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Abstract—Machine learning is increasingly used in security-
critical applications, such as autonomous driving, face recogni-
tion, and malware detection. Most learning methods, however,
have not been designed with security in mind and thus are
vulnerable to different types of attacks. This problem has
motivated the research field of adversarial machine learning
that is concerned with attacking and defending learning meth-
ods. Concurrently, a separate line of research has tackled a
very similar problem: In digital watermarking, a pattern is
embedded in a signal in the presence of an adversary. As
a consequence, this research field has also extensively studied
techniques for attacking and defending watermarking methods.

The two research communities have worked in parallel so
far, unnoticeably developing similar attack and defense strate-
gies. This paper is a first effort to bring these communities
together. To this end, we present a unified notation of black-
box attacks against machine learning and watermarking. To
demonstrate its efficacy, we apply concepts from watermarking
to machine learning and vice versa. We show that countermea-
sures from watermarking can mitigate recent model-extraction
attacks and, similarly, that techniques for hardening machine
learning can fend off oracle attacks against watermarks. We
further demonstrate a novel threat for watermarking schemes
based on recent deep learning attacks from adversarial learn-
ing. Our work provides a conceptual link between two research
fields and thereby opens novel directions for improving the
security of both, machine learning and digital watermarking.

1. Introduction

In the last years, machine learning has become the tool
of choice in many areas of engineering. Learning methods
are not only applied in classic settings, such as speech and
handwriting recognition, but increasingly operate at the core
of security-critical applications. For example, self-driving
cars make use of deep learning for recognizing objects and
street signs [e.g., 34, 70]. Similarly, systems for surveillance
and access control often build on machine learning methods
for identifying faces and persons [e.g. 50, 56]. Finally, several
detection systems for malicious software integrate learning
methods for analyzing data more effectively [e.g., 33, 35].
Machine learning, however, has originally not been

designed with security in mind. Many learning methods
suffer from vulnerabilities that enable an adversary to thwart

their successful application—either during the training or
prediction phase. This problem has motivated the research
field of adversarial machine learning which is concerned
with the theory and practice of learning in an adversarial envi-
ronment [31, 45, 62]. This led to several attacks and defenses,
e.g. for poisoning support vector machines [8, 9], crafting
adversarial examples against neural networks [10, 43, 44] or
stealing models from online services [59].

Concurrently to adversarial machine learning, a different
line of research has faced very similar problems: In digital
watermarking a pattern is embedded in a signal, such as an
image, in the presence of an adversary [17]. This adversary
seeks to extract or remove the information from the signal,
thereby reversing the watermarking process and obtaining
an unmarked copy of the signal, for example, for illegally
distributing copyrighted content. As a consequence, methods
for digital watermarking naturally operate in an adversarial
environment and several types of attacks and defenses have
been proposed for watermarking methods, such as sensitivity
and oracle attacks [e.g., 1, 14, 16, 25].

Unfortunately, the two research communities have worked
in parallel so far and unnoticeably developed similar attack
and defense strategies. To illustrate this similarity, let us
consider the simplified attacks shown in Figure 1: The middle
plot corresponds to an evasion attack against a learning
method, similar to the attacks proposed by Papernot et
al. [43, 44]. A few pixels of the target image have been
carefully manipulated, such that the digit 5 is misclassified
as 8. By contrast, the right plot shows an oracle attack against
a watermarking method, similar to the attacks developed
by Westfeld [67] and Cox & Linnartz [16]. Again, a few
pixels have been changed; this time, however, to mislead the
watermark detection in the target image.

Target image with
watermark.

Evasion attack
(Misclassified

as 8).

Oracle attack
(Broken

watermark).

Figure 1. Examples of attacks against machine learning and digital water-
marking. Middle: the target is modified, such that it is misclassified as 8.
Right: the target is modified, such that the watermark is destroyed.
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While both attacks address different goals, the underlying
attack strategy is surprisingly similar. In fact, both attacks
aim at minimally modifying the target, such that a decision
boundary is crossed. In the case of machine learning, this
boundary separates different classes, such as the digits. In
the case of digital watermarking, the boundary discriminates
watermarked from unmarked signals. Although the previous
example illustrates only a single attack type, it becomes
apparent that there is a conceptual similarity between learning
and watermarking attacks.
In this paper, we strive for bringing these two research

fields together and systematically study the similarities of
black-box attacks against learning and watermarking methods.
To this end, we introduce a unified notation for these attacks,
which enables us to reason about their inner workings and
abstract from the concrete attack setting. This unified view
allows for transferring concepts from machine learning to
digital watermarking and vice versa. As a result, we are able
to apply defenses originally developed for watermarks to
learning methods as well as transferring machine learning
defenses to digital watermarking.
We empirically demonstrate the efficacy of this unified

view in three case studies. First, we use deep learning
concepts from adversarial learning [55] to attack the advanced
watermarking scheme Broken Arrows [25]. Second, we
show that techniques for hardening machine learning with
classifier diversity [5] can be successfully applied to block
oracle attacks against watermarks. Third, we show that
stateful defenses from digital watermarking can effectively
mitigate model-extraction attacks against decision trees [59].
In addition, we provide further examples of attacks and
defenses, transferable between the research fields. By doing
so, we establish several links between the two research fields
and identify novel directions for improving the security of
both, machine learning and digital watermarking.
In summary, we make the following contributions:

• Machine learning meets digital watermarking. We
present a novel formal view on black-box attacks
against learning and watermarking methods that
exposes previously unknown similarities between
both research fields.

• Transfer of attacks and defenses. Our unified view
enables transferring concepts from machine learning
to digital watermarking and vice versa, giving rise
to novel attacks and defenses.

• Three case studies. Based on our unified view, we
demonstrate a novel attack against watermarking
schemes. Furthermore, we present two novel defenses
derived from our unified view to hinder model-
extraction attacks and oracle attacks.

The rest of this paper is organized as follows: In Section 2
we review the background of adversarial machine learning
and digital watermarking. We introduce our unified view on
black-box attacks in both research fields in Section 3 and
present case studies in Section 4. We discuss the implications
of our work in Section 5 and conclude in Section 6.

2. Background

Whenever machine learning or digital watermarking are
applied in security-critical applications, one needs to account
for the presence of an attacker. This adversary may try
to attack the learning/watermarking process and thereby
impact the confidentiality, integrity, and availability of the
application. This section provides a basic introduction to
the motivation and threat scenarios in machine learning and
digital watermarking, before Section 3 systematizes them
under a common notation. A reader familiar with one of the
two fields may directly proceed to Section 3.

2.1. Adversarial Machine Learning

Machine learning has become an integral part of many
applications in computer science and engineering, ranging
from handwriting recognition to autonomous driving. The
success of machine learning methods is rooted in its capabil-
ity to automatically infer patterns and relations from large
amounts of data [see 22, 30]. However, this inference is
usually not robust against attacks and thus may be disrupted
or deceived by an adversary. These attacks can be roughly
categorized into three classes: poisoning attacks, evasion
attacks and model extraction. The latter two attacks are the
focus of our work, as they have concrete counterparts in the
area of digital watermarking.

Evasion attacks. In this attack setting, the adversary
attempts to thwart the prediction of a trained classifier and
evade detection. To this end, the attacker carefully manipu-
lates characteristics of the data provided to the classifier to
change the predicted class. As a result, the attack impacts the
integrity of the prediction. For example, in the case of spam
filtering, the adversary may omit words from spam emails
indicative for unsolicited content [37]. A common variant of
this attack type are mimicry attacks, in which the adversary
mimics characteristics of a particular class to hinder a correct
prediction [23, 53]. Evasion and mimicry attacks have been
successfully applied against different learning-based systems,
for example in network intrusion detection [24, 53], malware
detection [29, 54, 69] and face recognition [51].
Depending on the adversary’s knowledge about the

classifier, evasion attacks can be conducted in a black-
box or white-box setting. In the black-box setting, no
information about the learning method and its training data
is available and the adversary needs to guide her attack
along the predicted classes of the classifier [38, 43, 63].
With increasing knowledge of the method and data, the
probability of a successful evasion rises [6]. In such a white-
box setting, the adversary may exploit leaked training data
to build a surrogate model and then determine what feature
combinations have the most effect on the prediction.

Model extraction. In this attack setting, the adversary
actively probes a learning method and analyzes the returned
output to reconstruct the underlying learning model [38].
This attack, denoted as model extraction or model stealing,
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impacts the confidentiality of the learning model. It may
allow the adversary to gain insights on the training data
as well as obtain a suitable surrogate model for preparing
evasion attacks.

Depending on the output, the adversary operates in either
a black-box or gray-box setting. If only the predicted classes
are observable, extracting the learning model is more chal-
lenging, whereas if function values are returned or learning
parameters are available, the adversary can more quickly
approximate the learning model. For example, the recent
attacks proposed by Tramèr et al. [59] enable reconstructing
learning models from different publicly available machine
learning services in both settings. Moreover, model extraction
poses a serious risk to the privacy of users, as an attacker may
derive private information from the reconstructed model [52].

2.2. Digital Watermarking

Digital watermarking allows for verifying the authenticity
of digital media, like images, music or videos. Digital
watermarks are frequently used for copyright protection and
identifying illegally distributed content [66]. Technically, a
watermark is attached to a medium by embedding a pattern
into the signal of the medium, such that the pattern is
imperceptible and inseparable. A particular challenge for
this embedding is the robustness of the watermark, which
should persist under common media processing, such as
compression and denoising. There exist several approaches
for creating robust watermarks and we refer the reader to
the comprehensive overview provided by Cox et al. [17].
As an example, Figure 2 shows a simple watermarking

scheme where a random pattern is added to the pixels of an
image. The induced changes remain (almost) unnoticeable,
yet the presence of the watermark can be detected by corre-
lating the watermarked image with the original watermark.
Appendix A illustrates this simple watermarking scheme in
more detail.

Original Image Watermark Target image with
watermark

Figure 2. Example of a digital watermark. A random noise pattern is added
to the image in the spatial domain. The pattern is not observable but
detectable.

Similar to machine learning, watermarking methods need
to account for the presence of an adversary and withstand
different forms of attacks [16, 25]. While there exist several
attacks based on information leaks and embedding artifacts
that are unique to digital watermarking [e.g., 4, 17], we
identify two attack classes that correspond to black-box
evasion and model-extraction attacks.

Oracle attacks. In this attack scenario, the adversary has
access to a watermark detector that can be used to check

whether a given media sample contains a watermark [16].
Such a detector can be an online platform verifying the au-
thenticity of images as well as a media player that implements
digital rights management. Given this detector, the attacker
can launch an oracle attack in which she iteratively modifies
a watermarked medium until the watermark is undetectable.
The attack thus impacts the integrity of the pattern embedded
in the signal.

While it is trivial to destroy the pattern and the coupled
signal, for example using massive changes to the medium,
carefully removing the watermark while preserving the orig-
inal signal is a notable challenge. As a consequence, a large
variety of different attack strategies has been proposed [e.g.,
14, 16, 18, 32]. A prominent example is the Blind Newton
Sensitivity Attack, where no prior knowledge about the
detector’s decision function is required and which has been
successfully applied against several watermarking schemes
(see Appendix B).

Watermark estimation. In the second attack setting, the
adversary also has access to a watermark detector, yet her
goal is not only to remove the watermark from a target
medium but to estimate its pattern [12, 41]. The attack
thus impacts the confidentiality of the watermark and not
only allows removing the pattern from the signal but also
enables forging the watermark onto arbitrary other data. This
watermark estimation therefore represents a considerable
threat to watermarking methods, as it can undermine security
mechanisms for copyright protection and access control.

3. Unifying Adversarial Learning and
Digital Watermarking

It is evident from the previous section that attacks against
learning and watermarking methods share some similarities—
an observation that has surprisingly been overlooked by the
two research communities [2]. Throughout this section, we
systematically identify the similarities and show that it is
possible to transfer knowledge about attacks and defenses
from one field to the other. An overview of this systematiza-
tion is presented in Figure 3. We guide our systematization
of machine learning and digital watermarking along the
following five concepts:

1) Data Representation. Machine learning and wa-
termarking make use of similar data representa-
tions, which enables putting corresponding learning
and detection methods into the same context (Sec-
tion 3.1)

2) Problem setting. Watermarking can be seen as a spe-
cial case of a binary classification. Consequently, bi-
nary classifiers and watermarking techniques tackle
a similar problem (Section 3.2).

3) Attacks. Due to the similar representation and prob-
lem setting, attacks overlap between both fields, as
we discuss for evasion attacks (Section 3.3) and
model extraction (Section 3.4).
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Figure 3. A unified view on machine learning and digital watermarking. Top: A machine learning setup including a feature space, a learning classifier and
corresponding attacks. Bottom: A watermarking setup including the media space, the watermark detector and corresponding attacks. The red dashed line
illustrates model extraction/watermark estimation, while the red arrow shows an evasion attack/oracle attack.

4) Defenses. Defenses developed in one research field
often fit the corresponding attack in the other field
and thus can be transferred due to the similar data
representation and problem setting (Section 3.5).

5) Differences. Both fields naturally exhibit differences
that—together with the similarities—yield a clear
picture of both research fields (Section 3.6).

In the following, we discuss each of these concepts in
more detail, where we first formalize the concept for machine
learning and then proceed to digital watermarking.

3.1. Feature Space vs. Media Space

Machine learning. Learning methods typically operate on
a so-called feature space F that captures the characteristics
of the data to be analyzed and learned. These features
usually correspond to vectors x ∈ R

N and in the case of
classification are assigned to a class label y that needs to be
learned and predicted, such as C+ and C− in Figure 3(a).
Note that feature spaces in machine learning can also be
constructed implicitly, for example using non-linear maps
and kernel functions [22, 49]. Yet, a representation is often
possible through vectors.

Digital watermarking. Similar to machine learning, wa-
termarking methods operate on a signal available in some
underlying media spaceM, such as the pixels of an image or
the audio samples of a recording. Without loss of generality,
this signal can be described as a vector x ∈ R

N and thus the
media space corresponds to the feature space used in machine
learning: F ∼=M. Note that advanced watermarking schemes
often map the signal to other spaces, such as frequency or

random subspace domains [17, 25]. Still, the mapped signals
can be described as points in a vector space.

3.2. Classifier vs. Watermark Detector

Machine learning. After embedding the training data into a
feature space, the actual learning process is performed using a
learning method, such as a support vector machine or a neural
network. In the case of classification, this learning method
tries to infer functional dependencies from the training data to
separate data points of different classes. These dependencies
are described in a learning model θ that parameterizes
a decision function f(x). Given a vector x, the function
f(x) predicts a class label based on an underlying decision
boundary in the vector space:

f : F �−→ {−1, 1} . (1)

We focus on binary classification for the sake of simplicity,
but the discussed concepts are also applicable to multi-class
classifiers.

Digital watermarking. The media space in watermarking is
divided into two separate subspaces as depicted in Figure 3(d)
where the marked and unmarked versions of the signal
represent the two classes. Note that a robust watermark
should ideally survive image processing steps, such as
compression and denoising. Therefore, the watermark class
implicitly contains variations as well, just as machine learning
captures the variations of samples from a class through its
generalization.

If we denote an unmarked signal as x and a watermarked
signal as x̃, the relation between x and x̃ is given by a
parameter w that defines the pattern of the watermark. As a
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consequence, a watermark detector also employs a function
g(x) to determine which subspace a signal is in and thus
whether it contains the watermark:

g : M �−→ {−1, 1} . (2)

Similar to machine learning, the function g may induce
a linear or non-linear decision boundary, such as a
polynomial [26] or fractalized surface [40].

Although the functions f and g share similarities, the
creation process of the underlying decision boundary funda-
mentally differs. In machine learning, the boundary needs
to separate the training data as good as possible which
restricts the boundary’s shape to existing data. In contrast,
the boundary in watermarking schemes can be created
under more degree’s of freedom as long as the underlying
watermark is reliably detectable. After that the boundary is
created, an attacker, however, faces the same situation in both
fields. As Figures 3(c)–(d) highlight, a decision boundary
divides the vector space into two—not necessarily the same—
subspaces:

F =
{
x ∈ R

N |f(x) = y−
} ∪ {

x ∈ R
N |f(x) = y+

}
(3)

M =
{
x ∈ R

N |g(x) = y−
} ∪ {

x ∈ R
N |g(x) = y+

}
(4)

Consequently, black-box attacks that work through input-
output observations are transferable between machine learn-
ing and digital watermarking. In the following sections,
we discuss this similarity and provide a mapping between
machine learning and watermarking attacks, which lays the
ground for transferring defenses from one field to the other.

3.3. Evasion Attack vs. Oracle Attack

As the first attack mapping, we consider the pair of
evasion and oracle attacks in a black-box setting. In this
attack scenario, an adversary targets the integrity of the
classifier’s/detector’s response by inducing a misclassification
from an iteratively collected set of input-output pairs.

Machine learning. In an evasion attack, the adversary tries
to manipulate a sample with minimal changes, such that it
is misclassified by the decision function f . Formally, the
attack can thus be described as an optimization problem,

arg min
t

d(t) s.t. f(x+ t) = y∗ , (5)

where d(t) reflects the necessary changes t on the original
sample x to achieve the wanted prediction y∗.

Digital Watermarking. In an oracle attack, an adversary
tries to disturb or even remove the watermark embedded in
a medium. The attack setting is closely related to evasion.
Formally, the underlying optimization problem is given by

arg min
t

d(t) s.t. g(x̃+ t) = y− , (6)

where d(t) reflects the changes t on the watermarked signal
x̃ and y− corresponds to no detection.

Machine learning ↔ Digital Watermarking. The opti-
mization problems in Eq. (5) and Eq. (6) are equivalent. In
geometrical terms, this allows similar attack strategies in both
fields whenever the adversary aims at crossing the decision
boundary in the vector space towards the wanted class based
on binary outputs only (see Figure 3(e)–(f)). Note that the
black-box strategy generally does not depend on whether
two or more classes are used. The attacker’s objective is to
cross one boundary towards a selected target class—which
can be one of many.
We group the attack strategies into direct attacks and

transferability-based attacks. In the first category, the attacker
directly uses the binary classifier output to construct an
evasive sample. The watermarking literature has extensively
developed strategies to find samples in this way [e.g.,
14, 16, 18, 32]. For example, the Blind Newton Sensitivity
Attack [14] computes the decision boundary’s first and
second derivative by observing how the detector’s output
varies for minimal changes at a decision boundary location.
This attack is straight applicable against learning classifiers
when we replace the binary output g with f . Appendix B
recaps the attack in more detail. Thus, researchers should
reuse these existing watermark oracle attacks when attacking
a classifier directly. In the context of adversarial learning,
Dang et al. [20] introduced a novel strategy that allows the
application of genetic programming to find evasive samples
even if binary outputs are given only. This refinement is
straight applicable to the watermarking field by replacing
f with g and may foster novel attacks based on genetic
programming.
The second type of attack strategy is based on the

transferability property: an evasive sample that misleads a
substitute model—calculated by the adversary—will probably
mislead the original model as well [42, 43]. Due to the same
attack objective and the same geometrical structure, such
a strategy is also possible against watermarking schemes:
An adversary learns a substitute model to approximate the
watermark’s decision function and performs a subsequent
evasion attack on that model instead of the watermark
detector. In this way, the adversary can exploit the full access
to the model to apply white-box attacks. We demonstrate the
efficacy of this novel attack against watermarking schemes
in a practical case study in Section 4.

3.4. Model Extraction vs. Watermark Estimation

As the second attack mapping, we consider the pair of
model extraction and watermark estimation. In the black-box
scenario, the adversary aims at compromising the confiden-
tiality of a learning model or digital watermark by sending
specifically crafted objects to a given classifier/detector
and observing the respective binary output over multiple
iterations.

Machine learning. Model-extraction attacks center on an
effective strategy for querying a classifier, such that the
underlying model can be reconstructed with few queries. In
contrast to evasion, the extraction of the learning model θ
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enables the adversary to apply this model to arbitrary data.
For instance, Tramèr et al. [59] have recently demonstrated
this threat by stealing models from cloud platforms providing
machine learning as a service. Geometrically, the adversary’s
goal can be described as finding a function f̂ such that its
decision boundary is as close as possible to the original one
of f . Formally, we adapt the closely matching measure from
Tramèr et al. [59] and describe the attack as

1

|U|
∑
x∈U

d
(
f(x), f̂(x)

)
−→ 0 (7)

where d represents the 0-1 distance and U represents, for
instance, a uniformly chosen set from F .
Digital watermarking. Watermark estimation represents the
counterpart to model extraction. In this attack scenario, the
adversary seeks to reconstruct the watermark from a marked
signal x̃. If successful, the adversary is not only capable of
perfectly removing the watermark from the signal x̃, but also
of embedding it in other signals, thereby effectively creating
forgeries. We describe this attack again by reconstructing
the decision boundary in the media space:

1

|X |
∑
x∈X

d (g(x), ĝ(x)) −→ 0 (8)

where d represents the 0-1 distance and X can represent a
uniformly chosen set fromM.

Machine learning ↔ Digital Watermarking. While learn-
ing models and watermarks are conceptually very different,
Eq. (7) and Eq. (8) emphasize that the extraction of an
underlying decision boundary in a vector space represents a
common adversarial goal in both research fields.

A commonly used attack strategy in both fields consists
in localizing the decision boundary through a line search and
then combining various gathered points to reconstruct the
model or watermark precisely [12, 38, 41]. The extraction
of non-linear classifiers such as decision trees also exploits
localized boundary points for reconstruction [59]. We discuss
the latter attack in more detail in Section 4 when presenting
a novel defense against it, inspired by concepts from digital
watermarking.

The second group of attacks builds on an approximation
of the decision boundary and has been primarily investigated
in adversarial machine learning. An attacker collects a
number of input-output pairs with queries either scattered
over the feature space or created adaptively [42, 43, 59].
These observations allow the adversary to learn a substitute
model. As previously described, this approach can be part
of an evasion attack. Our unified view underlines that an
adversary can also substitute a watermarking scheme by
a learning model that approximates the decision boundary
of g. In this way, the attacker is able to remove or add
digital watermarks by using white-box attack strategies from
adversarial learning. Our case study in Section 4 examines
this novel threat in more detail.

TABLE 1. TRANSFER OF DEFENSE TECHNIQUES INTRODUCED BY
ADVERSARIAL LEARNING AND DIGITAL WATERMARKING.

Defense Technique Adv. Learning Watermark.

R
an
d
o
m
. Multiple Classifier/Detector [7, 46, 63] [11, 60]

Rand. Boundary Region � [25, 36]

Union of Watermarks � [25]

C
o
m
p
le
x
.

Non-Linearity [5, 48] � � [40]

Classifier Diversity [5] � (CS2)

Snake Traps � [25]

S
ta
te
fu
l. Closeness-To-The-Boundary (CS3) � [1, 57]

Line Search Detection � [1, 58]

Locality-Sensitive Hashing � [61]

� = Possible transfer from watermarking to machine learning;� = Possible transfer from machine learning to watermarking;
CS2, CS3 = Defense transfer demonstrated as case study in Section 4;

3.5. Defenses

The communities of both research fields have extensively
worked on developing defenses to fend off the attacks
presented in the previous sections. However, it is usually
much easier to create an attack that compromises a security
goal, than devising a defense that effectively stops a class
of attacks. As a result, several of the developed defenses
only protect from very specific attacks and it is still an open
question how learning methods and watermark detectors can
generally be protected from the influence of an adversary.
As the previous sections highlight, an attacker geometrically
works at the decision boundary in both fields, so that various
defense strategies are not restricted to one particular research
field. In this section, we formally describe these similarities
and outline the implications as means of novel research
directions (see Table 1). We also include defenses from
adversarial learning that were initially presented against
informed adversaries, but also work when an adversary acts
in a black-box setting.

Randomization. A simple yet effective strategy to impede
attacks against classifiers and watermark detectors builds
on the introduction of randomness. While this defense
cannot rule out successful attacks, the induced indeterminism
obstructs simple attack strategies and requires more thorough
concepts for evasion or model extraction.

The application of multiple learning classifiers or water-
mark detectors represents a common implementation of this
defense strategy. In machine learning, each classifier can be
built from a random subset of the feature set [7, 46, 63]. The
binary prediction is then retrieved from the numerical output
of all classifiers Fi through some aggregation function E:

f(x) = E (F1(x), F2(x), . . . , Fk(x)) . (9)

A corresponding strategy has been examined against oracle
attacks. The binary prediction is obtained from the numerical
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output of several detectors Gi where each is built from a
random subset of pixels. The final detector output is then
obtained from some aggregation function T , for instance the
median, which yields [11, 60]:

g(x) = T (G1(x), G2(x), . . . , Gk(x)) . (10)

A comparison of Eq. (9) and (10) reveals that both fields
employ a similar defense strategy with the same intention:
An adversary has to attack different classifiers/detectors at the
same time and cannot be sure whether a specific feature/pixel
influences the returned output.
However, the watermarking literature has already dis-

cussed weaknesses of this defense by creating a so-called
p-boundary that acts as a surrogate boundary [13]. As a
result, this attack also needs to be considered in the machine
learning context if randomization defenses are used against
black-box attacks.

The watermarking literature also provides further random-
ization defenses. For example, a detector may return arbitrary
outputs within a randomized region around the decision
boundary [25, 36]. However, this approach is also vulnerable
to a surrogate boundary [13] and thus should be used in
machine learning with great care. Moreover, the Broken
Arrows watermarking scheme creates several watermarks
that form a union of watermarks. During detection, only the
watermark with the smallest distance to the current signal is
applied [25]. This mitigates the risk that an adversary could
compare multiple images with the same watermark. This
defense has not been applied to learning methods yet. It
would correspond to an ensemble of classifiers where the
aggregation function E just chooses one classifier depending
on the input sample.

In general, we conclude that existing and novel random-
ization strategies based on Eq. (9) and (10) are transferable
between machine learning and watermarking. Moreover, such
a unified view also allows the identification of weaknesses
that researchers have already examined in the other field, for
example the p-boundary against randomized regions.

Complexity. Another defense strategy consists in increasing
the complexity of F orM such that an attacker has to invest
more resources to exploit the decision boundary. However,
this is not trivial, as a fine-grained boundary, for example,
may enable new attacks [e.g. 44]. Both fields have focused
on different strategies which provides an opportunity for
transferring knowledge.
First, recent work on adversarial machine learning pro-

poses to enclose the learned data tightly. In the case of
malware detection, this implies that an evasion attack needs
to contain plausible features of the benign class without
losing the malicious functionality. Russu et al. implement
this defense strategy using non-linear kernel functions [48],
while Biggio et al. realize a tighter and more complex
boundary through the combination of two-class and one-class
models [5]. Although invented against informed attackers
with a surrogate model, these countermeasures also tackle
black-box attacks that need to probe the feature space with
queries outside the training data distribution. We demonstrate

in Section 4.2 that this strategy also addresses a watermark
oracle attack, where an adversary may also probe the detector
with artificial inputs [68].

Increasing the decision boundary’s complexity represents
another strategy. A linear boundary, for instance, can be
replaced by a fractalized version along the previous boundary
so that the boundary cannot be estimated with a finite number
of known points [40]. In addition, Furon and Bas have
introduced small indents called snake traps at the decision
boundary in order to stop attacks based on random walks
along the detection region [18, 25]. These defenses are
applicable in machine learning as well, as they replace an
existing boundary by a more complex version that lies along
the previous boundary. In this way, the learned separation
of the classifier is not changed and black-box attacks are
obstructed.

Stateful analysis. If the learning method or watermark
detector is outside of the attacker’s control, an active defense
strategy becomes possible, in which the defender seeks to
identify sequences of malicious queries. For instance, a cloud
service providing machine learning as a service may monitor
incoming queries for patterns indicative of evasion and model-
extraction attacks.

While this concept has not yet been examined in adver-
sarial machine learning, stateful analysis of queries has been
successfully applied in digital watermarking for detecting
oracle and watermark-estimation attacks [1, 57, 58, 61].
These defenses exploit the fact that an adversary will typically
follow a specific strategy to locate the decision boundary
due to the inherent binary output restriction. For example,
an adversary may use a line search to localize the boundary
or perform several queries close to the boundary in order to
exactly locate its position. Formally, we obtain a new detector
that is based on a meta-detector m that works alongside the
usual decision function g(xt):

gm(xt) = Ψ (g(xt) , m(xt, xt−1, . . . , xt−l)) . (11)

The meta-detector does not influence g(xt) and analyzes the
sequence of the current and prior inputs xt, xt−1, . . . , xt−l

in parallel to infer whether the system is subject to an attack.
Then, the function Ψ either forwards the true decision value
g(xt) or initiates another defense if m detects an attack. For
instance, it may return misleading outputs or block further
access.

Due to the similar problem setting, adversaries follow
the same attack strategy in machine learning. Thus, the
proposed defense strategies from digital watermarking are
directly applicable to machine learning. The meta-detector
m can be reused and just the detection function g needs to
be replaced by f . We show in a case study in Section 4 that
model-extraction attacks can be mitigated with the closeness-
to-the-boundary concept. We note that stateful defenses have
already been applied to watermarking schemes (see Table 1),
providing the opportunity for constructing novel defenses
for learning methods.
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3.6. Differences

For successfully transferring concepts between machine
learning and watermarking, however, researchers also need
to account for the difference of both areas. First, as described
in Section 3.2, the decision boundary in machine learning
needs to be adjusted to existing training data in contrast
to digital watermarking. Thus, defenses from watermarking
that introduce a completely new decision boundary [e.g.
26, 27] are not necessarily applicable to machine learning.
Second, the white-box setting from machine learning where
an attacker knows internals such as the model or fractions
of the training data is not directly transferable to digital
watermarking. If the original image or the watermark are
known, an adversary has already succeeded. Third, specific
attacks are unique to the respective field. Reconstructing the
watermark as a noise signal from a set of images, for example
by averaging images, is unique to digital watermarking [e.g.
17]. The poisoning scenario known from adversarial machine
learning where the attacker manipulates a fraction of the
training data [19] is in turn not transferable to digital
watermarking.

In summary, machine learning and digital watermarking
have different goals and the learning process with real-world
data differs to the artificial watermark embedding process.
Nevertheless, both operate in a corresponding vector space
and, although the decision boundary can be different, the
black-box scenario leads to a common attack surface: An
adversary tries to change the vector subspace or to estimate
the boundary just from binary outputs. Therefore, similar
attack strategies and defenses are usable.

4. Transfer of Attacks and Defenses

Equipped with a unified notation for black-box attacks,
we are ready to study the transfer of concepts from one
research field to the other in practical scenarios. In our first
case study, we apply concepts from adversarial learning to
attack a state-of-the-art watermarking scheme. As the second
case study, we apply a concept for securing machine learning
to a watermark detector and demonstrate that the resulting
defense mitigates an oracle attack. In the third case study, we
apply the concept of closeness-to-the-boundary to machine
learning and show that it blocks recent model-extraction
attacks.

4.1. Case Study 1: ML → DW

In our first case study, we apply concepts from the area
of adversarial learning against the watermarking scheme
Broken Arrows. In particular, we construct a substitute
learning model to approximate the watermark detector and
subsequently perform an evasion attack on this model to
obtain an unwatermarked version of an input image. In this
way, we demonstrate that strategies—originally examined to
evade image or malware classifiers—also threaten watermark
detectors.

{0, 1}

High
Frequency
Coefficients

Watermarked
images

Unwatermarked
images

Input
Layer

Hidden Layers

Output
Layer

Figure 4. Transfer from machine learning to watermarking: A Deep Neural
Network acts as a substitute model for a watermark detector.

We choose Broken Arrows from the second “Break
Our Watermarking System” (BOWS) competition [25], as it
represents a publicly available state-of-the-art watermarking
scheme. In a nutshell, Broken Arrows first computes the high-
frequency coefficients of an input image that are mapped to
a secret 256-dimensional subspace. 30 watermark patterns
are created in this subspace and the closest one to the input
is further used. The selected watermark pattern is finally
mapped back to the frequency space where it is added to the
high-frequency coefficients of the original image, yielding
the watermarked image.

We do not require the attacker to have detailed knowledge
of the underlying watermarking scheme, except that the
watermark is present in the high-frequency coefficients. Note
that this assumption is not unusual in the watermarking
context [68]. The attacker will consequently work with these
coefficients, as an analysis is not distracted by the unused
parts of an image. As the secret mapping induces a non-
linear decision boundary in the frequency space, we choose
a Deep Neural Network (DNN) for approximation, backed
by the capability of DNN’s to approximate various learning
algorithms [42, 43].

The attacker’s strategy is as follows: she first collects a
number of images with the same watermarking key and their
unwatermarked counterpart, for instance, by exploiting her
oracle access to the watermark detector. The high-frequency
coefficients of each image are used as training set so that
the DNN finally learns to differentiate between watermarked
and unwatermarked images. Figure 4 depicts this process
schematically.
The resulting learning model acts as a substitute for

the watermark detector. It allows the attacker to perform
a local evasion attack based on function values instead of
binary outputs. Similar to Szegedy et al. [55], we solve the
following problem:

minimize c‖z̃ + t‖2 + F̂ (z̃ + t) , (12)

where z̃ represents the frequency coefficients of the marked
image x̃, t the changes and F̂ (z̃) the network’s real-valued
output. We perform a gradient descent until the DNN predicts
the watermark’s absence with high confidence. Various values
for c are tested to find a suitable balance between both
optimization terms. Finally, the attacker can exploit the oracle
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Figure 5. Attack Performance for our attack based on the substitute model
(DNN) and the baseline.

access to the binary watermark detector to verify whether the
resulting adversarial image leads to the wanted prediction
and continue with the gradient descent on the substitute
model if necessary.

Experimental Setup. As dataset for our evaluation, we
consider the publicly available Raise Image Database [21]
for our training and validation set and the Dresden Image
Database [28] for our test set. All images are converted to
grayscale, cropped to a common size of 96×96 with varying
offsets, and marked with the same watermarking key. In total,
our training set consists of 40,000 images, the validation set
of 24,000 images and the test set of 30,000 images. Each
set has the same number of marked and unmarked images.

A DNN is learned on the training set while the validation
set is used to mitigate overfitting. We select 250 watermarked
images from the test set where the attack solves Eq. (12)
to find an unwatermarked version. We report results for our
best combination of parameters. In particular, we report the
number of successful watermark removals and the average
Peak Signal to Noise Ratio (PSNR) between the original
unwatermarked image and its adversarial counterpart as a
visual quality metric. As a naive baseline, we perform an
attack where random noise is added to the frequency coeffi-
cients of the same magnitude as the previously calculated
gradient from Equation (12). We stop the baseline attack if
the PSNR gets smaller than the DNN-based solution.

Attack Evaluation. Figure 5 presents the results of our
attack. The adversary is able to make the watermark un-
detectable in 100% of the images, thereby demonstrating
the efficacy of our attack. At the same time, the average
PSNR is 39.38 dB with a standard deviation of 5.92 dB.
These PSNR values are comparable to reported results during
the 2nd BOWS contest [65]. Figure 6 additionally gives
intuition about the resulting image quality. Furthermore, the
baseline shows that random noise addition cannot destroy the
watermark in the same order as our proposed attack does.

In our experiments, the best DNN architecture consists
of 120, 30 and 5 neurons in the consecutive hidden layers.
The attack can easily get stuck into local minima, so that the
watermark is not removed or with a lower image quality than
actually possible. A careful adjustment of various overfitting

Original image Watermarked image Evasive sample

Figure 6. The right plot shows the output of the attack where the watermark
is not detected anymore. The PSNR between the original and the evasive
sample is 33.88 dB.

mechanisms and heuristics such as slightly varying starting
positions reduce the likelihood of a local minimum.
Note that a manual attack against the watermarking

scheme such as conducted by Westfeld or Bas [4] yields
higher PSNR values. However, our attack is not limited
to a specific watermarking scheme, as it automatically
infers the underlying watermarking process. Overall, our
attack demonstrates that an adversary with no background
information and an oracle access is able to apply concepts
from adversarial learning to attack a watermark detector
successfully.

4.2. Case Study 2: ML → DW

In our second case study, we transfer a defense against
evasion attacks from the area of machine learning. This
defense increases the complexity of the decision boundary
by combining a two-class and one-class classifier—a concept
denoted as 1½-classifier [5]. Instead of just discriminating
objects into two classes, the defense additionally learns a
one-class model for the underlying data distribution. The
combined classifier discriminates two classes but also require
all inputs to lie within the learned region of normality. As a
result, evasion attacks become more difficult, as the adversary
needs to stay within normal regions when locating and
moving towards the decision boundary.
This simple yet effective idea has not been applied in

the context of digital watermarking so far. While existing
watermarking schemes provide an accurate detection of
marked content, they ignore how signals are distributed
in the media space and hence an adversary can explore
the full space for exploring properties of the watermark.
Broadly speaking, ”the image does not have to look nice“ in
an attack [68] and thus attack points resemble distorted or
implausible media. For example, many oracle attacks move
along random directions or set pixels to constant values when
locating the decision boundary [14] (see Figure 8).

We exploit this characteristic and introduce a 1½-detector
that identifies watermarks but additionally spots implausible
signals, that is, inputs too far away from reasonable variations
of the original signal. Our detector rests on the concept of
Biggio et al. [5] and only provides a correct decision if the
input lies within the learned region of normality. If signals
outside the region are provided, the detector returns a random
decision, thereby foiling attack strategies that move along
random directions or use constant values. Figure 7 depicts
this defense and the resulting combination of boundaries.
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Figure 7. Transfer from machine learning to watermarking: A 1½-detector
combining a one-class and two-class detection method.

To generate a suitable model of normality, the one-class
model in the detector is trained with samples of common
variations of the target signal. If the media space corresponds
to images, different changes of brightness, scaling, contrast,
compression and denoising can be applied to the target
image x̃. Similarly, other plausible variations of the signal can
be added into the one-class model. Figure 8 shows different
variation of a target image that are correctly identified by
the 1½-detector.

Experimental Setup. For our evaluation, we implement a
1½-detector using a linear watermarking scheme (see Ap-
pendix A) and a one-class model based on the neighborhood
of a signal. Given an image x̃, this model computes the
distance d to the k-nearest variation of x̃, that is,

d(x̃) =
1

Dk

∑
z∈Nx̃

‖z − x̃‖ (13)

where Nx̃ are the k-nearest neighbors of x̃. For normalization
purposes, we divide each distance by the maximum distance
in the media space, D. The image is marked as implausible
if the distance to its k-nearest variations reaches a given
threshold δ. For our study, we simply fix k = 3.

As dataset for our evaluation, we consider 50 images from
the Dresden Image Database [28]. All images are converted
to grayscale and cropped to a common size of 128 × 128
pixels and tagged with a digital watermark. To obtain training
data for the one-class model, we create different variations
of the watermarked images by applying common image
processing techniques, such as noise addition, denoising,
JPEG compression and contrast/brightness variation.
To attack the marked images, we implement the Blind

Newton Sensitivity Attack [3, 15], a state-of-the-art oracle
attack that successfully defeats several existing defenses
(see Appendix B). We launch the attack against the selected
50 images using different configurations of the 1½-detector
and average results over the 50 runs, respectively.

Defense Evaluation. The results of this experiment are pre-
sented in Table 2. If no defense is deployed, the implemented
oracle attack is capable of removing the watermark from
all images, thereby demonstrating the efficacy of the Blind
Newton Sensitivity Attack. However, if we enable the one-

JPEG quality 10 Brightness Image on decision
boundary

Gaussian Noise Denoised Image on decision
boundary

Benign inputs
Adversarial
inputs

Figure 8. Distortions of the target image. The left four plots show plausible
image distortions, whereas the right plots depict attack images.

TABLE 2. DETECTION PERFORMANCE OF THE 1½-DETECTOR.

Threshold Success of attacks False-positive rate

No defense 100% —
δ = 0.46 6% 0%
δ = 0.31 6% 0%
δ = 0.23 0% 0%
δ = 0.18 0% 0%
δ = 0.12 0% 0.14%
δ = 0.03 0% 2.27%
δ = 0.02 0% 4.47%

class model in our 1½-detector and pick a threshold below
0.31, the attack fails to remove the watermark in all cases.
As our defense returns random decisions outside the normal
regions, the attack is not able to compute the correct gradient
and thus does not converge to the correct watermarking
pattern. The correlation between the watermark extracted
from the final attack outcome and the original watermark
is thereby zero in all cases. A threshold δ ≥ 0.31 however
enlarges the extent of the normal regions, so that the chances
increase that the attack works on the decision boundary
within the normal region without disturbance again.

False Positives. We also inspect the false-positive rate
induced by our detector. To this end, we use variations of
the selected images that have not been used for training. If
we pick a low threshold, the learned model is too restrictive
and some of the generated variations lie outside the normal
region. Starting with a threshold of 0.18, however, the defense
does not identify any benign variations as attacks and thus
allows us to separate legitimate variations of an image from
malicious inputs generated by the Blind Newton Sensitivity
Attack.

In summary, we identify a range of suitable thresholds
where the detector does not misclassify benign variations
and is successfully able to obstruct the watermark removal
in all cases. The proposed defense is generally applicable by
other watermarking schemes, because the objective is to spot
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adversely crafted images without changing the underlying
watermark detection process. Moreover, as our defense
already impedes the initial boundary localization process
which is not unique to the Blind Newton Sensitivity Attack,
other oracle attacks [e.g. 12, 32] are affected as well.

4.3. Case Study 3: DW → ML

In our third case study, we transfer the concept of
closeness-to-the-boundary from the area of digital water-
marking to machine learning. In particular, we demonstrate
that this defense effectively mitigates the risk of model
extraction by identifying sequences of malicious queries to
a learning method.
Before presenting this defense, we shortly summarize

the tree-extraction attack proposed by Tramèr et al. [59].
The attack reconstructs decision trees by performing targeted
queries on the APIs provided by the BigML service. The
attack is possible, since the service does not only return
the class label for a submitted query but also a confidence
score for a particular leaf node. This enables an adversary
to distinguish between the leaves. For each leaf and for
each of its features, a recursive binary search locates the
leaf’s decision boundary in that direction. As the binary
search covers the whole feature range, other leaf regions are
discovered as well and extracted subsequently. In this way,
an adversary can extract all possible paths of the decision
tree. Note that the attack needs to fix all features except for
the one of interest, as otherwise the attack may miss a leaf
during the binary search.

As a countermeasure to this attack, we devise a defense
that observes the closeness of queries to the decision bound-
ary, as already used in digital watermarking [1, 57]. In this
scenario, the detector does not only check for the presence of
a watermark, but simultaneously counts the number of queries
falling inside a margin surrounding the boundary. An attacker
conducting an oracle attack—thereby working around the
boundary necessarily—creates an unusually large number of
queries inside this margin. As a result, the analysis of the
input sequences allows the identification of unusual activity.
The exact parameters of the security margin are derived from
statistical properties of the decision function [1].

Although this defense strategy has been initially designed
to protect watermark detectors, we demonstrate that it can
be extended to secure decision trees as well. Figure 9
illustrates the transferred concept where margins are added
to all boundaries of a decision tree. The width of these
margins is determined for each region separately depending
on the statistical distribution of the data. Overall, this security
margin is defined alongside the original decision tree and
does not require changes to its implementation. Appendix C
provides more information on the margin’s creation process.

When the decision tree returns the predicted class for a
query, our defense checks whether the query falls inside the
security margin. To determine whether the tree is subject
to an attack, we keep track of a history of queries and
compute the ratio between points inside and outside the
margin for each leaf. The averaged ratio over all leaves,

Security margin
per leaf

Decision
tree
boundaries

Figure 9. Transfer from watermarking to machine learning: A stateful
defense using the closeness-to-the-boundary concept.

ϕ, is an indicator for the plausibility of the current input
sequence. As an example, Figure 9 shows a typical query
sequence from the tree extraction algorithm (red squared).
The adversary has to work within the margin to localize the
decision boundary, in contrast to the distribution of benign
queries (blue circles).

Experimental setup. To evaluate this defense in practice,
we use the publicly available tree-extraction implementation
by Tramèr et al. [59]. Table 3 summarizes our used datasets.
We divide each dataset into a training set (50%) and test set
(50%), where we use the first for learning a decision tree
and calibrating the security margins. The detector identifies
an attack if the query ratio ϕ exceeds the threshold τ = 0.3.
We make use of the test set to simulate the queries of

an honest user. In this way, we can determine the risk of
false positives, that is, declaring an honest input sequence as
malicious. Next, we run the tree-stealing attack against the
learned tree without and with the security margin defense. In
the latter case, we consider two reactions after the detection
of an attack sequence: (a) the tree blocks further access and
(b) the tree returns random decisions. We stop an attack after
1 Million queries (denoted by *). We repeat each experiment
5 times and present aggregated results in the following.

Defense Evaluation. To determine the knowledge gain by
the adversary, Table 4 reports the fraction of successfully
extracted leaves p together with the required number of
queries Q. Without any defense, the original attack extracts
the whole tree (p = 1). In contrast, the blocking strategy
based on the margin defense allows the tree to block the
tree extraction at the very beginning. With random decisions,
the attack’s binary search recursively locates an exponential

TABLE 3. DATASET FOR EVALUATION. THE NUMBER OF LEAVES FROM
THE LEARNED DECISION TREE ARE AVERAGED OVER THE REPETITIONS.

Dataset Samples Features ∅ Leaves

Iris 150 4 4.6
Carseats 400 8 13.2
College 777 17 18.8

Orange Juice 1,070 11 59.0
Wine Quality 1,599 11 89.4
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TABLE 4. EFFECTIVENESS OF THE TRANSFERRED CLOSENESS-TO-THE-BOUNDARY DEFENSE FOR DIFFERENT ATTACK VARIATIONS AND POSSIBLE
REACTIONS AFTER DETECTING THE ATTACK.

Dataset Original Attack Blocking Defense Random Resp. Defense Adapted Attack
Q p Q p Q p Q p

Iris 108 1.00 38 0.09 * 0.09 4,412 1.00
Carseats 871 1.00 148 0.20 * 0.20 15,156 0.46
College 2,216 1.00 244 0.10 * 0.10 8,974 0.08

Orange Juice 4,804 1.00 846 0.20 * 0.20 86,354 0.48
Wine Quality 9,615 1.00 978 0.11 * 0.11 37,406 0.11

number of boundaries erroneously, without any improvement
regarding the extraction. At the same time, the final query
ratio ϕ after submitting an honest sequence was not higher
than 0.2 in all datasets, so that the tree does not mark a
benign query sequence as an attack by mistake. As a result,
the tree can effectively separate legitimate from malicious
input sequences.

Adapted Attack. In practice, an adversary will adapt the
attack strategy to the particular defense, so that we examine
possible attack variations in the following. We let the attacker
create cover queries outside the margin by selecting random
values in the range of each feature. The intention is to
keep the query ratio below the threshold. Table 4 shows the
performance of this adapted attack where an adversary sends
40 cover queries for each tree extraction query. Despite this
substantial increase in queries, the whole tree can still not
be extracted. Only half of the leaves are recovered before
the tree spots the attack and blocks further access.

There are two practical problems that explain the attack’s
failure. Without knowledge of the training data distribution,
the adversary cannot know where a decision boundary could
be located and thus where the margin could be. Another
problem is that the attacker needs to control the ratio in
almost each leaf. It is not sufficient to send just one fixed
well-chosen cover query all the time since this query would
only affect one leaf. These problems make the smart selection
of cover queries challenging since the attacker has to perform
initial queries to localize a first set of leaves. Thus, our
defense can spot the attack before the adversary collects
more information to formulate smarter cover queries.

Well-Informed Attack. We finally consider the situation
where an attacker may even have access to parts of the
training data. This makes a defense clearly challenging since
the attacker can already make assumptions about a possible
learning model. We let the attacker create cover queries from
the leaked training data. Table 5 summarizes the fraction of
extracted leaves p for varying amounts of known training data
and cover queries. The defense can still block an adversary
even if training data is leaked partly. If just 10% of the data
is known, even 40 cover queries between each attack query
do not suffice to extract the whole tree. However, if the
adversary knows more data points, the cover queries spread
over all leaves more equally and the attack chances increase.

Overall, our evaluation demonstrates that our transferred
defense can effectively obstruct model-extraction attacks.

TABLE 5. FRACTION OF EXTRACTED LEAVES WITH AN INFORMED
ATTACKER KNOWING A CERTAIN FRACTION OF THE TRAINING DATA.

Dataset Cover
Queries

Fraction training data

10 20 30 40 50

Iris
1x 0.17 0.21 0.21 0.21 0.22
5x 0.64 0.85 0.89 0.92 0.94
40x 0.76 0.91 0.94 0.97 1.00

Carseats
1x 0.28 0.29 0.28 0.29 0.30
5x 0.39 0.60 0.69 0.82 0.89
40x 0.50 0.87 0.97 1.00 1.00

College
1x 0.12 0.12 0.12 0.12 0.12
5x 0.17 0.26 0.28 0.29 0.32
40x 0.29 0.64 0.85 0.94 1.00

Orange Juice
1x 0.28 0.29 0.29 0.29 0.29
5x 0.39 0.63 0.88 0.98 0.99
40x 0.46 0.92 1.00 1.00 1.00

Wine Quality
1x 0.20 0.22 0.22 0.23 0.24
5x 0.33 0.55 0.88 0.98 1.00
40x 0.43 0.91 1.00 1.00 1.00

It is not limited to a decision tree and can be applied to
models, such as an SVM, where an attacker tries to locate the
decision boundary through queries. As our defense can be
implemented alongside an existing classifier, online services
such as BigML can easily deploy our defense in practice.
To motivate further research in this direction, we make our
implementation and dataset publicly available1.

5. Discussion

Adversarial machine learning and digital watermarking
are vivid research fields that have established a broad
range of methods and concepts. The presented unified
view demonstrates that black-box attacks and corresponding
defenses in machine learning and digital watermarking should
be addressed together. Section 3 discloses that multiple
attacks and defenses are transferable between both fields.
For instance, attacks such as the BNSA which directly
computes an evasive sample without a substitute model can
be exploited against learning-based classifiers. Moreover,
lessons learned from the application of an attack or defense
technique can serve as guidance for the other research

1. The implementation and datasets are available under https://www.
tu-braunschweig.de/sec/research/data/mldw

499



field in this way. The watermarking field, for example,
studied several randomization techniques such as adding
noise to the detector’s output or rendering the decision
boundary more complex by fractalizing it. However, the
broad conclusion was that these defense techniques mitigate,
but do not prevent an attack and researchers continued
with stateful defenses [1, 13]. The other way round, the
adversarial learning community concluded that an attacker,
for instance, can learn a local substitute model through input-
output queries so that she can bypass defenses on the original
model such as gradient masking due to the transferability
property [45]. Our case study reveals that substitute learning
models represent a similar risk to watermark detectors.

Furthermore, the identified similarities between machine
learning and digital watermarking can be seen as part
of a bigger problem: Adversarial Signal Processing [2].
More fields such as multimedia forensics also deal with
an adversary and a common understanding across various
fields could eventually help to combine knowledge.
Finally, we refer to various contests in both fields. The

BOWS contests from digital watermarking [25, 47] or the ad-
versarial learning contests organized at the NIPS 2017 [64] or
by Madry et al. [39] have let researchers work as an attacker
in a real scenario without perfect knowledge—revealing
previously unknown questions and insights [e.g. 4, 67]. We
thus encourage the organization of a regular contest for
adversarial machine learning, covering different learning
methods and applications.

6. Conclusion

Developing analysis methods for an adversarial envi-
ronment is a challenging task: First, these methods need
to provide correct results even if parts of their input are
manipulated and, second, these methods should protect from
known as well as future attacks. The research fields of
adversarial learning and digital watermarking both have
tackled these challenges and developed a remarkable set
of defenses for operating in an adversarial environment.

By means of a systematization of black-box attacks and
defenses, we show in this paper that both lines of research
share similarities which have been overlooked by previous
work and enable transferring concepts from one field to
the other. In three case studies, we empirically demonstrate
the benefit of such a unified view. First, we learn a Deep
Neural Network as substitute model to attack a watermarking
scheme. Second, the transferred concept of classifier diversity
successfully prevents the Blind Newton Sensitivity Attack
from removing a watermark in marked images. Last but
not least, a stateful defense from digital watermarking also
blocks model-extraction attacks against decision trees.

As part of our unification, we identify interesting direc-
tions of future research that enable the two communities to
learn from each other and combine the “best of both worlds”.
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[28] T. Gloe and R. Böhme, “The Dresden Image Database for bench-
marking digital image forensics,” Journal of Digital Forensic Practice,
vol. 3, no. 2–4, pp. 150–159, 2010.

[29] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” Computing Research Repository (CoRR), Tech. Rep.
abs/1606.04435, 2016.

[30] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: data mining, inference and prediction, ser. Springer series
in statistics. New York, N.Y.: Springer, 2001.

[31] L. Huang, A. D. Joseph, B. Nelson, B. I. P. Rubinstein, and J. D.
Tygar, “Adversarial machine learning,” in Proc. of ACM Workshop on
Artificial Intelligence and Security (AISEC), 2011, pp. 43–58.

[32] T. Kalker, J.-P. M. G. Linnartz, and M. van Dijk, “Watermark
estimation through detector analysis,” in Proc. of IEEE International
Conference on Image Processing (ICIP), 1998, pp. 425–429.

[33] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna,
“Revolver: An automated approach to the detection of evasive web-
based malware,” in Proc. of USENIX Security Symposium, Aug. 2013,
pp. 637–651.

[34] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,
J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek,
D. M. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards
fully autonomous driving: Systems and algorithms,” in Proc. of IEEE
Intelligent Vehicles Symposium (IV), 2011, pp. 163–168.

[35] X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. A. Beyah, “Acing
the ioc game: Toward automatic discovery and analysis of open-source
cyber threat intelligence.” in Proc. of ACM Conference on Computer
and Communications Security (CCS), 2016, pp. 755–766.

[36] J.-P. M. G. Linnartz and M. van Dijk, “Analysis of the sensitivity
attack against electronic watermarks in images,” in Proc. of Information
Hiding Conference, vol. 1525, 1998, pp. 258–272.

[37] D. Lowd and C. Meek, “Good word attacks on statistical spam filters,”
in Conference on Email and Anti-Spam, 2005.

[38] ——, “Adversarial learning,” in Proc. of ACM SIGKDD Conference
on Knowledge Discovery in Data Mining (KDD), 2005, pp. 641–647.

[39] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “MNIST
Adversarial Examples Challenge,” https://github.com/MadryLab/
mnist challenge, last visited February 2018.

[40] M. F. Mansour and A. H. Tewfik, “Improving the security of watermark
public detectors,” in Proc. of International Conference on Digital
Signal Processing (DSP), 2002, pp. 59–66.

[41] ——, “LMS-based attack on watermark public detectors,” in Proc.
of International Conference on Image Processing (ICIP), 2002, pp.
649–652.

[42] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” arXiv:1605.07277, Tech. Rep., 2016.

[43] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. Berkay Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in Proc. of ACM Asia Conference on Computer Computer and
Communications Security (ASIA CCS), 2017, pp. 506–519.

[44] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proc. of IEEE European Symposium on Security and Privacy
(EuroS&P), 2016.

[45] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “SoK:
Security and privacy in machine learning,” in Proc. of IEEE European
Symposium on Security and Privacy (EuroS&P), 2018.

[46] R. Perdisci, G. Gu, and W. Lee, “Using an ensemble of one-class
SVM classifiers to harden payload-based anomaly detection systems,”
in Proc. of International Conference on Data Mining (ICDM), 2006,
pp. 488–498.

[47] A. Piva and M. Barni, “Design and analysis of the first BOWS contest,”
EURASIP Journal on Information Security, vol. 2007, pp. 3:1–3:7,
2007.

[48] P. Russu, A. Demontis, B. Biggio, G. Fumera, and F. Roli, “Secure
kernel machines against evasion attacks,” in Proc. of ACM Workshop
on Artificial Intelligence and Security (AISEC), 2016, pp. 59–69.

[49] B. Schölkopf and A. J. Smola, Learning with Kernels. Cambridge,
MA: MIT Press, 2002.

[50] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proc. of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 815–823.

[51] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to
a crime: Real and stealthy attacks on state-of-the-art face recognition.”
in Proc. of ACM Conference on Computer and Communications
Security (CCS), 2016, pp. 1528–1540.

[52] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proc. of IEEE
Symposium on Security and Privacy (S&P), 2017.

[53] Y. Song, M. E. Locasto, A. Stavrou, and S. J. Stolfo, “On the
infeasibility of modeling polymorphic shellcode,” in Proc. of ACM
Conference on Computer and Communications Security (CCS), 2007,
pp. 541–551.

[54] N. Srndic and P. Laskov, “Practical evasion of a learning-based
classifier: A case study.” in Proc. of IEEE Symposium on Security
and Privacy, 2014, pp. 197–211.

[55] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
Computing Research Repository (CoRR), Tech. Rep. abs/1312.6199,
2013.

[56] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf, “Deepface: Closing
the gap to human-level performance in face verification,” in Proc.
of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[57] B. Tondi, P. Comesaña-Alfaro, F. Pérez-González, and M. Barni, “On
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Appendix A.
Watermark Detector

This section exemplifies the watermarking process with
a simple, yet commonly studied watermarking scheme.
The process can be divided into two phases: embedding
and detection. For the former phase, we use the additive
spread spectrum technique. In this scheme, the watermarking
parameter w consists of a pseudorandom pattern v ∈ R

N

and a threshold η. The watermarked version x̃ of a signal x
is then created by adding the watermarking vector v onto x
element-wise, that is,

x̃ = x+ v . (14)

In order to decide whether a signal contains the particular
watermark, a linear correlation detector can be employed
that uses the following decision function:

g(x̃) = x̃ᵀ v ≷ η = {1,−1} . (15)

The function computes a weighted sum between x̃ and the
watermark v. If watermark and signal match, the correlation
exceeds a pre-defined threshold η and a positive label
is returned. Geometrically, each signal corresponds to a
point in a vector space where the watermark induces a
decision boundary. The result are two subspaces, one for
the watermark’s presence, one for its absence. The detection
thus works by determining which subspace an input signal
is currently in.

Appendix B.
Blind Newton Sensitivity Attack

This section briefly recaps the Blind Newton Sensitivity
Attack [14] (BNSA) that solves Eq. (6). As the watermark
parameter w is secret, the adversary has not access to the real-
valued output that g(x̃) internally computes before returning
the binary decision. Therefore, Comesaña et al. rewrite the
optimization problem from Eq. (6) into an unconstrained
version:

arg min
t∈RN

d(h(t)). (16)

The function h(t) reflects the prior constraint to find a
solution in the other subspace. As a position on the boundary
is sufficient, h(t) maps each input to the boundary. To this
end, a bisection algorithm can be used to find a scalar α such
that αt lies on the decision boundary. However, h(t) has to

g(x̃) = η

x̃

x

t

αt
Gradient
calculation

Gradient

Figure 10. Blind Newton Sensitivity Attack. Queries around a boundary
position reveal the function’s gradient at this position to minimize the
distance between the manipulated sample and the original one.

map each input vector to the boundary explicitly by running
the bisection algorithm each time. Thus, a closed form to
solve the problem is not applicable. Therefore, numeric
iterative methods such as Newton’s method or gradient
descent have to be used as Figure 10 exemplifies.
The attack starts with a random direction to locate

the decision boundary. After calculating an image at the
boundary, it slightly changes the vector at one position,
maps the vector to the boundary again and records the
distance through this change. By repeating this procedure
for each direction in the vector space, the attack is able
to calculate the gradient at this boundary position. In this
way, the attack is able to locate a boundary position that
is closer to x̃. The distance term d becomes smaller. In
summary, the attack does not require a priori knowledge
about the detector’s decision function and works only with
a binary output. The optimal solution is guaranteed for
convex boundaries, but suitable results are also reported for
non-linear watermarking schemes—with e.g. polynomial or
fractalized decision boundaries—by following the boundary’s
envelope [14, 15].

Appendix C.
Security Margin Construction

The security margin’s construction works as follows:
First, we choose a tree region and select the training data
that fall inside this particular region. Next, we estimate the
distribution of the selected training data at each dimension
through a kernel-density estimation. In this way, no a priori
assumptions about their distribution are required. Finally,
the distribution in each dimension is used to define the
margin at the boundary in this dimension. To this end, we
set the margin to the feature value where the probability of
occurrence is smaller than a certain threshold. In Figure 9,
for example, the top right tree regions has a smaller security
margin, since more training data are near the boundary. On
the contrary, the most left region exhibits fewer training
samples near the boundary, so that a larger margin can be
defined. By defining the security margin in this statistical
way, we can control the false alarm rate that a honest query
falls inside the margin. We repeat the process for each tree
region.
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