
Have your PI and Eat it Too: Practical Security on a
Low-cost Ubiquitous Computing Platform

Amit Vasudevan and Sagar Chaki

amitvasudevan@acm.org, chaki@sei.cmu.edu

SEI, Carnegie Mellon University

Abstract—Robust security on a commodity low-cost and popu-
lar computing platform is a worthy goal for today’s Internet of
Things (IoT) and embedded ecosystems. We present the first
practical security architecture on the Raspberry PI (PI), a
ubiquitous and popular low-cost compute module. Our archi-
tecture and framework — called UBERPI — focuses on three
goals which are keys to achieving practical security: commodity
compatibility (e.g., runs unmodified Raspbian/Debian Linux)
and unfettered access to platform hardware, performance (avg.
2%–6% overhead), and low trusted computing base and com-
plexity (modular 5544 SLoC). We present a full implementation
followed by a comprehensive evaluation and lessons learned.
We believe that our contributions and findings elevate the
PI into a next generation, secure, low-cost IoT embedded
computing platform.

Index Terms—Raspberry PI Micro-Hypervisor Security Ar-
chitecture, Trap-Inspect-Forward, Peripheral and Interrupt
Partitioning, Uberguest, Uberapps.

1. Introduction

Security in today’s burgeoning Internet of Things (IoT)
embedded platforms is of paramount importance given the
rate of vulnerabilities [31], [32]. However, achieving practi-
cal security on interconnected embedded platforms is a chal-
lenge since it has to balance cost, performance, commodity
compatibility (i.e., be able to run commodity unmodified off-
the shelf OS and applications), and unfettered development
practices (e.g., full access to platform functionality and
choice of programming languages and tools) to foster wide
industry and developer backing, in turn propelling rapid
prototyping and shorter time to market.

While there have been several research proposals to-
wards embedded system security [3], [5], [12], [17]–[21],
[21], [22], [24], [26]–[28], [30], [40], [42], [43], [48],
[50], [53], [54], they either employ ad hoc and/or closed
platforms sacrificing commodity compatibility and affecting
development practices [12], [21], [22], [24], [26]–[28], [30],
[40], [43], [48], [53], target high-end platforms [19], [20],
[50] or propose costly add-on modules that only provide a
constrained execution environment [17], [21], [42], [54] (cf.
related work; §9).

To address these limitations, we asked ourselves two
questions: (Q1) what is the lowest-cost, off-the-shelf, highly
popular IoT/embedded development platform available to-
day; and (Q2) what security properties can we harness
from it using a small trusted computing base (TCB), while
remaining performant and embracing commodity compati-
bility and unfettered development practices?

The answer to Q1 is a credit-card size, sub $35 comput-
ing platform — the Raspberry PI (PI). The PI has sold over
several million units since its inception in 2012, and is one
of the most popular development and prototyping platform
today in the IoT/embedded space [1]. It runs commodity
Linux (Raspbian, Ubuntu, etc.) and Windows (IoT core)
OSes, and enjoys a huge developer support and industry
adoption (IBM, Microsoft, Google). Last, but not least,
Broadcom, which supplies the base PI hardware, contin-
ues to provide incremental hardware improvements over 3
generations of the PI. The answer to Q2, and our main
contribution, is UBERPI (UPI), a micro-hypervisor (μHV)
based system security architecture and framework for the
PI.

We begin by presenting a hardware platform level ar-
chitecture of the PI, and discuss the interplay between
relevant hardware platform primitives in the context of
system security (§2). While existing documents describe
parts of the PI hardware solely from a programming and
OS porting perspective, to our knowledge this is the first
holistic description of the PI platform architecture with a
primary focus on system security.

Next, informed by the security oriented platform archi-
tecture of the PI, we present the UPI architecture (§4). UPI

embraces a μHV based system architecture supporting a
single full-featured unmodified commodity guest OS (uber-
guest). We make this design decision to achieve commodity
compatibility. Specifically, UPI leverages basic PI platform
hardware primitives to allow the uberguest direct access
to all performance critical peripherals and interrupts. This
model results in reduced μHV complexity (since all periph-
erals are directly controlled by the OS) and consequently
TCB, as well as high performance (since guest peripheral
interrupts do not trap to the hypervisor).

UPI uses a novel lightweight trap-inspect-forward (TIF)
mechanism to selectively trap and inspect critical peripheral
register accesses, before forwarding the access directly to

183

2018 IEEE European Symposium on Security and Privacy

© 2018, Amit Vasudevan. Under license to IEEE.
DOI 10.1109/EuroSP.2018.00021

QPU

Bus
MMU

RIC

Timers

PIC DMA
Controllers

Mailbox

Other System Peripherals

System Memory

QPU

RAMC

PLLC

NVRAM

ARM CPU Cores VC4 GPU

ARM AXI BUS VC4 AXI BUS

Figure 1. PI hardware platform architecture from a system security per-
spective. Rounded rectangles denote system peripherals; dashed rectangles
denote logical peripheral clusters.

the physical system peripheral (§4.5). TIF allows us to effi-
ciently implement memory, DMA and interrupt protections
without the requirement of hardware support such as IO
Memory Management Unit (IOMMU) and Generic Interrupt
Controller (GIC) which are absent on the PI. UPI TIF also
keeps the μHV complexity low since we don’t resort to
complex peripheral emulation and state maintenance.

UPI also leverages TIF in combination with initial
trusted deployment to achieve a secure boot mechanism on
the PI (§4.6;§4.7), an important feature that is currently not
supported natively by the PI hardware.

The UPI architecture advocates the design and develop-
ment of μHV extensions — called uberapps — that provide
functional and security properties either in the context of the
entire system or portions of the uberguest and applications
running inside it (e.g., isolating a sensitive portion of the ap-
plication). The concrete system properties and applications
we developed are described in §3.2 and §6 respectively.

The UPI implementation, as of this writing, runs unmod-
ified versions of the Raspbian Linux and Emlid real-time
Linux [23] distributions on the PI with multi-core support
(§5). UPI’s μHV TCB is 5282 SLoC. The uberapps we
developed are an additional 262 SLoC. The average runtime
overhead for multi-core, computational and IO applications
is 2%–6% (§7).

UPI is the first practical security architecture that has
been implemented, deployed, and validated for the Rasp-
berry PI. We are hopeful that UPI will spark the development
of security sensitive applications on the PI, and inform its
future hardware incarnations.

2. Slicing the PI

We begin by describing the platform architecture of the
PI with an emphasis on system security. We then follow up
with details on the startup sequence of the PI on power-up.

2.1. Hardware

The PI hardware has gone through three revisions
since its inception. However, all revisions share a common
System-on-Chip (SoC) logic from Broadcom with different
ARM processors. The latest revision (v3) consists of a
ARMv8 Cortex-A53 quad-core CPU with the Broadcom
BCM2709 SoC and 1GB system memory. In this section,
and the rest of the paper, we will focus primarily on the
PI v3. Figure 1 shows the high-level platform hardware
architecture of the PI from a system security perspective.

2.1.1. GPU Co-processor. The PI contains a 3D GPU
based on the Video Core IV Architecture [15]. The GPU
is a self-contained and highly automated co-processor and
is internally divided into multiple instances of special-
purpose floating-point processors termed a quad-processor
(QPU). Each QPU consists of processor registers, ALU and
instruction set spanning load, stores, branches and vector
operations and capable of running full-fledged applications.
The GPU interfaces with the ARM CPU cores (§2.1.2) via
Mailboxes (§2.1.4) and accesses system memory via DMA
(§2.1.7).

2.1.2. ARM Cores. The PI v3 contains a Cortex-A53 quad-
core ARM processor which implements the ARMv8 archi-
tecture including hardware virtualization extensions [8], [9].
Each ARM core can operate in one of two overarching ex-
ecution worlds: secure world and non-secure world. Within
the non-secure world, there are three primary modes: EL2
(or hypervisor mode), EL1 (or guest kernel mode), and EL0
(or guest user mode). The EL2 mode supports translating
guest physical addresses to system physical addresses via a
second-stage page-table data structure.

2.1.3. System Bus and Memory View. The GPU and the
ARM cores run on two separate buses. The buses use the
standard ARM Advanced Microcontroller Bus Architecture
(AMBA) [7] with the Advanced eXtensible Interface (AXI)
fabric [6] to access peripherals via memory-mapped I/O. The
GPU can access system memory and peripherals directly
using a dedicated address map. The ARM cores on the
other hand access system memory and peripherals via a
coarse-grained system bus MMU which maps relevant ARM
physical addresses into the GPU dedicated address map [13].

2.1.4. Mailboxes. The PI mailboxes are hardware conduits
that allow communication between the ARM cores. This is
used to synchronize the ARM cores during system bootup
(§2.2) but can also be used for other operations that require
synchronization (e.g., shared memory accesses). The PI has
16 mailboxes in total, 4 per each ARM core; each mailbox
is a 32-bit wide register. Mailboxes allow communication
between the ARM cores either with polling or via interrupts
that can be configured in the interrupt controller (§2.1.6).

2.1.5. Timers. The PI platform hardware includes three
timers: (a) the local timer is derived from the GPU clock

184

and supports four independent timers. Two of these are used
by the GPU, one is reserved for the operating system and
the other one is unused [13], [14]; (b) each ARM core has
support for four architected 64-bit timers. EL3, EL2 and EL1
have one physical timer each, and there is one virtual timer
attached to EL1 [9]; and (c) the watchdog timer includes
a single counter which resets the hardware platform when
enabled and counts down to zero1.

2.1.6. Interrupt Controllers. The PI has two legacy inter-
rupt controllers which are not virtualization aware [13], [14].
The peripheral interrupt controller (PIC) is responsible for
handling interrupts from the GPU and other peripherals in
addition to supporting certain special event interrupts (e.g.,
illegal bus access). The PIC is not vector based, but instead
sets a bit for every interrupt that is pending. The PIC also
lacks interrupt priority and it is upto the software to decide
which interrupt to service. Finally, the PIC does not support
automatic end-of-interrupt generation. Instead, the end-of-
interrupt signal has to be sent by software directly to the
device that triggered the interrupt.

The PI also has a root interrupt controller (RIC) that is
responsible for handling architected timer interrupts, perfor-
mance monitor interrupts, and mailbox interrupts for each
ARM core. Further, the RIC includes support to route and
trigger interrupts at a specified destination ARM core for
timer and mailbox interrupts.

2.1.7. DMA Controllers. The PI has two direct memory
access (DMA) controllers: (a) the legacy DMA controller
and (b) the USB DMA controller2. Any system DMA has
to be performed using either of the two DMA controllers3.
The main DMA controller has 16 channels and allows both
memory to memory and peripheral to memory transfers
and vice versa. A non-USB peripheral is allocated a DMA
channel and then performs the required DMA thereafter.
The USB DMA controller is reserved for use for only USB
transactions from host to USB device and vice-versa.

2.1.8. Other peripherals. In addition to the timers, mail-
boxes, Interrupt controllers and DMA controllers, ARM
cores can access the following additional system peripherals:
USB, PCM, I2C, SPI, GPIO, PWM, UART and Bluetooth.
The GPU can access all the ARM accessible peripherals and
in addition has dedicated access to the bus MMU, SDRAM
control, PLLC and NVRAM.

2.2. System Startup

When the PI is powered on, the ARM cores are in
reset state and the GPU boots up. At this point the system

1. The watchdog timer is undocumented; the Linux driver bcm2835-
watchdog source enabled us to figure out its design.

2. The USB DMA controller is undocumented; we had to scour through
the Linux driver implementation to unearth the specifics.

3. The documents describing the DMA controllers do not mention how
they integrate into the platform as a whole. We pieced together every
peripheral datasheet and information publicly available to arrive at this
conclusion.

memory (SDRAM) is disabled. The GPU starts executing
the first-stage bootloader from ROM in the SoC. The first-
stage bootloader reads the boot-partition of the boot-media
(e.g., SD card, USB) and loads the second-stage bootloader
(bootcode.bin) into the GPU L2 cache, and transfers
control to it. The boot-partition begins at a fixed address
and is of fixed length regardless of the OS. bootcode.bin
enables SDRAM, and loads and passes execution to the GPU
firmware (start.elf). start.elf then initializes DMA,
mailboxes and interrupt controller functionality required for
GPU operation, sets up the bus MMU to allow ARM access
to system memory, and boots up all the ARM cores in
EL2 mode. All the ARM cores except for the boot-strap
ARM core are then placed within a mailbox wait-loop.
start.elf then loads the OS kernel image (kernel.img)
transfers control to it on the boot-strap ARM core. Lastly,
kernel.img gets control, boots up, loads all the required
OS drivers and initializes the remaining ARM cores via
a mailbox signal to establish a multi-core OS execution
environment.

3. Goals, Properties and Assumptions

3.1. Goals

Our overarching goal is to enable design and develop-
ment of performant security oriented applications on the
PI to inject security properties in the existing platform
and software stack. Our design goals fall broadly in three
categories.
Commodity Compatibility and Unfettered Development:
Our solution must integrate into the existing deployment
ecosystem of the PI. It must be able to run unmodified
stock operating systems and kernels and allow access to
all programmable system peripherals (e.g., GPIO, I2C, SPI,
USB, etc.). It must be generic enough to allow for a wide
variety of security applications to be constructed.
Performance: Our solution must not preclude aggressive
code optimization and must not adversely affect runtime per-
formance. Further, commodity OS on multi-core hardware
must be supported.
Low TCB and Low Complexity: Our solution should have
a low TCB and complexity to facilitate manual audits and/or
formal verification. Recent advances in formal verification
has shown this is a critical requirement for verifiability [25],
[46].

3.2. System Properties and Applications

The UPI architecture provides the following fundamental
system security guarantees (Figure 2): (1) uberguest memory
isolation and memory integrity of μHV and uberapps (§4.3);
(2) μHV and uberapps liveness (§4.3.2); (3) μHV and uber-
apps memory protection from malicious sytem peripherals
(§4.5) sans the hardware TCB (§3.4); and (4) secure boot
(§4.7). We leverage these foundational system properties
and showcase uberapps that we implemented which cover a

185

System Properties Architecture Mechanisms
1. Memory Integrity
of μHV and uberapps

Memory Isolation (§4.3)

2. μHV and uberapps
Liveness

Peripheral and Interrupt Par-
titioning (§4.3.2)

3. μHV and uberapps
DMA protection

Trap-Intercept-Forward
(§4.5)

4. Secure Boot (§4.7) Trap-Intercept-Forward
(§4.5)

Figure 2. UPI system properties and high-level architecture mechanisms.
All architecture mechanisms only rely on PI’s basic ARM h/w virtualization
capabilities including h/w second-stage page-tables.

wide spectrum of security applications spanning watchdog,
attestation, secure storage and runtime monitoring (§6).

3.3. Non-goals

As the most prevalent (if not the de-facto) usage model
of the PI is to run a single OS, we do not aim to run
multiple operating systems or virtualize system resources
in the traditional manner.

3.4. Attacker Model and Assumptions

We assume that the attacker does not have physical
access to the PI. Our hardware TCB consists of the GPU,
ARM, the interrupt controller and the DMA controllers.
Other system peripherals and the OS kernel and applica-
tions are under the attacker’s control. This is a reasonable
assumption since a majority of attacks are mounted by
malicious software or untrusted add-on boards interfacing
via system peripherals. We assume that our hardware TCB
is functionally correct. We also assume the correctness of
the GPU first-stage and second-stage bootloaders and the
GPU firmware to load kernel.img at boot-up. Section 8
discusses how some of these assumptions can be further
relaxed.

4. Practical Security on the PI

We next describe our system architecture and how it
addresses our goals and achieves our desired system prop-
erties (§3). We begin by briefly discussing alternate points
in the design space and follow up with details of our security
architecture.

4.1. Design Space

The competing approaches in the design space (c.f.
related work §9) can be broadly divided into:
Hardware Containers: ARM TrustZone [10] allows soft-
ware to run in an isolated compartment in the processor
secure-world. However, TrustZone requires the use of mem-
ory exclusive to the secure-world, which is absent in the
PI. Further, the TrustZone architecture does not include any
support for runtime monitoring of the OS executing in the
normal-world.

EL2
Timer

Guest OS
Exclusive
System

Peripherals

App
3

EL0

EL1

App
4

App
1

OS Kernel

OS Drivers

Uberapp
SCALL driver

App
2

RIC

DMA
Controllers

EMMC/SDHOST

EL2

uHV
Core

uapp
1

uapp
2

uapp
3

Figure 3. UBERPI micro-hypervisor based system security architecture.
Dashed boxes indicate logical peripheral groups; Dotted boxes indicate
operating privilege levels (EL0, EL1, EL2); Dashed dotted box indicates a
regular application split and bound to an exclusive uberapp; Thick solid
down-arrow indicates exclusive peripheral access by the UPI framework;
Hollow down-arrow indicates exclusive peripheral access by the uberguest;
Patterned down-arrow indicates peripheral accesses that are subject to
trap-inspect-forward; Solid bi-directional thin arrows indicate synchronous
uberapp calls; Dotted bi-directional thin arrow indicate asynchronous
uberapp calls.

OS Containers: OS namespace and kernel support can
be leveraged to implement sandboxing mechanisms [3],
[18] and type-2 hosted hypervisors [19]. However, these
approaches end up including a large portion of the OS
into the TCB. Further, the isolated containers are resource
constrained without full access to platform hardware.
Baremetal VMMs: ARM general-purpose baremetal hy-
pervisors [34], [50] support multiple guests. However, they
rely on hardware support for IO Memory Management Unit
(IOMMU) and virtualizable Generic Interrupt Controller
(GIC) which are absent on the PI. This in turn prevents
them from achieving adequate protection (e.g., DMA) or
allowing full access to system peripherals within the guest.
Further, they lack support for commodity OSes and only
support Linux kernels on an stripped down emulated hard-
ware platform.

4.2. UBERPI (UPI) Architecture Overview

To achieve our design goals and system properties (§3;
Figure 2), we propose a micro-hypervisor (μHV) based sys-
tem security architecture called UBERPI. In stark contrast to
traditional hypervisor architectures [41], [45], [46] that rely
on several foundational hardware primitives (IOMMU, GIC,
and hardware root-of-trust) typically found on high-end
hardware platforms (e.g., ARM and x86 server platforms),
UPI achieves our goals by leveraging just basic platform
features found on the low-cost PI. Figure 2 summarizes the
UPI system properties and architecture mechanisms.

The high-level UPI system architecture (Figure 3) is
based on three core concepts: (a) μHV core and uberguest:
most system peripherals are controlled directly by a single,

186

commodity, unmodified OS (uberguest) achieving high per-
formance while still ensuring strong isolation and runtime
protection; (b) uberapps: act in the context of the uberguest
or uberguest applications to provide required security prop-
erties; (c) μHV Trap-Inspect-Forward: facilitates secure boot
and runtime protection of the μHV core and uberapps via
light-weight peripheral and memory access interceptions.

4.3. μHV Core and Uberguest

The μHV core forms the heart of the UPI architecture
and includes supporting libraries that sit directly on top of
the platform hardware. The design choice of the uberguest
being a single full-featured commodity unmodified OS fits
squarely with the PI’s de-facto usage model and devel-
opment ecosystem. This choice also allows us to greatly
minimize μHV core complexity and consequently TCB
since most system peripherals are directly handled by the
uberguest. Further, the uberguest model results in high per-
formance since all peripheral interrupts are directly handled
and serviced by the OS without any μHV core intervention.
Section 5.2 describes the uberguest implementation in more
detail, along with challenges of handling guest memory
reporting and multi-core enablement.

4.3.1. Uberguest Memory Isolation. A malicious uber-
guest can directly access UPI memory regions thereby com-
promising system security. UPI leverages the PI Cortex-A53
hardware virtualization second-stage page tables for uber-
guest memory isolation. The second-stage page-tables are
resident within the μHV core memory regions and ensure
that uberguest physical memory accesses are translated to
the actual system physical address via a hardware second-
stage page-walk. The UPI memory regions are marked in-
accessible within the second-stage page-tables which will
cause the hardware to disallow any direct memory access to
the UPI memory regions by the uberguest.

4.3.2. μHV Core Peripheral and Interrupt Partitioning.
Certain security applications may entail reserving specific
system peripherals for exclusive use by the μHV core and/or
the uberapps and the subsequent handling and servicing of
their interrupts, e.g., a dedicated system timer for secure
periodic processing.

UPI handles such peripheral mappings using the hard-
ware second-stage page tables described previously, to en-
sure that the uberguest does not see or have unrestricted
access to the peripheral that is reserved for (exclusive) use
by UPI. However, the lack of GIC hardware on the PI

precludes interrupt virtualization and multiplexing making
interrupt partitioning challenging.

UPI leverages two key insights to allow interrupt parti-
tioning without the GIC and complex peripheral emulation.
First, the ARM architecture supports two overarching inter-
rupt mechanisms (fast and regular), but commodity OSes
only make use of regular interrupt mechanism. Second,
the PI RIC, which supports routing of system peripheral
interrupts via either of the aforementioned mechanisms is

not used for system peripherals; only the PIC is used. UPI

therefore uses a combination of fast interrupts and the RIC
fast interrupt routing to achieve efficient interrupt partition-
ing. Implementation details in the context of an exclusive
timer peripheral can be found in §5.2.2 and §5.3.2.

4.4. Uberapps and Uberapp Interactions

The μHV core interacts with the uberguest via the well-
defined ARM hardware virtualization platform interface [8].
In UPI these interactions are serviced by the μHV core (e.g.,
guest memory reporting) or handled by a μHV core exten-
sion that we term uberapps. For example, tracking uberguest
process contexts for application privacy or a watchdog ap-
plication for ensuring keep-alive sensitive operations in the
face uberguest failures or breach.

UPI also advocates a development ecosystem where a
regular uberguest application can have its sensitive portions
isolated as uberapps which are isolated from the remain-
der of the uberguest and other applications. For example,
storing sensitive signing keys for an encrypted file sys-
tem or for platform attestation. Uberapps can initiate and
maintain trust with components higher in the stack (e.g.,
untrusted uberguest application) via existing and comple-
mentary application specific mechanisms. e.g., uberguest
application code/data isolation [47] and/or (property-based)
attestation [11].

Uberapps can be synchronous (e.g., invoked via a syn-
chronous call; SCALL) or asynchronous (e.g., executed peri-
odically). UPI uses a combination of hardware virtualization
traps and ARM architected physical timers to support both
uberapp execution models (§5.3). This allows for a wide
range of security applications to be developed in practice
(§6)

Note that for synchronous uberapp communication, the
uberapp carries the onus of data sanitization for input pa-
rameters (e.g., range checks) since it is processing data
from a potentially compromised guest. The uberguest mem-
ory isolation setup by UPI (§4.3.1, §5.2.1) ensures that a
compromised uberguest cannot influence the uberapp data
sanitization process.

4.5. Protections via Trap-Inspect-Forward

UPI uses hardware second-stage page-table protections
and hardware virtualization traps for light-weight trap-
inspect-forward (TIF) where peripheral accesses are selec-
tively trapped and inspected for correct accesses before
forwarding the access directly to the physical system pe-
ripheral. UPI TIF allows us to implement various system
protections as described below without requiring hardware
IOMMU and GIC support (absent in the PI) and without
resorting to complex peripheral emulation and state main-
tenance. Our evaluation shows that TIF results in low-TCB
and incurs minimal performance overhead (§7).
DMA Protection: A malicious guest or system peripheral
can mount DMA style attacks [38] in order to compromise
UPI memory integrity. As described previously in §2.1.7

187

any DMA request on the PI has to be performed using the
platform DMA controllers. UPI’s DMA protection mecha-
nism monitors the DMA controllers to prevent unauthorized
DMA requests to UPI memory regions thereby ensuring
that malicious peripherals cannot compromise UPI. More
specifically, UPI leverages TIF on the PI DMA controller
register space to prevent any form of DMA attacks in the
system; §5.4.1 describes further implementation details.
Interrupt Protection: A buggy or malicious guest can
tamper with the RIC to disable fast interrupt routing to UPI

resulting in denial of service type attacks. §5.4.2 describes
how UPI leverages TIF to protect the RIC register space to
preserve fast interrupt routings setup by the UPI μHV core
and/or uberapps.

4.6. UBERPI Lifecycle

Installation: End-users receive the PI pre-loaded with the
boot-partition (§2.2) image from the UPI distributor (de-
scribed later in this section). System developers on the other
hand can receive the UPI installation kit, consisting of a
signed boot-partition image from the UPI distributor, which
they verify using the public key and copy it to the boot-
partition of the PI. Then the user optionally (re-)configures
the UPI μHV core and uberapps, e.g., compile a custom
binary image with required uberapps from a signed source
blob. UPI is now ready for startup and normal operation
Startup and Recovery: On bootup UPI μHV core is loaded
which in turn initializes the uberapps and eventually boots
the uberguest. Normal system operation is characterized
by uberguest execution interspersed with μHV core and
uberapp interactions. When the uberguest is shutdown, the
UPI μHV core gets control and cleans up required internal
state including those of uberapps before powering down
the PI. Malicious uberguest behavior (e.g., writing to UPI

memory regions, performing DMA to UPI memory regions,
etc.) are disallowed gracefully by ignoring such actions.
However, such actions can also be handled via a dedicated
uberapp for required user signaling (§6).
UPI Distributor: The role of the UPI distributor might be
played by a trusted company or organization, such as IBM,
Microsoft, Google. UPI’s key insight is that by agreeing to
install and use UPI, the user is expressing their trust in the
UPI distributor, since UPI will be operating with maximum
privileges. To some extent, OS distributions today already
implicitly operate on this assumption. When a user installs
a distribution they also trust those distributions to provide
software that does not contain malware.
Updates: As UPI components (μHV core and uberapps)
evolve, they need to be updated. This process is straightfor-
ward since the UPI distributor can simply release a signed
list of the update and/or source binary to be installed as
described in the beginning of this section.

4.7. Secure Boot

The UPI lifecycle ensures a valid PI boot-partition image
to begin with (§4.6). However, malware in the uberguest

EMMC/SDHOST Controller

EL0/EL1

EL2

Guest OS

Boot-partition
[READ, WRITE]

e.g., /dev/mmcblk0p1

uPI

Root-partition
[READ, WRITE]

e.g., /dev/mmcblk0p2

Boot-partition
[READ, DENY WRITE]

Root-partition
[READ, WRITE]

Figure 4. UBERPI secure boot leverages intercept and inspect mechanism
(indicated by Patterned down-arrow) on the MMC and SDHOST controller
in order to deny writes to the boot partition containing UPI boot binaries
while passing through all other accesses.

can tamper with the binary images on the boot-partition to
subvert subsequent loading of the framework. Secure boot is
one such mechanism to prevent such attacks on embedded
platforms and ensure load-time integrity; the SoC boot-ROM
begins a signed execution chain of boot-loaders until the
final kernel is loaded. However, the PI boot-ROM does
not currently implement such a facility, although the SoC
hardware itself has all the necessary capabilities (§8).

UPI uses a combination of trusted deployment (§4.6)
and trap-inspect-forward (§4.5) to achieve secure boot on
the PI. The UPI lifecycle ensures that a valid boot-partition
image is in place (§4.6). This ensures that the integrity of
the chain of execution from the bootrom SoC to the UPI

framework binary is valid to begin with. UPI relies on a key
insight towards preserving the integrity of the boot-partition
contents. The boot-partition on the PI is of a fixed length
and only used by the GPU to load the boot-loaders and the
final kernel.img and is not used by the OS thereafter.

Figure 4 shows how UPI achieves secure boot on the PI.
UPI takes advantage of the fact that the PI storage is man-
aged by a EMMC/SDHOST controller which implements
the SDIO protocol and directs storage operations to the
attached storage device (e.g., SD card). When the uberguest
writes to the SDHOST controller registers for read and
write operations, UPI intercepts only the write operations
and inspects the SDHOST registers to ensure that the target
sector addresses do not belong to the boot-partition. If it
does, it denies the write. Our evaluation shows that such
interpositioning has minimal effect on the performance (§7).

4.8. UBERPI Security Analysis

We now present a security analysis of the UPI architec-
ture and properties (§3.2; Figure 2) in the context of our
attacker model and system assumptions (§3.4).

UPI’s use of hardware second-stage page tables ensures
that code executing within the uberguest cannot directly
address the μHV core or uberapps, thus protecting their
secrecy and integrity. Thus, even though a uberguest can
be exploited via software or network vulnerabilities, such

188

exploits cannot compromise the μHV core or uberapps
directly.

UPI’s support for periodic uberapps (§4.4) and interrupt
protection (§4.5) prevents malware in the uberguest from
carrying out a denial of service (DoS) attack on UPI. Note
that malware in the uberguest can mount a DoS attack
on synchronous uberapps by compromising the uberguest
application that is bound to the uberapp. However, such DoS
attacks can be detected by employing a watchdog uberapp
(§6).

UPI’s DMA protection mechanism (§4.5) ensures that
malicious peripherals (e.g., USB, SPI or I2C peripherals)
can only access uberguest memory regions, and prevents
advanced DMA controller based attacks such as DMA gad-
gets [38].

Finally, UPI’s secure boot mechanism (§4.7) ensures that
the uberguest cannot write to the boot-partition of the PI.
With the UPI installation ensuring a legitimate boot-partition
to begin with (§4.6), this ensures a valid UPI image will
always be loaded during boot-up.

5. UBERPI Implementation

The UPI prototype implementation described in this sec-
tion runs the unmodified Raspbian 32-bit Linux distribution
shipped with the PI v3 with version 4.4.y of the Linux
kernel. In addition, UPI can also run the unmodified Emlid
real-time Linux kernel [23]. The implementation builds on
top of the open-source UBER-eXtensible Micro-Hypervisor
Framework [45], [46] and has a 24MB runtime memory
footprint.

5.1. Bootup

The PI boot-partition kernel.img (§2.2) is replaced by
a unified UPI binary image consisting of: the UPI trampoline
code; the original unmodified (uberguest) kernel.img; and
the UPI μHV core and uberapp bundle. The UPI trampoline
essentially transfers control to the UPI μHV core which
in turn prepares the platform for uberguest and uberapp
execution.

5.2. μHV Core and Uberguest

The UPI μHV core performs the following operations:
(a) initializes μHV EL2 page-tables and the ARMv8 plat-
form hardware virtualization support; (b) sets up memory,
DMA, interrupt and boot protections; and (c) transfers con-
trol to the uberguest kernel to start the OS boot process.

5.2.1. Uberguest Memory Isolation. UPI uses ARMv8
support for second-stage page-tables to implement uberguest
memory isolation. The second-stage page-tables is a 3-level
structure describing the guest physical address mappings
to actual system addresses with additional protection bits
(device, no-access, read-write etc.). UPI framework regions
(where the second-stage page-tables themselves reside) are

marked no-access while other guest memory regions are
marked read-write-execute. The VTCR register is then set to
activate a 3-level page-table format with appropriate share-
ability and cacheability attributes (inner shareable and write-
back, write-allocate caching). Finally, the VTTBR register
is loaded with the base of the second-stage page-tables and
second-stage page-table translation is enabled via the HCR
register.

5.2.2. μHV Core Peripheral and Interrupt Partitioning.
In the ARM ecosystem all system peripheral accesses hap-
pen via memory-mapped IO (MMIO). UPI, by default maps
all system peripherals with read-write protections except
for the RIC, DMA controllers and the MMC/SDHOST
controller which are setup as described in §5.3.2, §5.4.1 and
§5.5 respectively. UPI uses the hardware second-stage page-
tables for such mappings. Note, other system peripherals can
be setup on demand if required to be used exclusively by
the UPI framework and uberapps (cf. wdog uberapp and the
hardware watchdog peripheral; §6).

ARM uses FIQ signaling for fast interrupts and IRQ
signaling for normal interrupts. The μHV core programs the
HCR register to indicate no-trapping on IRQs. This allows
uberguest to handle all peripheral interrupts without any
intervention by UPI. UPI also sets the FIQ redirection bit in
the HCR register for fast interrupt redirection to the μHV
core. When this bit is set, hardware transfers control to a set
location in EL2 mode on FIQ interrupts. The corresponding
peripheral interrupt is then handled and cleared within the
μHV core and/or the uberapp as required.

5.2.3. Uberguest Memory Reporting. A native ARM OS
during its boot-up on the PI has the option of using either the
Device Tree Blob (DTB) or ATAGS in order to obtain the
system memory map4. The DTB and ATAGS are essentially
flat data structures that contain information about system
memory and devices and various memory regions and their
attributes (e.g., device MMIO, usable memory and reserved).
The DTB and ATAGS are setup by the GPU firmware prior
to loading kernel.img.

However, with UPI loaded there must be a way to report
a reduced memory map excluding the UPI memory regions
to the OS. If not, the OS at some point during execution
will end up accessing the UPI framework which would
cause a fault since UPI memory is marked no-access within
the second-stage page-tables (§5.2.1). UPI revises the DTB
and the ATAGS structures adding entries to mark the UPI

memory regions reserved. Thus a well-behaved OS will
not attempt to access the UPI memory regions during the
lifetime of its execution5.

4. Linux kernels adhere to this requirement. However, some commodity
OSes may use boot-loaders which may not adhere to this requirement (e.g.,
Windows IoT core). The work-around in such a case is to modify the boot-
loader to use the ATAGS/DTB instead.

5. A malicious OS can still try to access the UPI memory regions, but
will cause a fault in the second-stage page-tables; currently this causes UPI

to ignore the access and resume the OS.

189

5.2.4. Multi-core Support. On the PI only one ARM core
called the boot-strap core is started when the GPU firmware
transfers control to kernel.img. The other (application)
cores spin on the core mailbox waiting for a signal to
awaken. At some point during the boot process of a native
OS, the kernel will signal the mailbox which causes the
other cores to awaken and start executing kernel code. UPI

on boot-up initializes all the cores to EL2 mode and leaves
all the application cores spinning on their mailbox and
letting the boot-strap core start the OS in EL1 mode. When
the OS signals the mailbox, the cores spinning in EL2 mode
respond by grabbing the starting address (written to the
mailbox) and transfers control to the OS in EL1 mode at
the starting address.

5.3. Uberapps and Uberapp Interactions

5.3.1. Synchronous Uberapp Interactions. ARMv8 hard-
ware virtualization traps provide a hardware enforced mech-
anism for synchronous uberapp interactions. The HVC in-
struction is used to perform a hypercall and is used as a pri-
mary means for synchronous uberapp interactions from the
uberguest. Other synchronous uberapp interactions happen
via hardware assisted trap mechanisms including second-
stage page-faults (as a result of protection violation in the
second-stage page-tables) and designated instruction traps
(e.g., execution of system instructions). Upon all such traps,
the μHV core gets control, marshals required parameters and
transfers control to the corresponding uberapp handlers.

5.3.2. Asynchronous Uberapp Interactions. The PI

Cortex-A53 ARM processor has support for per-core phys-
ical timers. The physical timers are banked across all the
operating modes. The EL2 mode physical timer is con-
trolled via a group of system registers which include the
timer-value register (CNTHP_TVAL), compare value regis-
ter (CNTHP_CVAL) and a control register (CNTHP_CTL).
The timer-value is the physical timer and is incremented
every clock cycle. The control register is programmed to
trigger an interrupt if it matches the compare value register,
UPI programs the RIC to generate a FIQ interrupt for
interrupts received via the EL2 mode physical timer. The
FIQ interrupt handler within the μHV core is responsible
for invoking the corresponding uberapp timer handler for
any periodic processing.

5.3.3. Uberapp API. The UPI μHV core implementation
currently provides the following application programming
interface (API) to uberapps: (a) manipulating second-stage
page-table protections – allowing uberapps to set appro-
priate memory protection on uberguest memory pages; (b)
enabling platform h/w virtualization features – allowing
uberapps to activate appropriate uberguest event reporting
mechanism (e.g., trap control register accesses); and (c)
installing platform trap handlers – allowing uberapps to
install their custom trap handlers (e.g., for timer processing).
The aforementioned set of APIs allow us to implement
several practical security applications as described in §6.

5.4. Protections via Trap-Inspect-Forward

5.4.1. DMA Protection. As described previously (§2.1.7)
the PI contains a legacy DMA controller and a USB DMA
controller on the SoC.
Legacy DMA Controller: The legacy DMA controller
contains 16 DMA channels and each channel is interfaced
via a pair of registers: the control block address register
and the status and enable register. The DMA control block
(dmacb) structure consists of the source and destination
DMA physical addresses along with the length of transfer
and the address of the next control block structure. This
way multiple control blocks can be linked in order to
perform batch DMA operations. The legacy DMA controller
is MMIO mapped in the second-stage page-tables with a no-
access protection. This allows trapping on both reads and
writes to channel pair registers.

UPI uses DMA control block shadowing in order to
protect framework memory from (malicious) DMA trans-
actions. On write to the dmacb address register, we iterate
through the control block list supplied by the OS and copy it
over to a μHV core control block area. During this copy we
also ensure that the control block source and destination do
not include any UPI memory regions. We then set the dmacb
address register to the address of the shadow control block.
Subsequent write to the DMA enable register by the OS
will then use the shadow control block for DMA transfers.
Similarly, reads to the control block address will return the
original control block address as expected by the OS. This
shadowing mechanism is both efficient (§7) and effective
in terms of preventing any form of DMA attacks including
DMA gadgets [38].
USB DMA Controller: The PI also consists of a USB
DMA controller (usbdmac) which is part of the USB OTG
host controller. The usbdmac consists of various registers
which form a DMA descriptor. One such address is the host-
address which is used to transfer USB data into or out of the
system. The usbdmac is mapped as MMIO in the second-
stage page-table with read-only protection. This allows us
to pass through descriptor reads any trap only on writes.
On write trapping via second-stage page-faults we check to
ensure that the value written to the host address field is part
of the uberguest memory region. If not, the write is denied.

5.4.2. Interrupt Protection. The PI root interrupt controller
(RIC) is employed for interrupt partitioning for peripherals
that are reserved exclusively for the μHV core and/or uber-
apps. The EL2 timer is one such example which is used by
the μHV core for periodic uberapp processing (§5.3). The
RIC contains an interrupt enable and interrupt type field for
physical timers as well as other system peripherals.

UPI maps the RIC as MMIO and with read-only pro-
tections in the second-stage page tables. This allows us to
intercept on writes to the RIC registers while allowing reads
to pass through. The current implementation ignores any
writes to the interrupt enable and interrupt type fields for the
EL2 timer peripheral. This ensures that EL2 timer interrupts
for periodic uberapp processing are always fired.

190

5.5. Secure Boot

The UPI secure boot implementation supports any SD
card that is complaint to the SDIO v3 standard. This is
the same requirement imposed by the PI itself. As per the
SDIO specification, before any operation (read or write) is
performed on the card, the MMC/SDHOST controller ARG
register is set to the actual sector address for performing
the operation and the BLKCOUNT register is set to the
number of blocks that needs to be taken into account. This
is then followed by a write to the SDCMD register which
specifies if a read (17/18) or write (24/25) operation is to
be performed. For example, to write a sector at address 0
on the SD card the ARG register is set to 0, BLKCOUNT
register is set to 1 and the SDCMD register is set to 24.

UPI maps the SD HOST controller register space as
MMIO and read-only in the second-stage page-tables. This
allows us to only trap on writes to the register space allowing
reads to pass through thereby preventing unnecessary traps
due to any status condition reads via the register address
space. Upon a write to the SDCMD register for a write
command, UPI checks the ARG and the BLKCOUNT reg-
ister to ensure that they do not fall within the boot-partition
sector range. As described in §2.2, this is a fixed range for
the PI regardless of the running OS. If UPI detects writes
that fall within the boot-partition sector range, it ignores the
write and sets the status register to indicate an error, else
the write command is allowed to go through.

6. UBERPI Applications

In this section we describe uberapps we have imple-
mented using UPI. The uberapps serve to illustrate the range
of security applications that can be realized using the UPI

framework.
Watchdog: Any security posture benefits form the use of
a non-circumventable watchdog application. We developed
a uberapp called wdog which reacts to a malicious uber-
guest event (e.g., access to UPI framework memory) or a
frozen uberguest by restarting the PI. wdog employs trap-
inspect-forward (§4.5) on the hardware watchdog peripheral
by marking the peripheral register space read-only in the
second-stage page-tables. wdog services hardware second-
stage page-faults traps that occur on uberguest writes to
the watchdog peripheral and resets a zero-initialized in-
ternal counter. wdog also services second-stage page-faults
in response to malicious uberguest memory accesses and
maintains a status variable indicating such accesses. Finally,
wdog relies on periodic uberapp execution to continuously
increment its internal counter. If the internal counter reaches
a predefined value or if the status variable indicates any
malicious accesses on each periodic servicing, wdog resets
the system.
Micro Trusted Platform Module (TPM): Another im-
portant security application is attestation. We implemented
a micro TPM uberapp that is based on the TrustVisor
open-source x86 micro-TPM library implementation6. Our

6. http://xmhf.org

implementation separates the user-mode micro-TPM test
application and library operations of PCR extend, read, seal
and unseal along with related private keys into the utpm
uberapp. The utpm uberapp interfaces with the rest of the
micro-TPM test application via synchronous uberapp calls.
The utpm implementation currently uses ephemeral keys,
but long-term storage can be achieved by using the protected
boot-partition and/or the PI NVRAM (§8).
Encrypted File System: Secure storage provides secrecy,
integrity and/or freshness for a software module’s data at
rest. We implemented an encrypted file system based on the
open-source FUSE-based pa5-encfs7, to support encrypted
storage within the uberguest. We isolated the sensitive por-
tion of the original pa5-encfs implementation which corre-
sponds to the private key and password operations into the
encfs uberapp. encfs communicates with the remainder
of the pa5-encfs implementation via synchronous uberapp
calls.
Contextual Inspection: Lastly, to demonstrate a class of
runtime monitoring application, we developed a stand-alone
uberapp called ctxtrace to perform uberguest wide pro-
cess tracking. ctxtrace relies on synchronous uberapp
invocation via hardware virtualization traps on instruction
execution. More specifically ctxtrace traps on TTBR0
and TTBR1 system register writes to track process page-
table (context) switches. Upon such writes, ctxtrace logs
the process id and its corresponding page-table base for
future inspection. ctxtrace can be used as a foundation
for developing more full-fledged process privacy preserving
applications or simply for tracing and debugging purposes.

7. UBERPI Evaluation

In this section we evaluate our UPI implementation using
three metrics: code size, development effort and perfor-
mance. For brevity we focus on the 32-bit Raspbian OS
(Linux kernel 4.4), the default OS distribution bundled with
the PI.

7.1. Trusted Computing Base (TCB)

Like all security systems, UPI must assume the correct-
ness and security of its components. One way to make this
assumption more likely to hold is to keep things modular
and reduce the amount of code and complexity that must
be trusted. This in turn reduces the opportunity for bugs.
We use the sloccount utility to measure the code size
and composition of our prototype. UPI’s TCB comprises
of runtime libraries, μHV core and uberapps. The runtime
libraries currently include a tiny C, crypto and micro-TPM
library. The μHV core comprises of base platform code,
uberguest and uberapps support, secure boot, memory, DMA
and interrupt protection mechanisms. Combining everything,
UPI’s SLoC is 5544. UPI’s SLoC and modular implementa-
tion is well within range for state-of-the-art system software
verification approaches [25], [45], [46] to be readily applied

7. http://github.com/ianks/fuse-encrypted-filesystem

191

.c .s .h
Component (SLoC)

Runtime Libraries:
C library 153 0 341
Crypto library 1819 0 180
Micro-TPM library 345 0 101
uberapp SCALL library 90 0 15

μHV core:
Platform support 99 620 435
Uberguest support 465 0 69
Uberapp support 103 0 10
Memory protection 145 0 0
DMA protection 153 0 29
Interrupt protection 37 0 0
Secure-boot 73 0 0

uberapps:
Context Tracer (ctxtrace) 74 0 5
Watchdog (wdog) 23 0 0
Encrypt FS (encfs) 50 0 23
Micro-TPM (utpm) 57 0 30

3686 620 1238

Total 5544
Figure 5. UPI Trusted Computing Base: Contains modular components
comprising runtime libraries, μHV core and uberapps. .c = C source;
.s = Assembly source; .h = header file

to the code base for higher assurance. We leave this task
for future work. UPI’s SLoC is also an order of magnitude
smaller than other ARM hypervisors advertised to work with
the PI (Xvisor [34]: approx. 265K SLoC; KVM/ARM [19]
within Linux Kernel: in millions of SLoC).

7.2. Development Effort

Development of the UPI prototype including uberapps
took 6 person months in total. Majority of this time (5 person
months) was spent towards the implementation of runtime
libraries and the μHV core, which is a one time effort that
will continue to proceed in an incremental fashion as the
framework evolves. An additional person month was spent
on developing all the uberapps. UPI’s modularity greatly fa-
cilitated rapid development especially those of the uberapps
which relied on the μHV core and runtime libraries for their
functionality. Re-factoring regular applications to include
a uberapp counterpart (e.g., utpm and encfs) consists of
changing the application structure to isolate and bridge the
sensitive parts with a corresponding uberapp. The latter is
trivial via uberapp interfaces provided by UPI while the
former incurs modest development costs; it took us 3 person
weeks to re-factor the original micro-TPM and encryptFS
C source base to run it within UPI with sensitive portions
isolated as uberapps.

7.3. UPI Micro-benchmarks

We designed and ran a number of micro-benchmarks to
quantify important low-level interactions between the UPI

framework (including μHV core and uberapps), the platform

HVC HVC-SCALL NestedPF InstTrap IntTrap

252 3996 345 360 297

Figure 6. UPI micro-benchmarks quantifying low-level interaction prim-
itives between UPI (including uberapps), the platform hardware and the
uberguest. All values are in clock-cycles.

hardware, and the uberguest. A primary performance cost
is the time spent on transitioning between the uberguest
and the UPI framework. This includes transitions due to hy-
percalls, second-stage page-faults, interrupt and instruction
traps. We designed a custom Linux kernel driver which ran
in the uberguest and executed the micro-benchmarks. Mea-
surements were obtained using cycle counters on a single
core configuration to ensure consistency and reduce mea-
surement variability in the context of multi-core. Instruction
barriers were used before and after taking timestamps to
avoid out-of-order execution or pipe-lining from skewing
our measurements. Figure 6 lists the transition costs between
the uberguest and the UPI framework for various classes
of traps. The costs are minimal as ARM provides banked
register and state support for the EL2 mode. They also
compare favorably to high-end ARM server platforms [19].
Figure 6 also lists the transition cost of a synchronous call as
performed by a uberapp (HVC-SCALL). This includes cost
due to pinning and unpinning uberguest memory buffers,
invoking the kernel driver, and saving and restoring registers
within the μHV core. This overhead is also comparable to
existing Type-1 and Type-2 ARM hypervisors running on
high-end server platforms [19].

7.4. Uberguest Benchmarks

When the uberguest is operating without any uberapp
interactions, there is memory, interrupt, DMA and secure-
boot protection overheads at a low-level. We measure these
overheads using micro-benchmarks and application bench-
marks on the uberguest.

7.4.1. Uberguest Micro-benchmarks. We use the
lmbench3 micro-benchmarks to measure the memory and
interrupt protection overheads in general. The benchmarks
measure uberguest operations such as system calls,
interrupt handling, local communications (pipes, sockets,
etc.), context switches and memory management primitives.
Figure 7 compares the UPI uberguest lmbench3 micro-
benchmark overheads with the native system without UPI.
The overheads in most cases are small with the exception
of fork, exec and mmap which stress the hardware second-
stage translation tables and caches and consequently incur
higher overheads. However, the overheads are still within
reasonable bounds and compare favorably with other ARM
hypervisors running on high-end hardware [19].

To measure UPI DMA protection and secure-boot pro-
tection overheads, we use the industry standard iozone
and netperf micro-benchmarks to measure overhead of
MMC/SD card and the network operations respectively. We
use iozone in auto mode for reads and writes to a 16MB

192

Benchmark Native UPI Overhead

Processes – times in microseconds
null call 0.51 0.51 0.00
null io 0.54 0.55 0.01
slct TCP 21.60 21.70 0.10
sig inst 0.79 0.81 0.02
sig hndl 3.51 3.55 0.04
fork proc 528.00 573.00 45.00
exec proc 4920.00 5147.00 227.00
sh proc 9975.00 10000.00 25.00

Context Switching – times in microseconds
2p/0k ctxsw 6.00 7.00 1.00
2p/16k ctxsw 5.90 6.20 0.30
2p/64k ctxsw 5.00 6.00 1.00
8p/16k ctxsw 6.50 7.20 0.70
8p/64k ctxsw 22.90 23.10 0.20
16p/16k ctxsw 7.40 8.60 1.20
16p/64k ctxsw 24.90 27.90 3.00

MM System latencies – times in microseconds
mmap 13800.00 19000.00 5200.00
prot fault 0.49 0.54 0.05
page fault 1.42 2.09 0.67
100fdselect 7.60 7.60 0.00

Local comms. latencies – times in microseconds
pipe 19.50 21.70 2.20
AF UNIX 17.50 17.50 0.00
UDP 37.70 39.90 2.20
TCP 48.00 50.70 2.70
TCP conn 78.00 80.00 2.00

Local comms. bandwidth – in MB/second
pipe 632.00 614.00 18.00
AF UNIX 1915.00 1914.00 1.00
TCP 454.00 430.00 24.00
mmap reread 1688.00 1642.00 46.00
bcopy (libc) 1052.00 1044.00 8.00
bcopy (hand) 1052.00 1050.00 2.00
mem read 1698.00 1672.00 26.00
mem write 1272.00 1268.00 4.00

Figure 7. UPI uberguest lmbench3 low-level uberguest OS benchmarks
and comparison with native system without UPI

0 5000 10000 15000 20000 25000

4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384

upi native

100
100
100
100
100
100
100
99
99
100
99Re

co
rd

Siz
e

(K
B)

Throughput (KB/s)

Figure 8. UPI uberguest MMC/SD card iozone disk read microbench-
marks. Secondary axis: % of native system performance.

0 5000 10000 15000 20000

4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384

upi native

100
100
100
100
100
100
100
100
100
100
100
100
98Re

co
rd

Siz
e

(K
B)

Throughput (KB/s)

Figure 9. UPI uberguest MMC/SD card iozone disk write microbench-
marks. Secondary axis: % of native system performance.

0 20 40 60 80 100

1024
2048
4096
8192

16384
32768

upi native

100
100
96
95
94
92

So
ck

et
 S

ize
 (b

yt
es

)

Throughput (Mbit/s)

Figure 10. UPI uberguest netperf TCP_STREAM network mi-
crobenchmarks. Secondary axis: % of native system performance.

test file with the direct IO option to reduce measurement
variability due to file-system caches. The TCP_STREAM
and UDP_STREAM netperf benchmarks are used to mea-
sure the low-level network performance for various socket
and message sizes starting from the OS supported minimum
sizes.

The iozone micro-benchmarks (Figure 8 and Figure 9)
mostly run close to native speeds at higher record sizes
and have minimal overheads (0-2%) at lower record sizes.
A similar trend is observed with the netperf micro-
benchmarks (Figure 10 and Figure 11) which run close to
native speeds at higher socket and message sizes and incur
small overheads at lower socket and message sizes. The
overheads at lower record, socket, and message sizes are due
to multiple DMA transfers which incur control block shad-
owing overheads. We note that the SDHOST trap-inspect-
forward incurs minimal overhead since most transactions
employing DMA use sparse writes to the SDCMD register.

7.4.2. Uberguest Application Benchmarks. We execute
computational and memory benchmarks from the Phoronix
Test Suite for Linux [35]. We use pts/ramspeed, pts/-
cachebench and the pts/scimark suites as they provide a
good mix of computational and memory intensive applica-
tion benchmarks. Figure 12 shows the execution of these
benchmarks on the UPI uberguest as % of the native sys-
tem’s performance without UPI. The average overhead of the

193

0 20 40 60 80 100

16
32
64

128
256
512

1024
2048
4096
8192

16384

upi native

100
100
100
100
100
99
97
98
93
88
79M

es
sa

ge
 S

ize
 (b

yt
es

)

Throughput (Mbit/s)

Figure 11. UPI uberguest netperf UDP_STREAM network mi-
crobenchmarks. Secondary axis: % of native system performance.

benchmarks is only 2%. scimark:fft is the only benchmark
incurring a relatively larger overhead of 11%. We attribute
this to the overhead to hardware second-stage page-tables
and caches.

To test the uberguest multi-core performance, we use the
multi-core Phoronix benchmarks: pts/c-ray (ray tracing), pt-
s/gcrypt (CAMELLIA256-ECB Cipher), pts/compress-7zip
(compression), and pts/himeno (poisson pressure solver).
Figure 13 shows the average overhead of these benchmarks
to be 4.5%, This overhead is attributed to the hardware
second-stage page table coherency and inter-core TLB and
caches.

Lastly, we execute a suite of I/O bound application
benchmarks. We use the Phoronix pts/apache benchmark
(1,000,000 requests with 100 requests being carried out
concurrently), pts/fs-mark (1000 files and max. 1MB size)
for SD and USB disk benchmarking, and obexftp [33] with
a 32KB file transfer via bluetooth using the OBEX protocol.
We also wrote a small application, gpio, to generate a wave
via the GPIO pins for GPIO benchmarking. Figure 14 shows
the IO benchmark results with an average overhead of 3.5%.
All IO benchmarks except for pts/apache run with minimal
overhead (1%). pts/apache incurs a larger overhead (11%)
which is due to the nature of the TCP connections and
large number of forks and exec which stress both the DMA
protection as well as the memory and interrupt protection
mechanisms.

7.5. Uberapps Benchmarks

We use the uberapps described in §6 for uberapp perfor-
mance benchmarking. For the ctxtrace and wdog stand-
alone uberapps, we use the lmbench3 benchmark suite to
measure the impact on process context switches and inter-
rupt handling respectively (Figure 15). The overheads are
very reasonable considering the active runtime monitoring
nature of these uberapps.

For the encfs uberapp we use the iozone benchmark
to measure the disk read and write performance with a target
encrypted FUSE file-system container. We use iozone with

0 20 40 60 80 100

scimark:composite
scimark:monte carlo

scimark:fft
scimark:sparse matmul
scimark:dense matfact

scimark:jacobi
cachebench:read

cachebench:write
cachebench:rdmodwr

ramspeed:triadint
ramspeed:copyint

ramspeed:averageint
ramspeed:addfp

ramspeed:copyfp
ramspeed:scalefp 100

99
99
99
100
99
99
100
100
97
96
97
89
98
97

Figure 12. UPI uberguest computational and memory benchmark execution
as % of native system performance without UPI.

0 20 40 60 80 100

pts/himeno
pts/compress-7zip

pts/gcrypt
pts/c-ray 98

100
91
93

Figure 13. UPI uberguest multi-core benchmark execution as % of native
system performance without UPI.

0 20 40 60 80 100

apache (requests /s)
fs-mark (usb; files/s)

fs-mark (sdcard; files/s)
gpio (seconds)

bluetooth (seconds) 99
99
99
99
89

Figure 14. UPI uberguest IO benchmark execution as % of native system
performance without UPI.

4K record size and direct IO with a 16MB file. For the utpm
uberapp we wrote a simple user-mode test application which
invokes the micro-TPM PCR read, PCR extend, seal and
unseal functions. Figure 17 shows the performance of the
uberapps compared to the native system without UPI. The
average overhead is small (6%) which is primarily attributed
to synchronous uberapp calls.

7.6. Comparative Analysis Effort

We also tried to compare UPI quantitatively with other
other general-purpose hypervisors whose execution on PI

seemed plausible. Our candidates were: Xen-ARM [50],
KVM-ARM [19], [20], and XVisor [34].

Xen-ARM fails to build or run on the PI due to lack of
virtualizable GIC and IOMMU support. This is consistent
with various reports describing Xen-ARM’s lack of support
for the PI [2], [36], [49].

KVM-ARM built successfully, but building and getting
the QEMU part to run remains a challenge — we ended

194

Benchmark Native UPI/ ctxtrace Overhead

2p/0k ctxsw 6 7.1 1.1
2p/16k ctxsw 5.9 6.7 0.8
2p/64k ctxsw 5 6.3 1.3
8p/16k ctxsw 6.5 8.0 1.5
8p/64k ctxsw 22.9 23.3 0.4
16p/16k ctxsw 7.4 9.6 2.2
16p/64k ctxsw 24.9 29.4 4.5

Figure 15. UPI ctxtrace uberapp lmbench3 process context switch
benchmarks. Values in micro-seconds, smaller-is-better.

Benchmark Native UPI/ wdog Overhead

sig inst 0.79 0.81 0.02
sig hndl 3.51 3.65 0.14
prot fault 0.50 0.53 0.03
page fault 1.42 2.09 0.67

Figure 16. UPI wdog uberapp lmbench3 interrupt/signal/fault process-
ing benchmarks. Values in micro-seconds, smaller-is-better.

0 20 40 60 80 100

encfs

utpm 96

93

Figure 17. UPI encfs and utpm uberapps benchmark execution as %
native system performance without UPI.

up with system freeze and crashes. While one report sug-
gested the use of an out-of-tree QEMU patch and using
just a single-core [39], we were unable to reproduce the
results described therein. This experience is corroborated
by another effort [44] which reports to have some success
with a specific OpenSUSE OS image. However, this method
did not work for us either.

Finally, we tried the XVisor [34] v0.2.9 monolithic
hypervisor which is reported to run on the PI [37]. However,
in our experiments although XVisor [34] built successfully
per the instructions, it resulted in a system freeze on start-
up. Further investigation revealed that others have reported
similar build and runtime issues on the PI with XVisor [37],
[51]. Some discussions suggest using the development re-
lease of Xvisor [52]. However, we did not have any success
with that either.

8. Experience and Lessons Learned

We now describe nuances of the PI platform we discov-
ered during the design and development process.
GPU Boot-loaders and Boot-ROM: The PI GPU is based
on the VC4 architecture and can run regular applications.
The first and second-stage GPU boot-loaders and examples
of such VC4 applications. While the current GPU boot-
loaders are binary-only, Broadcom has made the VC4 engine
public and there are tools now to support development on
the GPU side. There are already fledgling projects that aim
to provide open-source GPU boot-loaders for the PI [4].

Further, our experiments revealed that the SoC boot-ROM
can be read and dumped into a binary. The boot-loaders
and binary boot-ROM can then be validated for correctness
via existing source and binary verification approaches [29],
[46]. We leave such exploration for future work to obtain
higher assurance for the initial boot process.
Secure Boot and NVRAM: While the PI does not currently
have support for secure booting in the SoC boot-ROM,
there is hardware support in the form of Non-Volatile RAM
(NVRAM) within the SoC, which can be leveraged to store
keys and perform secure boot on the GPU side. While the
NVRAM is undocumented, we were able to read and write
to the NVRAM from the VC4 side in our experiments.
Further, the NVRAM can be protected from the ARM side
using the bus MMU. Secure boot can be added to the PI

boot-ROM without any cost overhead since all the required
hardware capabilities are already in place. Further, this can
be done without severely impacting current development
practices. One approach would be for Broadcom to provision
the boot-ROM with support for signed execution of OEM
(e.g., PI Foundation) boot-modules. The OEM can then
support a variety of boot-up modes for the end user or
system developer including both signed and unsigned kernel
images.
ARM Secure-World: The PI actually allows access to the
ARM secure-world (EL3). While this is undocumented, we
were able to add an ARM stub on the boot-partition, which
in turn can be loaded by the second-stage GPU boot-loader
prior to loading kernel.img. This stub can then perform
required platform initialization in secure-world (e.g., con-
figuring appropriate non-secure world accesses), prior to
changing the execution mode to EL2. However, there is no
protected secure-world memory available precluding the use
of existing secure-world architectures (§9).
ARMv8 Nuances: We now describe ARMv8 nuances which
we encountered during development which were either un-
documented or incorrectly documented. Memory cacheabil-
ity, shareability and address sizes in the μHV core page-
tables and the second-stage page-tables must match. This
applies to both device (always mapped as nGRE) and normal
memory regions. The PI’s Cortex-A53 cores have hardware
cache coherency in second-stage page-tables. Thus, there
is no need for performance-impacting TLB shootdowns
for second-stage page-table modifications. Lock instructions
cannot execute without MMU being enabled and locks don’t
work on non-cacheable memory.
DMA Protection: The legacy DMA controller data-sheet
does not mention the possibility of cyclic control blocks.
We inferred this from the Linux kernel Broadcom driver
sources after repeated system freezes during the develop-
ment process.

9. Related Work

Our work uses a micro-hypervisor based system security
architecture along with lightweight trap-inspect-forward to
realize practical security on the low-cost PI. We discuss
related work and their applicability to the PI under four

195

categories: ARM TrustZone [10] based architectures, OS
containers, baremetal approaches and specialized add-on
hardware.
TrustZone-based Architectures: One strategy for introduc-
ing security properties is to put sensitive code in the secure-
world (TrustZone [10]) where it can execute in isolation.
Several research proposals [21], [22], [26], [27], [30], [48],
[53] employ TrustZone to achieve isolation and provide a
range of security properties. However, as described in §8,
although the PI supports TrustZone and has the ability to
execute code in the secure-world, it lacks protected secure-
world exclusive memory. Thus, although some of these
approaches can be adapted to the PI, the OS and applications
running in the non-secure world will have unrestricted ac-
cess to the entire memory thereby undermining the integrity
and secrecy of the secure-world application. Further, Trust-
Zone lacks support for security applications that depend on
runtime monitoring (e.g., ctxtrace).
OS Containers: OS support can be leveraged towards a
general solution for isolation and resource containeriza-
tion. Linux Containers [3] offer light-weight OS-level con-
tainerization by leveraging kernel namespaces. Cells [5],
[18] enables device namespaces and proxies that integrate
with lightweight OS virtualization to multiplex hardware
across multiple virtual containers on the Android OS. KVM-
ARM [19], [20] employs a hosted (type-2) hypervisor ap-
proach to run virtual machines on ARM platforms under
Linux. The common drawback of hosted containers is the
large TCB which includes the entire OS kernel, drivers
and libraries. Cells is only geared towards mobile phones
running the Android OS and does not run on the PI. Linux
containers and KVM-ARM (which does not on the PI; §7.6)
do not provide full access to the underlying hardware and
cannot run the stock PI commodity OSes. KVM-ARM also
suffers considerable performance overhead attributable to
the multiple OS to hypervisor transitions owing to its type-2
architecture [34].
Baremetal Approaches: Xen-ARM [50] is the port of the
Xen hypervisor to the ARM architecture. However, Xen-
ARM does not run on the PI since it requires hardware
capabilities such as IOMMU and virtualizable GIC which
are not present on the PI. There is also performance is-
sues due to the micro-kernel architecture and the cost of
transitions between guest VMs and the driver VM [34].
XVisor [34] is a monolithic hypervisor for ARM platforms.
While it has been reported to run on the PI [37], we could
not reproduce and get it to run for both the latest stable and
development versions (§7.6). Further, due to the monolithic
nature, it has a large TCB and faces similar problems with
device emulations and vulnerabilities as regular VMMs.
Furthermore, XVisor does not run stock PI OSes but runs
a stripped down version of Linux on an emulated platform.
This precludes access to most PI peripherals from within
the guest. Epoxy [16] uses a compiler based approach to
isolate privileged operations on low-cost ARM embedded
platforms. However, it requires full recompilation of the
software stack with support for only a ARM-7M platform
which makes it inapplicable to the PI platform hardware or

development ecosystem.
Specialized Add-on Hardware: Add-on hardware make
use of physically separated protected modules with their
own processing abilities to achieve isolation and protection
of sensitive information [17], [21], [42], [54]. Unfortunately,
addition of such protected modules don’t come cheap.
For example, Zymkey costs as much as the PI with less
than fourth of its processing capabilities. Further, execution
within the protected module is both memory and interface
constrained. For example, the aforementioned modules only
allow execution of small scripts or applets with meager
memory resources.

10. Conclusions and Future Work

Taking stock of the current crop of IoT/embedded com-
puting platforms, our overarching goal was to realize practi-
cal performant security on a ubiquitous, low-cost computing
platform with a low TCB, without sacrificing commodity
compatibility. We found our answer in the low-cost (sub
$35) Raspberry PI for which we present the first secu-
rity oriented system level architecture (called UBERPI) and
implementation, and conduct a comprehensive evaluation
which together substantiate our goals for practical security
with commodity compatibility, high-performance and low-
TCB.

Future work involves leveraging the low-TCB and low
complexity nature of UBERPI to perform formal verification
for higher assurance as well as supporting other unmodified
OSes (e.g., Windows IoT Core). We also seek to explore
the application of the framework towards more real-world
critical embedded and IoT landscape.

Availability

UBERPI is open-source and is available as part
of the UBER-eXtensible Micro-Hypervisor Framework
(UBERXMHF) at:

http://uberxmhf.uberspark.org

Acknowledgements

We thank our shepherd, Deepak Garg, for his help with
the final version of this paper, as well as the anonymous
reviewers for their detailed comments and feedback. This
work was funded and supported by the Department of
Defense under Contract No. FA8702-15-D-0002.8

8. Copyright 2018 Carnegie Mellon University and IEEE. All Rights
Reserved. This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center. References
herein to any specific commercial product, process, or service by trade
name, trade mark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by Carnegie
Mellon University or its Software Engineering Institute. Carnegie Mellon
is registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University. DM18-0254

196

References

[1] Eben Upton: The Raspberry Pi Pioneer. IEEE Spectrum, 2015.

[2] Attempts to get Xen Hypervisor and MirageOS running on Raspberry
Pi 3. https://github.com/rudenoise/xen-mirage-rpi3, 2016.

[3] Linux Containers. http://linuxcontainers.org, 2017.

[4] Open source VPU side bootloader for Raspberry Pi. https://github.
com/christinaa/rpi-open-firmware, 2017.

[5] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. Cells: A virtual
mobile smartphone architecture. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, pages 173–187,
2011.

[6] ARM. Advanced eXtensible Interface Protocol Specification. http:
//infocenter.arm.com, 2017.

[7] ARM. Advanced Microcontroller Bus Architecture Reference. http:
//infocenter.arm.com, 2017.

[8] ARM. ARM Architecture Reference Manual - ARM v8. http:
//infocenter.arm.com, 2017.

[9] ARM. ARM Cortex-A53 MPCore Processor - Technical Reference
Manual. http://infocenter.arm.com, 2017.

[10] ARM Security Technology. Building a Secure System using Trust-
zone Technology. http://infocenter.arm.com, 2017.

[11] A. Awad, S. Kadry, B. Lee, and S. Zhang. Property based attesta-
tion for a secure cloud monitoring system. In Proceedings of the
2014 IEEE/ACM 7th International Conference on Utility and Cloud
Computing, UCC ’14, pages 934–940, Washington, DC, USA, 2014.
IEEE Computer Society.

[12] Azema J. and Fayad G. M-Shield Mobile Security Technology:
Making Wireless Secure - Texas Instrument Whitepaper, 2008.

[13] Broadcom. BCM2835 ARM Peripherals. https://www.raspberrypi.
org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-
Peripherals.pdf, 2017.

[14] Broadcom. BCM2836 ARM Peripherals. https://www.raspberrypi.
org/documentation/hardware/raspberrypi/bcm2836/QA7_rev3.4.pdf,
2017.

[15] Broadcom. VideoCore IV 3D Architecture Reference Man-
ual. https://docs.broadcom.com/docs-and-downloads/docs/support/
videocore/VideoCoreIV-AG100-R.pdf, 2017.

[16] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo,
S. Bagchi, and M. Payer. Protecting bare-metal embedded systems
with privilege overlays. In Proceedings of the IEEE Symposium on
Security and Privacy, 2017.

[17] V. Costan, L. F. Sarmenta, M. van Dijk, and S. Devadas. The trusted
execution module: Commodity general-purpose trusted computing. In
Proceedings of CARDIS, 2008.

[18] C. Dall, J. Andrus, A. Van’t Hof, O. Laadan, and J. Nieh. The
design, implementation, and evaluation of cells: A virtual smartphone
architecture. ACM Trans. Comput. Syst., 30(3):9:1–9:31, Aug. 2012.

[19] C. Dall, S.-W. Li, J. T. Lim, J. Nieh, and G. Koloventzos. Arm
virtualization: Performance and architectural implications. SIGARCH
Comput. Archit. News, 44(3):304–316, June 2016.

[20] C. Dall and J. Nieh. Kvm/arm: The design and implementation of
the linux arm hypervisor. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’14, pages 333–348, New York,
NY, USA, 2014. ACM.

[21] K. Dietrich and J. Winter. Towards customizable, application specific
mobile trusted modules. In Proceedings of the Fifth ACM Workshop
on Scalable Trusted Computing, STC ’10, pages 31–40, New York,
NY, USA, 2010. ACM.

[22] J.-E. Ekberg, N. Asokan, K. Kostiainen, and A. Rantala. Scheduling
execution of credentials in constrained secure environments. In Pro-
ceedings of the 3rd ACM Workshop on Scalable Trusted Computing,
pages 61–70, 2008.

[23] Emlid. Real-time preemptible kernel for Raspberry Pi. https://github.
com/emlid/linux-rt-rpi, 2018.

[24] A. Fitzek, F. Achleitner, J. Winter, and D. Hein. The andix research
os - arm trustzone meets industrial control systems security. In
Proceedings of IEEE 13th International Conference on Industrial
Informatics (INDIN), 2015.

[25] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S.-C. Weng,
H. Zhang, and Y. Guo. Deep specifications and certified abstraction
layers. In Proc. of POPL, 2015.

[26] J. E. Ekberg and M. Kylanpaa. Mobile Trusted Module: an introduc-
tion. Technical Report NRC-TR-2007-015, Nokia Research Center,
2007.

[27] J. E. Ekberg and M. Kylanpaa. MTM implementation on the TPM
emulator. http://mtm.nrsec.com, 2008.

[28] K. K., E. J. E., and A. N. On-board credentials with open provision-
ing. In Proceedings of 4th International Symposium on Information,
Computer and Communications Security, 2009.

[29] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell,
R. Kolanski, and G. Heiser. Comprehensive formal verification of an
OS microkernel. ACM Transactions on Computer Systems, 32(1):2:1–
2:70, Feb. 2014.

[30] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala. On-board
credentials with open provisioning. In Proceedings of the 4th Inter-
national Symposium on Information, Computer, and Communications
Security, pages 104–115, 2009.

[31] Lily Hay Newman. The Botnet that broke the Internet isn’t
going away. https://www.wired.com/2016/12/botnet-broke-internet-
isnt-going-away/, 2016.

[32] Lucian Constantin. Hackers found 47 new vulnerabilities in 23 IoT
devices at DEF CON. http://www.csoonline.com/article/3119765/
security/hackers-found-47-new-vulnerabilities-in-23-iot-devices-at-
def-con.html, 2016.

[33] ObexFTP. Open-Source OBEX Implementation. http://dev.
zuckschwerdt.org/openobex/wiki/ObexFtp, 2007.

[34] A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi. Embedded
hypervisor xvisor: A comparative analysis. In Proceedings of the
23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, pages 682–691, 2015.

[35] Phoronix Test Suite. Open-Source Linux Benchmarking. http:
//phoronix-test-suite.com, 2017.

[36] Raspberry Pi Discussion. https://raspberrypi.stackexchange.com/
questions/45930/is-it-possible-to-use-any-virtualization-technique-
with-the-raspberry-pi-3, 2016.

[37] Raspberry Pi Forums. Xvisor ARM hypervisor ported to Rasp-
berry Pi. https://www.raspberrypi.org/forums/viewtopic.php?t=45081,
2015.

[38] M. Rushanan and S. Checkoway. Run-dma. In Proceedings of
USENIX Workshop on Offensive Technology (WOOT), 2015.

[39] Sergio L. Pascual. Enabling KVM virtualization for Raspberry Pi
2. https://blog.flexvdi.com/2015/03/17/enabling-kvm-virtualization-
on-the-raspberry-pi-2/, 2015.

[40] Simon Bisson. Microsoft’s Novel Approach to Securing
IoT. http://www.infoworld.com/article/3193742/internet-of-things/
microsofts-novel-approach-to-securing-iot.html, 2017.

[41] U. Steinberg and B. Kauer. Nova: A microhypervisor-based secure
virtualization architecture. In Proceedings of the 5th European
Conference on Computer Systems, EuroSys ’10, pages 209–222, New
York, NY, USA, 2010. ACM.

197

[42] Sun Microsystems Inc. Java card specifications v3.0.1: Classic
edition, 2009.

[43] Trustonic. Trusted Execution Environment. http://www.trustonic.com,
2014.

[44] Valentine Nwachukwu. Setting up KVM on Raspberry Pi
3 using a 64bit openSUSE Pi3 Leap 42.2 xfce image.
https://medium.com/@valdiz777/setting-up-kvm-on-raspberry-pi-
3-using-a-64bit-opensuse-pi3-leap-42-2-xfce-image-22faddf02f48,
2017.

[45] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta.
Design, implementation and verification of an extensible and modular
hypervisor framework. In Proc. of 2013 IEEE Symposium on Security
and Privacy, 2013.

[46] A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and A. Datta. überspark:
Enforcing verifiable object abstractions for automated compositional
security analysis of a hypervisor. In 25th USENIX Security Sym-
posium (USENIX Security 16), pages 87–104, Austin, TX, 2016.
USENIX Association.

[47] Q. N. G. V. P. A. Vasudevan A., Parno B. Lockdown: Towards a
safe and practical architecture for security applications on commodity
platforms. In Trust and Trustworthy Computing, 2012.

[48] J. Winter. Trusted computing building blocks for embedded linux-
based arm trustzone platforms. In Proceedings of the 3rd ACM
Workshop on Scalable Trusted Computing, STC ’08, pages 21–30,
New York, NY, USA, 2008. ACM.

[49] Xen Mailing List. https://lists.gt.net/xen/users/369667, 2016.

[50] Xen Team. Xen ARM with Virtualization Extensions Whitepaper.
https://wiki.xen.org/wiki/Xen_ARM_with_Virtualization_
Extensions_whitepaper, 2016.

[51] XVisor Mailing List. xvisor- linux does not boot raspberry pi. https:
//groups.google.com/forum/#!topic/xvisor-devel/D5bj6U9cs40, 2016.

[52] XVisor Mailing List. Xvisor on a Raspberry PI B+ Board. https:
//groups.google.com/forum/#!searchin/xvisor-devel/raspberry$20pi%
7Csort:relevance/xvisor-devel/liugxJV8Vx0/MgEYXCVpAgAJ,
2017.

[53] X. Zhang, O. Accmez, and J.-P. Seifert. A trusted mobile phone
reference architecturevia secure kernel. In Proceedings of the 2007
ACM Workshop on Scalable Trusted Computing, STC ’07, pages 7–
14, New York, NY, USA, 2007. ACM.

[54] Zymbit. Zymkey Key Management Card. http://zymbit.com, 2017.

198

