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Abstract— Scene-text image synthesis techniques that aim to
naturally compose text instances on background scene images
are very appealing for training deep neural networks due to
their ability to provide accurate and comprehensive annotation
information. Prior studies have explored generating synthetic
text images on two-dimensional and three-dimensional surfaces
using rules derived from real-world observations. Some of these
studies have proposed generating scene-text images through
learning; however, owing to the absence of a suitable training
dataset, unsupervised frameworks have been explored to learn
from existing real-world data, which might not yield reliable
performance. To ease this dilemma and facilitate research on
learning-based scene text synthesis, we introduce DecompST,
a real-world dataset prepared from some public benchmarks,
containing three types of annotations: quadrilateral-level BBoxes,
stroke-level text masks, and text-erased images. Leveraging the
DecompST dataset, we propose a Learning-Based Text Synthesis
engine (LBTS) that includes a text location proposal network
(TLPNet) and a text appearance adaptation network (TAANet).
TLPNet first predicts the suitable regions for text embedding,
after which TAANet adaptively adjusts the geometry and color of
the text instance to match the background context. After training,
those networks can be integrated and utilized to generate the
synthetic dataset for scene text analysis tasks. Comprehensive
experiments were conducted to validate the effectiveness of the
proposed LBTS along with existing methods, and the experi-
mental results indicate the proposed LBTS can generate better
pretraining data for scene text detectors. Our dataset and code
are made available at: https://github.com/iiclab/DecompST.

Index Terms— Scene text synthesis, data augmentation, scene-
text detection.

I. INTRODUCTION

DEEP neural networks have demonstrated remarkable suc-
cess in the field of scene text detection and recognition,

yet their performance heavily depends on the quantity and
quality of the labeled training data. However, manual collec-
tion and labeling of images are costly in terms of both time
and resources, and automatic data generation is expected. The
image synthesis technique that composes text instances on
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background images offers a cost-effective and scalable alter-
native to manual annotation, and this approach has attracted
increasing interest in the computer vision community.

Various approaches have been investigated in the develop-
ment of generation engines for synthetic scene-text images.
Initially, based on the observation of real-world data, a set
of sophisticated rules has been proposed to guide the design
of generation engines. Gupta et al. [1] and Zhan et al. [2]
generated synthetic text images from two-dimensional (2D)
background images based on different strategies such as region
selection, text warping, and text color matching. Liao et al.
[3] and Long and Yao [4] further proposed rendering text
on the surface of models in three-dimensional (3D) virtual
worlds using Unreal Engine. Although realistic occlusions,
perspectives, and illuminations can be realized in 3D engines,
there is still a gap between the virtual and real worlds.
To eliminate heuristic rules and complex setups, Yang et al.
[5] proposed a learning-based method consisting of a location
module and an appearance module. The location module
employs a conditional variational auto-encoder (cVAE) [6]
to learn the distribution of text locations directly from the
original scene-text image and corresponding text bounding
boxes (BBoxes). During training, the cVAE takes a scene text
image as input, while during inference, a pure background
image is used as input. The “condition” is changed during the
training and inference process, which is unreasonable and may
limit its performance.

In this study, we aim to address the challenge of inade-
quate training data and facilitate learning-based text synthesis
methods. To this end, we propose the DecompST dataset,
which enables the decomposition of real-world scene text
images into pure background images and pure text instances.
These decomposed data can be utilized to train robust neural
networks to learn the complicated layout and appearance
of text instances in real-world scene images. The overall
concept is illustrated in Fig. 1. Building upon the DecompST
dataset, we propose a Learning-Based Text Synthesis engine
(LBTS) that mainly includes a text location proposal network
(TLPNet) and text appearance adaptation network (TAANet).
TLPNet first predicts suitable regions from the background
images for text embedding. TAANet then adaptively changes
the perspective and color of the synthetic text instance to match
the background. Once the networks have been effectively
trained, an integrated data generation pipeline can be built
to produce a scalable volume of synthetic data, which can
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Fig. 1. Concept of our proposal. We first decomposed the real-world
scene-text image into a text layer and a background layer. Next, we applied
data augmentation to perturb the geometry and color of the text layer. Then,
we proposed a Learning-based Text Synthesis Engine to recompose the two
layers back to their original natural relationship, so that the engine can learn
the complicated layout and appearance of text instances from real-world scene
images.

subsequently be utilized as training data for various scene-text
analysis tasks.

The main contributions of our study are summarized as
follows:

• We introduce the DecompST dataset, which is able to
decompose real-world scene-text images into separate
pure background images and text instances, for the train-
ing of learning-based scene-text synthesis methods.

• We propose a learning-based scene-text image synthesis
engine (LBTS) that consists of a text location proposal
network and a text appearance adaptation network, to gen-
erate realistic synthetic scene-text images.

• The quality of our generated dataset and other existing
synthetic datasets is evaluated by the performance of a
baseline text detector. The experimental results demon-
strate that our method can generate better pretraining
data for scene text detectors than other state-of-the-art
methods.

The structure of this paper is organized as follows.
Section II reviews related studies on scene-text detection,
image synthesis, and data augmentation for scene-text analy-
sis. Section III provides details about the proposed DecompST
dataset. Section IV introduces the proposed method, including
the flow of data preprocessing and the structure of the two
networks. In Section V, we evaluate and compare our proposed
method with related synthetic datasets based on experimen-
tal results. Finally, concluding statements are presented in
Section VI.

II. RELATED WORK

A. Scene Text Detection

With the rise of deep learning, scene text detection has been
dramatically reshaped and facilitated, showing promising per-
formance compared to traditional manual feature engineering
algorithms [7], [8], [9], [10], [11]. Recent learning-based scene
text detection methods have been inspired by general object
detection and image segmentation methods, which can be

roughly categorized into regression-based and segmentation-
based methods. Regression-based methods aim to predict the
bounding boxes of text instances directly. TextBoxes [12]
modified the anchors in the SSD [13] to handle text with
various aspect ratios. CTPN [14] combines the framework of
Faster R-CNN [15] with a recurrence mechanism to predict the
contextual and dense fixed-width proposals of text. RRPN [16]
proposes a rotation region proposal based on Faster R-CNN
to bind arbitrary-oriented text with rotated rectangles. EAST
[17] proposes a simplified detection pipeline that directly
regresses rotated rectangles or quadrangles of text without
using anchors. LOMO [18] improved the performance of
EAST on the long text and arbitrarily shaped scene text by
iteratively refining the preliminary proposals and considering
the geometric properties of scene text.

Segmentation-based methods usually first extract text from
the segmentation map and then compute the text bound-
ing boxes by post-processing. Zhang et al. [19] integrated
semantic labeling using FCN and MSER for pixel-level multi-
oriented text detection. The Mask textspotter [20] was inspired
by the framework of Mask R-CNN [21] and performed
character-level instance segmentation for each alphabet; thus,
it has the ability to detect and recognize irregular text.
TextSnake [22] proposed a novel and flexible representation
of arbitrarily shaped text and predicted heat maps of text
centerlines, text regions, radii, and orientations to extract
text instances. PSENet [23] gradually expanded small text
kernels to complete shapes using multiple segmentation maps
to effectively split close text instances. Liao et al. [24] pro-
posed a differentiable binarization (DB) module in a simple
segmentation network to perform binarization. CRAFT [25]
exploited the affinity between characters in the form of a
heat map and proposed a weakly supervised framework to
estimate character-level ground truths in existing real word-
level datasets. ACE [26] proposed to evolve the key points
of the horizontal bounding box towards the corner points to
detect arbitrarily-oriented objects or text.

B. Image Synthesis

Inserting foreground objects into a background image is
one of the most common image synthesis approaches for
generating a photo-realistic composite image, which may face
inconsistency problems between the foreground and back-
ground in the geometry and appearance domains. To solve
these inconsistency problems, many subtasks have been inves-
tigated, such as object placement, image blending, image
harmonization, and shadow generation. Before the deep-
learning era, many researchers explored automated image
blending and harmonization. These methods transfer the color
from one image to another based on the low-level statistics
of the images, such as color distribution or histograms [27],
[28], [29], gradient-domain information [30], [31], [32], [33],
and multi-scale statistical features [34], among others.

With the emergence of neural networks, more challenging
tasks have been investigated. ST-GAN [35] seeks the geomet-
ric realism of image compositing by integrating a generative
adversarial network (GAN) and spatial transformer networks
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(STNs) [36] to warp the foreground object in an iterative
fashion. SF-GAN [37] combines an STN and CycleGAN [38]
to perform geometry transformation and appearance domain
translation concurrently with an end-to-end trainable network.
Benefiting from the designed structure, the SF-GAN can also
achieve synthesis realism in both geometry and appearance
spaces without using paired training data. GCC-GAN [39]
was proposed to address geometric and color consistency in
composite images by integrating four subnetworks: a trans-
formation network, a refinement network, a discriminator
network, and a segmentation network. In the transformation
network, not only are the parameters of the transformation
matrix predicted, but the parameters of linear color trans-
formation that control the contrast and brightness are also
predicted simultaneously. Tsai et al. [40] introduced an end-
to-end image harmonization network with a shared encoder
and two decoders, where the learned semantic information
was used to facilitate harmonization. Inspired by AdaIN
[41], Ling et al. [42] treated image harmonization as a
background-to-foreground style transfer problem and proposed
a plug-and-play region-aware adaptive instance normalization
(RAIN) module that explicitly formulates the visual style from
the background and adaptively applies it to the foreground.

C. Data Augmentation for Scene Text Analysis

The text synthesis technique, which involves inserting text
instances into scene background images, was initially inves-
tigated as a data augmentation approach for the training of
scene text detection and recognition models. Later, synthetic
datasets were utilized as important training data for other tasks
such as scene text segmentation [43], [44], scene text erasing
[45], [46], and scene text editing [47], [48].

Wang et al. [49] generated a character-centered synthetic
image to train a character-level scene-text recognition model.
Jaderberg et al. [50] generated a word-centered synthetic
dataset using a set of predefined random processes, including
font selection and rendering, bordering/shadowing and col-
oring, layer composition, projective distortion, blending, and
noise addition. SF-GAN [37] was trained without paired data
because of its unsupervised pipeline, which can also be applied
in text synthesis tasks to generate patch-level synthetic text
images. Yim et al. [51] further analyzed existing synthesis
techniques [1], [50] and integrated the effective parts as a
new-generation engine for scene text recognition tasks. These
methods generate text-centered images, whose applications are
limited.

Gupta et al. [1] first attempted to synthesize text in the
wild to generate the SynthText dataset, which is beneficial
for training scene-text detection tasks. The SynthText engine
finds suitable text embedding regions in the background image
following a set of rules that consider semantic segmentation
maps and depth maps, and it renders text instances with color
selection, perspective distortion, and Poisson blending [30]
according to the local background information. Zhan et al. [2]
exploited saliency-guided “semantic coherent” image synthesis
by leveraging the annotations of semantic segmentation map
and visual saliency map. They also designed an adaptive text

appearance mechanism to determine the color and brightness
of texts by matching a list of pairs, which includes the
HoG feature of the background and LAB space statistics of
text, gathered from real scene-text images. Yang et al. [5]
proposed a learning-based, data-driven text synthesis engine by
dividing the text synthesis into two sub-tasks:1) determining
the location of text and 2) making the appearance of the
inserted text more realistic. A conditional variational auto-
encoder [6], [52] was utilized to learn the distribution of text
locations from real-world data, and a masked Cycle-GAN
[38] was proposed to translate the appearance of synthetic
images to the real-data domain. In contrast to rendering text
in 2D static images, Liao et al. [3], [4] renders text and
the scene as integrity in 3D virtual worlds using the Unreal
Engine. In this way, real-world variations, including complex
yet correct perspective distortions, various lighting conditions,
and occlusions, can be realized in the synthesized scene text
images.

In terms of learning-based methods for synthesizing scene-
text images, our method is closely related to the method
proposed in [5]. Their approach samples latent vectors from
the prior distribution and feeds them to a cVAE to directly
output the affine transformation parameters, which are used
to globally transform the location and perspective of text
instances. However, owing to the direct use of scene text
images and the corresponding text BBoxes for training, the
“condition” of cVAE is changed during the training and
inference processes, which may achieve unsatisfactory per-
formance. Our proposed DecompST dataset can address this
problem by providing a data pair of text-erased images and
original text BBoxes.

Another closely related method is presented in [37], which
can concurrently achieve realism in both geometry and appear-
ance spaces without supervision by employing an innovative
network structure. In addition, the method in this study can
generate patch-level synthetic text images for scene-text recog-
nition tasks. In contrast to their work, our proposed method is
a fully supervised image synthesis method that leverages the
DecompST dataset, aiming to train more robust networks to
generate image-level synthetic scene-text images specifically
for the text detection task.

III. DECOMPST DATASET

We introduce a dataset called DecompST, which is a
quadruplet of the original scene-text images, text BBoxes,
text-erased images, and stroke-level text masks. This dataset
can decompose real-world scene-text images into pure back-
ground images and text instances, as shown in Fig. 2. Those
components can be utilized to train a robust network to learn
the complicated layout and appearance of text instances in
real-world scene images. We have made this dataset publicly
available and hope that it can motivate more learning-based
scene text synthesis methods to generate high-quality synthetic
training data for scene text detection and recognition tasks.

A. Image Collection

All the images in our dataset were collected from several
public real-world scene text detection benchmarks, including
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Fig. 2. Given the original image and corresponding text BBoxes, we decom-
pose real-world scene-text images into pure background images and text
instances using a text-erased image and stroke-level text mask.

TABLE I
NUMBER OF IMAGES AND VALID TEXT INSTANCES

FROM DIFFERENT SOURCE DATASETS

the ICDAR-2015 [53], MLT-2019 [54], and TextSeg [55]
datasets. The ICDAR-2015 [53] and MLT-2019 [54] datasets
are classic benchmarks for scene text detection. The TextSeg
[55] dataset, on the other hand, specifically focuses on scene
text segmentation. It provides comprehensive annotations
encompassing quadrilateral BBoxes at both word and character
levels, along with pixel-level text masks. We opted to use
the TextSeg dataset because its manually-labeled, high-quality
pixel-level text masks align with our requirements for stroke-
level text masks. For each dataset, we collected both the
training and validation sets, but we only selected Latin and
Chinese parts of the MLT-2019 [54] dataset, and the scene-
image part of the TextSeg [55] dataset.

B. Annotation Details

This section provides a detailed description of the anno-
tation process applied to create the DecompST dataset. For
each text instance in the collected images, our goal was to
obtain the corresponding text-erased patch and stroke-level text
mask. Since the text instances in images are already labeled
by BBoxes, we utilized a word-level scene-text-erasing method
[46] to erase each text instance individually and generate text-
erased images. To obtain the stroke-level text mask of the
ICDAR-2015 [53] and MLT-2019 [54] datasets, we employed
the stroke mask prediction module (SMPM) in [46] to extract
the pixel-level text mask. However, as the original SMPM
was designed to predict a dilated text mask, we retrained
the SMPM using the same synthetic dataset [46], but with
original-size text masks as ground truth. Subsequently, this
retrained SMPM was utilized to accurately predict text masks
that precisely fit the text instances. Given that predictions made
by neural networks can sometimes be imperfect, it is necessary
to manually label the quality of predicted results.

Fig. 3. Some image samples from our proposed DecompST Dataset. The first
row contains the original images with text BBoxes, where valid text instances
are marked in green BBoxes and invalid ones are in red BBoxes. The second
row is our generated text-erased images. The third row is the stroke-level text
masks. The fourth row is the text-pixel images masked by stroke-level masks.

Our labeling criteria for text-pixel images focused on the
readability of text and the integrity of the text mask. As for
text-erased images, we assessed the quality based on the effec-
tiveness of text erasure and the restoration of the background.
During the annotation process, the annotators checked the text-
pixel image and text-erased image of each text instance and
labeled both their quality as 1 or 0, where 1 indicated good and
0 indicated bad. Only text instances that received 1 on both
sides were considered valid data, and other data were deemed
invalid. For the TextSeg dataset, because accurate pixel-level
text masks were provided, all text masks were labeled as 1,
and we only assessed the quality of the text-erased image,
assigning a label of 1 or 0.

Finally, the DecompST dataset contains 4585 images with
16017 valid text instances with corresponding text-erased
images, stroke-level text masks, and quadrilateral bounding
boxes, as summarized in Table I. Visual samples of annotated
instances from the DecompST dataset are presented in Fig. 3.

IV. METHODOLOGY

In this section, we present our proposed learnable text
synthesis (LBTS) method, which mainly consists of two sub-
networks: the text location proposal network (TLPNet) and the
text appearance adaptation network (TAANet), as illustrated
in Fig. 4. More concretely, during the training, given a text-
erased image, TLPNet first predicts suitable regions for text
embedding. Then, a perturbed text layer is added and TAANet
adaptively adjusts the perspective and color of the perturbed
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Fig. 4. Pipeline of our proposed Learning-based Text Synthesis Engine (LBTS). It mainly consists of two networks: text location proposal network (TLPNet)
and text appearance adaptation network (TAANet). Given a background image, TLPNet predicts suitable regions for text embedding. Then, TAANet aligns
the geometric and color relationship between the synthetic text instance and the background. We trained our proposed networks on decomposed real-world
data and applied them in the synthesis domain to generate synthetic scene-text images.

text layer to restore its original natural appearance. After
training, we can feed two networks with unseen background
images and plain text images to generate synthetic scene-
text images. Further details regarding the network structure,
training process, and inference strategy are presented in the
following subsections.

A. Text Location Proposal Network

1) Data Preprocessing in Training: Undoubtedly, the
regions within the original BBoxes can be regarded as the
ground truth of the text region for learning. Furthermore,
we consider that the feasible region for text embedding could
be extended if the background shares a similar pattern in a
neighboring area, especially in the case of scene text that
usually appears in relatively plain regions, such as billboards,
walls, and signs. To identify the regions that have a similar
appearance to the text-erased regions, we adopted the concept
of the appearance descriptor and appearance distance from
InstaBoost [56] to measure the appearance similarity between
text-erased regions and all other regions within an image. The
appearance descriptor D(·) is a combination of three weighted
regions Ri of each valid text instance in the text-erased image,
which is related to the corresponding text location:

D(px , py) = {(Ri (px , py), wi )|i ∈ {1, 2, 3}}, (1)

where R1 denotes the region of the stroke-level mask, and
R2 and R3 are the dilated contours of the stroke-level mask
with different scales (R2 is the inner contour), given px , py
as the center of the instance. wi is the weight coefficient of
Ri , and w1 > w2 > w3 is defined to emphasize the higher
similarity around the inner neighboring areas of the original
text instance. Fig. 5 (b) shows some examples of visualizations
of the descriptor’s region Ri and weight wi .

Next, given a target text appearance descriptor Dt (pt x , pt y),
we assess the appearance similarity between the appearance
descriptor of each pixel in the text-erased image and Dt using
the appearance distance. The appearance distance for a given

pixel (x, y), conditioned on Dt , can be formulated as follows:

dDt
(x,y) = min

(u,v)∈BBOX

3∑
i=1

∑
(xt ,yt )∈Rti (pt x ,pt y)

(xs ,ys )∈Rsi (pt x −u+x,pt y−v+y)

wi1(I (xt , yt ), I (xs, ys)),

(2)

where BBOX is the area inside the original text BBox. I (x, y)

denotes the RGB value of the text-erased image on (x, y) pixel
coordinates, and 1 is the Euclidean distance. The result of 1

is counted as infinity if (xs, ys) is outside the boundary of the
text-erased image.

By gathering the appearance distance of each pixel con-
ditioned on the target text instance, we construct the target
text appearance distance map H t

d . H(x, y) denote the value
of the map H at pixel coordinates (x, y). Consequently,
H t

d(x, y) = dDt
(x,y). We generate the corresponding appearance

consistency heatmap H t
a by applying a normalization function

to every pixel of the H t
d , expressed as follows:

H t
a(x, y) =

(
1 −

H t
d(x, y)

dmax

)3
, (3)

here, dmax is the maximum value in H t
d except the infinity.

During the calculation of Eq. 3, the infinity is set to dmax .
For each text instance in an image, we calculate the corre-

sponding appearance consistency heatmaps and combine them
into Ha :

Ha(x, y) = max
k∈W

H k
a (x, y), (4)

where k ∈ W is the index of the text instance and W denotes
the set of valid text instances in the text-erased image.

Up to this point, the appearance consistency heatmap Ha
only takes into account the color similarity between patches of
valid text instances and other patches in a text-erased image.
Therefore, Ha is redundant and lacks semantic information.
To address this limitation, we propose a further processing
method for Ha by incorporating semantic information pro-
vided by the edge map. First, we compute the difference
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Fig. 5. Flow of data preprocessing. (a) Text-erased image I and BBOX regions. (b) Visualization of Ri , wi . The Ri refer to the corresponding regions of
each text instance and the brighter regions in (b) of Ri mean higher wi . (c) Appearance consistency heatmap Ha . (d) Edge-based segmented heatmap He .
(e) Final generated heatmap H f (H f is overlaid on I for a better view). The red regions are treated as GT during the training of TLPNet. Note that the
original Ha , He, H f are gray-scale images; we visualized them as heatmaps in this figure.

between the heatmap Ha and the Sobel edge map. This
operation can divide Ha with edge information, while it also
may disrupt the original BBOX regions. To ensure the original
BBOX regions are completely preserved in the result, we use
the following operation:

He(x, y) = max
(
Ha(x, y) − λSobel(I )(x, y), HBBOX(x, y)

)
,

(5)

where I is the text-erased image, and Sobel is the Sobel edge
detection operation. λ is the weight required to balance the
segmentation degree. HBBOX is a heatmap in which pixels
inside the valid text BBoxes are set to 1.0; otherwise, 0.

Then, the heatmap He is further segmented using threshold-
ing and we obtain Ht :

Ht (x, y) =

{
He(x, y), if He(x, y) > T
0, otherwise,

(6)

where T denotes a constant threshold. In our implementation,
T and λ were set to 0.75 and 5.0, respectively.

Next, we compute all connected components in Ht and mark
them as S j , where j is the index of each segmented region.
We filter out small regions and regions that do not contain
a high appearance consistency score in S j to ensure final
text insert regions are the extension of the BBOX regions.
Finally, we set the values of pixels inside remaining S j to
1 and inpaint the small holes to generate the final heatmap
H f as the ground truth for the training of TLPNet. The
processing flow of the appearance consistency heatmap is
shown in Fig. 5. Through our preprocessing, BBox-based text
regions are extended into semantic-based ones by considering
the similarity of the regions’ appearance.

2) Network Structure of TLPNet: Given a background
image Ibg , TLPNet aims to segment the mask of the text

region H f , which is suitable for text embedding. We adopted
the segmentation head of the DB [24] and used ResNeXt-50
[57] as the backbone for our TLPNet, which is illustrated in
Fig. 6. During training, we used a binary cross-entropy (BCE)
loss and a DICE loss.

Lbce(S, T ) = −(T log(S) + (1 − T ) log(1 − S)) (7)

Ldice(S, T ) = 1 −
2

∑N
i Si Ti∑N

i Si +
∑N

i Ti
(8)

LTLPNet = λ0Lbce(Ĥ f , H f ) + Ldice(Ĥ f , H f ), (9)

where S and T represent the prediction and ground truth of
the mask image, respectively, and N denotes the total number
of pixels in the image. Ĥ f and H f are the prediction and
ground truth of TLPNet, respectively. λ0 is set as 10 in our
implementation.

B. Text Appearance Adaptation Network

We consider that the realism of text appearance has two
aspects: proper perspective and harmonious color that align
with the background context. To address this, our TAANet
comprises 1) a geometry transformation module (GTM) and 2)
a color harmonization module (CHM), as illustrated in Fig. 7.
For the GTM, there are three inputs: a patch-level plain text
image Ppt , a background image Ibg , and a reference rectangle
Rect indicating the approximate location and scale of the text
in the background image. The GTM outputs a composed image
Îcomp, where Ppt is transformed by homography matrices to fit
the local geometric context of the background based on Rect .
Ppt is a fixed-size text-centered patch image in which text is
placed horizontally. In the CHM, the composed image Îcomp
and its corresponding text mask It t A are taken as inputs, and
the output Îout is an image in which the color of the text is
properly transferred to harmonize with the background.
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Fig. 6. Structure of the text location proposal network. Given a background image Ibg , TLPNet aims to segment the text region, which should be as close
to the heatmap H f .

Fig. 7. Overview of our proposed text appearance adaptation network. It is composed of a geometry transformation module (GTM) (left) and a color
harmonization module (CHM) (right). Given an input triplet consisting of a patch plain-text image Ppt , a reference rectangle Rect , and a background image
Ibg , the GTM learns to place the text with a realistic perspective. Then, the CHM takes the composite image Icomp and text mask It t A as inputs, and outputs
a synthetic text image Iout with a harmonious color.

1) Data Preprocessing: In a simple image-level text synthe-
sis scenario, we are provided with a background image, a plain
text patch, and a hint indicating the rough location of the text.
Accordingly, given the BBox and stroke-level mask of one text
instance from the source scene-text image Is in the DecompST
dataset, preprocessing aims to remove the original geometry
and color information of text instances to obtain a patch-level
plain text image Ppt and a reference rectangle Rect . Ppt is
a text instance with a perturbed color and horizontal layout,
while Rect indicates the approximate location and scale of
the text within Is . By restoring Ppt , Rect , and the text-erased
image Ibg back to Is , the geometry and color relationship
between text and background can be learned through TAANet.

The first step of preprocessing is to cut off the target text
instance from the text-pixel image and apply a perspective
transformation to warp the target text instance into a rectangu-
lar one based on its quadrilateral-BBox annotation so that we
obtain a horizontal text instance without perspective. Sequen-
tially, we augment the data by randomly altering the aspect
ratio of the rectangle BBox and jittering the center of the
rectangle BBox, to further perturb the geometric relationship
between the target text instance and the background. Next, the
text pixels of the target text instance are clustered in only two

Fig. 8. Flow of the preprocessing of training data in TAANet. The blue and
red dashed boxes are the same reference rectangle Rect but in the images
before and after the processing to show the clipping regions to obtain patch
text images.

or three colors using K-means to remove color information
and noise. In addition, we augment the data by jittering the
color of the text in the HSL space. Finally, to reduce the
interdependence between text instances within an image, other
text instances are randomly erased in the background image.
The entire process flow is shown in Fig. 8.
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Fig. 9. Illustration of An and Ppt . The images in blue box Pbefore and red
box Ppt are obtained by cropping from the dash boxes with the same color
in Fig. 8.

Based on the aforementioned processing, we can obtain the
reference rectangle Rect , patch-level plain text image Ppt ,
background image Ibg , and ground truth of the transformation
matrix An using the following operations. Rect is a square box
centered on the processed target text instance. Using Rect , the
target text instances before and after processing are cropped,
resized, and padded to create Ppt and the text image before
processing Pbefore. An is computed based on the transformed
BBox in Ppt and the original BBox in Pbefore. Moreover, Ppt
is a five-channel image with RGB channels Ppt RG B , alpha
channel Ppt A, and a mask channel of the BBox-level of the
text region Ppt B M , as shown in Fig. 9. Ppt B M is utilized
as additional information during network training, which will
be discussed in the later section. Finally, Ibg is generated by
composing the remaining text in the processed text-pixel image
and text-erased image.

2) Geometry Transformation Module (GTM): The first step
of the GTM is to feed Rect into a spatial transformer
module (STM) [58] and generate a transformation matrix Am
parameterized by θm . The Am is used to warp and pad the
patch-level plain text image Ppt into the plain-text image Ipt .
Then, the Ipt and background image Ibg are concatenated and
fed into the localization network (ResNet-34 [59]) to regress
the parameters θn of the homography transformation matrix
An . Once the transformation matrices Am and An are obtained,
they are applied to the Ppt to sample the transformed text
image It t . In the GTM, Am is used to determine the coarse
location and scale of the text based on the Rect , and An is
used to transform the local perspective of the text instance.
The transformation is expressed as follows:(

x t t
i

yt t
i

)
= Tθm (Tθn (Gi )) = Am An

 x pt
i

y pt
i
1

 , (10)

where Tθ is a 2D perspective transformation and Gi is a pixel
in a regular grid G, which is the same as the grid in Ppt .
Therefore, Gi = (x pt

i , y pt
i ), which are the coordinates of Ppt ,

and (x t t
i , yt t

i ) are the corresponding coordinates in the warped
grid that defines the sample points.

It t = S(Tθm (Tθn (G)), Ppt ), (11)

where S represents the differentiable bilinear sampler [36]
that computes the pixel value of It t by interpolating the
corresponding neighbor pixels in Ppt .

After obtaining the transformed text image It t and back-
ground image Ibg , we can compose them to obtain Icomp:

Icomp = IttRGB ◦ It t A + Ibg ◦ (1 − It t A), (12)

where ◦ is the Hadamard product. IttRGB and It t A are the RGB
channels and pixel-level alpha channel of It t .

During the training, we introduce three loss functions to
stabilize the training of the geometry transformation module:
local L1 loss, global region loss, and adversarial loss. We use
a robust smooth-L1 loss [60], as the local L1 loss directly
restricts the output of the localization network from a numer-
ical perspective:

L1 = smoothL1( Ân − An), (13)

smoothL1(x) =

{
0.5x2 if |x | < 1
|x | − 0.5 otherwise,

(14)

where Ân and An represent the prediction and ground truth of
the localization network output, respectively.

The region loss employs the DICE loss in Eq. 8 to guide
the transformed text with a higher overlapping rate from the
view of the region, and we globally apply it to the stroke-mask
level and BBox-mask level in the image:

Lregion = Ldice( Ît t A, It t A) + Ldice( ÎttBM, IttBM), (15)

here, Ît t A and ÎttBM are generated by transforming Ppt A and
PptBM using the matrices Am and Ân . It t A and IttBM are the
corresponding ground truths that can be easily generated from
stroke-level text masks and text BBoxes.

GAN [35], [37], [39] has been proven beneficial for the
training of STN, so we adopt it in our implementation.
However, we do not directly use the source image Is as the
“real image” in adversarial training because Is is realistic in
both the geometry and color spaces. Instead, we generate Icomp
by warping Ipt using An , which only achieves realism in the
geometry domain. Icomp is treated as a “real image” during
the training of the GTM. The adversarial loss is defined as
follows:

L Dgeo = EIcomp[ReLU(1 − Dgeo(Icomp, It t A))]

+ E Îcomp
[ReLU(1 + Dgeo( Îcomp, Ît t A))] (16)

LGTM = λ1L1 + λ2Lregion

− E Îcomp
[Dgeo( Îcomp, Ît t A)], (17)

where Icomp and It t A are concatenated as the inputs of the
discriminator. λ1 and λ2 are set to 50 and 10, respectively,
in our experiment.

3) Color Harmonization Module (CHM): We treat this
text-color-changing task as an image-harmonization problem.
We employ the region-aware adaptive instance normalization
(RAIN) module [42] in a UNet-like architecture by adding
RAIN modules after the convolutional layers in the decod-
ing stage. RAIN is proposed as an activation function that
normalizes the foreground features and aligns the normalized
features with a computed scale and bias from the background
features. In our task, we hope that it can transfer the style
from the background into text instances, maintaining harmony
between texts and the background. Given an input feature
batch F ∈ RC×H×W and resized foreground (text) mask
M ∈ RH×W , the formulation of RAIN(·) is expressed as:

RAIN(F, M) = σ(F, 1 − M)
( F − µ(F, M)

σ (F, M)

)
+ µ(F, 1 − M), (18)
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where µ(·) and σ(·) ∈ RC are the channel-wise mean and
standard deviation of the foreground or background features,
respectively, computed independently across spatial dimen-
sions for each channel.

µc(F, M) =
1∑

h,w

M

∑
h,w

Fc,h,w ◦ Mh,w (19)

σc(F, M) =

√√√√ 1∑
h,w

M

∑
h,w

(Fc,h,w ◦ Mh,w − µc(F, M))2 + ϵ,

(20)

where ◦ denotes the Hadamard product.
In addition, we adopt an adversarial training method. Adver-

sarial loss can be expressed as follows:

L Dcol = EIs [ReLU(1 − Dcol(Is, It t A))]

+ E Îout
[ReLU(1 + Dcol( Îout , Ît t A))] (21)

LCHM = λ3∥ Îout − Is∥ − E Îout
[Dcol( Îout , Ît t A)]. (22)

Here, λ3 is set to 5 in the experiment.
4) Inference Pipeline: After training the TLPNet and

TAANet, they can be integrated into a generation pipeline to
generate synthetic data. The inference process of our method
is illustrated in the lower section of Fig. 4. Given a background
image, We first use TLPNet to predict the text regions in
the form of heatmaps. Subsequently, we randomly sample a
reference rectangle with a higher 70% overlap rate with the
text regions. At the same time, a plain text patch image with
a size of 256 × 256 is generated by randomly selecting fonts,
text, and color. Then, the reference rectangle, plain text patch
image, and background image are passed through TAANet to
produce a synthetic text image. Finally, post-processing applies
various effects to the text, including shadows, 3D effects,
texture, and blurring. In the composition of the multiple text
instances within one background image, we abandon over-
lapped and small text instances. In the presence of semantic
information, such as in the COCO dataset [61], the refinement
of the synthesis can be achieved by discarding the text beyond
the boundaries of semantic segmentation, allowing for the
synthesis of text instances specifically on designated objects.

V. EXPERIMENT

A. Implementation Details

1) Training Configurations: Our implementation was based
on the PyTorch framework. For training of TLPNet, we used
the DecompST and the SCUT-EnsText datasets [62] to gener-
ate the training data pairs. As a result, we obtained a total of
approximately 7900 training data pairs. The input size of the
TLPNet was set to 768 × 768, and the batch size was 12 on an
Nvidia GeForce RTX 3090 GPU. We employed the Adam [63]
optimizer with a β of (0.5, 0.9), and the learning rate started
at 0.0002 and decayed to nine-tenths after every 20 epochs in
the training phase. During the training of TAANet, GTM and
CHM were trained separately. This is because we adopted the
L1 loss during the training of CHM, which is essential for
effectively constraining the color of the output. The input size
of TAANet was also 768 × 768, and the training batch size

for GTM and CHM were set to 20 and 10, respectively, on a
single Nvidia GeForce RTX 3090 GPU. The optimizer used
was the same as in TLPNet, and the discriminators’ learning
rate started from 0.0004, with the same decay rate as that in
TLPNet.

2) Inference Configurations: In the preparation stage,
we need to collect some ingredients for synthesis, including
background images, fonts, and a lexicon. The background
images were collected from the COCO dataset [61] and
Places2 dataset [64]. To ensure that the images closely
resembled real scene images, we selected the image sets
by excluding those with labels related to natural landscapes.
Additionally, we applied filtering to the selected image sets
using CRAFT [25] and DB [24] to remove any images
with prominent text. Ultimately, we amassed a collection
of approximately 200,000 background images. Furthermore,
we gathered around 2000 fonts and compiled a lexicon by
combining the MJ dataset [50] and the ST dataset [1]. Our
LBTS dataset is generated by a machine with a single GeForce
RTX 3080 GPU, AMD Ryzen7 3700X @ 3.6 GHz CPU, and
32G RAM. The TLPNet model consists of 24.7M parameters,
while the TAANet model has 38.5M parameters (21.4M for
GTM and 17.1M for CHM). The inference times for TLPNet
on a single image and TAANet on one text instance are approx-
imately 21ms and 81ms (11ms for GTM, and 70ms for CHM),
respectively. Fig. 10 shows some generated samples from
our LBTS dataset. We observed that the TLPNet exhibited a
preference for predicting the text region in relatively flat areas,
especially in regions with quadrilateral shapes. This tendency
may stem from the bias in the training data, where most
text instances exist on the signs, walls, or billboards. On the
other hand, the geometry and color relationship between text
and background is also reasonably aligned by the TAANet.
The text perspective accurately follows the boundaries of text
regions, and the text color is appropriately balanced, neither
being obtrusive nor excessively dull.

B. Evaluation Metrics and Datasets

1) Evaluation Metrics: To verify the effectiveness of dif-
ferent text synthesis methods, a common method is to train
the same text detector on different synthesized datasets and
evaluate the trained detectors on several test sets of real
datasets. The better performance of the text detector indicates
a higher quality of the training data, implying a better text
synthesis strategy. Following previous works [2], [4], synthetic
datasets are evaluated from two perspectives: 1) as independent
training data for detection models to assess the possibility that
whether synthetic datasets can be a substitute for real-world
datasets. 2) as pretraining data to initialize text detectors,
where pretrained models fine-tuned with real-world data usu-
ally exhibit better performance than models directly trained
from scratch with real-world data.

In our experiment, we selected EAST [17] and DB [24] as
the baseline text detector to conduct comparison experiments.
Both of them were previous state-of-the-art methods and are
the most commonly used algorithms in the text detection task.
In the implementation of EAST, ResNet-50 [59] was used as
the backbone, and all the models were trained on two RTX
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Fig. 10. Several sample images generated by our proposed synthesis engine. The left column of the paired images displays the predicted text regions using
TLPNet, and the right column of that is our synthesized image.

2080Ti GPUs with a batch size of 28. For DB, we trained DB-
ResNet-50 [24] on one RTX 3090 with a batch size of 20. The
performance metrics of the text detector, recall (R), precision
(P), and F-score (F), were calculated under the ICDAR2015
evaluation protocol [53] over all evaluation datasets.

2) Synthetic Dataset:
• Oxford SynthText Dataset (ST) [1] is a large-scale

synthetic text dataset that consists of about 850,000
images. It is created from about 8000 background images
and 1200 fonts. 10,000 data pairs were randomly sampled
from this dataset to compose ST-10k.

• Verisimilar Image Synthesis Dataset (VISD) [2] con-
tains 10,000 images synthesized from background images
collected from the COCO dataset [61].

• UnrealText (UT) [4] initially consists of about 728,000
images in English/Latin. However, we discovered that
some of these images either do not contain text or are par-
tially black, potentially due to render failure or incorrect
camera positioning. To ensure data quality, we filtered
out the images without annotations and those where more
than two-thirds of the pixels are completely black. As a
result, approximately 670,000 images remained, and we
also randomly sampled 10,000 images to form UT-10k
for our experiment.

3) Real-World Dataset:
• ICDAR 2013 (IC13) [65] is a widely used scene text

image dataset that includes 229 training images and
233 testing images.

• ICDAR 2015 (IC15) [53] comprises 1000 training
images and 500 test images and addresses incidental
scene text in the Latin alphabet.

• ICDAR 2017 MLT (MLT17) [66] contains 7200 images
for training and 1800 images for validation. Text instances
of this dataset are from nine different languages: Ara-
bic, Bangla, Chinese, English, French, German, Italian,
Japanese and Korean.

• Total-Text [67] is a comprehensive dataset of arbitrary-
shaped text instances, including horizontal, multi-
oriented, and curved textual variations. It contains
1255 training images and 300 test images. All images
are annotated with polygons at the word level.

C. Comparison With State-of-the-Art Methods

To verify the effectiveness of the proposed text synthesis
engine, we conducted evaluation experiments to compare our
generated LBTS dataset with those of recent state-of-the-art
approaches [1], [2], [4]. First, we standardized the total number
of each synthesis dataset to 10k to conduct a fair comparison
experiment. We trained EAST on each synthetic dataset with
200,000 steps, followed by fine-tuning on the corresponding
real-world training set for an additional 200,000 steps. The
performance of EAST was evaluated by the validation set
of each real dataset every 1000 steps, and the best F-scores
are recorded in Table II. For all the evaluation benchmarks,
when we employed synthetic datasets as independent training
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TABLE II
COMPARISON BETWEEN PREVIOUS SYNTHETIC DATASETS AND OUR LBTS DATASET ON THE ICDAR2013, ICDAR2015, ICDAR2017MLT DATASETS

USING EAST AS THE BASELINE DETECTOR. R: RECALL, P: PRECISION, F: F-SCORE, REAL: THE CORRESPONDING TRAINING SET OF THE
EVALUATION DATASET

TABLE III
COMPARISON BETWEEN PREVIOUS SYNTHETIC DATASETS AND OUR

LBTS DATASET ON THE ICDAR2015 AND TOTAL-TEXT DATASETS
USING DB AS THE BASELINE DETECTOR. R: RECALL, P: PRECI-

SION, F: F-SCORE, REAL: THE CORRESPONDING TRAINING SET
OF THE EVALUATION DATASET

data, EAST trained on VISD-10k achieved the highest F-score
and Recall, and EAST trained on UT-10k achieved higher
Precision. However, when we fine-tuned the pretrained EAST
with real-world data, we observed that our LBTS-10k dataset
outperformed all other synthetic datasets, obtaining 0.31%,
0.95%, and 0.36% improvement of the F-score on IC13, IC15,
and MLT17 datasets over VISD-10k.

We also trained DB in a similar manner to compare the
quality of synthesis datasets. Initially, DB was pretrained on
each synthetic dataset for 100,000 steps and then fine-tuned on
the IC15 or Total-text datasets for another 1200 epochs. During
the training, we validated the model with the corresponding
test set every 2000 steps, and Table III presents the best F-
scores obtained. The results showed that using DB as the
baseline detector yielded similar results as using EAST. When
considering synthetic datasets as independent training data, the
VISD-10k achieved the highest F-score for both IC15 and
Total-Text datasets. However, by further fine-tuning the DB
model, pretrained on synthetic data, with real data, our LBTS-
10k dataset obtained a higher F-score than other datasets.
Compared to the F-score of DB trained from scratch, DB pre-
trained with our dataset gained 2.4% and 1.83% on IC15
and Total-Text, respectively. Furthermore, in comparison to
previous state-of-the-art datasets, we observed a commendable
improvement of 0.53% in F-score on IC15, while achieving

competitive performance on the Total-Text dataset. To verify
the robustness of each synthetic dataset, three random samples
of 10k data were extracted from each full-size dataset. These
sampled 10k datasets were then used to conduct the evaluation
experiments on IC15 using DB. The average F-measure for
ST-10k, VISD-10k, UT-10k, and LBTS-10k were 86.24, 86.11,
86.39, and 86.78, respectively. The corresponding variances in
F-measure were 0.017, 0.004, 0.019, and 0.015, indicating our
LBTS datasets achieve consistently high performance across
multiple samples. Fig. 11 displays some visual comparisons
of baseline detectors with and without LBTS pretraining. Pre-
trained models effectively reduce detection errors and exhibit
enhanced robustness in handling complex text instances.

To the best of our knowledge, this is the first report that
highlights the performance discrepancy resulting from the use
of synthetic datasets during the pretraining and fine-tuning
stages. In our perspective, synthetic datasets play different
roles when employed as independent training data or as
pretraining data. When text detectors are solely trained on
synthetic datasets and evaluated on real datasets, the perfor-
mance of the text detector indicates the level of entangled
“realism” between the synthetic dataset and real data to a
certain extent. We believe that the realism of text encompasses
multiple dimensions, such as text appearance, distribution,
font, lighting conditions, and background image types. Both
existing methods and our proposed LBTS approach impose
constraints on the generated synthesis data in these dimensions
to approximate the real-world domain. Those constraints are
usually divided into several rules and steps based on prior
knowledge. The “realism” we mentioned here denotes the
degree of entangled “realism” achieved based on these con-
straints.

However, when synthetic datasets served as pretraining data,
we hypothesize that dataset diversity becomes more crucial
than “realism”. [68] is one extreme case that the models
can be well pretrained without natural images. Synthetic
data with greater diversity may enable convolutional layers
to learn distinctive representations. These representations’
corresponding model weights are activated and reinforced
if they are beneficial during the fine-tuning phase, thereby
preventing the model from becoming trapped in local min-
ima during gradient descent. We consider that the learning
mechanism implemented in our LBTS engine introduces a
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Fig. 11. Visual comparisons of baseline detectors using pretraining. (a) Detection results of EAST trained from scratch. (b) Detection results of EAST
pretrained with our LBTS dataset. (c) Detection results of DB trained from scratch. (d) Detection results of DB pretrained with our LBTS dataset. Zoom in
for the best view.

TABLE IV
QUALITY COMPARISON BETWEEN DIFFERENT MIXED SYNTHETIC DATASETS ON ICDAR2013, ICDAR2015, ICDAR2017MLT DATASETS USING EAST

AS THE BASELINE DETECTOR. R: RECALL, P: PRECISION, F: F-SCORE, REAL: THE CORRESPONDING
TRAINING SET OF THE EVALUATION DATASET

greater degree of diversity compared to rule-based methods,
resulting in our generated data performing better as pretraining
data.

In addition, we created mixed synthetic datasets from dif-
ferent synthetic datasets to find out whether the data generated
from different synthesis methods could play a complementary
role during the training of the scene text detector. EAST was
trained using the same configuration as the above experiment,
and the evaluation results are summarized in Table IV. Without
using real data, EAST achieved the best F-score when trained
on VISD-5k + UT-5k, which was higher than the results
obtained with VISD-10k or UT-10k individually. However, this
synergetic effect disappeared when it served as pretraining
data. The performance of EAST trained on the VISD-5k +

UT-5k + Real is almost in the range of that achieved with
UT-10k + Real to VISD-10k + Real, which cannot surpass
the better performance between UT-10k + Real and VISD-
10k + Real. A similar approximately linear relationship can
also be found in other mixed datasets, including LBTS. On the
other hand. when the mixed data serve as the pretraining data,
we found that EAST trained with VISD-5k + LBTS-5k +

Real or UT-5k + LBTS-5k + Real, performed better than
that trained with synthetic data from a single source, such as
VISD-10k + Real or UT-10k + Real.

Finally, we generated 100k synthetic images to test the
scalability of our LBTS. We compared LBTS-100k with the
full-size ST [1] and UT [4]. We trained EAST with 300,000
steps on different full-size datasets; the other configuration
was the same as the above experiments. The evaluation
results of EAST are presented in Table V. We observed that
the performance of EAST improved when the number of
generated datasets increased. Furthermore, EAST trained on
LBTS-100k + Real achieved a competitive performance com-
pared with that trained on ST-850k + Real and UT-670k +

Real.

D. Ablation Study

In this section, we investigated the effectiveness of different
settings of the proposed data-generation engine. The text
location proposal network (TLPNet), geometry transformation
module (GTM), color harmonization module (CHM), and
postprocessing were the focus. The evaluation results of the
EAST trained on the datasets generated by different configu-
rations on the ICDAR2015 dataset are reported in Table VI.

• Text Location Proposal Network Given a background
image, TLPNet aims to propose suitable regions for
text embedding, which are usually relatively plain areas,
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TABLE V
QUALITY COMPARISON BETWEEN DIFFERENT FULL-SIZE SYNTHETIC DATASETS ON ICDAR2013, ICDAR2015, ICDAR2017MLT DATASETS USING

EAST AS THE BASELINE DETECTOR. R: RECALL, P: PRECISION, F: F-SCORE, REAL: THE CORRESPONDING
TRAINING SET OF THE EVALUATION DATASET

TABLE VI
ABLATION STUDY: QUALITATIVE COMPARISON BETWEEN DIFFERENT

CONFIGURATIONS OF OUR PROPOSED ENGINE ON ICDAR2015
DATASET USING EAST AS THE BASELINE DETECTOR

as depicted in Fig. 10. To investigate its significance,
we conducted an ablation study in which we replaced
the output of TLPNet with an image, whose pixels value
are all set to 1. This means the texts can appear at any
location within the background image. The evaluation
result, presented in Table VI emphasizes that TLPNet
improves the quality of the generated synthetic data
whether they served as the sole training data or the
pretraining data.

• Geometry Transformation Module To assess the impor-
tance of the GTM, we replaced this module in our
generation engine with a random transformation matrix
generator. However, employing a completely random
matrix generator is not advisable as it will heavily dis-
tort the text instances, resulting in extremely unrealistic
results. For this reason, we adopted the random trans-
formation matrix generator from a word-level SynthText
engine [46] to reasonably transform the perspective of
text instances, at least at the patch level. From Table VI,
firstly, we observed that data generated with GTM serves
as better independent training data and pretraining data
for the text detector. This reveals the importance of
our GTM function in the synthesis engine. Secondly,
we noticed that when using synthetic data solely for
training, there is a substantial performance gap between
datasets generated w/o GTM and ALL. Nevertheless, this
gap significantly diminishes when we incorporate real
data for fine-tuning. This phenomenon further supports
the conclusion drawn in the last subsection, highlighting
that lower performance in the pretraining model does

not necessarily lead to low performance in the fine-tuned
model.

• Color Harmonization Module To evaluate the advan-
tages of the CHM, the color-deciding process in our
engine was replaced with that of the SynthText engine
[1], where the text color is determined by referencing
a learned dictionary based on the background’s local
statistic information. We can observe that the performance
of EAST decreased when our CHM was missing.

• Post-processing To confirm the contribution of post-
processing of our engine, we generated a dataset without
applying post-processing and evaluated the quality of
this dataset. Table VI implies that our post-processing
techniques can enhance data diversity and improve the
overall quality of generated data.

E. Discussion

Based on our comprehensive experimental results, although
we cannot explicitly determine the specific type of data that
benefits the training of text detectors, we can summarize
several findings that prior studies have not addressed. First,
we discovered that the performance of a text detector trained
on both synthetic and real data is not strictly positively
correlated with that trained only on synthetic data, even if the
performance gap of the synthetic data is large. Second, the
integration of different synthetic datasets generally improves
the performance of the text detector; however, the extent of
improvement differs based on the utilization of the mixed
synthetic datasets. When using mixed synthetic data as inde-
pendent training data, better performance can be achieved than
that of datasets from a single source. However, when real data
are involved in fine-tuning, the performance of the mixed data
fails to surpass the best performance achieved by the single
source dataset.

Our generation engine has several limitations. Firstly, the
performance of TAANet, especially the GTM, is heavily influ-
enced by the results of TLPNet. There exists a gap between the
training data and inference data in TLPNet, where text-erased
images usually have relatively large and flat areas with strong
leading lines, such as the edges of signage or billboards, but
the inference data are usually more diverse. A poor prediction
of the text region often results in an unsatisfactory final output
for human perception. This is because the GTM struggles to
reasonably transform the perspective of text instances when the
leading lines are missing in the background image. Secondly,
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in our proposed TAANet, the forward process is based on
one text instance, thus, our method neglects to model the
relationship between text instances. We opted to abandon text
instances that were too close or that intersected with other
texts, as it is uncommon for text to overlap in the real world.
However, this trick usually leads to a disorganized layout
of text instances and a reduction in generation efficiency.
We believe that a unified training and generation structure may
improve the generation results, and we expect future studies to
successfully address these problems for learning-based scene-
text image synthesis tasks.

VI. CONCLUSION

In this study, we first propose a new scene text dataset
called DecompST, which can decompose real-world scene-text
images into pure background images and pure text instances
using text-erased images and stroke-level masks. Leveraging
the DecompST dataset, we introduce a learning-based scene-
text image synthesis engine, termed LBTS, which comprises a
text location proposal network (TLPNet) and a text appearance
adaptation network (TAANet). TLPNet is a segmentation
network, capable of predicting suitable regions for text embed-
ding. It is trained with the data pair of text-erased images and
the mask of text regions, where text regions were extended
from GT BBoxes based on appearance similarity and boundary
information. TAANet consists of a geometry transformation
module and a color harmonization module. These components
can adaptively adjust the perspective and color of the synthetic
text instance to ensure compatibility with the background.
By combining our trained TLPNet and TAANet, we have
developed a synthetic scene-text image generation engine and
verified the effectiveness of our generated dataset using two
popular baseline text detectors. Comprehensive experiments
demonstrated the effectiveness of our proposed method in
generating pretraining data for scene text detection.
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