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Abstract—The notion of Local Differential Privacy (LDP)
enables users to respond to sensitive questions while preserving
their privacy. The basic LDP frequent oracle (FO) protocol
enables an aggregator to estimate the frequency of any value.
But when each user has a set of values, one needs an additional
padding and sampling step to find the frequent values and
estimate their frequencies. In this paper, we formally define such
padding and sample based frequency oracles (PSFO). We further
identify the privacy amplification property in PSFO. As a result,
we propose SVIM, a protocol for finding frequent items in the
set-valued LDP setting. Experiments show that under the same
privacy guarantee and computational cost, SVIM significantly
improves over existing methods. With SVIM to find frequent
items, we propose SVSM to effectively find frequent itemsets,
which to our knowledge has not been done before in the LDP
setting.

I. INTRODUCTION

In recent years, differential privacy [14], [16] has been

increasingly accepted as the de facto standard for data privacy

in the research community [2], [15], [17], [24]. In the standard

(or centralized) setting, a data curator collects personal data

from each individual, and produces outputs based on the

dataset in a way that satisfies differential privacy. In this

setting, the data curator sees the raw input from all users and

is trusted to handle these private data correctly.

Recently, techniques for avoiding a central trusted authority

have been introduced. They use the concept of Differential

Privacy in the Local setting, which we call LDP. Such

techniques enable collection of statistics of users’ data while

preserving privacy of participants, without relying on trust in

a single data curator. For example, researchers from Google

developed RAPPOR [18], [20] and Prochlo [8], which are

included as part of Chrome. They enable Google to collect

users’ answers to questions such as the default homepage

of their browser, the default search engine, and so on, in

order to understand the unwanted or malicious hijacking of

user settings. Apple [33], [34] also uses similar methods to

help with predictions of spelling and other tasks. Samsung

proposed a similar system [28] which enables collection of

not only categorical answers but also numerical answers

(e.g., time of usage, battery volume), although it is not clear

whether this has been deployed by Samsung. Firefox [1] is

also planning to build a “RAPPOR-like” system that collects

frequent homepages.

We assume that each user possesses an input value v ∈ D,

where D is the value domain. A party wants to learn the

distribution of the input values of all users. We call this party

the aggregator instead of the data curator, because it does

not see the raw data. Existing research [5], [18], [36] has

developed multiple frequency oracle (FO) protocols, using

which an aggregator can estimate the frequency of any chosen

value x ∈ D. In [30], Qin et al. considered the setting where

each user’s value is a set of items v ⊆ I , where I is the

item domain. Such a set-valued setting occurs frequently in

the situation where LDP is applied. For example, when Apple

wants to estimate the frequencies of the emoji’s typed everday

by the users, each user has a set of emoji’s that they typed [34].

The LDPMiner protocol in [30] aims at finding the k most

frequent items and their frequencies.

This problem is challenging because the number of items

each user has is different. To deal with this, a core technique

in [30] is “padding and sampling”. That is, each user first

pads her set of values with dummy items to a fixed size �, then

randomly samples one item from the padded set, and finally

uses an FO protocol to report the item. When estimating the

frequency of an item, one multiples the estimation from the FO
protocol by �. Without padding, the probability that an item

is sampled is difficult to assess, making accurate frequency

estimation difficult.

In [30], the FO protocol is used in a black-box fashion.

That is, in order to satisfy ε-LDP, the FO protocol is invoked

with the same privacy parameter ε. We observe that, since the

sampling step randomly selects an item, it has an amplification

effect in terms of privacy. This effect has been observed and

studied in the standard DP setting [25]. If one applies an

algorithm to a dataset randomly sampled from the input with a

sampling rate of β < 1, to satisfy ε-DP, the algorithm can use

a privacy budget of ε′ > ε; more specifically, the relationship

between ε′, ε, and β is eε
′−1

eε−1 = 1
β .

Intuitively, one can apply the same observation here. Since

each item is selected with probability β = 1
� , to satisfy

ε-LDP, one can invoke the FO protocol with ε′, such that
eε

′−1
eε−1 = � (or, equivalently ε′ = ln (� · (eε − 1) + 1) ≥ ε).
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Surprisingly, in our study of padding-and-sampling-based
frequency oracle (PSFO), we found that one cannot always

get this privacy amplification effect. Whether this benefit is

applicable or not depends on the internal structure of the FO
protocol. In [36], the three best performing FO protocols are

Generalized Random Response, Optimized Unary Encoding,

and Optimized Local Hash. The latter two offer the same

accuracy, and Optimized Local Hash has lower communication

cost. It was found that Generalized Random Response offers

the best accuracy when |D| < 3eε + 2, and Optimized

Local Hash offers the best accuracy when |D| ≥ 3eε + 2.

We found that, the privacy amplification effect exists for

Generalized Random Response, but not for Optimized Lo-

cal Hash. Optimized Local Hash is able to provide better

accuracy when |D| is large because each perturbed output

can be used to support multiple input values. However, the

same feature makes Optimized Local Hash unable to benefit

from sampling. The difference in the ability to benefit from

sampling changes the criterion to decide which of Generalized

Random Response and Optimized Local Hash to use. We thus

propose to adaptively select the best FO protocol in PSFO,

based on |I|, ε and the particular � value. Essentially, when

|I| > (4�2− �) · eε+1, Generalized Random Response should

be used. Replacing the FO protocol used in [30] with such an

adaptively chosen FO protocol greatly improves the accuracy

of the resulting frequent items.

We also observe that the selection of an appropriate �
is crucial, and it can be different depending on the goal.

Essentially, each user pads her itemset to size �, generating

two sources of errors: When � is small, one would under-

estimate the frequency counts, since items in a set with more

than � items will be sampled with probability less than 1/�.
On the other hand, since � is multiplied to a noisy estimate,

increasing � magnifies the noises. The LDPMiner protocol

in [30] has two phases, the first phase selects 2k candidate

frequent items using a quite large �, and the second phase

computes their frequencies using � = 2k. We observe that for

the purpose of identifying candidates for the frequent items,

setting � = 1 is fine. While the resulting frequency counts

under-estimate the true counts, the frequencies of all items

are under-estimated, and it is very unlikely that the true top

k items are not among the 2k candidates. However, when the

goal is to estimate frequency, one needs select a larger �. But

� should not be increased to the point that there is absolutely

no under-estimation, because this increases the magnitude of

noises. Selecting � is a trade-off between under-estimation and

noise.

Following these insights, we propose Set-Value Item Mining

(SVIM) protocol, which handles set values under the LDP

setting and provides much better accuracy than existing proto-

cols within the same privacy constraints. There are four steps:

First, users use PSFO with a small � to report; the aggregator

identifies frequent items as candidates, and sends this set to

users. Second, users report (using a standard FO protocol) the

number of candidate items they have; the aggregator estimates

the distribution of how many candidate items the users have

and selects appropriate �, and sends � to users. Third, users

use PSFO with the given � to report occurrences of items in

the candidate set; the aggregator estimates the frequency of

these items. Fourth, the aggregator selects the top k frequent

items and use the size distribution in step two to further correct

undercounts. Experimental results how that SVIM significantly

outperforms LDPMiner in that it identifies more frequent items

as well as estimates the frequencies more accurately.

In the setting where each user’s input data is a set of items,

a natural problem is to find frequent itemsets. Frequent itemset

mining (FIM) is a well recognized data-mining problem. The

discovery of frequent itemsets can serve valuable economic

and research purposes, e.g., mining association rules [4],

predicting user behavior [3], and finding correlations [9]. FIM

while satisfying DP in the centralized setting has been studied

extensively, e.g., [7], [39], [26]. However, because of the

challenges of dealing with set-valued inputs in the LDP setting,

no solution for the LDP setting has been proposed. Authors

of [30] consider only the identification of frequent items, and

leave FIM as an open problem. Using the PSFO technique,

we are able to provide the first solution to FIM in the

LDP setting. We call the protocol Set-Value itemSet Mining

(SVSM) protocol; experimental evaluations demonstrates its

effectiveness.

To summarize, the main contributions of this paper are:

• We investigate padding-and-sample-based frequency or-

acles (PSFO) and discover the interesting phenomenon

that some FO protocols can benefit from the sampling

step, but others cannot. Based on this, we proposed to

adaptively select the best-performing FO protocol in each

usage of PSFO.

• We design and implement SVIM to find frequent values

together with their frequencies. Experimental results on

both empirical and real-world datasets demonstrate the

significant improvement over previous techniques.

• We provide the first FIM protocol under the LDP setting,

and empirically demonstrate its effectiveness on real-

world datasets. This solves a problem left open by [30].

Roadmap. In Section II, we present background knowledge

of LDP and FO. We then go over the problem definition

and existing solutions in Section III. With an investigation of

the sample-based frequency oracle in Section IV, we present

our proposed method in Section V. Experimental results are

presented in VI. Finally we discuss related work in Section VII

and provide concluding remarks in in Section VIII.

II. BACKGROUND

We consider a setting where there are several users and

one aggregator. Each user possesses a value v from a domain

D, and the aggregator wants to learn the distribution of values

among all users, in a way that protects the privacy of individual

users.

A. Differential Privacy in the Local Setting

In the local setting, each user perturbs the input value v
using an algorithm Ψ and sends Ψ(v) to the aggregator. The
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formal privacy requirement is that the algorithm Ψ(·) satisfies

the following property:

Definition 1 (ε Local Differential Privacy). An algorithm Ψ(·)
satisfies ε-local differential privacy (ε-LDP), where ε ≥ 0, if
and only if for any input v1, v2 ∈ D, we have

∀T ⊆Range(Ψ) : Pr [Ψ(v1) ∈ T ] ≤ eε Pr [Ψ(v2) ∈ T ] ,

where Range(Ψ) denotes the set of all possible outputs of the
algorithm Ψ.

Similar to the centralized setting, there is sequential com-

position in the local setting. That is, if the user executes a set

of functions, each satisfying εi-LDP, then the whole process

satisfies
∑

εi-LDP. The value ε is also called the privacy
budget.

Compared to the centralized setting, the local version of DP

offers a stronger level of protection, because each user only

reports the perturbed data. Each user’s privacy is still protected

even if the aggregator is malicious.

B. Frequency Oracles

A frequency oracle (FO) protocol enables the estimation of

the frequency of any given value x ∈ D under LDP. It is

specified by a pair algorithms: 〈Ψ,Φ〉, where Ψ is used by

each user to perturb her input value, and Φ is used by the

aggregator; Φ takes as input the reports from all users, and

can be queried for the frequency of each value.

1) Generalized Randomized Response (GRR): This FO
protocol generalizes the randomized response technique [38].

In the special case where the value is one bit, i.e., when

d = |D| = 2, ΨGRR(ε)(v) keeps the bit unchanged with

probability eε

eε+1 and flips it with probability 1
eε+1 . In the

general case, when d > 2, the perturbation function is defined

as

∀y∈D Pr
[
ΨGRR(ε)(v) = y

]
=

{
p = eε

eε+d−1 , if y = v

q = 1
eε+d−1 , if y 	= v

(1)

This satisfies ε-LDP since p
q = eε. To estimate the frequency

of x ∈ D, one counts how many times x is reported as C(x),
and then computes

ΦGRR(ε)(x) :=
C(x)− nq

p− q
(2)

where n is the total number of users. That is, the frequency

estimate is a linear transformation of the noisy count C(x), in

order to account for the effect of randomized response. In [36],

it is shown that this is an unbiased estimation of the true count,

and the variance for this estimation is

Var[ΦGRR(ε)(x)] =
d− 2 + eε

(eε − 1)2
· n (3)

The accuracy of this protocol deteriorates fast when the

domain size d increases. This is reflected in the fact that (3)

is linear in d.

More sophisticated frequency estimators have been studied

before [18], [5], [36]. In [36], several such protocols are

analyzed, optimized, and compared against each other, and it

was found that when d is large, the Optimized Local Hashing

(OLH) protocol provides the best accuracy while maintaining

a low communication cost. In this paper, we use the OLH
protocol as a primitive and describe it below.

2) Optimized Local Hashing (OLH) [36]: The Optimized
Local Hashing (OLH) protocol deals with a large domain

size d by first using a hash function to map an input value

into a smaller domain of size g (typically g 
 d), and

then applying randomized response to the hashed value in the

smaller domain. In this protocol, both the hashing step and

the randomization step result in information loss. The choice

of the parameter g is a tradeoff between losing information

during the hashing step and losing information during the

randomization step. In [36], it is found that the optimal

(minimal variance) choice of g is �eε + 1�.
In OLH, the reporting protocol is

ΨOLH(ε)(v) := 〈H,ΨGRR(ε)(H(v))〉,
where H is randomly chosen from a family of hash functions

that hash each value in D to {1 . . . g}, and ΨGRR(ε) is given

in (1), while operating on the domain {1 . . . g}.
Let 〈Hj , yj〉 be the report from the j’th user. For each value

x ∈ D, to compute its frequency, one first computes C(x) =
|{j | Hj(x) = yj}|. That is, C(x) is the number of reports

that “supports” that the input is x. One then transforms C(x)
to its unbiased estimation

ΦOLH(ε)(x) :=
C(x)− n/g

p− 1/g
. (4)

The variance of this estimation is

Var[ΦOLH(ε)(x)] =
4eε

(eε − 1)2
· n. (5)

Compared with (3), the factor d − 2 + eε is replaced by 4eε.
This suggests that for smaller d (such that d− 2 < 3eε), one

is better off with GRR; but for large d, OLH is better and has

a variance that does not depend on d.

III. SET VALUES UNDER LDP

In [30], Qin et al. considered the problem where each user’s

value is a set. Such set-valued settings occur frequently in

the situation where LDP is applied. For example, iOS users

type many emoji’s every day, and Apple wants to estimate the

frequencies of the emoji’s [34].

A. Problem Definition and Challenge

Specifically, the aggregator knows a set I of items. There

are n users. The j’th user has a value vj ⊆ I . We call this a

transaction. For any item x ∈ I , its frequency is defined as the

number of transactions that include x, i.e., fx := |{vj | x ∈
vj}|. Similarly, the frequency of any itemset x ⊆ I is defined

as the number of transactions that include x as a subset, i.e.,

fx := |{vj | x ⊆ vj}|.
With the constraint of LDP defined on each user’s value v,

the goal in this setting is to find items and, more generally,
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itemsets that are frequent in the population. An item (itemset)

is a top-k frequent item (itemset) if its frequency is among the

k highest for all items (itemsets).

This problem is quite challenging even when one just

tries to find frequent items. Encoding each transaction as a

single value in the domain D = P(I) (i.e., D is the power

set of I), and using existing FO protocols does not work.

While there exist protocols specifically designed for larges

domains (such as [37], [6]), such techniques still doesn’t

scale to the case where the binary encoding of the input

domain has more than a few hundred bits. We want to

be able deal with hundreds or thousands of items. An FO
protocol can identify only values that are very frequent in the

population, because the scale of the added noises is linear to

square root of the population size [11]. It is quite possible

that each particular transaction appears relative infrequently,

even though some items and itemsets appear very frequently.

Transaction

a, c, e
b, d, e
a, b, e
a, d, e
a, f

TABLE I
TRANSACTIONS EXAMPLE.

When no value in P(I) is fre-

quent enough to be identified, us-

ing a direct encoding an aggregator

can obtain only noises.

See Table I for an example with

five transactions. While no transac-

tion appears more than once, items

a and e each appears 4 times, and

the itemset {a, e} appears 3 times.

Thus the three most frequent item-

sets are {a}, {e}, {a, e}.
B. The LDPMiner

To the best of our knowledge, LDPMiner [30] is the only

protocol for dealing with set values in the LDP setting. While

finding frequent itemsets is a natural goal, LDPMiner finds

only frequent items (i.e., singleton itemsets) and leaves the

frequent itemset mining as an open problem. LDPMiner has

two phases.

Phase 1: Candidate Set Identification. The goal of Phase 1

is to identify a candidate set for frequent items. The protocol

requires as input a parameter L, which is the 90th percentile

of transaction lengths . That is, about 90% of all transactions

have length no more than L. When L is not known, it needs

to be estimated. In [30], it is assumed that L is available.

In Phase 1, each user whose transaction v has less than L
items first pads it with dummy items so that the transaction

has size L. Then, the user selects at uniform random one item

v from the padded transaction (which could result in a dummy

item), and uses FO to report it with privacy budget ε/2. That

is, each user sends to the aggregator ΨFO(ε/2)(v). Note that

the FO can perturb the original value into any value including

the dummy item.

The aggregator then computes, for each item x ∈ I , its

estimated frequency as

ΦFO(ε/2)(x) · L
The intuition behind the above estimation is that in each

transaction of length L, each item x will be selected and

reported with probability 1
L . Hence one needs to multiply the

frequency oracle’s estimation by a factor of L. Since 90%

of transactions will have length exactly L after padding, this

estimation is reasonably accurate. From the estimates, the

aggregator identifies S, the set of 2k items that have the

highest estimated frequencies, and sends S to the users. Size

of S is set to be twice that of the goal so that few candidates

are missed in this step.

Phase 2: Frequency Estimation. On receiving S, each user

intersects it with v, which results in a transaction of length no

more than |S| = 2k. She then pads her transaction v ∩ S to

be of size 2k, selects at uniform random one item v from the

padded transaction, and sends ΨFO(ε/2)(v) to the aggregator.

Since each user sends two things, each in a way that satisfies

(ε/2)-LDP, by sequential composition, the protocol satisfies

ε-LDP.

The aggregator estimates frequency for each item x ∈ S:

ΦFO(ε/2)(x) · 2k
Since the size of all user’s transactions have size 2k after

padding, the estimated frequencies are unbiased.

IV. PADDING-AND-SAMPLING-BASED FREQUENCY

ORACLES

The LDPMiner protocol deals with the challenge of set-

valued inputs by using padding and sampling before applying

an FO protocol to report. We call such protocols Padding-and-
Sampling-based Frequency Oracle (PSFO) protocols. They

use a padding-and-sampling function, defined as follows.

Definition 2 (PS). The padding and sampling function PS is
specified by a positive integer � and takes a set v ⊆ I as input.
It assumes the existence of � dummy items ⊥1,⊥2, . . . ,⊥� 	∈ I .
PS�(v) does the following: If |v| < �, it adds �− |v| different
random dummy elements to v. It then selects an element v at
uniform random and outputs that element.

A PSFO protocol then uses an FO protocol to transmit

the element v. Note that the domain of the FO becomes

I ∪ {⊥1,⊥2, . . . ,⊥�}. To estimate the frequency of an item

x, one obtains the frequency estimation of x from the FO
protocol, and then multiplies it by �. More formally,

Definition 3 (PSFO). A padding-and-sample-based frequency
oracle (PSFO) protocol is specified by three parameters: a
positive integer �, a frequency oracle FO, and the privacy
budget ε. It is composed of a pair of algorithms: 〈Ψ,Φ〉,
defined as follows.

PSFO(�,FO, ε) := 〈ΨFO(ε)(PS�(·)), ΦFO(ε)(·) · �〉
Note that if one does not do the padding step, it is equivalent

to setting � = 1. Doing so significantly under-estimates the

true counts. With padding to length � and then sampling,

one can multiply the estimated counts by � to correct the

under estimation. However, items that appear in transactions

longer than � can still be underestimated. At the same time,
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multiplying the estimation by � will enlarge any error due to

noise by a factor of �.

Using this notation, the two phases of LDPMiner can be cast

as using PSFO(L,FO, ε/2) in Phase 1 and PSFO(2k,FO, ε/2)
in Phase 2.

A. Privacy Amplification of GRR

LDPMiner uses the FO protocol in a black-box fashion.

That is, in order to satisfy ε-LDP, it invokes the FO protocol

with the same privacy parameter ε. We observe that, since the

sampling step randomly selects an item, it has an amplification

effect for privacy. This effect has been observed and studied

in the standard DP setting [25]: If one applies an algorithm to

a dataset randomly sampled from the input with a sampling

rate of β < 1, to satisfy ε-DP, the algorithm can use a privacy

budget of ε′ such that eε
′−1

eε−1 = 1
β .

We observe that the same privacy amplification effect exists

when using the Generalized Random Response (GRR) in

PSFO.

Theorem 1 (PSFO-GRR: Privacy Amplification).
ΨGRR(ε′)(PS�(·)) satisfies ε-LDP, such that ε′ =
ln (� · (eε − 1) + 1).

Proof. Let d′ = |I| + � be the size of the new domain (I ′ =
I ∪ {⊥1, . . . ,⊥�}), ε′ as the privacy budget used in GRR. As

defined in (1), we have p′ = eε
′

eε′+d′−1
and q′ = 1

eε′+d′−1
as

the perturbation probabilities.

It suffices to prove that for any ε ≥ 0, any v1, v2 ⊆ I , and

any possible output t ∈ I ′, p1

p2
≤ eε, where

p1 = Pr
[
ΨGRR(ε′)(PS�(v1)) = t

]
, and

p2 = Pr
[
ΨGRR(ε′)(PS�(v2)) = t

]
.

We first examine p1. When t ∈ v1,

p1 =Pr [t is sampled] · p′ + Pr [t is not sampled] · q′

=
1

max{|v1|, �} · p
′ +

max{|v1|, �} − 1

max{|v1|, �} · q′

=q′ +
1

max{|v1|, �} · (p
′ − q′)

≤q′ + 1

�
· (p′ − q′)

=
1

�
p′ +

�− 1

�
q′

When t 	∈ v1, p1 = q′. Similarly, for p2, when t ∈ v2,

p2 =Pr [t is sampled] · p′ + Pr [t is not sampled] · q′
=Pr [t is sampled] · (q′ + p′ − q′)
+Pr [t is not sampled] · q′
=q′ + Pr [t is sampled] · (p′ − q′) ≥ q′

ε
�

2 5 10 20 50 100

0.1 0.19 0.42 0.72 1.13 1.83 2.44
0.5 0.83 1.45 2.01 2.64 3.51 4.19
1.0 1.49 2.26 2.90 3.57 4.46 5.15
2.0 2.62 3.49 4.17 4.86 5.77 6.46
4.0 4.68 5.59 6.29 6.98 7.89 8.59

TABLE II
NUMERICAL VALUE OF ε′ UNDER DIFFERENT ε AND �.
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100

Fig. 1. Privacy amplification effect for different �.

When t 	∈ v2, p2 = q′. Thus p1

p2
is maximized when p1 =

1
� p
′ + �−1

� q′ and p2 = q′. That is,

p1
p2
≤ p′/�+ q′(�− 1)/�

q′

≤ eε
′ 1

�
+

�− 1

�

=
(� · (eε − 1) + 1)

�
+

�− 1

�
= eε

Approximately, the privacy budget will be amplified by a

factor of ln � (will be the same if � = 1). Table II and Figure 1

give the corresponding ε′ value for ε under different �.

B. No Privacy Amplification of other FO

Interestingly, we found that this privacy amplification effect

does not exist for OLH. The reason is that, in GRR, the output

domain of the perturbation is the same as the input domain;

thus each reported value y can “support” a single input element

x = y in I . In OLH, however, the reported value takes the

form of 〈H, j〉 and can support any element x in I such that

H(x) = j. In case the chosen hash function H hashes all the

user’s items into the same value, no matter how we sample,

the hashed result after sampling will always be the same value.

Therefore, there is no privacy amplification in the sampling.

Theorem 2 (PSFO-OLH: No Privacy Amplification).
ΨOLH(ε′)(PS�(·)) does not satisfy ε-LDP for any ε < ε′ when
the input domain I is sufficiently large.

Proof. Let g be the output size of hash functions. Consider an

input domain I such that |I| ≥ g� + 1. Let H be the chosen

hash function. By the pigeon hole principle, there exists a
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value y such that H hashes at least � items into y. Let v1

consists of � items that are hashed to y, and v2 consists of

items that are not hashed to y. Then

Pr
[
ΨOLH(ε)(PS�(v1)) = 〈H, y〉]

Pr
[
ΨOLH(ε)(PS�(v2)) = 〈H, y〉]

=
Pr

[
ΨGRR(ε)(H(PS�(v1))) = y|H]

Pr
[
ΨGRR(ε)(H(PS�(v2))) = y|H]

=
Pr [H is picked] · p′
Pr [H is picked] · q′ =

p′

q′
= eε

′

Therefore, ΨOLH(ε′)(PS�(·)) is not ε-LDP for any ε < ε′.

In [36], another FO protocol, Optimal Unary Encoding

(OUE), was proposed. It has similar accuracy as OLH. In OUE,

the reported value is a binary vector, each bit representing one

possible input value. One reported value can have multiple bits

being 1, supporting multiple input values. Similar to OLH, in

case the reported vector supports all the user’s items, there is

no privacy amplification.

Note that from each user’s point of view, the hash function

H is randomly chosen. Thus only when the user happens to

choose a hash function H that hashes all the user’s items into

the same hash value, would there be no privacy amplification

benefit at all. However, this can happen with only small

probability. This observation suggests that (ε, δ)-LDP can

be applied to obtain some amplification effect, as will be

discussed in Appendix A.

C. Utility of PSFO

We now analyze the accuracy of PSFO. We first show that

PSFO is unbiased when each user’s itemset size is no more

than �.

Theorem 3 (PSFO Expectation). PSFO(�,FO, ε) is unbiased
when � ≥ maxj∈[n] |vj |. That is,

E
[
ΦPSFO(�,FO,ε)(x)

]
= nx,

where nx is the number of users who have item x.

Proof. We prove for GRR, using the aggregate function de-

fined in (2). The proof for OLH (with aggregate function in (4))

can also be derived similarly.

E
[
ΦPSFO(�,GRR,ε)(x)

]
=E

[
ΦGRR(ε′)(x) · �

]
= E

[
C(x)− nq′

p′ − q′
· �

]

=� · nx
1
� p
′ + nx

�−1
� q′ + (n− nx)q

′ − nq′

p′ − q′

=� · nx
1
� (p

′ − q′) + nxq
′ + (n− nx)q

′ − nq′

p′ − q′

=nx

The estimation is inherently noisy. We now calculate the

variance of the estimation.

Theorem 4 (PSFO Variance). PSFO(�,FO, ε) has variance
�2 times that of FO when � ≥ maxj∈[n] |vj |. That is,

Var[ΦPSFO(�,FO,ε)(x)] = �2 ·Var[ΦFO(ε′)(x)],

where ε′ = ln (� · (eε − 1) + 1) if FO is GRR.

Proof. We prove for GRR, and the proof for OLH can be easily

derived.

Var[ΦPSFO(�,GRR,ε)(x)] = Var[ΦGRR(ε′)(x) · �]
=Var

[
C(x)− nq′

p′ − q′
· �

]
=

�2

(p′ − q′)2
·
∑
j

Var[C(x)]

=
�2

(p′ − q′)2
·
[
nx

(
1

�
p′ +

�− 1

�
q′
)(

1−
(
1

�
p′ +

�− 1

�
q′
))

+(n− nx)q
′(1− q′)

]

� �2

(p′ − q′)2
· [nq′(1− q′)] = �2 ·Var[ΦGRR(ε′)(x)]

D. Adaptive FO

PSFO needs to use an FO protocol. In [36], it was shown

that one should choose GRR when d < 3eε + 2 (where

d = |D| is the size of the domain under consideration), and

OLH otherwise. With sampling, GRR can benefit from privacy

amplification, but OLH benefit less. As a result, the criterion

for choosing between GRR and OLH changes. For GRR, when

ε is used in PSFO, the effective privacy budget GRR can use

becomes ln(�(eε − 1) + 1). We use (3) (with domain size

|I ′| = d+ �) and get:

Var[ΦGRR(ln(�(eε−1)+1)(x) · �]
=n · �2 · d+ l − 2 + � · (eε − 1) + 1

(� · (eε − 1) + 1− 1)2

=n · d+ l − 1 + � · (eε − 1)

(eε − 1)2

=n · e
ε · �+ d− 1

(eε − 1)2
(6)

For OLH, by (5) we have variance independent on d:

Var[ΦOLH(ε)(x) · �] = n · 4�2 · eε
(eε − 1)2

(7)

Comparing (6) and (7), when

d < �(4�− 1)eε + 1, (8)

using GRR itemset will lead to better accuracy. Note that by

taking � = 1, (8) is slightly different from the inequality of

d < 3eε + 2 from [36]. This is because here we consider

a more general setting where some user may have no item

at all, while the setting of [36] is that each user has exactly

one item. We propose Adap, which becomes GRR or OLH
adaptively (with new budget) based on (8). That is,

Adap(ε) :=

{
GRR(ln(�(eε − 1) + 1) if d < eε�(4�− 1) + 1,
OLH(ε) otherwise.
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E. Choosing �

To use PSFO, one needs to decide what value of � to use.

When � is small, there is less variance but more bias (in the

form of under estimation); when � is large, there is more

variance and less bias. To find the suitable �, the high level

idea is to find the right tradeoff between bias and variance.

When identifying candidate items, the goal is find the most

frequent items (but not accurate frequencies for them), we

propose to use a small �. The intuition is that, while the

bias is large when � is small, the bias tends to be the same

direction (namely under estimation) for all items. While the

absolute values of the counts are very inaccurate, the relative

order remain mostly unchanged. Note that it is possible the

order is reversed after sampling (if one item appears more

often in smaller transactions, and another item appears more

often in larger transactions). To reduce this risk, we identify

2k candidate items (the optimal size of the candidate set is

dependent on the data distribution; we tried different values

and 2k appears to be a reasonable choice).

When estimating the actual frequency, one should use a

larger � to reduce bias. We propose to use the 90th percentile

L of the length of the input itemsets. While under estimation

can still occur, the degree is limited. Furthermore, when given

the distribution of the lengths of input itemsets, we propose

to correct this under estimation by multiplying the estimation

by the factor:

u(L) =
N

N −∑d
�=L+1 n

�(�− L)
. (9)

Here N denotes the total number of items, n� denotes the

number of users with itemset size �, and
∑d

�=L+1 N
�(�− L)

gives the total number of missed items.

V. PROPOSED METHOD

In this section, we propose solution for the frequent item

and itemset mining. We first present Set-Value Item Mining

(SVIM) protocol to find frequent items in the set-value setting.

Based on the result from SVIM, we build Set-Value itemSet

Mining (SVSM) protocol to find frequent itemsets. The high

level protocol structure is given in Figure 2.

A. Frequent Item Mining

At a high level, SVIM works as follows: A set of candidate

items are identified first. Then these items are estimated and

updated. The users are partitioned into three groups, each

participating in a task. Given that each task requires privacy

budget of ε, each user is protected by ε-LDP.

Step 1: Prune the Domain. When the domain is big (e.g.,

tens of thousands), the aggregator has to first narrow down the

focus to a small candidate set. Specifically, in Step 1, each

user reports with a randomly selected value from her private

set with length limit set to 1:

ΨPSFO(1,Adap,ε)(v).

IS

S

S, L

S

L

IS, L

IS

L

Fig. 2. Illustration of SVIM and SVSM. The users to the left are partitioned
into five groups. The aggregator to the right first runs SVIM with the first
three groups, and find the frequent items. Then the aggregator interacts with
the following two groups to find frequent itemsets.

The advantages of setting � = 1 are first, every user will report

an item, making the signal strong; second, there is no extra

cost of obtaining the exact L value.

The aggregator then estimates the frequency of the domain

by

ΦPSFO(1,Adap,ε)(x),

and obtains the set S of the 2k most frequent items. S is then

sent to users who participate in Step 2. Note that this phase

is unnecessary when the original domain size close to or less

than 2k.

Step 2: Size Estimation. Having narrowed down the domain

from I to S, the aggregator now estimates frequencies of items

in S. As suggested by the analysis of PSFO (Section IV-E),

the aggregator first finds the 90-th percentile L (in this step)

and then uses it as the limit to estimate frequencies of S (next

step).

To find L, each user in this task reports the size of the

private set intersected with the candidate S, i.e.,

ΨOLH(ε)(|v ∩ S|).
There is no sampling involved in this step, because each user

has only one value. Here OLH is as FO by default.

The aggregator in this step estimates the length distribution

by calculating

ΦOLH(ε)(�)

for all � ∈ [1, 2, . . . , 2k], and finds the 90 percentile L.

That is, the aggregator then finds the smallest L such that∑L
�=1 ΦOLH(ε)(�)∑2k
�=1 ΦOLH(ε)(�)

> 0.9. Information of S and L are then sent

to the users for the next task.
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Note that some of the estimates may be overwhelmed

by noise, making it useless. For this reason, we use the

significance threshold T = F−1
(
1− 0.05

2k

)√
Var to filter the

estimates, where F−1 is the inverse of standard normal CDF,

and Var is specified by (5). Specifically, the aggregator keeps

estimates that are greater than T , and replaces all the others

with zeros.

Step 3: Candidates Estimation. On receiving S and L,

each of the rest of the users reports a value sampled from

the intersection of his private set v and the candidate set S,

padded to L, i.e.,

ΨPSFO(L,Adap,ε)(v ∩ S).

The aggregator can estimates the candidates by running

ΦPSFO(L,Adap,ε)(x),

for all x ∈ S. Since the 90-th percentile L is used as limit,

the estimates are slightly under-estimate the truth. Therefore,

the estimates are updated in the next step.

Step 4: Estimation Update. The update assumes that the

missed count follow similar distribution as the reported ones.

Given that L is the 90 percentile, the difference will not be

significant. Thus the estimate for each item x is multiplied

with a fixed update factor (the noisy version of (9))

u′(L) :=
∑2k

�=1 ΦOLH(ε)(�)∑2k
�=1 ΦOLH(ε)(�)−

∑2k
�=L+1 ΦOLH(ε) (�) (�− L)

(10)

Note that there is no privacy concern in this step because no

user is involved. The information is obtained from Step 2 and

3.

Difference from LDPMiner. The major differences between

SVIM and LDPMiner are many. (1) In Phase 1 of SVIM, the

limit is set to one, instead of the 90-th percentile of lengths of

full transactions. (2) In Phase 2 of SVIM, the limit is reduced

from |S| to the 90-th percentile L of the length of transactions

when limited to items in S. (3) Phase 1 of LDPMiner uses

the 90-th percentile; it was assumed that this is provided as

input. In SVIM, the 90-th percentile of length is obtained in a

way that satisfies LDP. (4) SVIM uses Adap instead of black

box FO. (5) SVIM has an update step at the end, which uses

the length distribution information to further reduces the bias.

(6) In SVIM, users are partitioned into groups, each answering

one separate question, instead of answering multiple questions

each with part of ε. It is proved in [36] that this will make

the overall result more accurate. (7) SVIM uses OLH, a more

accurate FO introduced in [36]. Since improvements (6) and

(7) are not introduced in this paper, in the experiments, for

a fair comparison, we evaluate on an improved version of

LDPMiner. Specifically, OLH is used as the FO, and users

are partitioned into groups. That is, the evaluation shows only

differences due to (1), (2), (4), (5). Difference (3) means that

SVIM is end-to-end private, and LDPMiner needs a data-

dependent input.

B. Frequent Itemset Mining

The problem of mining frequent itemsets is similar to

mining frequent items. The desired result becomes a set of

itemsets instead of items. These frequent itemsets can be

used, for example, by websites, to mine assocition rules and

make recommendations. However, the task is much more

challenging, because there are exponentially more itemsets to

consider, and each user also has many more potential itemsets.

In this section, we introduce SVSM for finding frequent

itemsets effectively. In the high level, the aggregator first

obtains the frequent items by executing SVIM. The aggregator

then constructs a candidate set of itemsets IS. Finally the set

IS is estimated in a fashion similar to the latter part of SVIM.

Constructing Candidate Set. The challenging part of fre-

quent itemset mining is to construct IS. There are exponen-

tially many possible itemsets that can be frequent. If one can

reduce it to a manageable range (thousands), one can cast the

problem to the item mining problem and run SVIM. Moreover,

if size of IS is close to k, only the estimation of IS (latter

part of SVIM) suffices.

Let S′ be the k most frequent items returned by SVIM.

To effectively further reduce the candidate size, we use infor-

mation of the estimates of S′. Specifically, for an itemset x,

we first guess its frequency, denoted by f̃x, as the product of

the estimates for all its items, i.e., f̃x =
∏

x∈x Φ
′(x), where

Φ′(x) = 0.9·Φ(x)
maxx∈S′ Φ(x) is the normalized estimate. The 0.9

factor of Φ′(x) serves to lower the normalized estimates for the

most frequent item, because otherwise, the guessed frequency

of any set without the most frequent item equals that of the set

plus the most frequent item, which is unlikely to be true. Then

2k itemsets with highest guessing frequencies are selected to

construct IS. The intuition is that, it is very unlikely that

a frequent itemset is composed of several infrequent items

(while it is theoretically possible). The guessing frequency is

thus an effective measurement of the likelihood each itemset

is among the frequent ones.

Formally, in SVSM, the domain IS is constructed as

IS := {x : x ⊆ S′, 1 < |x| < log2 k,
∏
x∈x

Φ′(x) > t},

where t is choosen so that |IS| = 2k.

Mining Frequent Itemset. After the domain IS is defined,

the following protocol works similar to SVIM for frequent item

mining. Note that step 1 is not necessary since IS is already

small. For each user with value v, a set of values from the

domain IS is obtained first:

vs = {x : x ∈ IS, x ⊆ v}
such that each itemset x ∈ vs is a value in IS.

Then a group of users report the size of their vs’s with FO:

ΨOLH(ε)(|vs|).
After the aggregator evaluates the number of users that has

� itemsets for each � ∈ [1, 2, . . . , 2k], the aggregator finds the
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90 percentile L and send it to the users in the final group, who

then reports vs by

ΨPSFO(L,Adap,ε)(vs).

The aggregator obtains the estimates by evaluating

ΦPSFO(L,Adap,ε)(x) · u′(L)
for any itemset x ∈ IS, where u′(L) is the update factor used

for correcting bias (same format as (10)), and get results for

the heavy itemsets and their estimates.

VI. EVALUATION

Now we discuss experiments that evaluate different pro-

tocols. Basically, we want to answer the following questions:

First, how many frequent items and itemsets can be effectively

identified. Second, how much do our proposed protocols

improve over existing ones.

As a highlight, in the POS dataset, our protocols can cor-

rectly identify around 45 frequent items (while existing ones

can identify around 12), with much more accurate estimates

(error is 3 orders of magnitudes less).

A. Experimental Setup

Environment. All algorithms are implemented in Python 2.7

and all the experiments are conducted on an Intel Core i7-4790

3.60GHz PC with 16GB memory. Each experiment is run 10

times, with mean and standard deviation reported.

Datasets. We run experiments on the following datasets:

• POS: A dataset containing merchant transactions of half

a million users and 1657 categories.

• Kosarak: A dataset of click streams on a Hungarian

website that contains around one million users and 42
thousand categories.

• Online: Similar to POS dataset, this is a dataset that

contains merchant transactions of half a million users and

2603 categories.

• Synthesize: The dataset is generated by the IBM Syn-

thetic Data Generation Code for Associations and Se-

quential Patterns 1.8 million transactions was generated,

with 1000 categories. The average transaction size is 5.

For brevity, we only plot results for the one dataset (POS). The

detailed results for other datasets are deferred to the appendix.

Metrics. To measure utility, we use the following metrics.

Define xi as the i-th most frequent value (xi is an item in the

task of item mining and an itemset in itemset mining). Let

the ground truth for top k values as xt = {x1, x2, . . . , xk}.
Denote the k values identified by the protocol using xr. Then

xt∩xr is the set of real top-k values that are identified by the

protocol.

1. Normalized Cumulative Rank (NCR). For each value x,

we assign a quality function q(·) to each value, and use the

Normalized Cumulative Gain (NCG) metric [22]:

NCG =

∑
x∈xr q(x)∑
x∈xt q(x)

.

We instantiate the quality function using x’s rank as follows:

the highest ranked value has a score of k (i.e., q(x1) = k),

the next one has score k − 1, and so on; the k-th value has a

score of 1, and all other values have scores of 0. To normalize

this into a value between 0 and 1, we divide the sum of scores

by the maximum possible score, i.e.,
k(k+1)

2 . This gives rise

to what we call the Normalized Cumulative Rank (NCR); this

metric uses the true rank information of the top-k values.

2. Squared Error (Var): We measure the estimation accuracy

by squared errors. That is,

Var =
1

|xt ∩ xr|
∑

x∈xt∩xr

(fx · n− Φ(x))
2
,

Note that we only account heavy hitters that are successfully

identified by the protocol, i.e., x ∈ xt ∩ xr.

B. Evaluation of Item Mining

For the item mining problem, our main focus is to compare

the performance of our proposed method SVIM, and the

existing method, LDPMiner. We implemented them as follows:

LDPMiner is almost implemented as described in [30].

For a fair comparison, we made two modifications. First, we

partition the users into two groups. The first group focus on

finding S, while the second focus on estimating S. Users

in each group use the full privacy budget ε to report. It is

proven [36] that by this way, the overall utility is better,

compared to keeping asking all the users multiple questions,

with splited privacy budget. Second, to get the 90th percentile

L, an additional group of users are assigned to report the size

of their private set. As a result, there will be three groups,

10% of users report size in advance, 40% report in the first

phase, and 50% report in the second phase.

For SVIM, we do the similar thing. Half of the users report

based on the original itemsets to find the candidate set S,

and the other half report after seeing the candidate set to

estimate S. The difference is, the 90th percentile L is used

when estimating S. Therefore, 10% of all users are allocated

to estimate L from the second half. That is, 50% report in

the first phase, 10% of users report size of the their itemsets

intersected with S, and 40% report one actual item.

To demonstrate the precise effect of each design detail, we

also line up several intermediate protocols between LDPMiner

and SVIM. We present them with synonyms (that specify the

FO and � used in both tasks) to highlight the difference as

follows:

• (BLH, L), (SUE, 2k): LDPMiner. LDPMiner uses two

FO’s BLH [5] and SUE [18]. It is proven in [36] that

the two performs not as good as OLH.

• (OLH, L), (OLH, 2k): The frequency oracles are replaced

with OLH.

• (OLH, 1), (OLH, 2k): The first phase uses � = 1. Note

that L is no longer needed, so there are two groups each

consists of half of the users.

• (OLH, 1), (Adap, 2k): The second phase uses adaptive

frequency oracle.
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• (OLH, 1), (Adap, L): The second phase uses L. An extra

group of 10% of users are assigned to estimate that.

• (OLH, 1), (Adap, L)(c): The final results are updated

based on the length distribution. This is the SVIM.

Note that the allocation of 10% of users for length distribution

is not fully justified. This is because the optimal allocation

depends heavily on the dataset, and 10% seems a reasonable

choice.

Detailed Results. In Figure 3, we evaluate the above six

protocols on POS dataset, and plot the NCR and Var scores.

Overall, the identification accuracy (indicated by NCR) in-

creases with ε, and decreases with k. Similarly, the estimation

accuracy becomes better (as the indicator Var decreases) when

ε is larger, and worse (Var increases) if k is larger. Now we

analyze performance of each competitor in more detail.

1. (BLH, L), (SUE, 2k) → (OLH, L), (OLH, 2k): First of

all, we observe the identification accuracy improves when the

FO in the first phase is changed from BLH to OLH. This

happens because, by using OLH, a more accurate S will be

returned, and by using OLH in the second phase, one can better

identify the top k items. Note that the estimation accuracy

actually does not improve significantly, because better FO does

a better job at reducing the noise for the lower ranked values

(thus NCR is higher). The estimation improvement is nearly

unnoticeable in the log based figures.

2. (OLH, L), (OLH, 2k) → (OLH, 1), (OLH, 2k): One ma-

jor NCR improvement happens when the length limit is

changed from the 90th percentile L to 1. To this point, the

top 2k items returned by the first phase contains most of the

top k items. The NCR bottle neck lies on the second phase,

which cannot effectively identify the top k from the 2k items.

Note that the estimation accuracy does not improve because

the same FO is used in the second phase.

3. (OLH, 1), (OLH, 2k)→ (OLH, 1), (Adap, 2k): The most

significant improvement happens when changing from OLH to

Adap in the second phase. Both identification and estimation

accuracy significantly (NCR almost doubled, and Var reduced

by two magnitudes). This is because Adap significantly re-

duces the variance (from a factor of (2k)2 to 2k).

4. (OLH, 1), (Adap, L) and (OLH, 1), (Adap, L)(c): By re-

ducing 2k to the 90th percentile L in the second phase, the

results are further improved. Note that the improvement is

not that significant but still meaningful. This is partly because

an additional 10% of users are assigned to estimate the size

distribution (to find L and update the results).

Remark. Because of the noisy nature (noise is in the order

of
√
n) of the local setting of DP, in order to get meaningful

information, one has to increase ε or n (or both). When the

number of users is not sufficiently large, as in our experiment,

the improvement is not significant in the small ε range, as

being used by experiments of centralized DP (e.g., 0.1).

However, in the case of deployed LDP protocol (Google uses

ε > 4 [18], and Apple uses ε = 1 or 2 [32]), the advantage of

the proposed protocol is profound.

C. Evaluation of Itemset Mining

We evaluate the effectiveness of SVSM. We want to answer

the questions how many itemsets can be identified, and the

effectiveness of using SVIM in SVSM.

We implement SVSM as follows, half of the users are

allocated to find frequent items first. Then the set IS is

constructed and estimated, by taking each of the element of

it as an independent item. To compare the effect of SVIM
over LDPMiner, we also instantiate SVSM using LDPMiner.

Specifically, half of the users are allocated to find frequent

items using LDPMiner; then IS is constructed similarly;

finally, Phase 2 of LDPMiner is executed to estimate frequency

of IS and output the most frequent k itemsets. Note that

the 50% − 50% allocation is used since mining singletons

and itemsets are two goals. One can allocate more users to

singletons if singleton mining is more important.

Detailed Results. Figure 4 shows the results of mining

frequent itemsets. As we can see from the upper two sub-

figures, when fixing k = 64, the proposed SVSM protocol

(instantiated with SVIM, as default) can achieve the NCR
score of 0.7 at ε = 1 and 0.9 when ε = 2. As to when

LDPMiner is used to instantiate SVSM, the utility drops to

around 0.2. When ε is fixed at 2, the improvement of SVIM
over LDPMiner is also significant, especially when k is greater

than 64 (SVSM-SVIM keeps NCR greater than 0.8, while

NCR for SVSM-LDPMiner drops to below 0.2). This suggests

that SVSM with LDPMiner can effectively find only around

10 most frequent itemsets, while SVSM with SVIM can find

around 70, demonstrating a 7× improvement.

For the estimation accuracy shown by the bottom two sub-

figures, we can see that the estimation error drops with ε, and

increases with k. When using LDPMiner in SVSM the error is

two magnitudes greater than using SVIM. This effect is more

significant when k is greater than 64. This is because Var for

LDPMiner is heavily dependent on k, while SVIM not.

VII. RELATED WORK

Differential privacy has been the de facto notion protect-

ing privacy. In the centralized settings, many DP algorithms

have been proposed (see [17], [35] for theoretical treatments

and [24] in a more practical perspective). Recently, Uber has

deployed a system enforcing DP during SQL queries [23],

Google also proposed several works that combine DP with

machine learning, e.g., [29]. In the local setting, we have also

seen real world deployment: Google deployed RAP [18] as

an extension within Chrome, and Apple [34], [33] also uses

similar methods to help with predictions of spelling and other

things.

Of all the problems, one basic mechanism in LDP is to

estimate frequencies of values. Wang et al. compare different

mechanisms using estimation variance [36]. They conclude

that when the domain size is small, the Generalized Ran-

dom Response provides best utility, and Optimal Local Hash

(OLH)/Optimal Unary Encoding (OUE) [36] perform better

when the domain is large. There also exist other mechanisms

with higher variance: Binary Local Hash (BLH) by Bassily
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Fig. 3. Singleton identification.

and Smith [5] can be viewed as OLH with hash range always

equal to 2 and RAPPOR (SUE) by Erlingsson et al. [18],

whose simple version can be viewed as OUE with suboptimal

parameters. These protocols use ideas from earlier work [27],

[13].

The frequent itemset mining problem is to identify the

frequent set of items that appear simultaneously where each

user has a set of items. There exist protocols to handle this

in the classic DP setting [39], [26]. In the local setting,

Evfimievski et al. [19] considered an easier setting where each

user has a fixed amount of items. The protocol cannot be

applied for the general itemset problem. Qin et al. proposed

LDPMiner [30] that finds only the frequent singletons. In this

paper, we propose and optimize PSFO, and thus be able to

identify both singletons and itemsets effectively.

Besides the frequent itemset mining problem, there are other

problems in the LDP setting that rely on mechanisms for

frequency estimation. The problem of finding heavy hitters in

a very large domain was exhaustively investigated [21], [27],

[20], [5], [33], [6], [37], [10].

Nguyên et al. [28] studied the problem of empirical risk

minimization. Smith et al. [31] also propose a protocol for the

same problem but without interaction. Ding [12] and Nguyên

et al. [28] studied mean estimation in the setting where the

private values are continuous.

VIII. CONCLUSIONS

In this paper, we investigate the LDP protocols in a setting

where each user has a set of items. We introduce PSFO,

that enables users to sample one item from the set to report.

The utility of PSFO is thoroughly analyzed and optimized,

resulting two key observations: First, we identify the additional

privacy gain provided by the sampling step, which we call

privacy amplification effect; Second, we observe that the

padding size � should be small when domain size is large,

and � should be large when domain is small. Based on the

analysis, we propose SVIM that significantly outperforms the

existing protocol LDPMiner. Then we propose SVSM to find

frequent itemset, which is an open problem in [30], for the first

time. We demonstrate the effectiveness of SVIM and SVSM
using empirical experiment on both synthetic and real-world

datasets.
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APPENDIX

A. (ε, δ)-LDP and Limited Amplification Effect

In (ε, δ)-LDP, the value δ (which is typically very small)

has an intuitive interpretation of “failure” probability. That is,

with probability 1 − δ, Ψ is ε-LDP. When δ = 0, (ε, 0)-LDP

becomes ε-LDP.

Definition 4 ((ε, δ) Local Differential Privacy). An algorithm
Ψ satisfies (ε, δ)-local differential privacy ((ε, δ)-LDP), where
ε ≥ 0, and 0 ≤ δ < 1 if and only if for any input v1, v2 ⊆ I ,
we have

∀T ⊆Range(Ψ) : Pr [Ψ(v1) ∈ T ] ≤ eε Pr [Ψ(v2) ∈ T ] + δ,

where Range(Ψ) denotes the set of all possible outputs of the
algorithm Ψ.

To apply the privacy amplification, one uses δ to measure

the probability that failure (multiple values are hashed to the

same value) happens, and derive the corresponding ε′ that OLH
can use. For example, when � = 2, the probability both the

user’s items are hashed into the same value by the chosen hash

function is δ = 1
g , where g = �eε′+1� is the range of the hash

function. Under the condition the user’s items are hashed to

at least two results, OLH can be used with ε′ = ln(2eε − 1).

Theorem 5 ((ε, δ)-LDP by OLH(ε′)). ΨOLH(ε′)(PS�(·)) satis-
fies (ε, δ)-LDP, where ε′ = ln

(
�
�′ · (eε − 1) + 1

)
, and �′ is an

integer such that

(
�

�′ + 1

)
· 1

� �
�′ · (eε − 1) + 2��′ ≤ δ.

That is, for any ε ≥ 0, any input v1, v2 ⊆ I , and any set of
possible output T ⊆Range(ΨPSFO(�,GRR,ε′)),

Pr
[
ΨOLH(ε′)(PS(v1, �)) ∈ T

]
≤ eε·Pr [ΨOLH(ε′)(PS(v2, �)) ∈ T

]
+ δ. (11)

Proof. To prove (11), it is equivalent to first prove that a

“failure” event, where more than �′ items in v1 are hashed

to the same value, happens with probability less than δ, and

then prove that under the condition the “failure” event does

not happen, ΨOLH(ε′)(PS�(·)) satisfies ε-LDP.

Given that the hash function is chosen randomly, and the

hash family is random, bounding the “failure” probability is

equivalent to bounding the probability of throwing � balls

randomly into g bins, and the max load is more than �′. The

probability can be calculated as follows:

Let Ei,a be the event that bin i contains more than a balls,

then

Pr [Ei,a] =

(
�

a+ 1

)
1

ga+1

By union bound, we know that

δ = Pr

⎡
⎣ ⋃
i∈[g]

Ei,�′

⎤
⎦ ≤∑

i

Pr [Ei,�′ ] =

(
�

�′ + 1

)
1

g�′

where g = �eε′ + 1� = � �
�′ · (eε − 1) + 2�.

Now it suffices to prove that for any ε ≥ 0, any v1, v2 ⊆I ,

any possible hash function H (such that at most �′ items are

hashed into the same value), and any t ∈ [g], p1

p2
≤ eε, where

p1 = Pr
[
ΨOLH(ε′)(PS�(v1)) = 〈H, t〉] , and

p2 = Pr
[
ΨOLH(ε′)(PS�(v2)) = 〈H, t〉] .
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Fig. 5. Privacy amplification effect for different �.

We first upper bound p1,

p1 =Pr [H is picked] · Pr [ΨGRR(ε)(H(PS�(v1))) = t|H]
=Pr [H is picked] ·

(
Pr [v is sampled ∧H(v) = t] p′

+Pr [v is sampled ∧H(v) 	= t] q′
)

≤Pr [H is picked] ·
(

�′

max{|v1|, �} · p
′

+
max{|v1|, �} − �′

max{|v1|, �} · q′
)

The equality holds when H(v) = t for all v1. Similarly, we

lower bound p2,

p2 =Pr [H is picked] · Pr [ΨGRR(ε)(H(PS�(v2))) = t|H]
=Pr [H is picked] ·

(
Pr [v is sampled ∧H(v) = t] p′

+Pr [v is sampled ∧H(v) 	= t] q′
)

≥Pr [H is picked] ·
(

0

max{|v1|, �} · p
′

+
max{|v1|, �}
max{|v1|, �} · q

′
)

= Pr [H is picked] · q′

The equality holds when none of the items from v2 are

hashed to t by H . Thus, we now bound p1

p2
:

p1
p2
≤ p′

q′
· �′

max{|v1|, �} +
max{|v1|, �} − �′

max{|v1|, �}
= 1 +

�′

max{|v1|, �} ·
(
p′

q′
− 1

)

≤ 1 +
�′

�
·
(
eε

′ − 1
)

= 1 +
�′

�
·
(
�

�′
· (eε − 1) + 1− 1

)
= eε.

The equality is achieved when H(v) = t for all v1 while

H(v) 	= t for all v2.

ε
�

2 5 10 20 50 100

0.1 0.10 0.10 0.11 0.13 0.15 0.15
0.5 0.50 0.50 0.54 0.62 0.68 0.80
1.0 1.00 1.00 1.24 1.35 1.59 1.73
2.0 2.00 2.20 2.62 3.10 3.71 4.28
4.0 4.00 4.50 5.19 5.88 6.80 7.20
0.1 0.10 0.10 0.10 0.10 0.12 0.14
0.5 0.50 0.50 0.50 0.52 0.59 0.65
1.0 1.00 1.00 1.00 1.07 1.30 1.51
2.0 2.00 2.00 2.00 2.38 2.93 3.49
4.0 4.00 4.00 4.50 5.04 5.82 6.51

TABLE III
NUMERICAL VALUE OF ε′ UNDER DIFFERENT ε AND �. THE UPPER PART IS

FOR δ = 10−3 , AND THE LOWER PART IS FOR δ = 10−9 .

The theorem above gives us the formula to calculate δ and

ε′ for any �′. Therefore, if δ is specified, we are able to come

up with the highest ε′. Table III and Figure 5 give results of

ε′ given ε and �, under the condition δ equals 10−3 and 10−9,

respectively. We can see ε′ ≥ ε, the difference becomes more

significant when ε or � is large. However, the increased amount

is less than that for GRR, as shown in Table II and Figure 1.

Note that however, the (ε, δ)-LDP notion is strictly weaker

(less secure) than ε-LDP and thus not directly comparable

here.

B. Additional Results

Item Mining. We report experimental results of item mining

for the datasets of Kosarak, Online and Synthesize in Figures 6

and 7. We can see similar trends as that of Figure 3. Note that

performance on different dataset is slightly different, because

of different size, distribution, etc. Specifically, NCR and Var
are worse in the Kosarak dataset, than that on the others,

because the original domain is big (42 thousand, while the

others are 1 to 3 thousand). Overall, the proposed method

SVIM works persistently better than its competitors.

Itemset Mining. We also plot results for itemset mining in

Figure 8. Results for the synthetic dataset is not included be-

cause there is no frequent itemset (the items from the generator

are independent). For the others, we can still see similar trends

and that our proposed solution works persistently better.
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Fig. 6. More results on singleton identification.
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Fig. 7. More results on singleton estimation.
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(c) Online NCR, vary ε, k = 64
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(d) Online NCR vary k, ε = 2
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(e) Kosarak Var, vary ε, k = 64
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(f) Kosarak Var, vary k, ε = 2
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(g) Online Var, vary ε, k = 64
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(h) Online Var, vary k, ε = 2

Fig. 8. More results on itemset mining results for Kosarak dataset.
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