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Abstract— Head pose estimation (HPE) is an indispensable
upstream task in the fields of human-machine interaction, self-
driving, and attention detection. However, practical head pose
applications suffer from several challenges, such as severe occlu-
sion, low illumination, and extreme orientations. To address
these challenges, we identify three cues from head images,
namely, critical minority relationships, neighborhood orientation
relationships, and significant facial changes. On the basis of the
three cues, two key insights on head poses are revealed: 1) intra-
orientation relationship and 2) cross-orientation relationship.
To leverage two key insights above, a novel relationship-driven
method is proposed based on the Transformer architecture,
in which facial and orientation relationships can be learned.
Specifically, we design several orientation tokens to explicitly
encode basic orientation regions. Besides, a novel token guide
multi-loss function is accordingly designed to guide the orien-
tation tokens as they learn the desired regional similarities and
relationships. Experimental results on three challenging bench-
mark HPE datasets show that our proposed TokenHPE achieves
state-of-the-art performance. Moreover, qualitative visualizations
are provided to verify the effectiveness of the token-learning
methodology.

Index Terms— Head pose estimation, attention mechanism,
relationship perception, deep learning, transformer.

I. INTRODUCTION

HEAD pose estimation (HPE) is a popular research area
in image processing [1], [2], [3] and an indispensable

upstream task in human-machine interaction [4], [5], [6], [7],
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Fig. 1. Existing challenges on head pose estimation, including (a)–(b) serious
occlusions, (c)–(d) poor illumination, and (e)–(f) extreme orientations. Some
or even most of the facial parts are missing in these scenarios, resulting in
difficulties for HPE.

driver assistance [8], virtual reality [9], [10], and attention
detection [11]. In the past few years, the accuracy of HPE has
been considerably improved in terms of utilizing extra facial
landmark information [12], [13], extra RGB-depth information
[14], [15], [16], [17], extra temporal information [18], stage-
wise regression strategy [19], multitask learning [20], [21],
and alternative parametrizations of orientation [22], [23], [24],
[25], [26], [27]. However, several challenges still exist for
practical application where occlusion, unstable illumination
and extreme orientations are ubiquitous.

A. Challenges

Currently, convolutional neural networks (CNNs) have
become prevalent on computer vision tasks, and they are
widely adopted on HPE. CNN-based HPE methods [19], [24],
[27], [28], [29] have achieved impressive performance due
to the powerful abilities of CNNs on representing superficial
visual patterns. Nevertheless, the intrinsic relationships of head
orientations and facial parts are usually neglected. A possible
reason is that these relationships are theoretically difficult to
learn by existing CNN architectures, which are based on pat-
tern driven learning. In normal and easy-to-predict scenarios,
highly accurate head pose predictions can be achieved by
detecting facial patterns through CNNs. However, in some
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Fig. 2. Illustration of (a) intra-orientation relationship and (b) cross-orien-
tation relationship. The critical minority relationships in a single image are
deduced by self-attention among visual tokens, the neighborhood orientation
information is encoded in orientation tokens, and their relationships are
deduced by self-attention among orientation tokens. Finally, the intra- and
cross-orientation relationships are exchanged by cross attention.

challenging scenarios (Fig. 1), such as severe occlusions,
poor illumination, and extreme orientations, many remarkable
facial parts are missing because of occlusion or low light,
which is devastating for existing CNN-based methods that
highly depend on facial patterns for prediction. Consequently,
the few remaining facial parts and their geometric relationships
must be leveraged to achieve robust and high-accuracy pre-
diction. Furthermore, the latent relationships of neighborhood
orientations also can be exploited when facial part missing
happens in the current orientation. Recently, there are a
stream of researches that explore Transformer-architecture as
an alternative to CNN layers in their models and achieve com-
pelling performance, nevertheless the main structures are still a
CNN-style, leaving the long-range and semantic relationships
virtually intact. Therefore, how to leverage the head orientation
and facial part relationships is considerably attractive on the
research topic of high accuracy and robust HPE.

B. Observation and Insights

For the purpose of utilizing the facial and orientational infor-
mation to facilitate HPE, in this study, we identify three cues
by careful observation. First, critical minority relationships of
facial parts exist, and they can determine the orientation of
a head pose despite possible occlusions and missing facial
parts. For example, as shown in Fig. 1(a), if a person’s eye
is occluded, then the head orientation can be determined by
the geometric spatial relationships of the remaining facial
parts, such as ear, nose, and the outline of the face. In other
words, by ingeniously leveraging the semantic relationships
of the few remaining facial parts, accurate prediction can
be achieved despite severe facial part missing. This impor-
tant cue is defined as critical minority relationships. Second,
a local similarity in neighbored orientation regions exists.
As shown in the right part of Fig. 2, the facial appearances
in neighbored orientations are similar, which indicates that
neighborhood orientation information can be leveraged to
improve accuracy. In a local orientational region, head poses

and their corresponding latent facial characteristics enjoy high
semantic similarities. Therefore, the neighborhood orientations
contribute latent semantic information to the central orienta-
tion. Prediction can be facilitated by taking the neighborhood
orientation information, which is defined as neighborhood
orientation relationships. Third, several significant facial part
changes are observed in specific orientations. For example,
two facial regions can be distinguished by a significant facial
part change, such as the appearance/disappearance of eye on
one side, appearance of the nostril, and overlapping of the nose
and mouth. The set of head orientations can be partitioned into
several highly similar local facial regions by these significant
facial part changes. Generally, we find three cues (critical
minority relationships, neighborhood orientation relationships,
and significant facial part changes) that veiled in head poses,
which are necessary for efficient HPE on all scenarios.

Furthermore, on the basis of the three cues, we reveal two
insights in head poses, namely, the intra-orientation relation-
ship and cross-orientation relationship. We argue that the two
novel insights on facial and orientational relationships are
curial for efficient HPE from a different relationship-driven
learning paradigm. The proposed two key insights are intro-
duced as follows.

Key insight I: Intra-orientation relationship. There exists
critical minority relationship in a specific head orientation
(a single head image). The few facial parts and their relation-
ships within a head image defined as intra-orientation relation-
ships are crucial for prediction and more robust and reliable
than merely superficial visual patterns. Figure 2(a) provides
an illustration of the intra-orientation relationship. As can be
observed, a single image has many informative facial patterns,
but only the core facial parts and their relationships are
determinative for prediction. On the basis of critical minority
relationship learning, detriments of facial part missing from
occlusion or poor illumination can be greatly alleviated.

Key insight II: Cross-orientation relationship. We argue
that the vicinal and symmetric orientation characteristics are
informative to the central orientation due to their high similar-
ities. This property is defined as cross-orientation relationship,
because interrelated orientational features are learned and for
prediction. As show in Fig. 2(b), the attention is distributed to
the vicinal orientational regions, allowing a larger reception
field than in a single image to collect more orientational
information for prediction. However, this general relationship
cannot be encoded by CNN because of its inherent architec-
ture. Therefore, the cross-orientation relationships have kept
as untapped treasures that are hardly leveraged by previous
works on HPE.

Given the aforementioned key insights on head pose images,
the question is how to design a model that can utilize this
heuristic knowledge. The traditional CNN architecture cannot
easily learn these relationships. By contrast, the Transformer
architecture can effectively address this drawback of CNN.
Recently, Vision Transformer (ViT) [30] emerged as a new
choice for various computer vision tasks. The Transformer
architecture is known for its extraordinary ability to learn
long-distance, high-level relationships between image patches.
Therefore, using Transformer to learn the intra-orientation
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relationship is reasonable. Moreover, cross-orientation rela-
tionships can be well-represented by learnable tokens in the
Transformer.

C. Contributions

Inspired by the two key insights and Transformer’s prop-
erties, this study proposes TokenHPE, a method that can
discover and leverage intra-orientation and cross-orientation
relationships via the Transformer architecture. The proposed
method can discover facial part geometric relationships via
self-attention among visual tokens, and the orientation tokens
can encode the characteristics of the neighborhood orientation
regions. These relationships between visual and orientation
tokens are learned by TokenHPE from abundant synthetic data.
The learned information is encoded into the orientation tokens,
which can be visualized by vector similarities. In addition,
a special token guide multi-loss function is constructed to help
the orientation token learn the general information. Notice
that although currently there are several Transformer-based
approaches for HPE, the superior properties of Transformer
architecture than CNN architecture, which is the capability to
reveal the long-range and semantic relationships of the input
token sequences, has not been exploited. The gap between
them and our method is that they utilize the Transformer
encoder layers as a supplementary module for the main CNN
structure, while we take Transformer blocks as our core
design. Specifically, we divide the input image into patches,
considering them as visual tokens that contains semantic
information analogous to “words” in natural language process-
ing. Then, we proposed several learnable orientation tokens
that represent the orientation knowledge to interact with the
visual tokens in the Transformer blocks via attention mecha-
nism. Overall, our main contributions can be summarized as
follows:

• Three cues are derived on head images, including critical
minority relationships, neighborhood orientation relation-
ships, and significant facial part changes. Furthermore,
to leverage our findings and cope with challenging scenar-
ios, a novel token-learning model based on Transformer
for HPE is presented.

• We reveal two key insights in head poses, namely, the
intra-orientation relationship and the cross-orientation
relationship. Several learnable orientation tokens are
designed to encode the general information of cross-
orientation relationships. Moreover, a novel token guide
multi-loss function is designed to train the model.

• Experiments are conducted on three benchmark HPE
datasets. Results show TokenHPE achieves state-of-the-
art performance with a novel token-learning concept
compared with its existing CNN-based counterparts.
Besides, we conduct abundant visualizations to illustrate
the effectiveness of the proposed orientation tokens.

The remainder of this article is organized as follows.
In Section II, we review the head pose estimation-related
works. Section III introduces the proposed model for head
pose angle inference and experimental results are provided in
Section IV. In Section V, we conclude this study.

II. RELATED WORKS

A. Head Pose Estimation

Generally, the traditional HPE models can be classified
into three kinds, such as Euler angle regression (EAR)-based
models [19], [29], [31], [32], extra information-utilized (EIU)
models [20], [21], [33], [34], [35], and alternative parametriza-
tions of orientation (APO) model [23], [24], [25], [26]. For the
EAR-based head pose estimation method, three Euler angles
need to be regressed progressively. The paradigm in early
studies was to consider HPE as a regression problem [3], [19],
[29], [36]. Abate et al. [36] proposed a web-shaped model
algorithm to encode the pose of the face and then applied
regression algorithms to predict the pose of the face. Recently,
CNNs have been adopted for HPE and remained dominant
for many years because convolution can efficiently reveal the
visual patterns on human faces. Ruiz et al. [29] was the first to
propose an end-to-end method which independently predicts
three Euler angles by using a multi-loss network based CNN.
In [19], Yang et al. proposed FSA-Net, a novel architecture
that consists of progressive stage fusions and fine-grained
spatial structures. The spatial information can be preliminarily
learned by setting a learnable or fixed importance over the
spatial location. However, becaues of the incapacity of CNN
to learn the relationships among visual patterns, further facial
part relationships are not explored in this category.

For the EIU approaches, extra facial information is exploited
to facilitate angle estimation. With graph neural network
(GCN) being generalized to various natural language pro-
cessing (NLP) and computer vision tasks [37], [38], [39],
[40], [41], Xin et al. [33] proposed a GCN-based method
which learns through the facial landmark graph. However, the
precision of the model depends largely on the precision of the
additional landmark detector. Kazemi et al. [12] proposed a
general framework based on gradient boosting for learning an
ensemble of regression trees that optimizes the sum of square
error loss and naturally handles missing or partially labelled
landmarks. Wu et al. [20] proposed a multi-task approach
named SynergyNet that predicts complete 3D facial geometry.
Through synergistic learning of 3D landmarks and 3D mor-
phable models (3DMM) parameters, improved performance is
achieved by the collaborative contribution. In these methods,
facial part relationships can be learned from landmarks or
other extra information. However, many manual annotations
are required for training, which is laborious and inefficient.

For the APO models, Euler angles representation are usually
substituted with other representations. Most contributions to
HPE in recent years have focused on alternative parametriza-
tions of head orientation because traditional Euler angle
labels inevitably have some problems at specific orientations.
Geng et al. [26] proposed a multivariate label distribution as a
substitute of Euler angles. In this manner, inaccutate manual
annnotation can be alleviated and the original label is softened,
making the training easy. In [25], a vector-based head pose
representation is proposed which handles the issue of discon-
tinuity of Euler angle annnotation. Recently, Hepel et al. [24]
proposed a rotation matrix-based representation for HPE.
In this way, the ambiguity problem was perfectly resolved
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Fig. 3. Pipeline of our TokenHPE model.

by full pose regression based on rotation matrices. In our
previous work [22], the head orientations are represented by
matrix Fisher distribution based on rotation matrix, which
greatly avoids the ambiguity problem of Euler angle labels.
Furthermore, in [27], the characteristics of head pose image
varitations in different directions are revealed and leveraged
by constructing the anisotropic angle distributions. Although
these methods have achieved impressive results, the intrinsic
facial and orientational relationships are not fully exploited.

B. Vision Transformer and Its Applications

ViT is a variant model of Transformer [42], which is
originally utilized in NLP. In ViT model, an input image
is divided into patches and projected into 1D vectors called
tokens. These visual patches can be viewed as words. In addi-
tion, a learnable class token is concatenated similarly to the
original Transformer. The success of ViT quickly focused
researchers’ attention to applying the Transformer architecture
in various vision tasks, including fine-grained classification
[43], [44], [45], object detection [46], facial expression
recognition [47], human pose estimation [48], and image
segmentation [49]. Li et al. [48] proposed the utilization of
learnable tokens to represent each human keypoint entity on
the basis of prior knowledge. Through this sensible token
construction, constraint cues and visual cues are expicitly
learned and incorporated through the Transformer architecture.
Dhingra [32] preliminarily utilized Transformer encoder after
a CNN backbone for HPE. However, Transformer’s ability
to learn the semantic relationships was not fully exploited.
In [50], Cordonnier et al. provided a theoretical explanation
of the long-distance information learned in Transformer. Based
on their theoretical foundation, we believe that the intra-
and cross-orientation relationship revealed in this work can
be learned based on Transformer architecture. Specifically,
the intra orientation relationship can be learned by attention

mechanism, and cross-orientation information can be encoded
into learnable orientation tokens.

III. PROPOSED TOKENHPE MODEL

In this section, the overview of the proposed TokenHPE
is provided first. Second, the details of the four parts of the
model are elaborated. Lastly, the supplementary architecture
details of the TokenHPE are provided.

A. Architecture Overview

Our method’s overview is shown in Fig. 3. The TokenHPE
model comprises four parts. The first one is visual token
construction, where the input image is transformed into visual
tokens through multiple approaches. The second part is ori-
entation token construction. We provide two strategies to
construct orientation tokens based on our finding on head
image panoramic overview. The third part is the Transformer
module, wherein the relationships of facial parts and orien-
tation characteristics in the basic regions are learned by the
Transformer mechanism. The fourth part is token learning-
based prediction. A novel token guide multi-loss that can
help the orientation tokens encode general information is also
introduced in this part.

B. Visual Token Construction

In this part, an original input RGB image is transformed into
visual tokens. We provide three options to obtain the visual
tokens: by patch division of the original image (Option 1),
by extracting feature maps from a CNN (Option 2), and by
selecting the tokens from a ViT backbone (Option 3) [30].
For Option 1, suppose we have an input image I of size
H × W × C . The image is divided into patches with patch
size Ph × Pw. each patch is subsequently resized into a
1-dimensional vector of size Ph × Pw × C . Linear projection
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Fig. 4. Illustration of significant facial part change on neighbored orientations
measured by cosine similarity scores, which are denoted as “S”.

is applied to obtain a visual token. This operation is expressed
as:

O : p → s ∈ Rd , (1)

where p refers to a 1D patch vector and s is a visual token
with a dimension of d . For Option 2, the output of the CNN
extractor is a set of feature maps with a size of H × W × C ′.
The remaining operations are similar to those in Option 1.
For Option 3, the visual tokens can be simply selected from
the output of a Transformer backbone.

Given that spatial relationships are essential for accurate
HPE, positional embedding, pos, is added to the visual tokens
to reserve spatial relationships, which can be expressed as:

[visual] = {s1 + pos, s2 + pos, · · · , sn + pos} , (2)

where n is the number of patches. Then, we obtain n1D vectors
symbolically presented by [visual] tokens.

C. Orientation Token Construction

1) Basic Orientation Region Partitioning: The cross-
orientation relationship information is encoded into learnable
orientation tokens. To construct the orientation tokens, the
panoramic overview is divided into several basic orientation
regions. Within a specific orientation region, the orientations
have high similarities on head pose characteristics.

The significant facial part change angle threshold can be
observed by calculating the cosine similarities between the
feature maps generated from the feature extractor in different
head pose images. As shown in Fig. 4, the cosine similarity is
relatively lower when significant facial part change happens,
such as the appearance/disappearance of eye on one side and
appearance/disappearance of ear. For example, when the pitch
angle is constantly at 0◦ and the yaw angle moves from
−90◦ to 0◦, two main significant facial part changes are
marked by variation on cosine similarities from 84.67% to
87.78% and then to 83.54%. Therefore, three basic orientation
regions on the left central part can be defined according to the
discontinuity on neighborhood cosine similarities. Following
this rule, the remaining basic orientation regions can be easily
defined.

Fig. 5. Construction of orientation tokens. We discover that the head pose
panoramic overview can be roughly divided into several basic orientation
regions according the neighbor image similarities. As the division granularity
varies, the number of basic orientation regions also varies.

Based on quantitative results on cosine similarities of neigh-
borhood head pose images, we introduce two partitioning
strategies, as shown in Fig. 5. In Strategy I, the panoramic
overview is divided into nine basic orientation regions accord-
ing to the appearance of the eyes and the overlapping of the
nose and mouth. In yaw direction, we set 60◦ and −60◦ as the
division degree because of the appearance (or disappearance)
of eyes. In pitch direction, we set 30◦ and −30◦ as the division
degree because of the appearance (or disappearance) of the
nostril and the overlapping of nose and mouth. As such, the
nine basic orientation regions in strategy I are: (0) upper
left, (1) top, (2) upper right, (3) middle left, (4) middle,
(5) middle right, (6) bottom left, (7) bottom, and (8) Bottom
right. As depicted in the left part of Fig. 5, head poses in
the same region are similar, and the opposite head poses are
symmetric. In Strategy II, the panoramic overview is divided
into 11 regions, with a fine-grained partition in the yaw
direction. we divide the yaw direction in a finer-granularity
because the significant facial part changes are complex when
pitch angle is little. As shown in the right part of Fig. 5, in this
partition strategy, the middle area of the panoramic overview
is divided into five basic regions. The division degree is set as
60◦ because of the complete disappearance of eye. We set 20◦

as the other division degree for the start of the disappearance of
eye. Therefore, when the pitch angle is within −30◦ and 30◦,
the basic orientation regions are as follows: (3) middle left 1,
(4) middle left 2, (5) middle, (6) middle right 1, and (7) middle
right 2.

2) Orientation Token: After the quantitative analysis on
Basic orientation region partitioning, we construct the same
number of d dimensional learnable vectors to represent k
basic orientation regions. These vectors are symbolized as [dir]
tokens. Then, the [visual] tokens are concatenated with the
[dir] tokens as the input of Transformer blocks. After that, the
processed [dir] tokens are chosen as the output of Transformer.

D. Transformer Blocks

Inputted with the [visual] and [dir] tokens, the Transformer
blocks learns the relationships among facial parts and head
orientations. The Transformer is constructed by stacking M
identical unit blocks. Each block comprises a multi-head self-
attention (MSA) module and a multi-layer perception (MLP)
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module, with a layer norm (LN) operation and skip connection
added between the two modules. Self-attention (SA) is defined
as:

S A
(
Rt)

= so f tmax

(
Rt WQ

(
Rt WK

)T

√
θ

) (
Rt WV

)
, (3)

where WQ, WK , and WV ∈ Rd×d represent the query matrix,
the key matrix, and the value matrix. Rt is the output of the
t-th Transformer layer. θ is part of the scaling factor 1

/√
θ .

In SA, s equals the dimension d of the tokens. MSA is an
extension of SA with h self-attention operations, which are
named heads. In MSA, θ is typically set as d

/
h. Thus, MSA

can be formulated as:

M S A
(
Rt)

=
[
S A1

(
Rt)

; S A2
(
Rt)

; · · · ; S Ah
(
Rt)]WP ,

(4)

where WP ∈ R(h·s)×d . After defining MSA, the operations of
a Transformer block can be expressed as:

R̃t−1
= M S A

(
L N

(
Rt−1

))
+ Rt−1, (5)

Rt
= M L P

(
L N

(
R̃t−1

))
+ R̃t−1. (6)

The MLP module is constructed by two linear projections,
with a Tanh(•) activation function and dropout operations in
between.

After the last Transformer layer, the [dir] tokens are selected
as the output of Transformer, whereas the [visual] tokens are
not used in the following steps. Therefore, the output of M
Transformer blocks is denoted as {RM

1 , RM
2 , · · · , RM

k }, where
k is the number of [dir] tokens.

E. Token Learning-Based Prediction

Suppose a set of orientation tokens outputted by part three
in our model is denoted as {RM

1 , RM
2 , · · · , RM

k }, where k is the
number of orientation tokens. The orientation tokens need to
be transformed to rotation matrices for training and prediction.
We adopt similar transformation strategy as used in [24]. The
transformation is elaborated as follows.

First, a linear projection is applied to RM
i to obtain a

6D representation of head pose. Next, the Gram–Schmidt
process is applied to generate the 9D rotation matrix. This
transformation is formulated as:

Âi = FGS

(
W RM

i

)
, (7)

where W is a linear projection matrix, and Âi is the pre-
dicted rotation angle matrix of the i-th basic orientation
region. FGS(•) denotes the Gram–Schmidt process that can
be expressed as:

FGS (p1, p2) =
[

q1 q2 q3
]
, (8)

where p1, p2 ∈ R3 are 3D column vectors of a rotation matrix.
qi is 3D column vector of the rotation matrix defined as:

q1 =
p1

∥p1∥
,

u2 = p2 − (q1 · p2) q1,

q2 =
u2

∥u2∥
,

q3 = q1 × q2.

(9)

A set of rotation matrices { Â1, Â2, · · · , Âk} can be gener-
ated by the transformation above, where k is the number of
orientation tokens.

To obtain the final prediction rotation matrix,
{ Â1, A2, · · · , Âk} is concatenated and flattened as the
input of the MLP head, which can be formulated as:

Â = FGS

(
W2

(
tanh

(
W1 · Ã + b1

))
+ b2

)
, (10)

where Ã ∈ R9·k is a vector of flattened rotation matrices.
Wi and bi are the weight matrix and bias vector of the MLP
module, respectively. In the training stage, the intermediate
rotation matrices and the final prediction rotation matrix are
used for calculating the loss for back propagation. In the
prediction stage, only the prediction rotation matrix Â is
outputted as the model prediction.

F. Total Loss Function

The prediction of the proposed TokenHPE is a rota-
tion matrix representation denoted as Â. Suppose that the
groundtruth rotation matrix is A. The geodesic distance is used
as the loss between two 3D rotations, similar to that used
in [24]. The geodesic distance loss is formulated as:

Lg

(
A, Â

)
= cos−1

 tr
(

AÂT
)

− 1

2

 . (11)

1) Orientation Token Loss: Information can be encoded into
the orientation tokens through the orientation token loss. It is
defined as a mean squared error, which is formulated as:

L Ori =

k∑
i=1

I (A, i) · Lg

(
A, Âi

)
, (12)

where k is the number of basic orientation regions, A is
the ground truth rotation matrix, Âi is the predicted rotation
matrix, and I(A, i) is an identity function that determines if
a ground truth head pose lies in the i-th basic region. I(A, i)
can be written as:

I (A, i) =

{
1, i f A in region i,
0, i f A not in region i.

(13)

2) Prediction Loss: The predictions from the orientation
tokens are aggregated to form the final prediction of our model.
This is optimized by the prediction loss, which is formulated
as:

L pred = Lg

(
A, Â

)
, (14)

where Â is the prediction of the model.
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3) Overall Loss: The overall loss consists of the orientation
token loss and the prediction loss. It is formulated as:

Loverall = γ L pred + (1 − γ ) L Ori , (15)

where γ is a hyperparameter that balances prediction loss and
orientation token loss.

G. Network Parameters

To obtain the visual tokens, three options aforementioned
previously can be utilized. A few extra CNN layers can
efficiently extract low-level superficial features. In our differ-
ent versions, a feature extractor is added, or the raw image
patches are manipulated directly. In the version added with
a feature extractor, many low-level features are utilized for
prediction. In Option 2, we adopt the widely used stem-
net, which can quickly downsample the feature map into 1/4
input resolution in a very shallow convolutional structure.
In Option 3, we adopt ViT-B/16 as the feature extractor for
a tradeoff between model size and performance. The outputs
of ViT are the visual tokens that can be directly used in the
second part of the proposed model. Option 3 is set by default
in our TokenHPE model if not specially mentioned.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Generally Setting

1) Evaluation Metrics: Two common evaluation metrics
are selected to validate the performance of the compar-
ing methods. It includes the mean absolute errors of Euler
angles (MAE), and mean absolute errors of vectors (MAEV).
For the MAE, it is usually assumed that pose angles are
known. Namely, the Euler angles {yaw, pitch, roll} of an
image are considered as the ground-truth. The symbols
yaw, pitch, and roll represent pitch, yaw, and roll angle,
respectively. The predicted set of Euler angles from a model
is denoted as

{
ŷaw, p̂i tch, r̂oll

}
. Then, MAE is defined as:

M AE =
1
3

(
|yaw − ŷaw|+

∣∣∣pitch − p̂i tch
∣∣∣+∣∣roll − r̂oll

∣∣) .

(16)

We adopt MAE as an evaluation metric. However, because
this metric is unreliable, the MAEV results are given at the
same time for a more accurate measurement of the models.

For the MAEV, it is usually based on rotation matrix
representation. For an image, suppose that the groundtruth
rotation angle matrix is A = [a1, a2, a3], where ai is a 3D
vector that indicates a spatial direction. The predicted rotation
matrix from a model is denoted as Â = [â1, â2, â3]. MAEV
can be formulated as:

M AEV =
1
3

3∑
i=1

∥∥ai − âi
∥∥

1 . (17)

2) Datasets: Three datasets are employed in our experi-
ments as listed below.

1) BIWI dataset [51]: It includes 15, 678 images of
20 individuals (14 individuals are males and the rest

are females) with 4 of whom recorded twice., a RGB-
depth image (640 × 480 pixels), and the corresponding
head pose annotation are recorded for each video frame.
The head pose range covers about ±60◦ pitch and ±75◦

yaw. The 3D location of the head and its Euler angle are
provided as the ground truth labels of each frame.

2) AFLW2000 dataset [52]: It contains 2000 images that
have been annotated with 68-point 3D facial landmarks
at image-level. The dataset is typically adopted as the
evaluation benchmark of 3D facial landmark detection
task. The head poses in this dataset are diverse and
always difficult to be detected by traditional CNN-based
face detectors. Notice that the 2D landmark annotations
are discarded in the dataset because some of the data do
not have complete landmark points, as mentioned in the
original paper.

3) 300W-LP dataset [52]: It is an expanded version
of 300W dataset, which collects multiple align-
ment databases with 68 landmarks, including IBUG,
XM2VTS, LFPW, AFW, and HELEN. With 300W
dataset, 300W-LP adopts the proposed face profiling
to generate about 61k samples across large poses. The
dataset is usually employed as the training set for HPE.

B. Training Details

1) Training: In our experiments, the TokenHPE is trained
end-to-end. The batch size is set as 64, and γ is set to
0.65 by default. We train the proposed TokenHPE model for
120 epochs. The learning rate is initialized as 0.0001, which is
further decayed by a factor of 10 at the 30th and 60th epochs.

2) Initialization: All the images are resized into 240 ×

240 pixels. A random crop is then applied to make the input
image size 224×224 pixels. Our method is implemented with
the Pytorch toolbox with a single TITAN V GPU. All the
parameters in our model are trained with random initialization.

3) Computational Time: The training time is about six
hours on GPU. In the inference stage, our model can inference
in real time on GPU at over 400 fps. When ran on CPU, the
inference speed is about 10 fps.

C. Compare to State-of-the-Art

We compare our proposed TokenHPE with 13 state-of-the-
art (SOTA) methods, including Euler angle regression methods
(HopeNet, FSA-Net, FAN)), extra information-utilized meth-
ods (3DDFA, Dlib, EVA-GCN, img2pose, SynergyNet), and
alternative parametrizations of orientation methods (QuatNet,
TriNet, 6DRepNet). In our two experiments, we follow the
convention by FSA-Net [19]. We conduct experiments on
two versions of our model: TokenHPE-N with nine basic
orientation regions and TokenHPE-E with eleven basic ori-
entation regions. TokenHPE-E is our standard model referred
as TokenHPE.

Firstly, we follow the conventional protocol 1 [19], in which
the models are all trained on the 300W-LP dataset and tested
on AFLW2000 and BIWI datasets. Tables I and II show the
results of the first experiment. An extra column is added to
indicate which methods are free from extra annotation for
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TABLE I
COMPARISON WITH SOTA METHODS ON THE AFLW2000 DATASET WITH PROTOCOL 1

TABLE II
COMPARISON SOTA METHODS ON THE BIWI DATASET WITH PROTOCOL 1

fair comparison. Results show that the proposed TokenHPE
is on par with SOTA methods on AFLW2000 dataset and
achieves SOTA results on MAEV on BIWI dataset. Among
the compared methods, HopeNet [29] is normally considered
the baseline of HPE. Compared with it in Table I, our model
achieves a 24.8% decrease in MAE and a 12.7% decrease
in MAEV, which shows the high accuracy of our method.
Xia et al. [28] proposed a method that applies an affine
transformation to simplify the input and combines landmarks
information into a CNN feature extractor, leading to 4.20%
improvement from baseline. TriNet [25] is a vector-based
model, in which the head pose is represented by vectors instead
of Euler angles to solve the discontinuity problem. The MAE
is 0.69 lower than the baseline. A new MAEV metric is
also introduced. We adopt this metric for our comparison.
Compared with TriNet, our method obtains a lower MAEV
value, which indicates that the proposed relationship-learning
approach has the potential to achieve SOTA performance.
Some extra information-utilized methods (e.g., SynergyNet,
img2pose) are also compared in Table I. FAN, Dlib, Syn-
ergyNet and img2pose, which are better known to perform
landmarks prediction, are not specially designed for HPE

but can be readily modified for HPE as a downstream task.
EVA-GCN [33] is a facial landmark graph-based method,
which takes the detected landmark graph as the input The GCN
can learn the landmark relationships for HPE thus the model
result has an impressive improvement. SynergyNet is a multi-
task model, and HPE is a subtask. The model is trained by syn-
ergistic learning. Therefore, abundant information, including
3DMM parameters and 3D landmarks, is utilized to enhance
the performance. Img2pose [21] achieves the best result among
annotation utilized methods by applying the six degress of
freedom 3D face pose estimation. HeadPosr achieves excellent
performance by introducing a Transformer encoder to a CNN
backbone, which is built on the CNN learning methodology.
In general, compared to other methods that mainly based on
CNN and its variants, our model is the only Transformer-
based token learning method, thus has a stronger ability to
learn the facial relationships and the orientation characteristics
in the basic regions. Therefore, even on the challenging
AFLW2000 dataset that has many difficult-to-predict images,
our method still outperforms the majority of the compared
methods by a large margin. The excellent performance verifies
the orientation learning capacity of the proposed TokenHPE.
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TABLE III
COMPARISON WITH SOTA METHODS ON BIWI

DATASET WITH PROTOCOL 2

Afterward, the authors follow the protocol 2 in [19],
in which the model performace is evaluated on the BIWI
dataset alone with a ramdom 7:3 separation for training and
testing. Experiments are conducted on the TokenHPE and the
compared SOTA methods with protocol 2. Results shown in
Table III demonstrates the proposed TokenHPE outperforms
other methods by a large margin both on MAE and three
Euler angles. 6DRepNet [24] uses the rotation matrix rep-
resentation with a CNN backbone. Compared to 6DRepNet,
our TokenHPE can learn the general regional information and
facial relationships through Transformer architecture, result-
ing in a 6.39% drop on MAE. The similar results on two
experiments show that our method is robust and stable, and
its impressive performance is independent from the training
and testing datasets.

D. Ablation Study

In this section, we conduct ablation study on different
segment of our TokenHPE model. The models are trained on
300W-LP dataset and tested on AFLW2000 dataset by default
if there is no explicit declaration.

1) On the Token Guide Multi-Loss Function: The pro-
posed model is trained by a token guide multi-loss function.
We conduct ablation study on the orientation token loss and
prediction loss, which is controlled by γ . When γ is set
to 1.0, the model is trained solely on the prediction loss,
meaning the model learns the basic orientation regions by
itself. As the value of γ decreases, orientation token loss
plays an increasingly important role in helping the model learn
the orientation information. Since the final prediction head an
indispensable part in our method, the γ only can be set to a
very small value near zero but cannot be zero. Preliminarily,
we remove each component of the multi-loss individually and
evaluate the importance. In setting I, since the prediction loss
is indispensable, we set it to a very small weight (5%) thus
the orientation loss is predominant.

Results presented in Table IV shows that both sub-losses
are significant for model performance. Furthermore, we set
a sequence of γ values for a thorough investigation of the
contribution of two sub-loss to the model performance. The
experimental results are shown in Fig. 6. When γ decreases,
MAE initially decreases then increases. The best result is
obtained when γ is set to 0.6. This situation indicates that
the token guide loss indeed helps the model encode the basic

TABLE IV
ABLATION STUDY ON THE TOKEN GUIDE MULTI-LOSS FUNCTION

Fig. 6. Effect of the token guide multi-loss function. The hyperparameter γ

balances the importance of prediction loss and the orientation token loss.
When γ is set to 1.0, the model is solely trained with prediction loss, while
when γ approaches zero, the model is solely trained with orientation token
loss.

TABLE V
EFFECT OF ORIENTATION TOKENS

orientation regions. As γ decreases, the flexibility of the model
is constrained, resulting in poor performance. When γ is set
to 0.6, where prediction loss and orientation token loss jointly
contribute to the overall loss, the model reaches the best
performance.

2) On the Orientation Tokens: Since the number of orien-
tation tokens is derived from the partitioning strategies which
are rigorously defined, we evaluate their effectiveness on three
settings. In the first setting, we removed all orientation tokens
and leave a learnable token similar to the [cls] token in ViT for
prediction. In the second and third settings, we use nine tokens
(Strategy I) and eleven tokens (Strategy II), respectively.
When there is no guidance of orientation information, the
model is trained only with the prediction loss thus the reginal
orientation characters are not learned in this scheme. Results
in Table V show that nine orientation tokens and eleven tokens
bring 5.7% and 7.7% improvement on the MAEV, 4.5% and
8.2% improvement on MAE compared to the version that
has no orientation token. Besides, the guidance of orientation
information brings 2.8% and 4.3% improvement on MAE
in nine and eleven token settings compared to the control
groups that don not have the orientation information from
the orientation loss. Overall, the quantitative results verify the
effectiveness of the proposed token guide multi-loss and the
contribution of orientation tokens.
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TABLE VI
EFFECT OF THE FEATURE EXTRACTOR

TABLE VII
RESULTS OF DIFFERENT POSITIONAL EMBEDDING STRATEGIES

TABLE VIII
ABLATION STUDY ON TRANSFORMER BLOCK HYPERPARAMETERS

3) Feature Extractor: Since the visual tokens are generated
from the feature extractor, the performance of the model
partially depends on it. Therefore, we conduct experiments
on CNN and ViT feature extractors to reveal the extent
to which performance is affected by the feature extractor.
As shown in Table VI, we test three versions with or without
feature extractors. Results show that feature extractor improves
performance to a specific extent compared with the version
without a feature extractor. The model with ViT feature
extractor has the best performance. This mainly contributes to
the better capability of Transformer to encode semantic visual
information than CNNs.

E. Discussion

1) Positional Embedding: Different from classification
tasks, spatial relationships play an important role in HPE.
Given that the self-attention operation is positionally invariant,
normally, 2D sine positional embedding is added to reserve
the spatial relationships for computer vision tasks. Therefore,
we conduct experiments on our TokenHPE model with three
positional embedding types (i.e., no positional embedding,
learnable positional embedding, and 2D sine positional
embedding) to investigate the effect of positional embedding.
As shown in Table VII, the model with 2D sine positional
embedding demonstrates the best performance. The learnable
positional embedding version has a low prediction accuracy.

Fig. 7. Effect of the number of Transformer blocks.

Fig. 8. Heatmap visualization of three models, namely, HopeNet (left),
6DRepNet (middle), and our proposed model (right) in challenging scenarios,
including occlusion and extreme orientation, occlusion, low illumination. The
red-color areas mean that the model provides high attention to these facial
parts.

Fig. 9. Cosine similarity matrix between the learned orientation tokens.
(a) Strategy I: nine basic orientation regions. (b) Strategy II: eleven basic
orientation regions.

The model without positional embedding performs the worst.
Therefore, fixed positional embedding is important for a
model to learn the facial part relationships. Meanwhile, the
absence of positional embedding results in the loss of spatial
geometric relationships between visual tokens.

2) Transformer Block Parameters: Transformer parameters
have effect in a certain extent on model performance. There-
fore, we investigate different options of Transformer block
parameters. For comparison, only the investigated parameter
varies while the others are set to default configuration (token
dimension of 64, GELU activation function, and 8 heads in
MSA). The experimental results are shown in Table VIII. The
best dimension of token is 128, the best activation function is
Tanh, and best number of heads is 12.
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Fig. 10. Cosine similarity matrix between orientation tokens during model training. The orientation information is learned gradually by the orientation tokens.

3) Number of Transformer Blocks: Different numbers of
Transformer blocks are evaluated to check their effect on HPE.
The results are shown in Fig. 7. As the number of blocks
increases, the MAE first decreases then increases. When the
number of blocks is small, the model has less capacity to
learn the complicated facial relationships. When the number
of blocks is too large, the model is difficult to converge, thus
resulting in the increase of MAE. The best result is achieved
when the number of blocks is set to 12.

F. Visualizations

We visualize the inference details to investigate how
the TokenHPE explicitly utilizes orientation tokens to find
the facial part relationships and orientation characteristics
in the basic regions. Notice that on most common images,
our proposed TokenHPE exhibits similar behaviors and all
images in Figs. 8-12 are randomly chosen from the AFLW
2000 dataset in order to visualize the details.

1) Visualization in Challenging Scenarios: To confirm that
our model can learn critical minority facial part relationships
and tackle challenging scenarios, we use Grad-CAM [55] to
visualize the attention of head pose predictions in a chal-
lenging subset of AFLW2000. Two representative methods
(HopeNet and 6DRepNet) are adopted for a comparison with
our proposed model. As Fig. 8 shows, our method can learn
the crucial minority relationships of facial parts, such as the
eyes, nose, and ears in challenging scenarios (e.g., occlusion,
extreme orientation, low illumination) where some facial parts
are missing and hard to estimate. In these scenarios, the
compared methods performed poorly when abundant facial
information is missed. Row 2 indicates that our method can
deduce the spatial location of the eyes to achieve accurate
prediction compared with the other methods that only attend
to the facial parts that appear. As shown on Row 4, our method
presents an impressive capability to reveal the symmetric
relationships of the face even though the entire left side of the
face is dark due to low illumination. On Row 5, the attention
heatmaps show that our method can find the critical minority
relationships (nose, eyes, and ears) in the most challenging
scenario. In summary, the heatmap visualization proves that

Fig. 11. Heatmap visualization in different Transformer blocks of the
TokenHPE model. Arrows and circles indicate the crucial facial parts to which
the model pays attention for the head pose prediction.

our method can learn facial part relationships and can deduce
the spatial relationships of facial parts to mitigate the obstacles
in challenging scenarios.
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Fig. 12. Attention maps of orientation tokens of our TokenHPE model with
the Transformer blocks number increasing.

2) Similarity Matrix of Orientation Tokens: We visualize
the cosine similarities of the orientation tokens. As shown in
Fig. 9, the neighbored orientation tokens are highly similar.
The orientation tokens that represent symmetric facial regions
have higher similarity scores than the tokens that represent
the other unrelated regions. Therefore, the results of the
similarity matrix verify that the general information and the
cross-orientation relationships are learned by the orientation
tokens.

3) Orientation Token Learning During Training: We cal-
culate the cosine similarity between the orientation tokens in
different training epochs. As Fig. 10 shows, in early stages,
no distinct relationship is learned by the orientation tokens.
As the training epochs increase, general information is learned
gradually by the orientation tokens. The orientation relation-
ships can be observed in the later training epochs. In partition
strategy I (nine basic orientation regions), take the middle left
(region 3) orientation token in the 30th epoch for example. The
similarity scores are higher in its neighborhood regions (upper
left (region 0), bottom left (region 6)) and spatial symmetric
regions, such as middle right (region 5). Similar results can
be observed when the number of basic orientation regions is
set to eleven. Visualization of orientation token learning in
the training stage validates that general orientation information
and the cross-orientation relationships can be learned by the
orientation tokens.

4) Region Information Learned by Orientation Tokens: The
attention maps of orientation tokens are visualized in Fig. 12.
It can be observed that in shallow blocks, each orientation
token pays similar attention to the rest in order to construct the

global perception of the image. By contrast, in deeper blocks,
each orientation token pays most attention on its neighborhood
region tokens and spatial symmetric tokens to yield the final
prediction. As indicated in Fig. 12, at the deeper Transformer
blocks, the attention score is higher between neighbor regions
(the diagonal) and symmetric regions, such as regions 0 and 2,
regions 3 and 5, and regions 6 and 8. In Fig. 12, the
attention score is higher in regions 3, 4, 6, and 7, indicating
that the predicted head pose has more probability in the
left–bottom direction, similar to the groundtruth. Therefore,
from the visualization shown in Fig. 12, we can conclude
that our model has the ability to encode the cross-orientation
relationships of the basic regional orientation characteristics,
including neighborhood similarities and symmetric properties.

V. CONCLUSION

In this work, we proposed an orientation cues-aware facial
relationship representation learning method for head pose
estimation. We revealed intra-orientation relationships and
cross-orientation relationships on head images. To leverage
these significant properties of head images, Transformer archi-
tecture was utilized to learn intra-orientation relationships,
and several orientation tokens were designed to encode cross-
orientation relationships according to panoramic overview
partitions. The experimental results showed that TokenHPE
achieves state-of-the-art performance and is capable to resolve
the challenges of low illumination, occlusion, and extreme
orientations. Besides, the success of TokenHPE reveals the sig-
nificance of facial and orientational relationships for head pose
estimation, which have been ignored in previous researches.
Moreover, we hope this initial work can inspire further
research on token-learning methods for HPE and other head
related fields, such as attention detection, facial expression
recognition, and gaze estimation.
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