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Abstract—Remote electronic voting is used in several countries
for legally binding elections. Unlike academic voting protocols,
these systems are not always documented and their security is
rarely analysed rigorously.

In this paper, we study a voting system that has been
used for electing political representatives and in citizen-driven
referenda in the Swiss canton of Neuchâtel. We design a
detailed model of the protocol in ProVerif for both privacy
and verifiability properties. Our analysis mostly confirms the
security of the underlying protocol: we show that the Neuchâtel
protocol guarantees ballot privacy, even against a corrupted
server; it also ensures cast-as-intended and recorded-as-cast
verifiability, even if the voter’s device is compromised. To
our knowledge, this is the first time a full-fledged automatic
symbolic analysis of an e-voting system used for politically-
binding elections has been realized.

1. Introduction

Remote electronic voting (or Internet voting) allows
voters to vote from their home or when they are travelling.
It is also seen as a means to get feedback from citizens
on a more regular basis. Therefore, Internet voting has
been used in legally binding elections in several countries,
including e.g. Estonia [22], Australia [10], France [32] or
Switzerland [20]. Of course, designing and implementing a
secure electronic voting system is a difficult task and many
attacks or weaknesses have been discovered on deployed
systems (see e.g. [16], [29], [35], [37]). Voting protocols
should offer some basic security guarantees, such as ballot
privacy (no one knows how I voted) as well as verifiability
(voters can check the voting process) with as few trust
assumptions as possible.

On an academic level, several Internet voting protocols
have been developed and some of them offer a prototype
implementation or even a voting platform. This is for ex-
ample the case of Helios [1], Civitas [12], Belenios [13],
or Select [28]. These protocols are well documented and
typically come with a proof of their security, at least w.r.t.
privacy, in a symbolic or a cryptographic model (see e.g. [4],
[13], [24], [28]). On the other hand, industrial scale pro-
tocols are being deployed and now also aim at offering
some verifiability properties. For instance some systems

offer voters to check their vote. Some examples are: the
Estonian [23] protocol, where voters can check their vote
during a short period of time; the so-called Norwegian
protocol [21], that does so using return codes; or the New
South Wales iVote protocol [10]. The systems deployed in
Norway and New South Wales have been (co)-developed by
Scytl, a company specialized in e-voting solutions. Each of
those systems has been adapted to suit the requirements and
needs of each jurisdiction.

Contributions. In this paper, we analyse the next generation
of the Norwegian protocol [20], [21], that has been deployed
and is being used in the Swiss cantons of Neuchâtel and
Fribourg [33]. Our main contribution is a thorough analysis
of the Neuchâtel protocol (as specified in [20], [34], [36]) in
ProVerif. The tool ProVerif [6], [7] is a state-of-the-art tool
for the formal analysis of security protocols. We are able to
prove ballot privacy (modelled as an equivalence property)
as well as cast-as-intended and recorded-as-cast verifiability
(modelled as a reachability property).

It should be noted that the Neuchâtel protocol, as well
as most industrial-scale protocols, is not fully verifiable
according to the academic tradition, since the content of
the ballot box is not publicly disclosed. Instead, the protocol
aims at providing cast-as-intended verifiability: if the voting
server registers a ballot in the name of a voter then the ballot
contains the vote intended by the voter, even if the voting
device is corrupted and tries to cast a vote for another voting
option. Cast-as-intended is achieved through return codes:
after casting a vote, a voter receives a code and checks (on
her voting card) that it matches the code displayed next to
her intended choice. The Neuchâtel protocol additionally
guarantees recorded-as-cast verifiability: if a voter com-
pletes the voting process then she is guaranteed that her
ballot, as built by her voting device, has reached the voting
server. These two verifiability properties hold under the
assumption that the voting server is not compromised. Note
that cast-as-intended verifiability is not offered by academic
systems such as Civitas [12] and Belenios [13]. Often when
it is offered, quite a burden is placed on the voter: this
is the case for Helios (cast-or-audit mechanism [1], [26]),
where the voter needs to use two voting devices that are
not simultaneously compromised. Namely, the device used
for auditing the vote needs to be different from the device
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used to cast the vote. On the other hand, Civitas, Helios, and
Belenios offer universal verifiability: anyone can check that
the result corresponds to the ballots on the bulletin board,
which is not the case for the Neuchâtel protocol, where
ballots are not public.

In order to prove our security claims, we present a
detailed model of the protocol, that includes for example
the authentication phase after which the voter retrieves her
voting credentials (i.e. by opening a password-protected key-
store). Whereas such an initialization phase must be present
in any real-world e-voting system, it is omitted in virtually
every security analysis. Even worse, such authentication
mechanism is typically not specified by the protocols in
the academic literature. This is not necessarily surprising,
and it might stem from the fact that academic research
artifacts often do not get used in practice and thus do not
need to be described as a fully detailed system. Additionally,
we capture in our model elections where voters can select
k options among n voting options (while systems in the
literature are often analysed in the case of elections where
voters selects 1 option among n or even 1 among 2).

We chose to perform an automated security analysis
using ProVerif (instead of a manual proof) precisely to be
able to model as many details as possible. We also believe
that our model could serve as a basis for further studies of
other voting protocols, as it is easier to adapt a symbolic
model than a manual proof.

One difficulty we had to face resides in the fact that
ProVerif does not handle well protocols with global states.
This is of particularly critical importance in the case of the
Neuchâtel protocol, since it becomes insecure (w.r.t. cast-
as-intended) as soon as revoting is allowed. It is therefore
crucial to model the fact that each voter votes “at most
once”, and to do it in such a way that ProVerif can still
handle the resulting model and provide a proof. Again, we
believe that the techniques developed here to circumvent this
issue are likely to be found useful elsewhere.

Our analysis mostly confirms the security of the proto-
col: we prove in ProVerif ballot privacy against a dishonest
voting server as well as cast-as-intended and recorded-as-
cast verifiability against a dishonest voting device, for an
unbounded number of voting options and of voters. How-
ever, while modelling the protocol, we also discovered small
variations thereof, which could realistically come up when
implementing the protocol in a real scenario, that would
render the protocol insecure in practice.

Related Work. The study most closely related to this paper
is the analysis of the Norwegian protocol [17], that solely
studies ballot privacy. The Norwegian protocol is an an-
cestor of the Neuchâtel protocol. The goal of the analysis
in [17] was to provide a modeling as precise as possible
of the protocol’s underlying primitives (with associativity
and commutativity properties) and prove ballot privacy by
hand, which was accomplished by developing some general
lemmas regarding equivalence. A brief analysis was also
performed in ProVerif but in a quite abstract model. Reusing
the previous model was deemed to be not possible, as the

Neuchâtel protocol has evolved quite significantly and the
resulting equational theories for the atomic primitives are
different.

Earlier research proposed the first symbolic models of
electronic voting protocols. This includes a model of JCJ [3]
and Helios [16], [18]. These models solely study privacy
properties and consider a simpler scenario where voters se-
lect one candidate among a finite number of options. These
protocols also allow revoting, which significantly simplifies
the analysis in ProVerif (cf. the discussion above on dealing
with a global state).

Computational proofs of privacy and/or some verifia-
bility properties have been provided for Helios [4], [15],
Civitas [24], Select [28], Belenios [13] and [25] for ex-
ample. Cryptographic models are more accurate w.r.t. the
underlying primitives and consider a more powerful attacker,
which may for example exploit algebraic properties of the
primitives. Most of these proofs are done by hand, with the
exception of [15], that provides a mechanized proof of ballot
privacy for Helios-like protocols. Given their complexity,
these proofs focus on the core of the protocol, abstracting
away many details, including detailed analysis of the high-
level interactions between the different parties of the pro-
tocol (e.g. computational proofs would typically assume a
secure channel between the voter and the ballot box, without
being explicit nor studying how this is done). The intrinsic
complexity of computational proofs of elaborated protocols,
as those used in e-voting systems, make those proofs even
more error-prone and thus harder to verify.

2. Overview of the Neuchâtel’s system

The Neuchâtel voting protocol involves four main par-
ticipants: the Voter (V), that casts a vote with the help of a
Voting Device (VD); the Voting Server (S), that interacts
with the voter’s device to store the voter’s ballot in a
database, and next it computes return codes that need to
be approved by the voter V; finally the Tallying Authority
(T), that computes the result of the election by tallying the
ballots database built by the server.

For the sake of clarity, we summarize the Neuchâtel
protocol in the case of a selection of k = 2 choices among
n voting options 1, . . . , n. Our analysis accounts however
for several values of k other than k = 2. A synthetic view
of the protocol is provided in Figure 1.

Tallying Authority (T). Creates an ElGamal asymmetric
encryption key pair (pkb , skb). The public encryption key
pkb is communicated to the Voting Server. Once the election
is closed, the authority T computes and outputs the result of
the election as follows. From each ballot to be counted, it
extracts the ElGamal encryption of the vote. Next, T applies
a mixnet to the resulting ciphertext list, decrypts every entry
with the corresponding election decryption key skb and
computes a zero-knowledge proof of correct decryption. The
result is simply the multiset of the decrypted votes.

Voter (V). The voter V associated to id enters into her
voting device VD her password pwd id and her preferred
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Voter VD Voting Server
on card: v1, v2 pkb pkb , gka , pkc ,M,
pwd id , ccid , {ks id}, tables bb, cbpwd id , v1, v2
sfcid , {srcidi } id

ks id
get skid
construct b b

check if b valid
add (id , b) to bbsrc1, src2

src1, src2
check v.s.
srcidv1 , src

id
v2

ccid
computes (ccid)

skid (ccid)
skid

get sfc, crf id from M
check if crf id valid
add (id , sfc, crf id) to cbsfc

if sfc = sfcid
sfc

voting success

Figure 1. Overview of Neuchâtel Voting Protocol

voting choices v1, v2. At some point, VD displays short
return codes src1, src2 to the voter. The voter retrieves the
codes srcidv1

and srcidv2
linked to v1, v2 from her voting card.

If the displayed and the retrieved code sets coincide, the
voter confirms her votes by entering the confirmation code
ccid . Finally, VD displays a short finalization code sfc,
which should be equal to the code sfcid on the voter’s
card. In this case, V is ensured that her ballot contains her
intended voting options and that it has been accepted by the
voting server S.

Voting Device (VD). The device VD requests a keystore
ks id associated to id , from which it retrieves the voters’ key
pair (pkid , skid) using the password pwd id . Next, the device
computes a ballot b = (ctxt, (v1)

skid , (v2)
skid , pkid ,P) that

is received by the Voting Server. The ballot consists of
several parts:

• ctxt = aenc
(
pkb , φ(v1, v2), r

)
is an encryption of

voting choices v1, v2 with key pkb and random r
using an ElGamal encryption algorithm aenc, and a
bijective compacting function φ that maps any list
of integers to a single integer (this relies on the
uniqueness of prime factors decomposition).

• so-called partial return codes (v1)
skid , (v2)

skid , built
as exponentiations, allow the Voting Server to com-
pute the short return codes srcidv1

, srcidv2
that appear

in the voter’s voting card;
• the remaining components serve to guarantee consis-

tency between ciphertext ctxt and the partial return
codes (v1)

skid , (v2)
skid , by using a zero-knowledge

proof P.

If the ballot is accepted by the server S, the voting
device VD receives short return codes src1, src2 from the
server and displays them to the voter V. Next, on input the
finalization code ccid entered by the voter, VD computes
and sends (ccid)

skid to the server. Finally, the server sends
back a short finalization code sfc, to be displayed to the
voter.

Voting Server (S). It interacts with a voter V with identifier
id through her voting device VD as follows. Firstly, the

server receives the voter’s identifier id from VD and replies
with the corresponding keystore ks id . 1 Next it receives from
VD a ballot b = (ctxt, (v1)

skid , (v2)
skid , pkid ,P), and checks

that it is a valid ballot. In particular, it verifies the zero-
knowledge proof P and checks that the voter V did not vote
already. If valid, the ballot is stored in a database bb. From
the partial return codes (v1)

skid and (v2)
skid , the server can

compute the values rc1 and rc2 through a keyed pseudo-
random function, and retrieve their corresponding short re-
turn codes src1, src1 by looking into a table M. These short
codes are sent to VD. Next, if the voter is satisfied with the
return codes, S receives the value (ccid)

skid , from which it
can compute fc (same way as rc) and retrieve its short code
sfc by looking again into M. The server S also retrieves a
validity proof crf id from M, that tells whether the retrieved
code sfc is valid or not. If all the tests pass, S adds the
confirmation values sfc and crf id to the database (cb here),
to keep track that the ballot b was successfully confirmed,
and sends sfc to VD.

3. Framework

In the coming sections we present a ProVerif model
of the Neuchâtel protocol. A detailed presentation of the
syntax and semantics of ProVerif can be found in [7].
For the sake of readability, we give next an overview of
the ProVerif model, focusing on the parts that are more
relevant to our model. Namely, we provide the syntax and
semantics of processes in ProVerif, as well as the definitions
of correspondence and equivalence properties. Notations and
definitions are mainly borrowed from [7].

3.1. Syntax

We assume a set V of variables, a set N of names, a set
T of types. By default in ProVerif, types include channel for

1. Actually, the credential retrieval through the keystore also includes a
challenge-response phase where the voter proves that she has successfully
opened her keystore. We abstracted away this phase as it is not used in the
rest of the protocol.
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M, N, M1, . . . ,Mk ::= terms
x | n | f(M1, . . . ,Mk) where x ∈ V , n ∈ N ,

and f ∈ C

D::= expressions
M | h(D1, . . . , Dk) where h ∈ C ∪ D

φ::= formula
M = N | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ

P,Q::= processes
0 nil
out(N,M);P output
in(N, x : T );P input
P | Q parallel composition
!P replication
new a : T ;P restriction
let x : T = D in P else Q assignment
if φ then P else Q conditional
event(M);P event

Figure 2. Syntax of the core language of ProVerif.

channel’s names, and bitstrings for bitstrings (also written
any). The syntax for terms, expressions, and processes is
displayed in Figure 2.

Terms and expressions. Symbols for functions are split
into two sets of constructors C and destructors D respec-
tively. Terms are built over names, variables and constructors
and represent actual messages sent over the network, while
expressions may also contain destructors representing cryp-
tographic computations that extract or rebuild data. Function
symbols are given with their types: g(T1, . . . , Tn) : T means
that the function g takes n arguments as input of types
respectively T1, . . . , Tn and returns a result of type T . A
substitution is a mapping from variables to terms, denoted
{U1/x1, . . . , Un/xn}. The application of a substitution σ to
a term U , denoted Uσ, is obtained by replacing variables
by the corresponding terms and is defined as usual. We only
consider well-typed substitutions.

The evaluation of an expression is defined through
rewrite rules. Specifically, each destructor d is associated
with a rewrite rule of the form d(U1, . . . , Un) → U , over
terms. Then the evaluation of an expression is recursively
defined as follows:

• g(D1, . . . , Dn) evaluates to U , which is denoted
by g(D1, . . . , Dn) ⇓ U , if ∀i, Di ⇓ Ui, and g
is a constructor (g ∈ C) and U = g(U1, . . . , Un);
or g is a destructor (g ∈ D) and there exists a
substitution σ such that Ui = U ′

iσ, U = U ′σ, where
g(U ′

1, . . . , U
′
n) → U ′ is the rewrite rule associated

to g.
• g(D1, . . . , Dn) evaluates to fail, which is denoted

by g(D1, . . . , Dn) ⇓ fail, otherwise.

The evaluation �φ� of a formula φ is defined by �M =
N� = 	 if M = N syntactically, or �M = N� = ⊥

otherwise, and is then extended to ∧,∨,¬ as expected.

Example 1. To model the simple theory of encryption and
concatenation, we consider a type symkey for symmetric
keys and the sets of constructors and destructors with their
associated rewrite rules as follows:

Cbasic = { pair(any , any) : any ,

enc(symkey , any) : any }
Dbasic = { proj1(any) : any , proj2(any) : any ,

dec(symkey , any) : any }
Rbasic = { proj1(pair(x, y)) → x,

proj2(pair(x, y)) → y, }
dec(y, enc(y, x)) → x

We often write (m1,m2) instead of pair(m1,m2) and
(m1,m2, . . . ,mk) stands for (m1, (m2, (. . . ,mk))).

Processes. Figure 2 provides a convenient abstract lan-
guage for describing protocols (formally modeled as pro-
cesses). The output of a message M on channel N is
represented by out(N,M);P while in(N, x : T );P rep-
resents an input on channel N , stored in variable x. Process
P | Q models the parallel composition of P and Q, while
!P represents P replicated an arbitrary number of times.
new a : T ;P generates a fresh name of type T and behaves
like P . let x : T = D in P else Q evaluates D and
behaves like P unless the evaluation fails, in which case it
behaves like Q. The if case is similar. event(M);P is used
to specify security property: the process emits an event (not
observable by an attacker) to reflect that fact that it reaches
some specific state, with some values, stored in M .

The set of free names of a process P is denoted fn(P ),
and the set of it’s free variables by fv(P ). A closed process
is a process with no free variables. Following ProVerif’s
handy notations, we may write in(c,= x).P instead of
in(c, y : T ).if x = y then P , where T is the type of x.
Similarly, we may write in(c, (x : T, y : T ′)).P instead
of in(c, z : any).let x : T = proj1(z) in let y : T ′ =
proj2(z) in P .

Example 2. In the Neuchâtel voting protocol, the Voter
interacts with a Voting Device (e.g. her computer or cell
phone) to cast her vote. Initially, the voter receives a voting
card with her personal data for the election, including a
password pwd (used to derive the voter’s key and id), one
short return code src for each candidate in the list, a
confirmation code ccid (sent if the received return codes
are valid), and a short finalization code sfcid (that should
correspond to the server’s last acknowledgement message).
For simplicity, we model an election where voters have to
select two options. We model a voter that votes for two
options v1, v2, with corresponding return codes src1, src2
(read from the voting card). The corresponding process is
defined in Figure 3. It communicates on channel c with
the voting device. It includes two events that witness some
important states of the voter. They will be used later to
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Voter(c, pwd , v1, v2, src1, src2, ccid , sfcid) :=
out(c, (pwd , v1, v2)); (* Sends password & choices. *)
in(c, (src′1 : any , src′2 : any)); (* Gets the return codes. *)
if (src′1 = src1 ∧ src′2 = src2) ∨ (src′1 = src2 ∧ src′2 = src1) then

event(confirmed(pwd , v1, v2)); (* Checks ok; Reaches ’confirmed ’. *)
out(c, ccid); (* Confirms the vote. *)
in(c,=sfcid); (* Final confirmation. *)
event(happy(pwd , v1, v2)). (* All ok; Reaches ’happy’. *)

Figure 3. The Voter Process

E,P ∪ {0} → E,P
E,P ∪ {P‖Q} → E,P ∪ {P,Q}
E,P ∪ {!P} → E,P ∪ {P, !P}
(Npub,Npriv),P ∪ {new a : T ;P} → (Npub,Npriv∪

{a′}), P ∪ {P [a′/a]} where a′ �∈ Npub ∪Npriv

E,P ∪ {out(N,M);Q, in(N, x);P} →
E,P ∪ {Q,P [M/x]}

E,P ∪ {let x = D in P} → E,P ∪ {P [M/x]}
if D ⇓ M and M �= fail

E,P ∪ {if φ thenP} → E,P ∪ {P} if �φ� = 	
E,P ∪ {event(M);P} → E,P ∪ {P}

Figure 4. Transitions between configurations, without types for clarity

.

formally state security properties (see Section 5), and are
defined by:

Cvoter = { confirmed(password , int , int) : any ,

happy(password , int , int) : any }

3.2. Semantics

A configuration E,P is given by a multiset P of
processes, representing the current state of the processes,
and a set E = (Npub,Npriv) representing respectively the
public and private names used so far. The semantics of
processes is defined through a reduction relation → between
configuration, defined in Figure 4. A trace is a sequence of
reductions between configurations E0,P0 → · · · → En,Pn.
We say that a trace E0,P0 →∗ E′,P ′ executes an event M if
it contains a reduction E,P∪{event(M);P} → E,P∪{P}
for some E,P, P .

3.3. Properties

As usual, we assume that protocols are executed in
an untrusted network, meaning that communications over
a public network are fully controlled by an attacker who
may eavesdrop, intercept, or send messages. This is easily
modeled by executing a protocol P0 in parallel with an
arbitrary process Q. Formally, we assume given a set of pub-
lic constructors, subset of the constructors. An adversarial
process w.r.t. to a set of names Npub is a process Q such that
fn(Q) ⊂ Npub and Q uses only public constructors (and

destructors). In what follows, all constructors are public,
unless otherwise specified.

3.3.1. Correspondence. Many security properties can be
stated as “if Alice reaches some state (e.g. finishes her
session) then Bob must have engaged a conversation with
her”. This is for example the case of many variants of
agreement properties [30]. In the context of voting, such
correspondence properties can be used to express verifia-
bility. For example, we may wish to state that whenever
Alice thinks she has voted for v then there is indeed a ballot
registered on her name that corresponds to v.

ProVerif allows to specify correspondence properties
between events.

Definition 1. A closed process P0 satisfies the correspon-
dence

event(M)�
m∧

i=1

li∨

j=1

event(Mij)

where the Mi,j do not contain names, if for any (adversar-
ial) closed process Q such that fn(Q) ⊂ fn(P0), for any
trace tr of P0 | Q, for any substitution σ, if tr executes
the event Mσ, then for any i, there exists j such that tr
executes event Mijσ

′.

Examples can be found in Section 5.

3.3.2. Equivalence. Equivalence properties are crucial to
express vote privacy. Observational equivalence of two pro-
cesses P and Q models the fact that an adversary cannot dis-
tinguish between the two processes. Slightly more precisely,
whenever P may emit on some channel c (interacting with
an adversarial process R), then Q can emit on c as well. For
readability, we summarize here the definition of equivalence
from [7]. We write C ↓N when a configuration C = E,P
with E = (Npub,Npriv) can output on some channel N , i.e.
if there exists out(N,M);P ∈ P such that fn(N) ∈ Npub.
Also, an adversarial context C[ ] is a process of the form
new n : any ; | Q where fv(Q) = ∅ and all functional
symbols in Q are public, with being a ’hole’ expected to be
filled by a configuration C = (Npub,Npriv),P . Therefore,
and assuming that Npriv ∩ fn(Q) = ∅, the application of
one to the other is defined by :

C[C] = (N ′
pub,N ′

priv),P ∪ {Q}
with N ′

pub = (Npub ∪ fn(Q))\{n}
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and N ′
priv = Npriv ∪ {n}

From this, the definition of observational equivalence
follows :

Definition 2. The observational equivalence between con-
figurations, denoted by ≈, is the largest symmetric relation
such that C ≈ C′ implies :

• if C ↓N then ∃C′
1 s.t. C′ →∗ C′

1 and C′
1 ↓N ;

• if C → C1, then ∃C′
1 s.t. C′ →∗ C′

1 and C1 ≈ C′
1;

• C[C] ≈ C[C′], for any adversarial context C[ ].

4. Formal model of the Neuchâtel’s voting sys-
tem

We present here the main parts of our formal model.
For simplicity, we present a model for elections with k = 2
choices to be made amongst n voting options. In our auto-
mated analysis, we generate the model corresponding to any
given particular value k automatically, and then run ProVerif
on several values of k (up to k = 4 due to ProVerif time
out).

4.1. Standard primitives

The Neuchâtel protocol makes use of the standard prim-
itives: symmetric and asymmetric encryption, signatures,
hashes and concatenation. We consider the corresponding
types agentId , int , ekey , epkey , skey , spkey , symkey . The
constructors and the associated rewrite rules are defined as
follows.

Cstand = { ske(agentId) : ekey ,

pube(ekey) : epkey ,

aenc(epkey , any , int) : any ,

enc(symkey , any) : any ,

pair(any , any) : any ,

sks(agentId) : skey ,

pubs(skey) : spkey ,

sign(skey , any) : any }

Rstand = { adec(k, aenc(pube(k),m, r)) → m

dec(k, enc(k,m)) → m

proj1(pair(a, b)) → a

proj2(pair(a, b)) → b

verify(pubs(k),m, sign(k,m)) → ok }
where all function symbols are public, except ske and sks
that are private. The set of destructors Dstand can be inferred
easily. The term skα(id) represents the private key of user
id w.r.t. scheme α, where α = e stands for asymmetric
encryption while α = s stands for signature. The rewrite
rules are the standard ones for these primitives. For example
adec(k, aenc(pube(k),m, r)) → m models the fact that the
plaintext of an (asymmetric) encryption can be retrieved by
decrypting with the corresponding private key.

4.2. Voting device

A voter id is provided with a password pwd and codes
(return codes as well as a confirmation code). When she con-
nects to the voting server through her voting device, she first
needs to retrieve her personal private key ske(δId(pwd)).
The identifier id of the voter is actually derived from her
password, that is id = δId(pwd). This key is stored in a
keystore (on the server’s side), encrypted with a key that
can be derived from the password: δKey(pwd). We therefore
introduce the following theory to model the key store.

Cks = { δId(password) : agentId ,

δKey(password) : symkey ,

cekey(ekey) : any }
Rks = { cany(cekey(k)) → k }

The corresponding set of destructors Dks can be inferred
easily. The functions cany and cekey are auxiliary functions
that convert private keys to bitstring and conversely.

We denote

ks(pwd) := enc(δKey(pwd), cekey(ske(δId(pwd))))

the encrypted value stored in the key store for voter
δId(pwd).

As explained in Section 2, the voting device builds
a ballot as follows. It encrypts the choices v1, v2 of the
voters; builds pre-return codes for each choice prc(ske , v1),
prc(ske , v2) using the private key of the voter; and proves
that the return codes correspond to the encrypted votes,
through a zero-knowledge proof. This is modeled as follows.

Czk = {zkp(epkey , epkey , any , int , int , int , ekey) : any ,
prc(ekey , int) : int }

Rzk = {verifzkp(pkb , pk, e, p1, p2,
zkp(pkb , pk, e, p1, p2, r, skid)) → ok }

with pk = pube(skid), e = aenc(pkb , v, r),

p1 = prc(skid , v1), p2 = prc(skid , v2)

with v = (v1, v2). Note that here, our model abstracts
some properties of the primitives. For example, the two
choices v1, v2 of the voters are not encrypted as a list
but are “compacted” in a single integer Φ(v1, v2), which
is actually commutative: Φ(v1, v2) = Φ(v2, v1). Similarly,
the zero-knowledge proof compacts the pre-return codes.
Since ProVerif cannot handle associative and commutative
properties, we abstract away these properties, assuming a
slightly stronger proof system.

We can now provide the Device process, which is shown
in Figure 5.

4.3. Voting server

When the voting server is contacted by some voter id
(through her voting device), the server first needs to retrieve
the personal keystore associated to id . Only valid ids, of the
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form id = δId(pwd), are registered. The server also recovers
(for later use) a signature sign(skc , sfc(gka , id)) of the short
finalization code sfc(gka , id) that should be rebuilt and sent
at the end by the server (defined in Crc below). The signing
key skc is a fixed long term key of the setup authorities and
gka is the global audit key of the server. We model this data
retrieval by considering the following rewrite rule:

Rretrieve = { Get(δId(pwd), gka) →
(ks(pwd), sign(skc , sfc(gka , id))) }

The server needs to compute a long return code, i.e.
f(gka , prc1), from the partial return code prc1 sent by the
voting device. This long return code is too long to be human
readable and is therefore associated (in a table) to a short
return code. This table also provides a correspondence for
long and short finalization codes. This is modeled through
the following theory:

Crc = { src(symkey , agentId , int) : any

sfc(symkey , agentId) : any

f(symkey , int) : symkey

cc(agentId) : int }

Rrc = { readRC (f(gka , prc(ske(id), j)))

→ src(gka , id , j)

readFC (f(gka , prc(ske(id), cc(id))))

→ sfc(gka , id) }
with cc, src and sfc private function symbols. Actually, short
return codes are stored encrypted using the long return code
as a symmetric key. For the sake of clarity, we omit this part
here but it is reflected in our ProVerif’s model.

Validity of pre-return codes. A careful server must also
check that the pre-return codes it receives belong to a known
list of valid codes, meaning that the votes corresponding to
those codes are in the range of valid votes for the election.
While omitted here for readability, this test is reflected in our
ProVerif’s model by improving the destructor verifzkp . This
destructor will return ok only if the given pre-return codes
can be matched against a pattern in which only valid pre-
return codes belong to. This avoids the (impossible) storage
of an infinite list of codes.

No revote. One of the main challenging tasks when
modeling the voting server is the fact that it accepts at
most one request from each voter. Note that the protocol
is insecure otherwise. Indeed, in case revoting was allowed,
a malicious voting device could first vote as queried by the
voter and display the (correct) return codes and then revotes
for the candidate of its choice (discarding the corresponding
return codes). Therefore, it is crucial to model accurately
that no voter can vote twice.

A first approach (as described in [20]) is to use a table
that stores whether a voter already voted or not. Then,
intuitively, the code of the server is (informally) as follows:

if id /∈ Table then proceed and add id to Table

else stop

However, since the voting device may process several re-
quests at the same time, checking whether id /∈ Table is
actually insufficient. Indeed, if two requests from the same
voter reach the server at the same time, they would both pass
the test id /∈ Table and both ballots would be accepted. We
therefore need a clean lock mechanism, for which there is
a lot of implementation support.

However, when it comes to modeling this lock mecha-
nism in ProVerif, we have two options. The first option is to
encode the lock mechanism directly in ProVerif, for example
using private channels, that can be used as “tokens”. This ap-
proach presents two drawbacks. Firstly, this encoding would
necessarily be ad-hoc. And in principle there would be no
assurance that the protocol is secure if the lock mechanism
is implemented in another way (and of course, real lock
mechanisms will never use private channels). Secondly, it is
also known that ProVerif, due to its internal behavior, cannot
properly handle private channels when used as tokens or,
more generally, cannot handle properly events that happen
“at most once”.

Instead, we take a different point of view. We model a
voting server that does not prevent revoting and adds blindly
new ballots. Then, instead of asking ProVerif whether some
property φ holds, we query a property of the form

φ ∨ two ballots have been accepted for the same voter

If ProVerif proves this query, it guarantees that for any
execution trace where no 2 ballots are accepted by the server,
then φ holds. It is then up to the implementation to ensure
that any execution is such that no 2 ballots for the same
voter are accepted by the server.

This yields a more flexible result: for any realization of
the protocol that further ensures that ”no two ballots from
the same voters are accepted”, then the realization satisfies
φ, no matter how the “no revote policy” is actually im-
plemented. We believe that this approach is of independent
interest and could re-used in other contexts when modeling
e.g. lock mechanisms in ProVerif.

Formally, the server simply issues events built from
CBB = {InsertBB(agentId , any) : any} to record the fact
that a ballot has been added to the box. The process cor-
responding to the voting server is then defined in Figure 6.
These events are used later to specify security properties as
just discussed.

4.4. Tally process

Once the voting process is over, the tally phase can start.
The tally authorities check the validity of each ballot (same
checks as the server); mix the ciphertexts containing the
votes; decrypt the mixed ciphertexts and publish the election
result. In our analysis, we consider that either the tally
authorities are corrupted (for cast-as-intended and recorded-
as-cast properties) or that the overall tally process is honest
(for ballot privacy). As we shall see in Section 5 (security
properties), we only need to consider two honest voters, as
well as arbitrary many dishonest voters.
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Since privacy is ensured as soon as the two honest ballots
are mixed, we model a tally process that mixes the two
honest ballots only. The mixnet is modeled in a standard
way, by sending the ballots over a private channel called
mix concurrently, thus without fixing the order, and reading
them back from that same channel. Formally, we define two
processes: TallyH , as shown in Figure 7 for the honest
voters (whose ballots are mixed); and TallyD as shown
in Figure 8 for any dishonest voter (that can be executed
arbitrarily). The process TallyD simply decrypts any (valid)
ballot provided the corresponding id is not an honest voter,
that is, is neither ida nor idb.

Note that our model of tally is very abstract: it takes as
input the encrypted ballots and returns the votes in clear, in
an arbitrary order. In practice, such behaviour is typically
implemented using several mixers, that re-encrypt ballots at
each intermediary step.

5. Security properties

The Neuchâtel protocol is designed to achieve cast-as-
intended verifiability: even if the voter’s device is corrupted,
the ballot registered in the name of a voter corresponds
to the vote intended by that voter. This offers a strong
protection against attackers-controlled personal computers
and smartphones (e.g. through malware). The voting server
shall be trusted for this step. Conversely, the Neuchâtel’s
protocol also guarantees vote privacy against a dishonest
voting server. Note however that the protocol is not univer-
sally verifiable: the content of the ballot box is not public
and therefore voters cannot check that the result corresponds
to the received ballots. We define next the security properties
proved in ProVerif.

5.1. Verifiability properties

The protocol ensures cast-as-intended and recorded-as-
cast: if a voter successfully completes the voting procedure,
she is guaranteed that her ballot has been property recorded
by the voting server.

Cast-as-Intended. The Neuchâtel’s protocol provides
Cast-as-Intended verifiability: if the server registers a ballot
for some voter id then this ballot contains the votes intended
by the voter. This can be formalized by the following
correspondence property. Remember that the identity id of
a voter is derived from her password (id = δId(pwd)).

event(HasVoted(pkb , δId(pwda), e)) ⇒
∃ v1, v2, j1, j2, r,
event(confirmed(pwda, v1, v2))
∧ e = aenc(pkb , (j1, j2), r)
∧ ((j1 = v1 ∧ j2 = v2) ∨ (j1 = v2 ∧ j2 = v1))

(1)

Intuitively, the above reads as follows: if the server issues
an event HasVoted(pkb , δId(pwda), e), meaning that he ac-
cepted a ballot containing an encryption e, then the voter
with password pwda must have had cast a vote (v1, v2)
that corresponds to e. Note that we cannot exclude the

case where a malicious device swaps the vote (that is, casts
(v2, v1) instead of (v1, v2)) and then swaps the received
return codes. This is captured in the property above by
allowing the two cases (the option order has no impact on
the way votes are counted).

Unfortunately, ProVerif fails to prove this property. In-
deed, cast-as-intended cannot be guaranteed as soon as the
server may answer two requests from the same voter, as the
attacker would then get two sets of return codes and could
show the wrong one. This is explicitly forbidden by the
Neuchâtel’s protocol: the server does not answer to revote
queries. However, ProVerif over-approximates the behaviors
and takes into account the case where the server would
answer twice (yielding “cannot be proved”).

Instead, we consider the following correspondence prop-
erty.

event(HasVoted(pkb , δId(pwda), e)) ⇒
∃ v1, v2, j1, j2, j3, j4, j5, j6, r, r1, r2,
event(confirmed(pwda, v1, v2))
∧ e = aenc(pkb , (j1, j2), r)
∧ event(InsertBB(δId(pwda), e))
∧ event(InsertBB(δId(pwda), aenc(pkb , (j3, j4), r1)))
∧ event(InsertBB(δId(pwda), aenc(pkb , (j5, j6), r2)))
∧ (j3 = v1 ∨ j4 = v1) ∧ (j5 = v2 ∨ j6 = v2)

(2)
This property states that if the server accepts a ballot con-
taining an encryption e then the voter corresponding to pwda

must have cast a vote (v1, v2) such that the encryption e
has been inserted in the ballot box, on behalf of δId(pwda).
Moreover, there must have been two (not necessarily dis-
tinct) insertions in the ballot box: one with (j3, j4) and one
with (j5, j6), such that v1 is equal to either j3 or j4 and v2
is equal to either j5 or j6.

Why is this useful? Because we know that the protocol’s
implementation further guarantees that there is at most one
insertion for each voter. Combined with Property 2, this
implies j1 = j3 = j5 ∧ j2 = j4 = j6, hence the desired
Property 1 (since v1 �= v2).

More formally, for any trace tr of a process, if tr
satisfies (2) and is such that there no distinct insertion for
the same voter, that is:

event(InsertBB(δId(pwda), aenc(pkb , (j3, j4), r1)))
∧event(InsertBB(δId(pwda), aenc(pkb , (j5, j6), r2)))

⇒ (j3 = j5) ∧ (j4 = j6) ∧ (r1 = r2)

then tr satisfies (1). The proof is immediate.
The first interesting feature of this encoding is of course

that it circumvents the issue that ProVerif over-approximates
the no-revote policy. The second feature is that Property 1 is
proved independently of the exact implementation of the no-
revote policy. Assuming that the implementation guarantees
that there is at most one insertion for each voter, then the
protocol achieves cast-as-intended, no matter how this is
implemented in practice.

Note that our encoding strongly relies on the fact that
voters select two distinct options (v1 �= v2). There are
attacks otherwise, as explained in Section 6.2. In our model,
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Device(c1, c2, pkb) := (* channels c1 with Voter and c2 with Server. *)
in(c1, (pwd : password , v1 : int , v2 : int)); (* Get password & choices. *)
out(c2, δId(pwd)); (* Ask for the keystore, *)
in(c2, ks : any); (* ... receive keystore, *)
let skid : ekey = cany(dec(δKey(pwd), ks)) in (* ... retrieve the key. *)
new r : int ; let e = aenc(pkb , (v1, v2), r) in (* Encrypt voter’s choices. *)
let p = zkp(pkb , pube(skid), e, prc(skid , v1), prc(skid , v2), r, skid) in
out(c2, (e, prc(skid , v1), prc(skid , v1), pube(skid), p)); (* Sends the ballot. *)
in(c2, (src1 : any , src2 : any)); (* Get the short return codes *)
out(c1, (src1, src2)); (* ... transmit codes. *)
in(c1, ccid : int); (* Get confirmation code *)
out(c2, prc(skid , ccid)); (* ... transmit it. *)
in(c2, sfcid : any); (* Get short finalization code *)
out(c1, sfcid). (* ... transmit it. *)

Figure 5. The Device Process

Server(c : channel , pkb : epkey , gka : symkey , pkc : spkey , ct : channel) :=
in(c, id : agentId); (* New voting requests. *)
let (ks : any , crf : any) = Get(id , gka) in (* Recovers the keystore, *)
out(c, ks); (* ... and transmits it. *)
in(c, b : any); (* Waits for a ballot. *)
let (e : any , prc1 : int , prc2 : int ,=pke(id), p : any) = b in (* Parse it. *)
if verifzkp(pkb , pke(id), e, prc1, prc2, p) then (* Checks the proof. *)

event(InsertBB(id , e)); (* Table addition. *)
let src1 = readRC (f(gka , prc1)) in (* Gets the short return codes. *)
let src2 = readRC (f(gka , prc2)) in
out(c, (src1, src2)); (* Sends them to the Device. *)
! in(c, cm : int); (* Waits for confirmation. *)
let sfcid : any = readFC (f(gka , cm)) in (* Gets the finalization code. *)
if verify(pkc , sfcid , crf ) then (* Checks the signature. *)
event(HasVoted(pkb , id , e); (* Vote approval. *)
out(c, sfcid); out(ct, (id , b, sfcid , crf )). (* Confirms; Feeds the Tally. *)

Figure 6. The Server Process

TallyH (ct : channel , skb : ekey , pkc : spkey , ida : agentId , idb : agentId) :=
in(ct, (= ida, ba : any , sfca : any , crf a : any));
in(ct, (= idb, bb : any , sfcb : any , crf b : any));
let (ea : any , prc1a : int , prc2a : int ,= pke(ida), pa : any) = ba in
let (eb : any , prc

1
b : int , prc2b : int ,= pke(idb), pb : any) = bb in

if verifzkp(pube(skb), pke(ida), ea, prc
1
a, prc

2
a, pa) ∧ verify(pkc , sfca, crf a)

∧ verifzkp(pube(skb), pke(idb), eb, prc
1
b , prc

2
b , pb) ∧ verify(pkc , sfcb, crf b) then

out(mix, ea) | out(mix, eb) |
( in(mix, e′a : any); in(mix, e′b : any); out(c, (adec(skb , e

′
a), adec(skb , e

′
b))) ).

Figure 7. The Tally Process – Honest version

TallyD(ct : channel , skb : ekey , pkc : spkey , ida : agentId , idb : agentId) :=
in(ct, (id , b : any , sfc : any , crf : any));
let (e : any , prc1 : int , prc2 : int ,= pke(id), p : any) = b in
if verifzkp(pube(skb), pke(id), e, prc

1, prc2, p) ∧ verify(pkc , sfc, crf )
∧ id �= ida ∧ id �= idb then

out(c, adec(skb , e)).

Figure 8. The Tally Process – Dishonest version
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we only consider voters that select distinct options, as
instructed, and therefore v1 �= v2 trivially holds.

Recorded-as-cast. The protocol further guarantees that
if a voter completes the voting process then she is ensured
that her vote has been recorded by the server. This property
can be formally stated as follows.

event(happy(pwda, v1, v2)) ⇒
∃ j1, j2, r,
event(HasVoted(pkb , δId(pwda), e))
∧ e = aenc(pkb , (j1, j2), r)
∧ (j1 = v1 ∧ j2 = v2) ∨ (j1 = v2 ∧ j2 = v1)

(3)

In our ProVerif model, we further show that the ballot
registered by the server is well-formed and will therefore be
accepted at the tally phase. Similarly to cast-as-intended, this
property cannot be proved in ProVerif. So instead, we prove
an amended property which implies the desired property as
soon as the implementation guarantees that there is at most
one ballot insertion per voter.

event(happy(pwda, v1, v2)) ⇒
∃ j1, j2, j3, j4, j5, j6, r, r1, r2,
event(HasVoted(pkb , δId(pwda), e))
∧ e = aenc(pkb , (j1, j2), r)
∧ event(InsertBB(δId(pwda), e))
∧ event(InsertBB(δId(pwda), aenc(pkb , (j3, j4), r1)))
∧ event(InsertBB(δId(pwda), aenc(pkb , (j5, j6), r2)))
∧ (j3 = v1 ∨ j4 = v1) ∧ (j5 = v2 ∨ j6 = v2)

(4)

Trust Assumptions. We prove cast-as-intended (Prop-
erty 2) and recorded-as-cast (Property 4) even if the voting
device and the tally process are corrupted. We assume how-
ever the voting server to be honest. Formally, we consider
the following process:

Init ; !Server(c, pkb , gka , skc , c) | !Corr

| Voter(c, pwda , v1 , v2 , src(gka , ida, v1 ),

src(gka , ida, v2 ), cc(ida), sfc(gka , ida))

where Init is an initialization process: it broadcasts ida =
δId(pwda) and pke(ida) on some public channel c, gen-
erates the elections keys skb , gka and skc , and publishes
pkb = pube(skb), pubs(skc), and skb . The process !Corr
models an arbitrary number of dishonest voters: each gen-
erates a password pwd i for some voter i and broadcasts all
the corresponding (public and private) data.

Note that we do not need to include the tally process
(or Voting Device) since it is assumed to be dishonest.
Instead, we simply provide the election key (skb) to the
adversary: cast-as-intended and recorded-as-cast properties
are guaranteed even if the decryption key is lost.

5.2. Privacy

Intuitively, a voting protocol guarantees ballot privacy if
an attacker cannot learn any information about how a voter

voted. In symbolic models, this is typically formalized as
follows [18], [27]:

VA(0) | VB(1) ≈ VA(1) | VB(0)

An attacker should not be able to distinguish the case where
Alice votes 0 and Bob votes 1 from the case where the votes
are swapped.

We show that the Neuchâtel’s protocol ensures ballot
privacy, even if the voting server and all but two voters (and
their voting devices) are corrupted. Formally, we consider
a setup process I similar to Init , but with two honest
voters A,B with passwords pwdA, pwdB , and a corrupted
Server process that leaks its private data gka , skc . The
election key skb (generated during the setup and distributed
to election authorities) is assumed to be secret. We call
VA(a, b) the process for voter A that votes for a and b.

VA(a, b) := Device(cA, c, pkb)

| Voter(cA, pwdA, a, b, src(gka , idA, a),

src(gka , idA, b), cc(idA), sfc(gka , idA))

Then we wish to prove (in ProVerif) that:

I | VA(a, b) | VB(c, d) | !Corr | T
≈ I | VA(c, d) | VB(a, b) | !Corr | T (5)

with T := TallyH (c, skb , pkc , idA, idB)

| !TallyD(c, skb , pkc , idA, idB)

ProVerif cannot prove arbitrary equivalences. Instead, it
proves diff-equivalence of pairs of processes that only differ
in treatment of terms, which is a stronger notion of equiv-
alence [8]. More formally, ProVerif considers bi-processes
P that may contain bi-terms choice(t1, t2) instead of pure
terms. Then ProVerif proves equivalence of proj 1(P ) and
proj 2(P ) where proj i(P ) is obtained from P by replacing
any occurrence of a bi-term choice(t1, t2) by ti. We refer
the reader to [8] for a detailed and formal definition of bi-
processes and diff-equivalence.

So proving the equivalence VA(0) | VB(1) ≈ VA(1) |
VB(0) amounts to considering the process

VA(choice(0, 1)) | VB(choice(1, 0))

However, applying directly this transformation to the equiv-
alence (5) yields a process that ProVerif cannot prove.
Instead, we need to further transform it by also swapping the
output of the tally. This is a usual technique, as devised e.g.
in [9]. Formally, we replace the out(mix, ea) | out(mix, eb)
part in the TallyH process by:

out(mix, choice(ea, eb)) | out(mix, choice(eb, ea))
Our mixing here is very weak since it only swaps the two
honest votes. Proving trace equivalence for this weak mix-
ing actually enforces trace equivalence for a more general
mixing: any execution trace from the left must be matched
with a trace where the two honest votes are swapped, which
ensures a fortiori that it can be matched with a trace from
a more general mixer.
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Voting
Device

Server Tally

Cast-as-Intended D H D

Recorded-as-Cast D H D

Ballot Privacy H D H

TABLE 1. PROPERTIES AND TRUST ASSUMPTIONS. D STANDS FOR

DISHONEST WHILE H STANDS FOR HONEST.

Number of option’s choices 1 2 3 4 5

Cast-as-Intended < 1s < 1s 2s 8m
time out
> 48h

Recorded-as-Cast < 1s < 1s 3s 20m
time out
> 48h

Ballot Privacy 14s 49m
time out
> 48h

time out
> 48h

time out
> 48h

TABLE 2. SECURITY ANALYSIS IN PROVERIF.

Given that the resulting processes are equivalent (since
P | Q ≈ Q | P ), we deduce the desired equivalence
(Property 5). Note that since the server is assumed to be
dishonest, we do not need to model it, hence we do not
need to model the no-revote policy.

6. Results and lessons learned

Previous symbol models of electronic voting proto-
cols [3], [16], [17], [18] consider a simple scenario where
the voter selects one candidate among finitely many options.
In this study and for the sake of clarity, we have presented
the Neuchâtel’s protocol for the particular case of an election
where k = 2 options among n options need to be selected.
In our ProVerif model we have considered an arbitrary
number of options n, an arbitrary number of voters m, and
several values for the number of selections k. To be able to
cope with an arbitrary number of selections, we would need
to handle lists of arbitrary size (representing the selection
of a voter). While there are some preliminary results for
protocols with lists [2], [11], [31], none of them can be
applied to our symbolic model for the Neuchâtel protocol
since they do not cover equivalence properties and do not
offer any tool support. This is why we consider several fixed
values for k.

The security properties together with the corresponding
trust assumptions are summarized in Table 1, while the
experiments are presented in Table 2.

6.1. Results

We run ProVerif version 1.94 on a Xeon E5-2687W v3
@ 3.10GHz. We were able to analyse cast-as-intended and
individual verifiability up to k = 4 and ballot privacy up to
k = 2. The detailed analysis times are reported in Table 2.
The models in ProVerif can be found in [14]. As explained

in Section 5.2, ballot privacy is expressed as an equivalence
property of the form:

VA(a, b) | VB(c, d) ≈ VA(c, d) | VB(a, b)

for k = 2, where a, b, c, d are constants. This implicitly
means that A and B vote for distinct options. So in the
case k = 2 we further prove privacy when the two honest
voters were respectively voting (a, b), (b, c), or (a, b), (c, b),
or (a, b), (b, a), to check that no attack appears when A and
B share one or two options. ProVerif proves these cases in
exactly the same time than the case where the four options
are pairwise distinct.

6.2. Lessons learned

Our analysis mostly confirms that the Neuchâtel protocol
is secure w.r.t. both privacy and verifiability properties.
However, while modeling the protocol we discovered that
flaws may occur in case of small but realistic deviations of
the protocol. We reported these subtleties to the the company
that designed the system who confirmed to be aware of
them and that they have been taken care of for the actual
implementation.

Exactly k choices. In case of an election where voters select
k options out of n, with k ≥ 2, voters (and authorities)
should be aware (and properly instructed) that voters should
select exactly k options (and not less). Otherwise, a dishon-
est voting device may use the remaining “unused” choices
for other unexpected voting options (and discard their return
codes).

No duplicate. Still in case of an election where voters
select k options out of n, voters should not be offered the
possibility to vote twice for the same option (for example,
the election rules may allow voters to choose twice the same
candidate). Indeed, the protocol would then be vulnerable to
an attack where the intruder uses the duplicated choice (say
Alice votes twice for a, that is, she votes a, a) to make
her vote for a, b (and manually duplicate the return code
corresponding to a, to make Alice happy).

Blank vote. It becomes particularly tricky for elections that
allow voters to abstain (that is, vote “blank”). In that case,
k different blank voting options must be provided to voters.
Those blank voting options shall have different individual
return codes, and voters shall be advised that they need to
check a return code for each blank option. In other words, if
Alice wishes to abstain in an election where voters can select
k options out of n, then she must receive (and check) k dis-
tinct return codes, corresponding to k blank voting options.
Of course, in case the election includes several questions
(e.g., several sub-elections) then these blank options have
to be specific to each question. This may be difficult to
understand for voters.

Synchronization. As pointed before, the protocol is no longer
secure w.r.t. the cast-as-intended property as soon as the vot-
ing server answers two different requests from the same vot-
ers. (Note that this is explicitly forbidden by the Neuchâtel
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protocol since revoting is not allowed). Therefore, the voting
server must implement some form of thread synchronization
to guarantee that two different ballots will never be accepted
for the same id , even if none of them has yet been confirmed
by the voter. This should be enforced even when voting
servers are duplicated for efficiency reasons. In particular,
the use of tables as described in [20] is insufficient and
further requires a proper lock mechanism.

7. Discussion and conclusion

We provide an automated proof of an e-voting pro-
tocol in use for politically-binding elections in the Swiss
cantons of Neuchâtel and Fribourg. Our analysis confirms
the security of the protocol: it ensures cast-as-intended and
recorded-as-cast against a dishonest voting device (assuming
an honest voting server) and it guarantees privacy against a
dishonest voting server (assuming an honest voting device).
The protocol does not aim at universal verifiability (the fact
that anyone can check that the result corresponds to the
cast ballots) nor coercion-resistance. Previous analysis of
other e-voting protocols (eg [3], [16], [17], [18] ) left several
parts of the protocol undefined because they had not been
deployed for actual elections. Our ProVerif model covers the
authentication phase, voters’ cryptographic keys derivation
from passwords (as voters cannot be asked to copy long
strings), no revote, as well as elections where voters may
select several options. One particular challenging aspect of
the Neuchâtel protocol is the fact that it forbids re-voting
since it would be insecure otherwise. Due to ProVerif’s over-
approximations, we had to propose several ideas in order to
still obtain automated proofs of all the desired properties.

As future work, we plan to explore how we could
extend ProVerif in order to cope with protocols where some
events happen only once. This is the case as soon as a
protocol embeds some lock mechanisms or uses of counters.
Similarly, our encoding works for correspondence properties
only. To cover equivalence properties such as privacy, we
would need to first modify the ProVerif tool, in order to be
able to specify that executions have to be in equivalence,
except when something deemed impossible has occurred.

At the time we started this case study, ProVerif was
the only tool that supported flexible equational theories as
well as correspondence and equivalence properties, for an
unbounded number of sessions. Now, the Tamarin tool [19]
also covers a wide range of primitives and the same class of
properties. It would be interesting to translate our model into
Tamarin in order to compare the two tools and understand
which one is the best suited in the context of voting. In
particular, Tamarin does not suffer from the same approx-
imation issues than ProVerif w.r.t. global states but would
probably require some user interactions.

It is worth noticing that our analysis applies to the spec-
ification of the Neuchâtel protocol, not its implementation.
For the voting device, this is not necessarily an issue, at
least for the verifiability properties: cast-as-intended and
recorded-as-cast are guaranteed even if the voting device

runs an arbitrary code. However, the voting server is as-
sumed to be honest and both privacy and verifiability rely on
the fact that the voting server behaves as specified. Checking
whether the code matches its specification is clearly beyond
the scope of this study. One direction would be to re-
implement the voting server (at least its core part) in some
language suitable for proofs, like F ∗, as it has been done
for TLS [5].
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