temporal), whether they target keystroke detec-
tion and/or key identification, and whether they produce any

noticeable side effects to the user, such as increased noise or

changes in application behavior.

A. Defend the User

Dynamic access control to emanating sensors on wearable

devices represents an effective defense that is transparent to

the user. Such a scheme could either limit sensor permissions

while the user is typing [51] or filter the features that permit

keystroke detection [71]. This form of impediment restricts

a malicious application from detecting the user’s keystrokes

without sacrificing usability, although it requires the device to

reliably detect when the user is typing.

It might also be possible for a user to “trick” the device

by modifying their own behavior while typing as a form of

obfuscation. Wearing an EEG cap, this could be accomplished

by inducing covert responses to irrelevant stimuli, such as by

thinking of a different key than the key that is physically

pressed [71]. Some work in this area indicates that systems

using the P300 event related potential (ERP) for stimulus

detection can be defeated in this way [81], however EEG

key identification likely leverages electromyogram (muscle)

artifacts induced by hand and eye movement [48].

B. Defend the Keyboard

Several defenses were adopted early on in response to

the TEMPEST threat, such as signal filtering and protective

shielding, both aimed to impede EM emanations [3]. Official

EM radiation policies mandated a 200 ft perimeter to be se-

cured around vulnerable devices, a somewhat arbitrary choice

determined to be the largest manageable radius. Interestingly,

they also suggested that operating at least 10 devices in

parallel could instead be used as a form of concealment

[2], in the same spirit as some host-based defenses recently

developed, e.g, KeyDrown [10]. For commodity keyboards,

filtering the high frequency emissions of matrix scanning

may suppress the EM spike that enables column identification

[84]. Likewise, randomizing the scan pattern [86] or inserting

random delays into the digitization routine [85] would mitigate

column identification and keystroke detection, respectively.

The three different approaches to mitigation (impediment,

obfuscation, and concealment) are well captured by the various

acoustic defenses. As a form of impediment, a completely

“quiet” keyboard, one that emits no acoustic emanations,

would prevent all kinds of acoustic attacks despite having a

noticeable effect of lacking auditory feedback [54]. Instead,

a keyboard that obfuscates key acoustics by producing a

homogeneous sound for each key would make key identifi-

cation difficult, although such a device may be difficult to

fabricate [54]. This approach is also not effective against

multi-mic TDoA localization attacks which do not make use

of individual key acoustics. Finally, concealment could be

achieved by emitting spurious keystroke sounds in proximity

to the user during typing [9], [83], however also potentially

failing against TDoA localization attacks if signal separation

can be performed based on source location.

C. Defend the Host

Given the number and complexity of shared resources

on modern computing devices (CPU, memory, etc.), host-

based attacks, especially those that leverage microarchitectural

side effects, are remarkably pervasive [93]. Decreasing timer

resolution can prevent some forms of keystroke detection, such

as those that detect spikes in CPU load [87], however there

remain numerous other side channels that can achieve the same

effect without explicit high-resolution timers [91].

A concealment-type defense may be more appropriate for

such attacks targeting the host. By generating many spuri-

ous keystrokes, which appear indistinguishable from the true

keystrokes, a user can evade keystroke detection by a malicious

application. This is the approach of KeyDrown, a three-

layer model that aims to protect against both CPU-load and

shared memory microarchitectural attacks targeting the kernel,

222

shared library, and application layers [10]. With relatively little

overhead, the artificial input events follow the same execution

path as the true keystrokes, degrading the practical detection

TPR to the point of random guessing.

D. Defend the Network

Padding represents a broad class of obfuscation-type de-

fenses against side channels that leverage network packet size.

However, where to pad (e.g., HTTP header vs body) and the

specific strategy that should be applied (e.g., padding to a

quantized length vs padding by random amounts) depends

on the particular application [68]. Given the wide range of

semantics in web application traffic, compared to, e.g., SSH,

a general solution seems nontrivial.

Most network timing attacks, on the other hand, can be

prevented to a degree by introducing a small random delay

to the keyboard events by temporarily buffering the event

on the host or the keyboard itself [89], [90]. This random

delay obfuscates the actual time intervals between successive

keystrokes, effectively reducing the mutual information be-

tween the keystroke latencies and bigrams. The caveat is that

it also introduces an additional latency between the user and

the application which, if too large, may be noticeable to some

users. Longer delays enable greater obfuscation ability at the

expense of a reduction in perceived application responsiveness.

VI. DISCUSSION

The keylogging side channel attacks in Table II summarize

nearly two decades of research, which has it roots toward the

end of WWII [2] and seems to have advanced considerably

behind closed doors during the Cold War era as evidenced

by revelations such as the Selectric Bug [1]. Comparatively,

there is a much smaller body of research directed towards

keylogging side channel defenses (Table III), none of which

have been widely adopted. This may change in the near future,

as some low-cost (in terms of usability, performance overhead,

and cost of deployment) countermeasures against host-based

and network-based attacks have recently emerged [10], [89].

It is worth noting, keylogging attacks that exploit device

behavior, such as EM emanations and cache usage, generally

achieve higher performance than those that exploit human

behavior, such as smartwatch motion and packet timing. Ar-

guably, this gap is due to differences in regularity between user

and device behavior. An attack that exploits microarchitectural

side effects is expected to work across all devices of the same

make and model, dependent on the highly-consistent behavior

across devices. In contrast, an attack that exploits human

behavior must adapt to changes behavior over time (non-

stationarity) and between users. These observations allude to a

fundamental relationship between behavior homogeneity and

attack severity with regard to side channels, whereby users

and devices who behave contrary to the norm are rewarded

by being less susceptible to attack. On the other hand, doing

so may actually compromise anonymity, i.e., enable behavior-

based identification, an issue not considered in this work.

Temporal keylogging side channels actually exploit a well-

established phenomenon in transcription typing, that is, differ-
ent users can be expected to operate a keyboard within similar
time constraints, enabling an adversary to make general infer-
ences about user actions based on temporal behavior. For the

touch typist, shorter time intervals usually correspond to keys

that are far apart compared to longer time intervals for keys

that are close together. This is a result of having to reuse the

same finger or hand for neighboring keys while distant keys

are pressed in quicker succession through parallel processing

by alternate fingers [43]. Consistent with this phenomenon, in

Section III-C3, we found typing speed to be somewhat indica-

tive of how susceptible a user is to a temporal attack whereby

the faster touch typists were more vulnerable. This dichotomy

in performance is reminiscent of the biometric menagerie,
which specifies that biometric identification systems work well

for some users (sheep) but are problematic for others (goats)

[94]. Given that some users are more susceptible to temporal

attacks than others, a better understanding of what other user-

specific factors influence temporal information gain could shed

some light on new effective countermeasures.

Finally, consistency in HCI behavior across a population

is not restricted to typing, and the presence of temporal

keylogging side channels reflects a much broader problem

potentially faced by interactive client-server applications. Sim-

ilar phenomena exist with other modalities, such as Fitts’

Law in navigating the mouse pointer on a computer screen

[95] and more recently Finger-Fitts’ (FFitts) Law for touch

screen behavior [96]. This raises the question as to what

other HCI modalities are subject to such attacks whereby

temporal patterns can reveal user actions, and what defenses

must necessarily be deployed to mitigate this class of human-
based timing side channels. Given the proliferation of real-

time client-server applications, where the real-time constraint

dictates that human input events must propagate to the network

layer, this issue warrants further investigation.

VII. CONCLUSION

The keyboard is ubiquitous in human-computer interaction.

Even with alternatives, such as voice and eye movement, the

keyboard remains an integral device for textual input. This is

likely due to familiarity, speed, and the relative accuracy with

which the keyboard can be operated. Keylogging side channels

will likely remain just as ubiquitous due to the increasing

complexity and sensing capabilities of computing devices.

Physiological signals [48] and microarchitectural side ef-

fects have proven to be especially pervasive [93], with recent

attacks highlighting the copious number of ways to eavesdrop

keyboard input. User actions captured through the keyboard

and other peripheral devices permeate network communication

channels and can have unforeseen side effects on the device.

The difficulty in mitigating these types of attacks highlights

the importance of empirical studies to evaluate device security

[92] and calls for deeper understanding of the security and

privacy implications in human-computer interaction.

223

ACKNOWLEDGEMENT

I thank my colleagues at ARL for suggestions on an early

draft and the anonymous referees for their helpful comments.

REFERENCES

[1] S. A. Maneki, Learning from the Enemy: The GUNMAN Project.
Center for Cryptologic History, National Security Agency, 2012.

[2] J. Friedman, “Tempest: A signal problem,” NSA Cryptologic Spectrum,
vol. 35, p. 76, 1972.

[3] D. G. Boak, “A history of us communications security,” NSA, 1973.
[4] “IBM Selectric Bug.” http://web.archive.org/web/20170311001300/http://

www.cryptomuseum.com/covert/bugs/selectric. Accessed: 2017-03-31.
[5] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke recogni-

tion using wifi signals,” in Proc. 21st Annual Intl. Conf. on Mobile
Computing and Networking (MobiCom), pp. 90–102, ACM, 2015.

[6] M. Vuagnoux and S. Pasini, “Compromising electromagnetic emana-
tions of wired and wireless keyboards.,” in Proc. 18th Usenix Security
Symp., pp. 1–16, USENIX Association, 2009.

[7] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches.,” in Proc. 2015
Usenix Security Symp., vol. 15, pp. 897–912, 2015.

[8] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on ssh.,” in Proc. Usenix Security Symp., vol. 2001,
2001.

[9] A. Anand and N. Saxena, “Keyboard emanations in remote voice calls:
Password leakage and noise(less) masking defenses,” in Proc. 8th ACM
Conf. on Data and Application Security and Privacy (CODASPY),
ACM, 2018.

[10] M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spre-
itzer, and S. Mangard, “Keydrown: Eliminating keystroke timing side-
channel attacks,” in Proc. Network and Distributed System Security
Symp (NDSS), 2018.

[11] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch screen
from smartphone motion,” in Proc. Usenix Summit on Hot Topics in
Security (HotSec), vol. 11, pp. 9–9, 2011.

[12] H. C. H. Society, The Story of the Typewriter. Herkimer, NY, 1923.
[13] “Office Machines and Supplies - Alphanumeric Machines - Key-

board Arrangement,” standard, American National Standards Institute
(ANSI), May 2009.

[14] “Ergonomics of human-system interaction – Part 410: Design criteria
for physical input devices,” standard, Intl. Organization for Standard-
ization (ISO), Geneva, CH, Mar. 2008.

[15] “Keystroke sensing.” http://web.archive.org/web/20171030204051/
https://deskthority.net/wiki/Keystroke sensing. Accessed: 2017-10-30.

[16] D. Claudio, “Hall effect keyboard,” Oct. 5 1971. US Patent 3,611,358.
[17] G. English, “Computer keyboard with flexible dome switch layer,”

May 18 1993. US Patent 5,212,356.
[18] M. J. Bufton, R. W. Marklin, M. L. Nagurka, and G. G. Simoneau,

“Effect of keyswitch design of desktop and notebook keyboards related
to key stiffness and typing force,” Ergonomics, vol. 49, no. 10, pp. 996–
1012, 2006.

[19] D. Cowles, “Keytop levelling mechanism,” Feb. 21 1984. US Patent
4,433,225.

[20] O. Kamishima, “Keyboard switch for notebook type computer or the
like,” Apr. 13 1999. US Patent 5,894,117.

[21] E. Coleman, “Rocking switch actuator for a low force membrane
contact switch,” July 9 1985. US Patent 4,528,431.

[22] W. Davis and E. Sonderman, “Scan-controlled keyboard,” Feb. 17 1982.
EP Patent App. EP19,810,900,591.

[23] A. Chapweske, “The ps/2 keyboard interface.”
http://web.archive.org/web/20170831033351/ http://www.computer-
engineering.org/ps2keyboard/, 2001. Accessed: 2017-08-31.

[24] U. I. Forum, Universal Serial Bus (USB) Device Class Definition for
Human Interface Devices (HID), 2001.

[25] I. Corporation, Universal Host Controller Interface (UHCI) Design
Guide, 1996.

[26] H. Shimizu, “Measuring keyboard response delays by comparing
keyboard and joystick inputs,” Behavior Research Methods, vol. 34,
no. 2, pp. 250–256, 2002.

[27] “Alps SKCL/SKCM Series Technical Specifications.”
http://web.archive.org/web/20160318052046/https://www.usbid.com/
datasheets/usbid/2000/2000-q2/5454 31.pdf. Accessed: 2017-09-01.

[28] “Cherry MX Series Technical Specifications.”
http://web.archive.org/web/20170814022406/http://cherryamericas.com/
product/mx-series-2/#84b4bc7a7a0396678. Accessed: 2017-09-01.

[29] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, and S. Man-
gard, “Practical keystroke timing attacks in sandboxed javascript,” in
Proc. 22nd European Symp. on Research in Computer Security, 2017.

[30] Microsoft, “Timers, timer resolution, and development of
efficient code.” http://web.archive.org/web/20170221051458/
http://download.microsoft.com:80/download/3/0/2/3027D574-C433-
412A-A8B6-5E0A75D5B 237/Timer-Resolution.docx, 2010-06-16.
Accessed: 2017-02-21.

[31] A. Singh, Mac OS X Internals: A Systems Approach. Addison Wesley
Professional, 2006. Section 7.4.1.1.

[32] “NO HZ: Reducing Scheduling-Clock Ticks.” http://web.archive.org/
web/20170812022108/https://www.kernel.org/doc/Documentation/timers/
NO HZ.txt. Accessed: 2017-09-01.

[33] F. Collins, “Usb keystroke monitoring apparatus and method,” Dec. 20
2007. US Patent App. 11/762,032.

[34] K. Subramanyam, C. E. Frank, and D. H. Galli, “Keyloggers: The
overlooked threat to computer security,” in Proc. 1st Midstates Conf.
for Undergraduate Research in Computer Science and Mathematics,
2003.

[35] O. Zaitsev, “Skeleton keys: the purpose and applications of keyloggers,”
Network Security, vol. 2010, no. 10, pp. 12–17, 2010.

[36] T. Fiebig, J. Danisevskis, and M. Piekarska, “A metric for the evalu-
ation and comparison of keylogger performance,” in Proc. 7th Usenix
Conf. on Cyber Security Experimentation and Test, pp. 7–7, USENIX
Association, 2014.

[37] Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using keyboard
acoustic emanations,” in Proc. 13th ACM Conf. on Computer and
communications security, pp. 245–254, ACM, 2006.

[38] C. E. Shannon, “Prediction and entropy of printed english,” Bell Labs
Technical Journal, vol. 30, no. 1, pp. 50–64, 1951.

[39] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks using
keyboard acoustic emanations,” in Proc. ACM Conf. on Computer and
Communications Security (CCS), pp. 453–464, ACM, 2014.

[40] D. Balzarotti, M. Cova, and G. Vigna, “Clearshot: Eavesdropping on
keyboard input from video,” in Proc. IEEE Symp. on Security &
Privacy (SP), pp. 170–183, IEEE, 2008.

[41] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray,
J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, et al.,
“Quantitative analysis of culture using millions of digitized books,”
science, vol. 331, no. 6014, pp. 176–182, 2011.

[42] A. Barisani and D. Bianco, “Sniffing keystrokes with lasers/voltmeters,”
Proceedings of Black Hat USA, 2009.

[43] T. A. Salthouse, “Perceptual, cognitive, and motoric aspects of tran-
scription typing.,” Psychological bulletin, vol. 99, no. 3, p. 303, 1986.

[44] T. A. Salthouse, “Effects of practice on a typing-like keying task,” Acta
psychologica, vol. 62, no. 2, pp. 189–198, 1986.

[45] B. Ritwik, S. FEng, J. S. Kang, and Y. Choi, “Keystroke patterns as
prosody in digital writings: A case study with deceptive reviews and
essays,” in Proc. Conf. on Empirical Methods in Natural Language
Processing, (Doha, Qatar), Association for Computational Linguistics,
October 2014.

[46] A. M. Feit, D. Weir, and A. Oulasvirta, “How we type: Movement
strategies and performance in everyday typing,” in Proc. ACM Conf.
on Human Factors in Computing Systems (CHI), pp. 4262–4273, ACM,
2016.

[47] D. R. Gentner, “Keystroke timing in transcription typing,” in Cognitive
aspects of skilled typewriting, pp. 95–120, Springer, 1983.

[48] A. Neupane, M. L. Rahman, and N. Saxena, “Peep: Passively eaves-
dropping private input via brainwave signals,” in Proc. 21st Intl. Conf.
on Financial Cryptography and Data Security (FC), pp. 227–246,
IFCA, 2017.

[49] H. Wang, T. T.-T. Lai, and R. Roy Choudhury, “Mole: Motion leaks
through smartwatch sensors,” in Proc. 21st Annual Intl. Conf. on
Mobile Computing and Networking (MobiCom), pp. 155–166, ACM,
2015.

[50] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu, “Friend or foe?:
Your wearable devices reveal your personal pin,” in Proc. 11th ACM
Asia Conf. on Computer and Communications Security (ASIACCS),
pp. 189–200, ACM, 2016.

[51] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “When good becomes
evil: Keystroke inference with smartwatch,” in Proc. 22nd ACM Conf.

224

on Computer and Communications Security (CCS), pp. 1273–1285,
ACM, 2015.

[52] A. Maiti, O. Armbruster, M. Jadliwala, and J. He, “Smartwatch-based
keystroke inference attacks and context-aware protection mechanisms,”
in Proc. 11th ACM Asia Conf. on Computer and Communications
Security (ASIACCS), pp. 795–806, ACM, 2016.

[53] B. Chen, V. Yenamandra, and K. Srinivasan, “Tracking keystrokes
using wireless signals,” in Proc. 13th Annual Intl. Conf. on Mobile
Systems, Applications, and Services (MobiSys), pp. 31–44, ACM, 2015.

[54] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in
Proc. IEEE Symp. on Security & Privacy (SP), pp. 3–11, IEEE, 2004.

[55] T. Halevi and N. Saxena, “Keyboard acoustic side channel attacks:
exploring realistic and security-sensitive scenarios,” Intl. Journal of
Information Security, vol. 14, no. 5, pp. 443–456, 2015.

[56] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations
revisited,” ACM Trans. on Information and System Security (TISSEC),
vol. 13, no. 1, p. 3, 2009.

[57] J. Liu, Y. Wang, G. Kar, Y. Chen, J. Yang, and M. Gruteser, “Snoop-
ing keystrokes with mm-level audio ranging on a single phone,” in
Proc. 21st Annual Intl. Conf. on Mobile Computing and Networking
(MobiCom), pp. 142–154, ACM, 2015.

[58] A. Compagno, M. Conti, D. Lain, and G. Tsudik, “Don’t skype & type!:
Acoustic eavesdropping in voice-over-ip,” in Proc. ACM on Asia Conf.
on Computer and Communications Security (ASIACCS), pp. 703–715,
ACM, 2017.

[59] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp) iphone: Decod-
ing vibrations from nearby keyboards using mobile phone accelerom-
eters,” in Proc. 18th ACM Conf. on Computer and Communications
Security (CCS), pp. 551–562, ACM, 2011.

[60] K. Zhang and X. Wang, “Peeping tom in the neighborhood: Keystroke
eavesdropping on multi-user systems,” analysis, vol. 20, p. 23, 2009.

[61] S. Jana and V. Shmatikov, “Memento: Learning secrets from process
footprints,” in Proc. IEEE Symp. on Security & Privacy (SP), pp. 143–
157, IEEE, 2012.

[62] P. Vila and B. Kopf, “Loophole: Timing attacks on shared event loops
in chrome,” in Proc. Usenix Security Symp., (Vancouver, BC), pp. 849–
864, USENIX Association, 2017.

[63] J. T. Trostle, “Timing attacks against trusted path,” in Proc. IEEE Symp.
on Security & Privacy (SP), pp. 125–134, IEEE, 1998.

[64] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proc. 16th ACM Conf. on Computer and Communications
Security (CCS), pp. 199–212, ACM, 2009.

[65] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush: a
fast and stealthy cache attack,” in Detection of Intrusions and Malware,
and Vulnerability Assessment, pp. 279–299, Springer, 2016.

[66] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “Drama:
Exploiting dram addressing for cross-cpu attacks,” in Proc. 25th Usenix
Security Symp., 2016.

[67] Y. Su, D. Genkin, D. Ranasinghe, and Y. Yarom, “USB snooping made
easy: Crosstalk leakage attacks on USB hubs,” in Proc. Usenix Security
Symp., (Vancouver, BC), pp. 1145–1161, USENIX Association, 2017.

[68] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web
applications: A reality today, a challenge tomorrow,” in Proc. IEEE
Symp. on Security & Privacy (SP), pp. 191–206, IEEE, 2010.

[69] G. Zhang and S. Fischer-Hübner, “Timing attacks on pin input in voip
networks (short paper),” in Proc. Intl. Conf. on Detection of Intrusions
and Malware, and Vulnerability Assessment, pp. 75–84, Springer, 2011.

[70] R. M. Chapman and H. R. Bragdon, “Evoked responses to numerical
and non-numerical visual stimuli while problem solving,” Nature,
vol. 203, no. 4950, pp. 1155–1157, 1964.

[71] I. Martinovic, D. Davies, M. Frank, D. Perito, T. Ros, and D. Song, “On
the feasibility of side-channel attacks with brain-computer interfaces,”
in Proc. 21st Usenix Security Symp., USENIX Association, 2012.

[72] P. Shrestha and N. Saxena, “An offensive and defensive exposition of
wearable computing,” ACM Computing Surveys (CSUR), vol. 50, no. 6,
p. 92, 2017.

[73] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Understanding
and modeling of wifi signal based human activity recognition,” in
Proc. 21st Annual Intl. Conf. on Mobile Computing and Networking,
pp. 65–76, ACM, 2015.

[74] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Recognizing keystrokes
using wifi devices,” IEEE Journal on Selected Areas in Communica-
tions, vol. 35, no. 5, pp. 1175–1190, 2017.

[75] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
Journal of Cryptographic Engineering, pp. 1–27, 2016.

[76] A. Tannous, J. Trostle, M. Hassan, S. E. McLaughlin, and T. Jaeger,
“New side channels targeted at passwords,” in Proc. Annual Computer
Security Applications Conf. (ACSAC), pp. 45–54, IEEE, 2008.

[77] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: the case of aes,” in Proc. CryptographersT́rack at the RSA
Conf., pp. 1–20, Springer, 2006.

[78] “Timing analysis is not a real-life threat to SSH secure shell users.”
http://web.archive.org/web/20010831024537/http://www.ssh.com/
products/ssh/timing analysis.cfm. Accessed: 2017-09-01.

[79] M. A. Hogye, C. T. Hughes, J. M. Sarfaty, and J. D. Wolf, “Analysis
of the feasibility of keystroke timing attacks over ssh connections,”
Research Project at University of Virginia, 2001.

[80] G. Shah, A. Molina, M. Blaze, et al., “Keyboards and covert channels.,”
in Proc. Usenix Security Symp., vol. 15, 2006.

[81] J. P. Rosenfeld, M. Soskins, G. Bosh, and A. Ryan, “Simple, effective
countermeasures to p300-based tests of detection of concealed infor-
mation,” Psychophysiology, vol. 41, no. 2, pp. 205–219, 2004.

[82] H. J. Chizeck and T. Bonaci, “Brain-computer interface anonymizer,”
Feb. 6 2014. US Patent App. 14/174,818.

[83] S. A. Anand and N. Saxena, “A sound for a sound: Mitigating acoustic
side channel attacks on password keystrokes with active sounds,”
in Proc. Intl. Conf. on Financial Cryptography and Data Security,
IFCA,IACR, 2016.

[84] R. Paavilainen, “Method and device for signal protection,” Apr. 8 2008.
US Patent 7,356,626.

[85] M. G. Kuhn and R. J. Anderson, “Soft tempest: Hidden data trans-
mission using electromagnetic emanations,” in Proc. Intl. Workshop on
Information Hiding, pp. 124–142, Springer, 1998.

[86] R. Anderson and M. Kuhn, “Low cost countermeasures against com-
promising electromagnetic computer emanations,” Apr. 13 2004. US
Patent 6,721,423.

[87] “High Resolution Time Level 2.” http://web.archive.org/web/2017
1017013909/https://www.w3.org/TR/hr-time/. Accessed: 2017-10-17.

[88] A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-box mitiga-
tion of timing channels,” in Proc. 17th ACM Conf. on Computer and
Communications Security (CCS), pp. 297–307, ACM, 2010.

[89] J. V. Monaco and C. C. Tappert, “Obfuscating keystroke time intervals
to avoid identification and impersonation,” in Proc. Intl. Conf. on
Biometrics (ICB), IEEE, 2016.

[90] K. Buza and P. B. Kis, “Towards privacy-aware keyboards,” in
Proc. Intl. Conf. on Computer Recognition Systems, pp. 140–147,
Springer, Cham, 2017.

[91] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: High-resolution microarchitectural attacks in
javascript,” in Proc. 21st Intl. Conf. on Financial Cryptography and
Data Security (FC), p. 11, IFCA, 2017.

[92] C. Herley and P. van Oorschot, “Sok: Science, security and the elusive
goal of security as a scientific pursuit,” in Proc. IEEE Symp. on Security
& Privacy (SP), pp. 99–120, IEEE, 2017.

[93] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[94] N. Yager and T. Dunstone, “The biometric menagerie,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 32, no. 2, pp. 220–230,
2010.

[95] P. M. Fitts, “The information capacity of the human motor system
in controlling the amplitude of movement.,” Journal of experimental
psychology, vol. 47, no. 6, p. 381, 1954.

[96] X. Bi, Y. Li, and S. Zhai, “Ffitts law: modeling finger touch with fitts’
law,” in Proc. SIGCHI Conf. on Human Factors in Computing Systems,
pp. 1363–1372, ACM, 2013.

[97] J. D. Allen, An analysis of pressure-based keystroke dynamics algo-
rithms. PhD thesis, Southern Methodist University, 2010.

[98] A. Morales, M. Falanga, J. Fierrez, C. Sansone, and J. Ortega-Garcia,
“Keystroke dynamics recognition based on personal data: A compar-
ative experimental evaluation implementing reproducible research,” in
Proc. 7th IEEE Intl. Conf. on Biometrics Theory, Applications and
Systems (BTAS), pp. 1–6, IEEE, 2015.

[99] N. Bakelman, J. V. Monaco, S.-H. Cha, and C. C. Tappert, “Keystroke
biometric studies on password and numeric keypad input,” in Proc. Eu-

225

ropean Intelligence and Security Informatics Conf. (EISIC), pp. 204–
207, IEEE, 2013.

[100] Y. Li, B. Zhang, Y. Cao, S. Zhao, Y. Gao, and J. Liu, “Study on the
beihang keystroke dynamics database,” in Proc. Intl. Joint Conf. on
Biometrics (IJCB), pp. 1–5, IEEE, 2011.

[101] J. R. Montalvão Filho and E. O. Freire, “On the equalization of
keystroke timing histograms,” Pattern Recognition Letters, vol. 27,
no. 13, pp. 1440–1446, 2006.

[102] Y. Sun, H. Ceker, and S. Upadhyaya, “Shared keystroke dataset
for continuous authentication,” in Proc. 8th IEEE Intl. Workshop on
Information Forensics and Security (WIFS), pp. 1–6, IEEE, 2016.

[103] E. P. Calot, “Keystroke dynamics keypress latency dataset.”
http://lsia.fi.uba.ar/pub/papers/kd-dataset/, 2015.

[104] N. Gonzalez and E. P. Calot, “Finite context modeling of keystroke
dynamics in free text,” in Proc. Intl. Conf. of the Biometrics Special
Interest Group (BIOSIG), pp. 1–5, IEEE, 2015.

[105] E. P. Calot and J. S. Ierache, “Multimodal biometric recording archi-
tecture for the exploitation of applications in the context of affective
computing,” in Proc. 23rd Argentine Congress of Computer Science
(CACIC), Innovation in Software Systems Workshop (WISS), UNLP,
2017.

[106] L. Bello, M. Bertacchini, C. Benitez, J. C. Pizzoni, and M. Cipriano,
“Collection and publication of a fixed text keystroke dynamics dataset,”
in Proc. XVI Congreso Argentino de Ciencias de la Computación, 2010.

[107] E. Vural, J. Huang, D. Hou, and S. Schuckers, “Shared research dataset
to support development of keystroke authentication,” in Proc. Intl. Joint
Conf. on Biometrics (IJCB), pp. 1–8, IEEE, 2014.

[108] K. S. Killourhy and R. A. Maxion, “Comparing anomaly-detection
algorithms for keystroke dynamics,” in Proc. IEEE/IFIP Intl. Conf. on
Dependable Systems & Networks (DSN), pp. 125–134, IEEE, 2009.

[109] M. J. Coakley, J. V. Monaco, and C. C. Tappert, “Keystroke biometric
studies with short numeric input on smartphones,” in Proc. IEEE 8th
Intl. Conf. on Biometrics Theory, Applications and Systems (BTAS),
pp. 1–6, IEEE, 2016.

[110] K. S. Killourhy and R. A. Maxion, “Free vs. transcribed text for
keystroke-dynamics evaluations,” in Proc. Learning from Authoritative
Security Experiment Results (LASER) Workshop, pp. 1–8, ACM, 2012.

[111] R. Giot, M. El-Abed, and C. Rosenberger, “Greyc keystroke: a bench-
mark for keystroke dynamics biometric systems,” in Proc. IEEE 3rd
Intl. Conf. on Biometrics: Theory, Applications, and Systems (BTAS),
pp. 1–6, IEEE, 2009.

[112] S. Z. S. Idrus, E. Cherrier, C. Rosenberger, and P. Bours, “Soft
biometrics database: A benchmark for keystroke dynamics biometric
systems,” in Proc. Intl. Conf. of the Biometrics Special Interest Group
(BIOSIG), pp. 1–8, IEEE, 2013.

[113] R. Giot, M. El-Abed, and C. Rosenberger, “Web-based benchmark
for keystroke dynamics biometric systems: A statistical analysis,” in
Proc. 8th Intl. Conf. on Intelligent Information Hiding and Multimedia
Signal Processing (IIH-MSP), pp. 11–15, IEEE, 2012.

[114] D. Gunetti and C. Picardi, “Keystroke analysis of free text,” ACM
Trans. on Information and System Security (TISSEC), vol. 8, no. 3,
pp. 312–347, 2005.

[115] A. Morales, J. Fierrez, M. Gomez-Barrero, J. Ortega-Garcia, R. Daza,
J. V. Monaco, J. Montalvão, J. Canuto, and A. George, “Kboc:
Keystroke biometrics ongoing competition,” in Proc. IEEE 8th Intl.
Conf. on Biometrics Theory, Applications and Systems (BTAS), pp. 1–
6, IEEE, 2016.

[116] A. Morales, J. Fierrez, R. Tolosana, J. Ortega-Garcia, J. Galbally,
M. Gomez-Barrero, A. Anjos, and S. Marcel, “Keystroke biometrics
ongoing competition,” IEEE Access, vol. 4, pp. 7736–7746, 2016.

[117] C. C. Loy, C. P. Lim, and W. K. Lai, “Pressure-based typing bio-
metrics user authentication using the fuzzy artmap neural network,”
in Proc. 12th Intl. Conf. on Neural Information Processing (ICONIP),
pp. 647–652, Citeseer, 2005.

[118] C. C. Loy, W. K. Lai, and C. P. Lim, “Keystroke patterns classification
using the artmap-fd neural network,” in Proc. 3rd Intl. Conf. on Intelli-
gent Information Hiding and Multimedia Signal Processing (IIHMSP),
vol. 1, pp. 61–64, IEEE, 2007.

[119] M. Antal and L. Nemes, “The mobikey keystroke dynamics password
database: Benchmark results,” in Software Engineering Perspectives
and Application in Intelligent Systems, pp. 35–46, Springer, 2016.

[120] M. Antal, L. Z. Szabó, and I. László, “Keystroke dynamics on android
platform,” Procedia Technology, vol. 19, pp. 820–826, 2015.

[121] M. Antal and L. Z. Szabó, “An evaluation of one-class and two-
class classification algorithms for keystroke dynamics authentication
on mobile devices,” in Proc. 20th Intl. Conf. on Control Systems and
Computer Science (CSCS), pp. 343–350, IEEE, 2015.

[122] J. Roth, X. Liu, A. Ross, and D. Metaxas, “Biometric authentication
via keystroke sound,” in Proc. Intl. Conf. on Biometrics (ICB), pp. 1–8,
IEEE, 2013.

[123] J. Roth, X. Liu, and D. Metaxas, “On continuous user authentication
via typing behavior,” IEEE Trans. on Image Processing, vol. 23, no. 10,
pp. 4611–4624, 2014.

[124] J. Roth, X. Liu, A. Ross, and D. Metaxas, “Investigating the discrimina-
tive power of keystroke sound,” IEEE Trans. on Information Forensics
and Security, vol. 10, no. 2, pp. 333–345, 2015.

[125] J. V. Monaco, G. Perez, C. C. Tappert, P. Bours, S. Mondal, S. Ra-
jkumar, A. Morales, J. Fierrez, and J. Ortega-Garcia, “One-handed
keystroke biometric identification competition,” in Proc. Intl. Conf. on
Biometrics (ICB), pp. 58–64, IEEE, 2015.

[126] A. Pentel, “Predicting age and gender by keystroke dynamics and
mouse patterns,” in Proc. 25th Conf. on User Modeling, Adaptation
and Personalization (UMAP), pp. 381–385, ACM, 2017.

[127] K. Buza, “Person identification based on keystroke dynamics: Demo
and open challenge.,” in Proc. 28th Intl. Conf. on Advanced Information
Systems Engineering (CAiSE), pp. 161–168, 2016.

[128] M. El-Abed, M. Dafer, and R. El Khayat, “Rhu keystroke: A mobile-
based benchmark for keystroke dynamics systems,” in Proc. Intl.
Carnahan Conf. on Security Technology (ICCST), pp. 1–4, IEEE, 2014.

[129] G. Roffo, C. Giorgetta, R. Ferrario, W. Riviera, and M. Cristani, “Sta-
tistical analysis of personality and identity in chats using a keylogging
platform,” in Proc. 16th Intl. Conf. on Multimodal Interaction, ICMI
’14, (New York, NY, USA), pp. 224–231, ACM, 2014.

[130] N. A. Laskaris, S. P. Zafeiriou, and L. Garefa, “Use of random time-
intervals (rtis) generation for biometric verification,” Pattern Recogni-
tion, vol. 42, no. 11, pp. 2787–2796, 2009.

[131] J. C. Stewart, J. V. Monaco, S.-H. Cha, and C. C. Tappert, “An
investigation of keystroke and stylometry traits for authenticating online
test takers,” in Proc. Intl. Joint Conf. on Biometrics (IJCB), pp. 1–7,
IEEE, 2011.

[132] S. Koldijk, M. Sappelli, S. Verberne, M. A. Neerincx, and W. Kraaij,
“The swell knowledge work dataset for stress and user modeling
research,” in Proc. 16th Intl. Conf. on Multimodal Interaction, pp. 291–
298, ACM, 2014.

[133] M. Sappelli, S. Verberne, S. Koldijk, and W. Kraaij, “Collecting a
dataset of information behaviour in context,” in Proc. 4th Workshop
on Context-Awareness in Retrieval and Recommendation, pp. 26–29,
ACM, 2014.

[134] G. Ho, “Tapdynamics: strengthening user authentication on mobile
phones with keystroke dynamics,” tech. rep., Technical report, Techni-
cal report, Stanford University, 2014.

[135] Y. Uzun, K. Bicakci, and Y. Uzunay, “Could we distinguish
child users from adults using keystroke dynamics?,” arXiv preprint
arXiv:1511.05672, 2015.

[136] C. C. Tappert, M. Villani, and S.-H. Cha, “Keystroke biometric identi-
fication and authentication on long-text input,” Behavioral biometrics
for human identification: Intelligent applications, pp. 342–367, 2009.

[137] K. Hempstalk, Continuous typist verification using machine learning.
PhD thesis, The University of Waikato, 2009.

[138] K. Hempstalk, E. Frank, and I. Witten, “One-class classification by
combining density and class probability estimation,” Machine Learning
and Knowledge Discovery in Databases, pp. 505–519, 2008.

[139] T. Holz, M. Engelberth, and F. Freiling, “Learning more about the
underground economy: A case-study of keyloggers and dropzones,”
pp. 1–18, 2009.

[140] “Region-specific layouts.” https://web.archive.org/web/20171030175546/
https://deskthority.net/wiki/Region-specific layouts. Accessed: 2017-
10-30.

[141] A. Maas, C. Heather, C. T. Do, R. Brandman, D. Koller, and A. Ng,
“Offering verified credentials in massive open online courses: Moocs
and technology to advance learning and learning research (ubiquity
symp.),” Ubiquity, vol. 2014, no. May, p. 2, 2014.

[142] R. Giot, B. Dorizzi, and C. Rosenberger, “A review on the public
benchmark databases for static keystroke dynamics,” Computers &
Security, vol. 55, pp. 46–61, 2015.

226

APPENDIX

A. Keystroke Dataset Details

The dataset used to estimate information gain from a tempo-

ral side channel in Section III-C comes from a previous study

that aimed to detect deceptive reviews and essays [45]. Each

of the 1060 subjects were instructed to write genuine and fake

reviews and then separately transcribe the responses within a

web browser. For our analysis, only the free-text portion of the

dataset was used to estimate information gain. We also applied

the additional constraints of: discarding non-letter characters,

discarding words that contain any modifier keys (e.g., Shift or
Ctrl, to eliminate uppercase words and command inputs), and
discarding words with any duration or latency >1 s. Only

then were the bigrams within each word considered. This

resulted in 1650±1046 (72±29 unique) bigrams per user. Our

temporal information gain estimates are lower than those in

[8], suggesting that context plays an import role in typing

behavior (a phenomenon also noted by Salthouse [43]).

Some remarks on overlapping keystrokes are also warranted.

Many keylogging attacks have operated under the assumption

that keystrokes are non-overlapping and have an approximate

duration of 100 ms (e.g., [39], [54], [56]–[59]). In practice,

this is seldom the case except for some typists. In the same

keystroke dataset described above, considering only alphanu-

meric keys (discarding modifier keys), more than 20% of all

keystrokes are overlapping, i.e., tRi > tPi+1 for successive

keystrokes. This also varies by typist, with some users having

as high as 67% and 69% of all keystrokes overlapping for free

and transcribed input, respectively. Only 20 users out of 1060,

less than 2%, don’t have any overlapping keystrokes.

B. Summary of Public Keystroke Datasets

We believe that access to public keystroke datasets can help

facilitate future keylogging research, especially with respect

temporal side channels. In general, real-world keylogging data

is difficult to access and contains sensitive information [139].

Instead, we have identified over 30 public keystroke datasets

from fields including biometrics, human-computer interaction,

and affective computing. These are summarized in Table IV

and characterized by the following attributes.

1) Locale: The locale reflects the country or region where

the dataset was collected, which is either inferred from the

respective reference or provided by the user agent string if

available. The locale reflects both the physical layout (e.g., ISO

vs ANSI) and logical layout (e.g., QWERTY vs DVORAK)

of the keyboard (see Section II-A and [140]). For example,

most US keyboards use ANSI/QWERTY; FR keyboards are

dominated by ISO/AZERTY.

2) Typing mode: The typing mode is characterized by the

acquisition context, which includes the instructions provided

to the user and any keystroke input constraints imposed by the

application and/or data collection environment. These broadly

fall into three different categories:

• Fixed: The keystrokes exactly follow a relatively short

predefined sequence. The character sequence is known

beforehand and entered without errors or corrections. This

includes the entry of passwords, phone numbers, and

personal identification numbers (PINs) without making

corrections.

• Constrained: The keystrokes roughly follow a predefined

sequence, where typing errors and corrections are al-

lowed. This includes case-insensitive passwords, pass-

words that were typed with corrections (i.e., including

the Backspace key), and transcribed text. This mode

of input is used by some massively open online course

(MOOC) providers in which the student must copy sev-

eral sentences for the purpose of keystroke dynamics-

based verification [141].

• Free: The keystrokes do not follow a predefined sequence.

The character sequence is unknown beforehand and usu-

ally consists of at least several sentences. The keystrokes

collected as part of an essay question in an online exam

would be considered long free-text.

The time intervals in freely-typed text tend to follow a much

heaver tail than fixed-text. These larger latencies also tend to

occur between certain keys, such as punctuation and the Space
key. Note that keystrokes refer to the sequence of keys pressed,
and the character sequence refers to the characters that are

accepted by the application, for example what ultimately

appears on screen in a text editor. The keystrokes may vary to

produce the same character sequence when typing corrections

are allowed.
3) Features: The most important features in a keystroke

dataset are the key names and timings since these reflect the

user’s typing behavior and provide a ground truth to evaluate

keylogger performance. The resolution and completeness of

these features varies across datasets: in Table IV, datasets

that contain key names but fail to distinguish between the

location of modifier keys with multiple physical locations

(e.g., LShift vs RShift) are marked as partial. Similarly for

the timings, datasets that are missing either the key press or

release timestamps are marked as partial.
Other features provide an opportunity to explore some of

the side channel attacks described in Section IV. Several

datasets contain audio/video recordings, which enable the

possibility of acoustic and video side channels. Physiological

features include hand motion, electrocardiography (ECG), and

electroencephalogram (EEG), among others, which provide an

opportunity to explore side channels from wearable devices,

such as fitness trackers and smartwatches.
4) Attributes: Keylogging performance is subject to a num-

ber of environment variables related to the victim (e.g, age,

gender, and handedness) and the platform (e.g., the keyboard

model and timer resolution). Datasets that contain labels for

these attributes are marked as such in Table IV. See [142] for a

comprehensive review on environmental variables in keystroke

acquisition.
5) Impostor Data: Many of the datasets in Table IV were

collected with keystroke biometrics in mind and contain im-

postor data, that is a keystroke sequence recorded by a user

purporting to be the genuine user.

227

TABLE IV
PUBLIC KEYSTROKE DATASETS. BR=BRAZIL, EST=ESTONIA, FI=FINLAND, FR=FRANCE, HU=HUNGARY, IT=ITALY, NE=NETHERLANDS,

NO=NORWAY, RU=RUSSIA, SP=SPAIN, LA=LATIN AMERICA, TR=TURKEY, US(M)=UNITED STATES (MOBILE), -=UNKNOWN/NOT PROVIDED.�=CONTAINS THE FEATURE; ��=CONTAINS PART OF THE FEATURE; no circle=DOES NOT CONTAIN THE FEATURE.

Typing Mode Features Attributes

Name # Keystrokes Locale Fi
xe

d

C
on

st
ra

in
ed

Fr
ee

K
ey

tim
in

gs

K
ey

na
m

es

Pr
es

su
re

A
cc

el
er

om
et

er

A
ud

io
/V

id
eo

Ph
ys

io
lo

gi
ca

l

A
ge

G
en

de
r

H
an

de
dn

es
s

Pl
at

fo
rm

Im
po

st
or

D
at

a

Ref.
allen 24k US � � �� � [97]

atvs 85k SP � � � [98]

bakelman 6.6k US � � �� [99]

banerjee 4.6M - � � � �� [45]

beihang 21k - � � �� � [100]

biochaves 32k BR � � �� �� [101]

buffalo 2.5M US � � � � � � [102]

calot 49k LA � �� [103], [104]

calot-eeg 30k LA � � � � � � � � [105]

citefa 139k US/SP/LA � � �� � � � � [106]

clarkson 768k US � � � � �� � [107]

cmu-password 224k US � � �� [108]

coakley 62k USm � � � �� � � � [109]

free-vs-trans 159k US � � � �� [110]

greyc 121k FR � � �� [111]

greyc-nislab 218k FR/NO � � �� � � � [112]

greyc-web 327k US/FR � � �� � � � � [113]

gunetti 605k IT � �� �� � [114]

how-we-type 37k FI � �� � � � � � � [46]

kboc 190k SP � � �� � [115], [116]

keystroke100 7.2k - � �� �� � [117], [118]

mobikey 141k USm � � �� � � � [119]

mobile-password 30k USm � � �� � � [120], [121]

msu 49k US � � � �� � [122]–[124]

ohkbic 440k US � � �� � � [125]

pentel 2.3M EST/RU � � �� � [126]

pic 14k - � � �� [127]

rhu 13k USm � � �� � � [128]

roffo 235k IT � �� [129]

rti2014 55k - � �� [130]

stewart 781k US � � �� [131]

swell-kw 249k NE � �� �� � � � � � [132], [133]

tapdynamics 8.4k USm � � �� � [134]

uzun 11k TR � � �� � � [135]

villani 1.2M US � � � � � � � � [136]

waikato 132k US � � �� [137], [138]

228

