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Efficient Human Vision Inspired Action Recognition
Using Adaptive Spatiotemporal Sampling

Khoi-Nguyen C. Mac™, Minh N. Do™, Fellow, IEEE, and Minh P. Vo

Abstract— Adaptive sampling that exploits the spatiotem-
poral redundancy in videos is critical for always-on action
recognition on wearable devices with limited computing and
battery resources. The commonly used fixed sampling strategy
is not context-aware and may under-sample the visual con-
tent, and thus adversely impacts both computation efficiency
and accuracy. Inspired by the concepts of foveal vision and
pre-attentive processing from the human visual perception mech-
anism, we introduce a novel adaptive spatiotemporal sampling
scheme for efficient action recognition. Our system pre-scans
the global scene context at low-resolution and decides to skip
or request high-resolution features at salient regions for fur-
ther processing. We validate the system on EPIC-KITCHENS
and UCF-101 (split-1) datasets for action recognition, and
show that our proposed approach can greatly speed up infer-
ence with a tolerable loss of accuracy compared with those
from state-of-the-art baselines. Source code is available in
https://github.com/knmac/adaptive_spatiotemporal.

Index Terms— Adaptive sampling, action

recognition.

spatiotemporal,

I. INTRODUCTION

UR visual world is highly predictive, making it highly
inefficient to process each individual piece of data with
the same amount of effort. To cope with it, human percep-
tual system subconsciously pre-scans the scene to determine
important events before actual processing. This mechanism
is known as pre-attentive processing [2], [3], [4]. The pre-
capturing images, although appear to be less clear, constructs
the global perception of the scene [5], [6]. Furthermore, the
human brain also focuses on certain regions within our foveal
visual field [5], [7], [8], [9]. These two behaviors are strikingly
similar to the objective of our temporal and spatial sampling,
respectively.
Sampling has also been one of the most studied problems
in various areas of video analysis, such as action recognition
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Fig. 1. Our proposed system has two major components: temporal and spatial
sampling. Based on a pre-scanned features, the temporal sampler decides
whether to process the frame fully (Full model), or skip to the frame and
propagate past information (bottom block). The spatial sampler in turns select
Rols from high-res input to augment the features with low-res inputs. We also
include features from other available modalities if a frame is fully processed.
We color-code the spatial sampling as purple and temporal sampling as green.
We further illustrate details of the two routines in Fig. 7 and Fig. 10.

and video summarization [10], [11], [12], [13], [14], [15],
due to the redundancy between consecutive frames. With the
increase in model complexity, it gets progressively expen-
sive to process a single frame. This is even more crucial
for resource-limited devices such as AR/VR headsets, like
Google Glasses, HoloLens, Ray-Ban Stories, efc. [16], [17],
[18]. However, picking a fixed sampling scheme does not
guarantee the performance as important information may be
under-sampled. Temporally, it is evident that the number of
frames required to represent a video vary, depending on the
action categories [19]. Therefore, an adaptive sampling rate is
preferred as over-sampling results in more computational cost
while under-sampling can make performance suffer. Similarly,
spatial sampling is also necessary in general computer vision
tasks, which is applicable on individual frames of a video
sequence. It is preferred to have an adaptive sampling scheme
as having a fixed one also leads to similar problems as in time
domain.

Inspired by the mechanism of human visual perception,
we propose a novel adaptive spatiotemporal sampling frame-
work to imitate the human vision. Fig. 1 shows an overview
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Fig. 2. The foveal vision in human corresponds to sharp and centered
vision to obtain fine local details, while the peripheral vision corresponds
to low visual acuity to get coarser global information. This is similar to the
local-view from high-res region and global-view from low-res image in our
spatial sampler.
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Fig. 3. Complexity of SAN19 with different input dimensions. The horizontal
axis shows the side N of an input with dimension 3 x N x N. We highlight
the values where N = 224, 112, 64, corresponding to our choices for the size
of high-res, low-res, and cropped high-res images.

of the entire system, with two main components that are built
upon the self-attention mechanism: (1) spatial sampler uses
the observed attention to sample regions of interest and (2)
temporal sampler hallucinates attention in the next frame to
model future expectation.

The spatial sampler is motivated by human foveal vision
(Fig. 2). The idea is to only focus on specific regions rather
than the whole scene to save computation. It can be seen
that lower input sizes significantly reduce the computational
complexity. However, it also compromises the performance.
To overcome this, we use input at two different resolutions:
low-res whole image with size of 112x 112 and high-res image
crops with size of 64 x 64. The low-res images are processed
as a whole for pre-scanning process of temporal sampler and
global feature extraction. For the high-res input, we retrieve
regions corresponding to the most “important” locations based
on the extracted attention and use them to augment the low-res
image for the visual recognition task. In our system, we use
the low-res image of size 112 x 112 and top-k regions of
size 64 x 64. Fig. 3 analyzes the computational complexity
in GFLOPS with respect to the spatial dimension of RGB
images. We highlight the GFLOPS with size 224 x 224 (high-
res baseline), compared with size 112 x 112 (low-res input)
and size 64 x 64 (cropped high-res regions).

The temporal sampler follows the concept of pre-attentive
processing (Fig. 4) such that it extracts attention by briefly
pre-scanning a low-res input and decides whether to further
process the frame if something interesting happens. Since it is
possible to predict what would happen in the future [20], [21],
we consider an event “interesting” if it is drastically different
from what is expected. The idea of using another network
for pre-scanning has been discussed in other work [12], [22],
however in our proposed approach, we split a backbone
network into two halves and use the first one to pre-scan
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Fig. 4. Pre-attentive processing is a subconscious accumulation of info from
the environment, ie., all available information is pre-attentively processed, then
our brains will choose the important event to dive deep in. Since, motion is
also a pre-attentive feature, this mechanism inspires our temporal sampling
scheme. As a by-product, predictable events are more likely to be ignored.
This is similar to pre-scanning new frames to see if they are similar to the
hallucinated prediction in our temporal sampler.

instead of introducing an additional one. We observe that
two consecutive frames produce similar attention at some
certain intermediate layers, making it possible to pre-scan
by forwarding up to such layers. To model future expecta-
tion, we hallucinate future attention and compare it with the
observed one. When the hallucination matches the actual atten-
tion, there is no unexpected event and the model simply uses
the previous classification results. Otherwise, the remaining
processing routine is carried out to compute new classification.

We demonstrate the effectiveness of our system on the
action recognition task on EPIC-KITCHENS [23] and UCF-
101 (split-1) [24] datasets. Our system reduces computational
complexity with a tolerable loss of accuracy compared to the
baseline counterparts. We also provide qualitative results to
reason the sampling results.

To the best of our knowledge, we are the first ones to model
the spatiotemporal sampling based on such visual perception
mechanisms in human. Although there have been several
attempts to address the problems of adaptive sampling in video
analysis, our approach can flexibly take advantage of more
sophisticated backbone networks, as long as they rely on the
self-attention techniques. We trust that our work can benefit
the community by encouraging more studies that connect the
vision between computers and humans.

Contribution: (1) We introduce a novel adaptive spatiotem-
poral sampling scheme inspired by human vision, where the
temporal sampler can pre-scan (mid-way inference) the low-
res input to decide whether to skip processing by comparing
the observed and hallucinated attention. (2) As a part of the
sampling routine, our spatial sampler selects small high-res
Rols induced by the attention map in pre-scanning process.
(3) We showcase the system on egocentric and generic videos
where our model reduces the computational power with a
small loss of accuracy.

II. RELATED WORK
A. Bio-Inspired Action Recognition

Action recognition models inspired by human biology has
been introduced even before the explosion of deep learning.
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Tracing back to Giese and Poggio in 2003 [25], their work
analyzes the dorsal and ventral streams in the brains, which
corresponds to how humans perceive spatial and visual fea-
tures respectively. Following this work, researchers model
action recognition by studying human brains’ activity: [26]
uses a neurally plausible memory-trace learning rule; [27]
applies neuro-biological model of motion processing and
proposes motion-sensitive units; [28] proposes a model that
communicated through discrete spikes; [29] focuses on MT
cells, which are sensitive to motion contrasts; [30] created
human action templates for human object recognition based
on neuro-biological model. Such research often focuses more
on the biology aspect and adopts classical machine learn-
ing solutions for modeling. More recently, [31] introduces a
photonic hardware approach and implements a simple RNN
model; [32] adopts LSTM and Spatial pyramid pooling to
extract robust features of each frame’s tracked area. Such work
typically explores more advanced deep learning techniques but
the proposed models do not focus much on the interpretability.
Furthermore, bio-inspired action recognition work generally
conducts experiments on generic action datasets, where the
bodies are fully observable and the number of action classes
is limited, such as KTH [33], Weizmann [34], UCSD [35].
Our work is not completely based on neuro-biological models.
Instead, we observe there is a similarity between human vision
and the trending attention mechanism, and leverage this to
build the spatio-temporal sampling in our system. Our model
also provides interpretability via the generated hallucination.
Furthermore, the model is trained on more recent datasets and
can work with both generic and ego-centric action recognition.

B. Action Recognition

The task of action recognition has evolved from the tradi-
tional two-stream networks [36] to more advanced models, eg.,
C3D, I3D, ResNet3D, R(241)D, TBN, TSN, and LSTA [37],
[38], [39], [40], [41], [42], [43]. Such standard techniques
often demand expensive computation, leading to the challenge
of high power consumption [44], which is crucial for action
recognition using always-on wearable devices, such as AR/VR
glasses. Our adaptive sampling scheme aims to address this
problem. Another branch of action recognition focuses on
modeling the spatial and temporal structure of human bodies,
via the skeletal joints in each person or how different people
interact as a whole group [45], [46], [47], [48], [49]. In the
scope of this paper, we do not address such structures and
only focus on the sampling aspect.

C. Adaptive Inference and Sampling

Techniques to reduce the complexity of deep networks can
be divided into three sub-categories: ignoring layers in deep
models, removing input regions, and skipping frames. [50]
introduces a stochastic method to drop layers during the
training phase. SkipNet [51] and BlockDrop [52] later propose
to use reinforcement learning to dynamically drop layers for
both training and validation. In spatial domain, RS-Net [53]
can decide which resolution to switch to by sharing param-
eters among different image scales. PatchDrop [54], on the
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other hand, removes unimportant regions of input images via
reinforcement learning. For applications in the area of general
video analysis, it is more desirable to rely on time sampling.
It has been shown that temporal redundancy results in wasted
computation, as some videos only require a single frame to
represent [19]. There have been attempts to process videos at
multiple frame rates as different actions can happen at different
paces [55], [56]. Recently, SC-Sampler [12] and ARNet [22]
tackle temporal sampling by using additional simple net-
works for pre-scanning the features. [57] focuses on spatial
redundancy and frame-skipping is a special case in their for-
mulation. In contrast, [58] focuses on the time domain and do
not consider partial spatial information. We explicitly model
spatiotemporal sampling using self-attention, as inspired by
human vision, and only use a sub-collection of layers to pre-
scan. Our model is also more interpretable with visualizable
attention and hallucination.

D. Self-Attention

In computer vision, gradient-based methods are usually used
to generate saliency maps, which can determine the regions
where a trained model considers “relevant” to the output [59],
[60], [61], [62]. More recently, self-attention is introduced in
natural language processing community as a way to direct
the focus of deep nets [63]. Since the attention allows a
model to focus more on important regions, such self-attention
mechanism has been attracting great interest from the com-
puter vision community [64], [65], [66]. Our approach uses
such attention as a driving mechanism to find the important
regions and frames, allowing spatiotemporal sampling adap-
tively. More recently, vision transformer has been introduced
as another attention-based approach and adopted in several
work [67], [68], [69], [70], [71], [72]. Since our method
operates on top of attention, the backbone models can be
flexibly interchanged with any attention-based CNNs. Here,
we choose to use the SAN-19 backbone [64] and focus on
improving efficiency of the baseline models.

III. APPROACH

Consider a video dataset D = {(v,, y,,)},’lv:l, where v, is

a video sequence and y, is the corresponding groundtruth
label. We assume that the video sequences have the same
length of T frames, ie., v, = [X,(ll), Xf,z), e, X;T)], where each
frame is x|’ € R3>*H>*W vy ¢ (1, .., T}. Suppose that we
have a video classifier F(v,) = ¥,, with some complexity
Op. The goal is to construct another classifier F with less
complexity while retaining the accuracy. We address this by
introducing the temporal sampler 7 and spatial sampler S, ie.,
Vo = F(xn; 7,38), such that Oy < Op. At a high level, the
spatial sampler chooses the top-k regions based on the most
activated areas in the attention map. The temporal sampler
decides whether to skip frames, whose attentions are similar
to the model’s future prediction.

A. Cumulative Global Attention

Our cumulative global attention is built upon the pairwise
attention formulation of Zhao et al. [64]. We rewrite this
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(a) Input image.

(b) Cumulative (¢) Local attentions a; from different footprint
global attention A. R;.

Fig. 5. Local attention and cumulative global attention from the same input
image and at the same layer. Hotter color indicates more salient regions.
We average across the channel dimension for visualization.

pairwise attention as

zi= Y a(Qx) K(x))) 0 VX)), ()

JER®M)

where i, j € R? are the spatial indices, Q(x;), K(x;), and
V(x;) are the query, key, and value encodings, and « is the
compatibility function, usually defined as a softmax. Such
compatibility function is locally defined over the footprint
R(i). We then denote the local attention at i as

a; = [a (Q(xi). K(x)))],

Learning to generate such attentions is difficult because we
also need to model the underlying relationship of neighboring
footprints, ie., a; and a;4+1 have overlapping footprint. How-
ever, it is simpler to generate a global attention map where the
footprints are already encoded. Thus, we use the cumulative
global attention, defined as

A= a® 1RO (3)

J € R(@). 2

where 1{R (i)} is the indicator function that removes locations
outside of footprint R(i) and ® is the multiplication of a; with
the corresponding footprint. Notice that a; has the same spatial
dimension as R (i), while A has the same spatial dimension
as the input feature map ¢(x). For simplicity, unless stated
otherwise we use “attention” to denote the cumulative global
attention in the remaining sections.

The locations of neighboring footprints here are similar
to the concept of sliding the kernel window in convolution.
If the stride is less than the kernel size, it will result in
overlapping regions. Fig. 6 shows an example with kernel
size of 3 and stride of 1, causing overlapping of 2. Since
the overlapping regions carry replicated information, it is
not efficient if we represent attention as a collection of a;.
Therefore, we aggregate them as A and learn to generate its
future version using the hallucinator. We have included this
clarification in the updated manuscript.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

Fig. 6. Cumulative global attention addresses the sliding effects. The blue
(ag), green (ap), and red squares (ap) are local attentions with neighboring
footprints. The bottom square is the aggregated global attention A.

Fig. 5 shows an example of the cumulative global attention
(Fig. 5b), aggregated from the local attentions across multiple
footprints (Fig. 5c), given the same input (Fig. 5a). We see that
the neighboring a; are overlapping (because of stride of 1 in
this example), similar to convolution. By using A, we avoid
having to encode such overlapping conditions, making it easier
to learn. Specifically, the activation of A reflects the “important
regions” in the input images, being the hands and the bowl
(top-left corner). It motivates to use such global attention maps
to find ROIs in our spatial sampler.

B. Spatial Sampler

The goal of the spatial sampler is to provide the high-
resolution inputs at locations where it matters, which is similar
to foveal vision in human. Formally, given input x € R3*#*W
we comgute the corresponding low and high-res inputs x; €
R3*7*7 and Xnk € R3*H' W' respectively obtained by
rescaling (with the down-sampling factor d) and cropping x
(H < H,W' < W) at k different locations. While d is
defined as our hyper-parameter, the cropping regions for xj, i
are computed by the spatial sampler S. Giving attention A,
we find all connected regions and pick the k regions with
highest summation. We then linearly project those regions
back to pixel space, based on the scaling of spatial dimension
between the input image x and the attention A.

Fig. 7 shows the details of the spatial sampler. We extract
the attention from the low-res image x; and use it to sample the
top-k regions in the original image x. This results in X, ; with
lower spatial dimension, while retaining the original resolution
of x. As we use the same backbone network to process images
of different resolution, we add a global average pooling layer
at the end of the feature extractor to remove the spatial
dimension. The features are then fed to the three-head GRU
classifier. The heads correspond to low-res features, high-
res features, and their concatenation are used to encourage
strong learning feature at each resolution. We constrain the
scaling factor d and the bounding box size H', W’ such that
the complexity of using x; and Xj ’s is less than that of x.
We choose d = 2 and H' = W’ = 64, based on our complexity
analysis in Fig. 3.

In Fig. 8, we illustrate some example results of our spatial
sampler, extracting the top 3 regions in a few frames of a video
sequence. The colors here denote the order of the bounding
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Fig. 7. Spatial sampler uses attention from low-res image to sample the

top-k regions from the (original) high-res input. x; gives a global view, while
Xj, k. provides local views at important regions of the original image x. The
final global average pooling removes spatial dimension of the features, which
are combined and fed to the three-head GRU classifier. The heads correspond
to low-res features, high-res features, and their concatenation, and are used
to encourage strong learning feature at each resolution.

Fig. 8. Sampled regions from the top-3 spatial sampler. From top to bottom:
(1) input frames, (2) attention, and (3) bounding boxes in pixel space. Red,
green, and blue colors denote the top 1, 2, and 3 accordingly. The trajectories
of the boxes reflect to their activated regions. Such behavior allows prediction
of future attentions.

boxes, based on the most activated regions in the attention.
It is observed that the sampled regions are not varying rapidly
when the activation are similar. This usually happens when the
actions are occurring slowly, suggesting that we can predict
future attentions in such cases.

C. Hallucinator

The objective of our hallucinator is to predict future infor-
mation. If our prediction is similar to the actual observation
in the future, then such event is well-expected and there is no
need to run further inference. Instead of generating the whole
RGB frame in pixel level, our hallucinator only generates
the attention map. Intuitively, such attention maps can locate
important regions of the inputs and can be simpler to generate
than RGB frames. Assuming the temporal consistency, ie., the
attentions of consecutive frames A® and AY+D are similar
if the action is slow enough, it is possible to hallucinate the
future attentions from the current frame. We formalize our
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hallucinator H as:

A HAD) sLAED X AGD )

where AU+D is the hallucination (predicted future attention).
To quantify the similarity between ACtD and ACtD | we use
the structural similarity index measure (SSIM) [73] as this
metrics can compare the structure of input tensors. We train
the hallucinator by minimizing our belief loss:

T
1
Ly =~ 2 SSIM(HA "), AD), (5)
t=2

where the function SSIM() computes the structural similarity
between the hallucination H(A?~D) and the attention A®.
We minimize the negative SSIM score since the default SSIM
ranges from O to 1, where larger SSIM indicates higher
similarity.

We build the hallucinator as a convolutional LSTM [74]
with encoder-decoder layers and apply teacher forcing tech-
nique [75] for the training routine. The idea is to gradu-
ally increase the number of hallucinated frames as input.
We rewrite the hallucinator during training as:

HAD),
HAD),

p=F,
p > Fy,

AUHD — (6)

where p is a uniformly randomized and F, e [0, 1] is
the teacher forcing ratio. Such ratio is initialized as 1 and
gradually decayed every epoch to increase the chance of
hallucinating from A®. Note that F, is not available for
evaluation, and ACTD = H(A®). We also add in a warm-
up phase to initialize hidden memory of the hallucinator, ie.,
ACTD = H(AD), Vi < tyarm for both training and evaluation
phases.

Fig. 9 shows an example of the hallucination from a video
sequence, where the first row is the input video sequence, the
second row is the attention extracted from a layer, and the
last row is the hallucination, generated by our hallucinator.
There is a missing hallucination at the first frame because
we are generating future attention. It is observed that the
most activated regions of the attention here are located around
the two hands. As the hands move in time, these regions
also move with a similar manner, in both the attention and
hallucination. It suggests that our hallucinator can predict
where the important regions would be in the future. We also
provide the negative SSIM scores at the bottom to compare the
structural similarity between the attention and hallucination.
Note that our objective here is not to generate a perfect
hallucination, but only to use it as a guideline for the temporal
sampler.

D. Temporal Sampler

Given a video sequence v = [x(”, R X(T)], the objective
of the temporal sampler is to adaptively select a subset
of “important” frames that can still represent v, similar to
human’s pre-attentive processing mechanism. A frame x) is
considered as unimportant if we can reasonably predict its
attention. From Section III-A, we can retrieve the attention
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Fig. 9. Attention and corresponding hallucination of a video sequence. From top to bottom: (1) input frames, (2) attention, and (3) hallucination. Negative
SSIM scores between the attention and hallucination are included at the bottom (0 means most different and -1 means most similar). Activated regions of the
attentions and hallucinations match the movements of the hands across frames, showing the temporal consistency property.
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Fig. 10.
model’s first half at time ¢, hallucination computed at time ¢t — 1, and their
SSIM score are fed to a GRU to compute the sampling vector r®, deciding
how many frames to skip (including the second half of the current frame).
Model weights are shared across frames.

Temporal sampler with inputs at # — 1 and 7. Attention from the

and hallucination at any arbitrary layer from a model of L
layers. Suppose that the attention is extracted at layer A < L,
it is wasteful to compute the last L — A layers if the temporal
sampler decides to skip this frame. In other words, we can
forward a frame up to layer A and choose to run the rest of
the model adaptively.

Formally, consider the feature extractor of a deep network
of L layers as a composite function, we can split it into two
halves at layer A € {1,..., L}, ie., ¢L(x) = ¢} (¢ (x)). The
first half (;51A is used for pre-scanning while the second half ¢>f
can also be augmented with information from other modalities
for the classification task later. The temporal sampler 7°
determines the sampling routine by computing a sampling
vector r = [r'), ... rD] e, T(v) = [x@ x r]"_,, with
r® e {0, 1}M*1 where r'"”[m] = 1 means we can skip m
frames, m € {0,..., M}. Fig. 10 shows the details of the
temporal sampler. At time 7, the attention A) is extracted
using the first half of the feature extractor qb{‘. To generate
the sampling vector r"), the flattened feature is concatenated

layer0

layerl

Fig. 11. Attention extracted from all bottleneck layers of SAN19. The input
image is showed in the top-right corner. Earlier layers show more fragmented
regions while latter ones provide more concise attentions. We visualize the
attention maps with bilinear interpolation for better visibility across different
layers. The color mapping of the visualization is not normalized because of
different range of values across layers.

layer2

layer3

layerd.

with the hallucination and the corresponding SSIM score, and
then fed to a GRU. The output features are fed to a Gumbel
Softmax [76], which makes the sampling vector differentiable.

Given the sampling vector, we now describe our frame-
skipping routine. Denoting such number of skipping frames
as m* = argmax,, r[m], there are two possible scenarios:
m* = 0 and m* € [1, M]. In the first case, we do not
skip anything and continue to run the remaining part of the
network, thus the complexity is that of the full pipeline O r,;.
In the second case, we only pre-scan the current frame, which
has already been done, and skip computation on the next
m* — 1 frames. The classification results and memory from
recurrent models are propagated accordingly. The complexity
for these m* frames is Opre = O¢x + Oy + O7, being the
model’s first half, hallucinator, and temporal sampler. Note
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Qualitative results of spatiotemporal sampling on video sequences. From top to bottom are: the input video sequence, attention, hallucination

generated from past attention, and the non-max suppressed top salient regions from the spatial sampler. The frames with red boundary are the non-skipped
ones (full inference) while the frames with green boundary denote pre-scanning (running the first half). The frames without any boundary are the skipped
ones. We choose to use the first frame to initiate the samplers and always associate it with the full inference.

that Orur = Opre + Ores, Where O, is the complexity
of running the rest of the pipeline, including spatial sampler,
other modalities, and classifier. Under such policy, we train
the temporal sampler by minimizing the weighted sum of
classification loss L45s (only using full-inference frames) and
efficiency loss L., which is defined as:

£e =N fyll - Ofull + Npre - Opres (7)

where n .y and np,. are respectively the number of frames
with full inference and only pre-scanning. Without any con-
straints, it is possible that no frame would be fed to the second
half of the pipeline, ie., argmax,, r)[m] # 0, Vt. To avoid
such scenario, we include a warm-up step, where the full
pipeline is run at the first frame. It also helps initialize memory
for recurrent models and ensures that we have classification
result for at least one frame.

IV. EXPERIMENTS

We evaluate our system on EPIC-KITCHENS 2018 [23],
following the training and validation splits of [41], and split-
1 of UCF-101 [24]. EPIC-KITCHENS contains 55 hours of
full-HD, 60fps egocentric videos, each of which is associated
with a verb (125 classes) and a noun (331 classes) label. The
action is thus defined as a pair of the corresponding verb and
noun labels, eg., [cut, squash] and [open, container]. UCF-
101 is a dataset of generic actions, consisting of 27 hours of
25fps videos, divided into 101 action classes. For UCF-101,
we report results on split-1 (9537 training and 3783 validation
videos) to ensure that our experiments are comparable.

For EPIC-KITCHENS, we use two input modalities, namely
RGB and Spectrogram, corresponding to the vision and audio
domains. Although the optical flow is provided as a part
of the dataset, we avoid using it because such data are

computationally expensive in real-life scenarios. We treat RGB
inputs as the guiding modality of the system because our
hallucinator and samplers rely on the attention from vision
data. The spectrogram inputs act as the additional modality and
are only used when a frame is not skipped by the temporal
sampler. For UCF-101, we only use the RGB modality for
better comparison with our baseline.

We benchmark our system with top-1 and top-5 accuracy for
both datasets. For EPIC-KITCHENS, we include the accuracy
of three domains: action, verb, and noun. To assess the
system’s efficiency, we further report the models” FLOPS per
frame, which is proportional to inference time and power
consumption. Since the model complexity is time-variant for
the experiments with temporal sampler, we instead provide
the accumulated FLOPS over the whole validation sets and
the average FLOPS per frame. We also report the trade-off
factor, defined as GFLOPS per the top-1 accuracy, to compare
efficiency of different models (lower means better). This
metric indicate how much of computation is required for one
percent of accuracy on average.

A. Implementation Details

Our system uses SAN19 with pairwise self-attention (equiv-
alent to ResNet50 [64]) as the backbone network to extract
features. For EPIC-KITCHENS, the additional Spectrogram
(256 x 256) is constructed from the audio channels using the
same processing procedure as in [41]. Fig. 11 shows attention
maps from all bottleneck layers of SAN19, where the input
with size of 3 x 112x112 is provided in the top-right corner of
the figure. We see that latter layers result in more concise and
smaller attention maps, which suggests easier hallucination
of the future. However, using more layers also requires more
complexity, as being shown in Fig. 13, where the horizontal
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TABLE I

RESULTS OF BASELINES AND SPATIAL SAMPLER S ON EPIC-KITCHENS Val-Set. THE AVERAGE GFLOPS PER-FRAME IS INCLUDED TO INDICATE THE
MODEL COMPLEXITY. WE SHOWCASE THE PERFORMANCE AS TOP-1 AND TOP-5 PER-VIDEO ACCURACY FOR ACTION, VERB, AND NOUN
DOMAINS. WE ALSO INCLUDE THE EFFICIENCY TRADE-OFF (LOWER MEANS BETTER), COMPUTED AS THE GFLOPS OVER ToOP-

1 AccurAacy, To SHOW How MucH GFLOPS Is NEEDED WITH EACH ACCURACY PERCENT ON AVERAGE. THIS METRICS
Is ALsO USEFUL TO COMPARE MODELS WITH DIFFERENT BACKBONES. WE RETRAIN TBN [41] WITH DIFFERENT
INPUT MODALITIES ON VALIDATION SET TO COMPARE WITH OUR BASELINE SAN19. USING THE SAME INPUT
MODALITIES, OUR BASELINE ACHIEVES COMPARABLE RESULTS WITH TBN. OUR MODELS WITH SPATIAL
SAMPLERS ARE DENOTED AS Sk, WHERE k IS THE NUMBER OF ROIS EXTRACTED. Sy MEANS NO SPATIAL
SAMPLING. S3 PROVIDES THE BEST ACCURACY AMONG SPATIAL SAMPLERS AND STILL WITH A LOWER
COMPLEXITY THAN THE BASELINE

Model Backbone RGB,Flow,  Size Avg Top-1  Top-5 Verb Verb Noun Noun  Trade
Audio RGB  GFLOPS Top-1 Top-5 Top-1 Top-5 -off

SlowFast [55], [56] Res101,8x8 R 224 13.25 21.9 39.7 55.8 83.1 27.4 52.1 0.605
AVSlowFast [56] Res101,8x8 R+A 224 16.13 242 436 587 836 317 584  0.667
TBN [41](ret) Inception R+A+F 224 6.95 3483 54.09 6331 8829 46.00 6831 0.200
TBN [41](ret) Inception R+A 224 4.62 2832 6030 5696 86.61 41.03 6535 0.163
SAN19-base Res50 R+A 224 8.64 2752 5755 5584 86.24 3983 62.84 0.314
So SANIO R+A 12 5.80 24356 5334 5350 8395 3457 5384 0.236
Si SAN19 R+A 112 6.16 2523 5405 5517 8449 3549 59.68 0.244
Ss SAN19 R+A 112 6.48 2494 5355 5521 84.15 3520 59.17  0.260
S3 SAN19 R+A 112 6.80 2577 5442 5571 84.15 3578 59.84 0.264

axis shows the layer names and the vertical axis indicates the B

accumulated FLOPS up to that layer. Therefore, we choose to 8

extract attention at layer3-0 of the backbone network because

it shows good trade-off between complexity and performance 6

in our experiments. This gives us the attention feature map £

with the dimensionality of 32 x 7x7. T4
The hallucinator is a Conv-LSTM with 1 layer and 32 hid- ,

den dimensions. It is equipped with a encoder and a decoder,

each is a 2D Conv layer with kernel of size 3 x 3 and o

32 channels. The action classifier used with our spatial and 55922703 N YR NN eR NI RYEeIN3Es

temporal sampler is a three-head GRU, corresponding to AT Y LA S TN S S S SRR S S

the global features (low-res RGB and Spectrogram), local

Fig. 13.  Accumulated complexity of different layers from SAN19 model,

features (cropped high-res RGB and Spectrogram), and their
concatenation to the primary GRU head. The goal of the multi-
head architecture is to ensure the network extract prominent
features from the cropped regions rather than relying solely on
the low-res image. Each head of the GRU classifier and our
GRU temporal sampler share the same architecture of 2 layers
and 1024 hidden dimension.

The whole system is trained in multiple phases. We first
train the two feature extraction modules with FC classifier,
corresponding to the low-res and high-res inputs. We train the
models with the standard cross-entropy loss for 100 epochs,
using SGD with momentum of 0.9 [77], with decaying at
epochs 30, 60, and 90. The weights of feature extraction mod-
ules are frozen and used for other models. The hallucinator is
then trained using the belief loss £ in Eq. (5) with teacher
forcing routine [75]. In our experiments, we choose to set
the decay factor of F, as 0.95 and the warm-up fyqrm as
5 frames. For the spatial sampler with three-head classifier, the
predictions on all heads are averaged and the model is trained
using the loss Logss = Z;”l:l 0nLy, where L, is the cross-
entropy loss of a head and 6}, is the corresponding scaling. The
temporal sampler is jointly trained with the pretrained three-
head classifier and the fixed spatial sampler, using the total
loss Leass + 0.Le, where L, is the efficiency loss described
in Eq. (7) with the corresponding scaling 6,. We train each

where the input size is fixed as 3 x 112x112.

sampling model for 50 epochs using Adam optimizer [78]. For
feature extraction modules, we only sample three frames since
we only aim to extract spatial features instead of temporal ones
in this phase. As for the sampling modules, we use 10 frames
for EPIC-KITCHENS and 16 frames for UCF-101 for better
comparability with other frameworks.

B. Qualitative Results

We demonstrate our qualitative results from EPIC-
KITCHENS dataset in Fig. 12 to show the outputs of both spa-
tial and temporal samplers. The frames are uniformly sampled
from the validation videos. We use “red” and ‘“green’ color
to highlight full inference or simply pre-scanning. Unmarked
frames are skipped without any computation. The spatial
sampler only runs on “red” frames to enrich data, therefore the
cropped regions are only available for these frames. We choose
to use S3 and 7y in qualitative experiments since they provide
more observable sampling results for visualization, regardless
of their effect on the qualitative performance.

Overall, the temporal sampler can adaptively sample the
frames. The number of “red” frames is fewer than the original
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TABLE I

RESULTS OF SPATIAL SAMPLER S AND TEMPORAL SAMPLERS 7 ON EPIC-KITCHENS Val-Set. EACH BLOCK SHOW THE RESULTS CORRESPONDING
TO THE TEMPORAL SAMPLER 7T}y, WHERE M IS THE MAXIMUM NUMBER OF FRAMES THAT 7 ALLOWS TO SKIP. THE TABLE INCLUDES THE
PERCENTAGE OF FRAMES BEING SKIPPED (Skip %), PRE-SCANNED (Prescan (%)), AND FULLY PROCESSED (Full (%)), THE ACCUMULATED
TERA-FLOPS OVER THE WHOLE VALIDATION SET, AND THE AVERAGE COMPUTATION SAVING COMPARED TO ITS SPATIAL
SAMPLER COUNTERPART. ALL MODELS HAVE TEMPORAL SAMPLING, EXCEPT FOR THE FIRST ROow, WHICH IS COPIED
FROM TABLE I FOR COMPARISON. ALL TEMPORAL SAMPLERS SAVE THE COMPUTE COMPARED TO Sy WITH
TOLERABLE LOSS OF ACCURACY

Model  Skip  Prescan Full Total Avg Top-1 Top-5  Verb Verb Noun Noun Trade Speed
(%) (%) (%) TFLOPS  GFLOPS Top-1 Top-5 Top-1 Top-5 -off up

So 0.00 0.00 100.00 139.14 5.80 2456 5334 5350 8395 3457 5884 0.236 -

So, T1 0.00 41.96 58.04 86.59 3.61 22.81 5229 52.00 83.07 3290 5792 0.158 1.60x
S1,Th 0.00 49.17 50.83 81.27 3.39 2298 51.63 5325 83.07 33.15 5730 0147 1.71x
S2,Th 0.00 49.96 50.04 83.96 3.50 23,52 5209 5334 8232 3290 5792 0.149 1.76x
83, 0.00 50.00 50.00 87.47 3.66 24.06 5288 54.17 83.70 3374 5792 0.152 1.77x
So, T2 14.05 52.34 33.61 53.82 2.24 22,52 5075 5159 82,61 3215 56.84 0.100 2.58x
S1, T2 1435 51.58 34.07 56.91 2.37 2194 5150 5150 8332 3324 56.88 0.108  2.44x
S2, T2 1274 52.18 35.08 61.11 2.55 2223 5192 5192 8328 3203 57.59 0.115 242x
S3, 72 15.02 52.70 32.28 59.27 247 21.23 5150 4892 8328 3236 56.88 0.116 2.62x
So, T3 25.99 48.36 25.65 42.19 1.76 20.64 4937 4921 8240 3028 55.00 0.085 3.29x
Si, T3 2546 48.54 25.99 44.63 1.86 21.06 5029 50.00 8299 31.86 56.09 0.088 3.11x
S2, T3 2575 48.60 25.64 46.04 1.92 21.23  51.71 4957 8328 3123 5751  0.090 3.21x
S3, T3 25.18 48.92 25.89 48.41 2.02 20.73  50.67 4999 8320 31.19 5624 0.097 3.21x
So,Ta 3480 44.65 20.55 34.58 1.44 18.85 4883 47.16 81.78 29.11 54.67 0.077 4.01x
Si1,Ta 32.06 46.16 21.78 38.12 1.59 18.89  49.12 4879 8190 30.15 5534 0.084 3.64x
S2, T2 3553 40.03 24.44 43.05 1.80 19.35 4942 4829 82.03 30.61 5576 0.093 3.43x
S3,Ta 34.63 44.52 20.85 39.66 1.65 1856 4750 47.00 81.61 2936 5434 0.089 3.92x

TABLE III

ACCURACY AND SPEED-UP FACTORS ACROSS DIFFERENT SPATIAL SAM-
PLERS S AND TEMPORAL SAMPLERS 7 ON EPIC-KITCHENS VAL-
SET. EACH COLUMN INDICATES NUMBER OF REGIONS k FOR
SPATIAL SAMPLER S; WHILE EACH ROW DESCRIBES THE
SAMPLING RANGE M FOR TEMPORAL SAMPLER 73;. EACH
CELL Is A PAIR OF TOP-1 ACCURACY AND SPEED-

UP TIME CORRESPONDING TO A SPATIOTEMPORAL
SETTING. USING SPATIAL SAMPLER IMPROVES
THE ACCURACY, BUT REQUIRES MORE COM-

PLEXITY. HIGHER TEMPORAL SAMPLING
RANGE M CORRESPONDS TO MORE
SPEED-UP, BUT ALSO SACRIFICES
MORE ACCURACY

So 81 82 83
T 2281, 1.60x 2298, 1.71x  23.52, 1.76x  24.06, 1.77x
To  22.52,258x 21.94,244x 22.23,242x 21.23, 2.62x
T3 20.64,3.29x  21.06, 3.11x  21.23, 3.21x  20.73, 3.21x
Ta 18.85,4.01x 18.89, 3.64x 19.35, 3.43x  18.56, 3.92x

video length and can compactly describe the complete action.
In Fig. 12a, the action cutting squash is a simple example since
it can be easily represented using a single frame. We see that
aside from the warming up first frame, the temporal sampler
here only pre-scans three frames and skip the rest of them.
The action of putting down a squash in Fig. 12b is another
interesting example, where the first and last frame are selected,
corresponding to when the actor is holding the squash in hand
and placing it on the chopping board. These two sampled
frames concisely represent the action putting down is reality.
A similar example is illustrated in Fig. 12c, where the actor
is putting down a chopping board. Fig. 12d depicts a more
challenging video sequence of opening a container, as the
background is not informative and the container are not opened

until the final frame, resulting in more consecutive pre-scanned
frames.

C. Quantitative Results

Table I shows the quantitative results of our spatial sampler
on EPIC-Kitchens. The first two rows are TBN [41] and
SAN19-baseline with FC classifier, both use high-res RGB
(224 x 224) and Spectrogram (256 x 256). Since TBN relies
on Inception backbone, its model complexity is not directly
comparable with our experiments, with use SAN19 backbone.
However, our baseline model provides comparable accuracy.
Since the main objective of the paper is to increase efficiency
of a given model, we focus on comparing performance and
complexity with the baseline SAN19.

The rest of Table I shows our results of the spatial sampler
with GRU classifier, using the low-res RGB (112 x 112),
cropped high-res RGB (64 x 64), and the same Spectrogram
inputs. We denote Sy as our spatial sampler with top-k Rols,
where Sy means no spatial sampling involved. It can be seen
that by simply decreasing the image resolution, Sp can reduce
the complexity by 2.84 GFLOPS with a small loss of 2.96%
in accuracy. By adding the sampled regions from the spatial
sampler S, S», and S3, the accuracy is consistently improved.
We achieve the best performance with S3 across our spatial
sampling experiments. This gets close to the performance of
the baseline, with 1.75% accuracy different but still can save
1.84 GFLOPS of computation. Furthermore, the efficiency
trade-off of S3 is lower, showing that the model with spatial
sampler is more efficient in terms of average GFLOPS per
accuracy.

Table II shows our results with both spatial and temporal
samplers. For convenient comparison, we include the results of
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TABLE IV

RESULTS OF BASELINES AND SPATIAL SAMPLERS S ON UCF-101
(Split-1) FOR RGB INPUTS. WE EVALUATE OUR SYSTEMS USING
Topr-1 AND ToP-5 ACCURACY, TOGETHER WITH AVERAGE
GFLOPS PER-FRAME AND TRADE-OFF FACTORS, SIMILAR TO
TABLE I. WE RETRAIN TSN [43] AND ACHIEVE COM-
PARABLE ACCURACY WITH OUR BASELINE SANI19.
OTHER INCLUDED MODELS SHOULD BE COMPARED
THROUGH THE TRADE-OFF FACTOR BECAUSE OF
DIFFERENT BACKBONES. OVERALL, Sy HAS
THE BEST ACCURACY AMONG ALL SPA-

TIAL SAMPLERS WITH SIGNIFICANTLY
LEss GFLOPS THAN THE
BASELINES

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

TABLE V

RESULTS OF BASELINES AND SPATIAL AND TEMPORAL SAMPLERS ON
UCF-101 (Split-1). WE ACHIEVE THE BEST RESULTS BY COMBIN-
ING S3 WITH 77. THE SPATIOTEMPORAL SAMPLING ROUTINE
PROVIDES GOOD SPEED UP COMPARED TO THEIR SPATIAL-
SAMPLER-ONLY COUNTERPARTS, WHILE STILL RETAINING
COMPARABLE ACCURACY

Model  Total Avg Top-1 Top-5 Trade-off Speed-up
TFLOPS GFLOPS

So, 71 44.56 0.74 70.21 89.96  0.010 1.23x

S, 71 5461 0.90 71.43 9048 0.013 1.37x

S2, 71 6448 1.07 71.19 90.72  0.015 1.46x

S3, 71 74.50 1.23 71.21 90.75  0.017 1.52x

Model Backbone Size Avg GFLOPS Top-1 Top-5 Trade-off
Res3D [79] Res3D-18 224 19.3 85.8 - 0.225
DSN [80] Res2D-18+ 224 20.36 86.5 - 0.235
Res3D-18
SMART [81] Res152 224 14.12 755 - 0.187
TSN [43](ret) Res50 224 4.12 80.94 95.66 0.051
SAN19-base Res50 224 3.75 80.57 94.08 0.047
So SAN19 112 0.90 69.81 90.11  0.013
S1 SANI9 112 1.23 72.14 90.59 0.017
So SANI19 112 1.55 72.19 90.62 0.021
S3 SAN19 112 1.87 72.03 91.15 0.026

So from Table I with its accumulated TFLOPS over the whole
validation set. We observe no skipping frames in 7 because
this model only allows either pre-scanning or full-inference.
Each block in the table shows the results for a different
temporal sampler 7p;, where M determines the sampling
range, ie., the maximum number of frames to skip. Table III
summarizes the performance across different choices of spa-
tial and temporal samplers. Each pair of items in the table
represent top-1 accuracy and speed-up time corresponding
to a set of spatiotemporal sampling parameters. Compared
to the spatial-sampler-only counterparts, 74 can reduce the
complexity up to 4.01 times by sacrificing more accuracy.
On the other end of the spectrum, 7 can approximate the
original accuracy, and still with speed-up time up to 1.77x.

Notice that we do not compare against uniform tempo-
ral sampling routines in our experiments. Since the frames
are already uniformly sampled (to 10 frames in EPIC-
KITCHENS), the closest comparison between a naive sam-
pling and our sampling routine is to compare Sg with (Sy, 7)
in Table II, where S; means no spatial sampling and 7; means
whether to skip one (more) frame. This results in a slight
drop in accuracy and reduction in compute. We acknowledge
this is not the ideal comparison because these two models
still have different sampling rates, but the performance gap
here is not significant. Furthermore, such drop in accuracy is
expected as the design of our system is not to run the temporal
sampler alone. In fact, our temporal sampler is meant to run
in conjunction with the spatial sampler (temporal sampler is
trained on top of spatial sampler). It is because temporal
sampler aims to reduce compute and spatial sampler aims
to compensate for the accuracy drop, as seen in (S3, 77) in
Table 1.

We report the results of UCF-101 in Table IV and Table V,
following similar convention as in Table I and Table II.
We reproduce the results of TSN [43] on split-1 of the dataset

using our hardware for more comparable results. Behaviors
similar to EPIC-Kitchens are observed in this dataset, ie.,
the both spatial and temporal samplers can reduce complexity
while maintaining comparable accuracy. Sz, 77 has the highest
speed-up with only 0.82 loss of top-1 accuracy and Sy, 77 has
the best accuracy with 1.37x speed-up.

V. CONCLUSION AND FUTURE WORK

We introduce an attention-based spatiotemporal sampling
scheme to adaptively sample videos for efficient action recog-
nition. Spatial sampler provides a global view at low-res and
local salient views at high-res. Temporal sampler pre-scans
and decides the sampling strategy by comparing the current
attention with the past hallucination. In the scope of this paper,
we aim to verify the feasibility of our sampling routine on top
of a fixed backbone that supports self-attention mechanism.
However, simpler approaches using different backbones may
produce competitive performance and complexity, eg., TBN
model shows potential for further compute reduction and
improved accuracy, as seen in Table I. Aside from backbones,
different mechanisms to generate and use attention maps could
also further improve the overall performance and efficiency.
We leave the investigation into such moving parts as some of
the potential directions for future exploration.
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