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Abstract— Nowadays, the problem of electricity theft and
tampered smart meter data is causing widespread concern.
Customer load profiles collected from smart meters can help
detect abnormal electricity users and identify electricity theft.
In this paper, a density-based electricity theft detection method
is proposed to find out abnormal electricity patterns. Several
malicious types are used to test the validation of the pro-
posed method. Comparisons with k-means clustering, Gaussian
mixture model (GMM) clustering and density-based spatial
clustering of applications with noise (DBSCAN) are also con-
ducted. Numerical experiments show that the proposed method
outperforms other methods in almost all the theft types.

Index Terms— Electricity theft, smart meter data, density-
based clustering, abnormal detection.

I. INTRODUCTION

The abnormal behaviors of electricity users, especially
electricity theft, have been causing huge economic losses
to power utilities all around the world. For example, it is
roughly estimated that the economic loss of electricity is
$15 million [1] in Fujian Province, China. Consumer fraud
in the electrical grid is also causing as much as $6 billion
loss to providers in the US alone [2]. The research report [3]
released by Northeast Group, LLC in January 2017 says that
many of the emerging market countries suffer from rampant
non-technical losses which are mostly due to electricity theft.
The total cost is $64.7 billion each year in lost or unbilled
revenue.

With the development of smart grid and rising penetration
of smart meters, there have been new kinds of attacks against
smart meters. While the energy thefts usually concerned with
physically cut-off or damage in the past, they now can have
attacker models [4] like Erase Logged Events, Tamper Stor-
age, Intercept Communication, Man in the Middle, etc. These
models will change the data recorded by smart meters and
help reduce the electricity bills of the fraudsters. It is reported
as a case of the Federal Bureau of Investigation (FBI) in 2010
that some former employees of a meter manufacturer alter the
smart meters for residential and commercial users and even
training others to do so in exchange for money in Puerto
Rico [5]. On the one hand, the user profiles received by the
power utilities might be disguised sophisticatedly. On the
other hand, smart meters record the power consumption data
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at a rather higher frequency than traditional meters, which
provides opportunities to increase the accuracy of anomaly
detection.

The common methods for detecting electricity theft
can be classified into three categories: system-state based,
game-theory based and artificial-intelligence based [6]. The
system-state based methods utilize the conflicts between tam-
pered smart meter data and other measurements in the dis-
tribution network. The game-theory based methods usually
have prepositional assumptions on the customer behaviors.
A lot of additional information is required for the first two
categories, which is rather difficult to get. The artificial-
intelligence based methods use data mining techniques to
extract information from basic user profiles, which are more
likely to be applied in practice.

Artificial intelligence can help search for data that do not
follow expected patterns. These methods have the assumption
that the pattern of electricity thefts is different from that
of normal users. We classify the artificial-intelligence based
methods into three subcategories: classification-based, load-
forecasting-based, and clustering-based.

The classification-based methods require a labeled dataset
to train a classification model. Classifiers like neural network
[7] and support vector machines (SVMs) [8] are applied to
detect irregular consumption behaviors. With proper selec-
tion of activation function or optimization of parameters,
good detection rate can be achieved. However, a labeled
dataset for electricity detecting is hard to get in reality.

The load-forecasting-based methods forecast the future
load of users and compare the forecast result with the
measured load. In [9] a weighted averaging scheme is used
to predict the load. Liu et al. applied periodic auto-regression
with eXogenous variables (PARX) to predict short-term
energy consumption in [10]. Actually, a forecasting model
needs to be retrained for each customer and extra information
like weather is required to improve accuracy.

The clustering-based methods do not need unlabeled data.
These methods extract patterns from a lot of user features
and detect the outlier patterns. Júnior et al. applied Optimum-
path forest (OPF) clustering in non-technical loss identi-
fication [11]. k-means, Gaussian mixture model (GMM)
clustering and other famous clustering methods are also
used as comparison. In [12] the fuzzy C-means clustering
is used to detect unusual customer consumption profiles.
The abnormality degree of each client can be obtained from
the fuzzy membership. In [13] the famous density-based
spatial clustering of applications with noise (DBSCAN) is
used to detect abnormal consumption data. The effect of
the clustering methods usually depends on the selection of978-1-5386-4950-3/17/$31.00 c©2017 IEEE



parameters.
Rodriguez et al. put forward a new density-based cluster-

ing method in [14]. For convenience, we call it densityClust
which is the name of its implementation package in R [15].
It calculates the density features of a dataset without any
preset parameters. The features can be used to find core
points and abnormal points effectively. When applied to
electricity theft detection, it can adapt to large datasets and
does not require any additional data except the customer
load profiles. A general model that need not be retrained
for different customers can be built. In this paper, we
proposed an electricity detecting method based on the theory
of densityClust. Several evaluation criteria are introduced
and the method is tested on a synthetic dataset. The results
are compared with other unsupervised learning techniques to
show the effect.

The rest of this paper is organized as follows. Section
II presents our methodology of electricity theft detecting.
Section III details the evaluation and comparison of the
methodology. Section IV shows a case study and its results.
Finally, Section V gives the conclusions of this paper.

II. METHODOLOGY

Density-based clustering methods have been widely
adopted in anomaly detecting. Compared with k-means
and other partition based clustering methods, density-based
clustering can deal with clusters with an arbitrary shape.
However, in traditional density-based clustering methods like
DBSCAN, one needs to choose the radius of the neighbor-
hood and the density threshold, which is usually non-trivial.
Our method tries to overcome the disadvantages using the
new densityClust theory.

In densityClust, two values are defined for each data point
pi: its local density ρi and its distance δi from points of
higher density. Both values depend on the distances dij
between the data points. Eq. 1 shows the definition of ρi:

ρi =
∑
j

χ(dij − dc) (1)

Where χ(x) = 1 if x < 0 and χ(x) = 0 otherwise, and dc
is the cut-off distance. Since the local density ρi is discrete
in Eq. 1, a Gaussian kernel is used to estimate ρi as shown
in Eq. 2 to avoid conflicts:

ρi =
∑
j 6=i

e−(
dij
dc

)2 (2)

As the cut-off distance dc changes, ρi defined in Eq. 2
changes more smoothly for small datasets than in Eq. 1. The
definition of δi is shown in Eq. 3:

δi = min
j:ρj>ρi

dij (3)

For data points with the highest local density, δi is
conventionally written as in Eq. 4:

δi = max
j
dij (4)

The cut-off distance dc is exogenous in the definitions. It
can be defined by the users or automatically chosen by a rule
of thumb, in which dc is chosen so that the average of ρi
is around 1 to 2% of the total number of points. From the
definition above, we can see that data points with global or
local maximum ρi usually have much larger δi. These points
can be recognized as cluster centers.
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Fig. 1. An example of point distribution

We use the data points in Fig. 1 as an example. It is clear
that the points labeled with 1 and 20 are cluster centers and
that the points labeled with 26 to 28 are abnormal points.
We perform densityClust with the Gaussian kernel and plot
the (ρi, δi) of each point in the coordinate system as in Fig.
2, which is called the decision graph.
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Fig. 2. The decision graph of the points

The data points with large γi = ρiδi is very likely to be
the cluster centers and those with small ρi and large δi is
very likely to be abnormal points. We define that ζi = δi/ρi
represents the degree of abnormality. In occasions when
the dataset is large enough and the Gaussian kernel is not
necessary, ζi can be defined as in Eq. 5 to avoid infinity.



ζi =
δi

ρi + 1
(5)

The flow chart of our methodology is shown in Fig. 3. We
first normalize the customer load profiles for every customer
i and for every day j (K is the number of days), because
our method focuses on the shape of the load curve. The
normalized load profiles are the input of densityClust and
the abnormality degree ζij is calculated. For every customer
i, the number of his abnormal days Mi is calculated. It is
believed that stealing electricity is a continuous process, so
if Mi is larger than a threshold, the customer will be labeled
as electricity theft.

Load profile
normalization

densityClust

Calculate ρij, δij

for every customer i
Let j = 1,Mi = 0

Calculate ζij =
δij

ρij+1

Mi = Mi + 1 ζij >threshold1

j < K j = j + 1
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Fig. 3. The flow chart of the proposed methodology

III. EVALUATION CRITERIA AND COMPARISONS

In this section, we will introduce three widely-used evalu-
ation criteria for electricity theft detecting methods, or binary
classifiers more generally. Also, several comparison methods
including k-means, GMM clustering, and DBSCAN will be
briefly introduced.

A. Confusion Matrix and Evaluation

The confusion matrix divides the whole dataset into four
parts: true positive (TP), false positive (FP), false nega-
tive (NP) and true negative (TN). TP, FP, FN, and TN
are defined as the numbers of positives correctly predicted
as positives, negatives incorrectly predicted as positives,
positives incorrectly predicted as negatives, and negatives
correctly predicted as negatives respectively. An example of
the confusion matrix is shown in Table I.

Several evaluation criteria can be derived from the confu-
sion matrix. The true positive rate (TPR) also known as the
hit rate or recall rate is defined as the proportion of positives

TABLE I
CONFUSION MATRIX OF A BINARY CLASSIFIER

Predicted
Electricity theft Normal user

Actual Electricity theft TP FN
Normal user FP TN

that are correctly identified as positives. The false positive
rate (FPR) is defined as the proportion of positive results
that are false positive. The positive predictive values (PPV)
also known as the precision are defined as the proportion of
positive results that are true positive.

TPR =
TP

TP + FN
(6)

FPR =
FP

FP + TN
(7)

PPV =
TP

TP + FP
(8)

The accuracy (ACC) of the classifier is defined as the
proportion of the correct results. The F1 score is defined as
the harmonic mean of TPR and PPV, which is useful while
dealing with imbalanced datasets.

ACC =
TP + TN

TP + FN + FP + TN
(9)

F1 =
2× PPV × TPR
PPV + TPR

(10)

As the discrimination threshold of a binary classifier
varies, the TPR and FPR will change consistently. The
track of (FPR, TPR) is a curve connecting (0, 0) and
(1, 1), which is called the receiver operating characteristic
(ROC) curve. The area under the curve (AUC) measures the
effectiveness of the classifier. An example of the ROC curve
is shown in Fig. 4.
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Fig. 4. The ROC curve of three classifiers

The three evaluation criteria we use in this paper are
ACC, F1, and AUC. The ROC curve will also be used as
an intuitive comparison.



B. Comparisons

Since our method is based on an unsupervised learning
technique, we use three other famous unsupervised learning
techniques as follows:
• k-means clustering: after the clustering procedure, those

points that are far away from their clustering centers are
considered abnormal. k is chosen from 5 to 20 with an
interval of 5 to demonstrate the effectiveness.

• GMM clustering: a matrix containing the posterior
probability that every element belongs to each Gaussian
will be obtained. The abnormal degree is calculated
according to the matrix. The number of Gaussians is
chosen from 5 to 20 with an interval of 5.

• DBSCAN: the classic density-based clustering method
will directly output the abnormal data. The neighbor-
hood radius ε is chosen in {0.3464, 0.5542, 0.6928} and
the density threshold minPts is chosen in {3, 5, 10}.

IV. NUMERICAL EXPERIMENTS

To verify that our method can actually find out the
electricity theft, we create a dataset which is close to reality
and test the method as well as the comparisons.

A. Dataset

Since a real dataset with electricity theft labels is difficult
to obtain, we use a synthetic dataset in which the abnormal
load profiles are generated from the six malicious types
mentioned in [16] and the benign load profiles come from
the Irish Smart Energy Trial [17]. The Irish dataset contains
the smart meter data of over 5,000 Irish residential and
commercial users for 535 days, and the sample rate is 48
S/day. Let x = {x1, · · · , x48} be the real load profile of a
certain customer, the six malicious types are as follows [16]:
• h1(xt) = αxt, α = random(0.1, 0.8);
• h2(xt) = βtxt,

βt(xt) =

{
0 for a period of time t
1 else

;

• h3(xt) = γtxt, γt = random(0.1, 0.8);
• h4(xt) = γtmean(x), γt = random(0.1, 0.8);
• h5(xt) = mean(x);
• h6(xt) = x49−t.
Note that the first type does not change the shape of the

load profile, so the performance for the first type is not
tested. We choose one-month period load profiles of the 391
small and medium-sized enterprises (SMEs) recorded in the
survey of the dataset as our test set. So we have 11,730 load
profiles as input. Among the 391 SMEs, 100 certain users
are suspected to commit fraud under our assumed scenario.
Thus, a part of their corresponding 3,000 user profiles will be
processed by the malicious type functions mentioned above.
Actually, in type 5 the tampered curve is a straight line, and
in type 6 the curve of an SME is almost unchanged. So type
5 and 6 will produce tampered curves with a rather normal
shape, which are hard to detect using unsupervised learning
methods.

B. Numerical Results
We test all the methods in two cases: the fixed types

and the random type. In fixed types, 5 fraud users are
randomly chosen in the 100 suspected users. Each fraud
user will be assigned to a fixed type. 15 out of the 30 load
profiles of a fraud user will be tampered according to his
malicious type. For each type 100 scenario are generated
to avoid randomness of results and the average performance
is evaluated. In the random type, each fraud user will be
assigned to a random type from type 2 to type 6, which is
more realistic. Also, 100 scenarios are tested.

The value of threshold1 is chosen as the top 5% of
the abnormal degrees of each method (i.e. the top 150 of
the 3,000 load profiles are recognized as abnormal). The
threshold2 is changed from top 0% to 100% so we can plot
a ROC for each method. To calculate the ACC and F1 score
of each method, threshold2 is fixed at the top 5% (i.e. users
who have the top 5% number of abnormal load profiles are
classified as electricity theft). The evaluation results of all the
methods are shown in Table II. For methods with a series of
parameters, we only present the best results. The ROC curves
of the fixed types and the random type are shown in Fig. 5
to Fig. 10. We only plot the curve with max AUC for each
method. DBSCAN reaches its max AUC when ε = 0.6928
and minPts = 3 for all the types, and the parameters are
omitted in the figures.
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Fig. 5. The ROC curves of type 2
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TABLE II
THE EVALUATION RESULTS OF THE METHODS

Type AUC
(densityClust)

AUC
(k-means)

AUC
(GMM)

AUC
(DBSCAN)

ACC
(densityClust)

ACC
(best of others)

F1
(densityClust)

F1
(best of others)

Fixed
types

2 0.867 0.776 0.514 0.662 0.927 0.922 0.274 0.22
3 0.874 0.576 0.587 0.687 0.933 0.911 0.328 0.112
4 0.962 0.844 0.629 0.719 0.995 0.926 0.948 0.262
5 0.473 0.457 0.395 0.369 0.904 0.903 0.044 0.032
6 0.457 0.456 0.4 0.377 0.903 0.905 0.028 0.052

Random type 0.743 0.667 0.53 0.606 0.932 0.92 0.322 0.204
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Fig. 7. The ROC curves of type 4
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Fig. 8. The ROC curves of type 5

From Table II we can see that our proposed method does
a good job in dealing with type 2, 3 and 4. It outperforms the
other comparisons in all the evaluation criteria. While dealing
with type 5 and 6, the performances of all the methods are
bad, because the tampered load profiles of type 5 and 6 still
look normal somehow. The results can also be seen from
the ROC curves. In Fig. 5, 6 and 7, the proposed method is
clearly a great classifier for the certain types. In Fig. 8 and
9, we can see that type 5 and 6 are hard to identify for all
methods. As we mentioned above, the abnormal detecting
methods cannot directly detect them based on the shape
of the load profiles when the tampered curves still have a
normal shape.

The ROC curves in Fig. 10. has a horizontal part of it in
the middle, which is also due to the fact that the methods
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Fig. 9. The ROC curves of type 6
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Fig. 10. The ROC curves of the random type

are better dealing with type 2, 3, and 4 and almost cannot
deal with type 5 and 6.

V. CONCLUSIONS

This paper proposes a density-based abnormal detecting
technique for identifying electricity thefts using smart meter
data. The abnormal degree of user profiles is calculated
according to their distance matrix. To demonstrate the effec-
tiveness of the technique, comparisons with other unsuper-
vised learning methods including k-means clustering, GMM
clustering, and DBSCAN are conducted. Results show that
the proposed technique can precisely detect electricity thefts
based on their abnormal load profiles. For malicious types
that do not produce load profiles with an abnormal shape,
the technique is helpless.
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