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Abstract— Multispectral imaging (MSI) collects a datacube of
spatio-spectral information of a scene. Many acquisition methods
for spectral imaging use scanning, preventing its widespread
usage for dynamic scenes. On the other hand, the conventional
color filter array (CFA) method often used to sample color images
has also been extended to snapshot MSI using a Multispectral
Filter Array (MSFA), which is a mosaic of selective spectral filters
placed over the Focal Plane Array (FPA). However, even state-of-
the-art MSFAs coding patterns produce artifacts and distortions
in the reconstructed spectral images, which might be due to
the nonoptimal distribution of the spectral filters. To reduce
the appearance of artifacts and provide tools for the optimal
design of MSFAs, this paper proposes a novel mathematical
framework to design MSFAs using a Sphere Packing (SP)
approach. By assuming that each sampled filter can be repre-
sented by a sphere within the discrete datacube, SP organizes
the position of the equal-size and disjoint spheres’s centers in
a cubic container. Our method is denoted Multispectral Filter
Array by Optimal Sphere Packing (MSFA-OSP), which seeks
filter positions that maximize the minimum distance between
the spheres’s centers. Simulation results show an image quality
improvement of up to 2 dB and a remarkable boost in spectral
similarity when using our proposed MSFA design approach for
a variety of reconstruction algorithms. Moreover, MSFA-OSP
notably reduces the appearance of false colors and zipper effect
artifacts, often seen when using state-of-the-art demosaicking
algorithms. Experiments using synthetic and real data prove that
the proposed MSFA-OSP outperforms state-of-the-art MSFAs in
terms of spatial and spectral fidelity. The code that reproduces the
figures of this article is available at https://github.com/nelson10/
DemosaickingMultispectral3DSpherePacking.git.

Index Terms— Multispectral imaging, multispectral filter
array, sphere packing, multispectral image demosaicking.
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I. INTRODUCTION

MULTISPECTRAL images are 3D signals with two
spatial dimensions and several spectral bands. Multi-

spectral imaging (MSI) has outstanding applications in remote
sensing to classify materials such as ground, vegetation, and
buildings in urban and rural areas [1]. In medicine, MSI
provides diagnostic information about tissue morphology and
physiology [2], allowing the detection of anomalies such as
cancer tumors [3]. However, conventional methods to cap-
ture multispectral images rely on scanning–either spatial or
spectral–to sample the whole datacube, also demanding larger
bandwidth and storage. Scanning is also time-consuming
and requires complex hardware, precluding to work with
dynamic scenes. In contrast, novel snapshot methods inspired
by the color filter array (CFA) can partially sample the
datacube in a single acquisition, assuming that the whole
datacube can be reconstructed by interpolation or more
sophisticated algorithms that exploit spatial and spectral
correlations.

The CFA acquires a sub-sampled version of the trichro-
matic spatio-spectral source in a 2D Focal Plane Array
(FPA) [4]. Then, the captured grayscale mosaic image is used
by demosaicking algorithms to reconstruct an approximation
of the underlying RGB image. Similarly, a Multispectral Filter
Array (MSFA) is a mosaic of spectral selective filters, often
narrow bands, that extends the CFA approach to snapshot
MSI. Specifically, MSFA acquires a single grayscale mosaic
snapshot of the multispectral scene [5], where each pixel
captures a particular spectral response of the corresponding
spatial position; this snapshot approach is unique due to its
compactness, low cost, and real-time features. Nevertheless,
as a generalization of CFA, the design and use of MSFA
poses several challenges. As more filters are considered,
the sampling rate per channel is dramatically diminished,
complicating the extension of traditional CFA demosaicking
algorithms towards MSFA demosaicking. In contrast to many
of the CFAs that have ad-Hoc design, such as the Bayer
filter [4] that aimed to emulate the human visual system,
one of the earliest mathematical models to design CFAs was
proposed in 2008 [6], which uses the idea of 2D-sphere filling
in the Fourier domain to maximize the radii of the luminance
and chrominance channels subject to perfect reconstruction.
Although this approach was initially focused on a few spectral
filters for color imaging, it was extended later to MSFA [7] by
using Fourier transform spectroscopy, leading to an efficient

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-3931-0199
https://orcid.org/0000-0001-7076-3984
https://orcid.org/0000-0002-1623-6603
https://orcid.org/0000-0002-2631-082X
https://orcid.org/0000-0001-8387-8131


DIAZ et al.: MULTISPECTRAL FILTER ARRAY DESIGN BY OPTIMAL SPHERE PACKING 3635

multispectral sensing modality that reduces stemming aliasing
by exploiting multiplexed sinusoidal filters, leading to the
design of 4 × 4 kernels with at most 16 different filters.
Despite design efforts, conventional MSFAs such as binary
tree-based edge-sensing (BTES) [5], Interuniversity Micro-
electronics Centre (IMEC) [8], [9] arrange the entries of the
MSFA with arbitrary sampling patterns, which often lead to
artifacts in the reconstructed datacubes.

Therefore, we believe that the reconstruction problems in
MSFA, regardless of the choice of demosaicking algorithm,
arise due to the suboptimal sampling of the severely subsam-
pled datacube. Hence, in this paper we proposed a novel,
general mathematical framework to design regular MSFA
coding patterns following a Sphere Packing (SP) approach
exploiting Kepler’s conjecture [10]. The SP method consists
of packing congruent disjoint balls within a cubic container.
We hypothesize that the spectral filters of a MSFA can be
organized according to the SP approach; the analogy is as fol-
lows. The 3D position of the spectral filters corresponds to the
sphere centers, the spatial resolution of the MSFA defines the
cubic container size, and the number of filters coincides with
the number of packed balls in the cubic container. We denote
our approach as Multispectral Filter Array by Optimal Sphere
Packing (MSFA-OSP) which has been successfully used for
snapshot temporal imaging [11]. Our method maximizes the
minimum distance between the spectral filters within the
datacube, which can reduce not only artifacts such as color
distortions in the demosaicked false color images but also the
zipper effect. A striking feature when optimizing for equal
size spheres is the reduction in the reconstructed distortions
via uniform sampling. The regularity of the proposed coding
patterns can improve the image reconstruction quality while
making it straightforward to scale the MSFA demosaicking
algorithms. Our proposed MSFA design makes the following
contributions:

1) A general mathematical framework to model and opti-
mize the MSFA as a SP problem. The optimal design
maximizes the minimum distance between spectral
filters of the MSFA. This framework provides an expla-
nation of why state-of-the-art approaches such as Blue
Noise (BN) Coded Aperture (CA) [12], [13], [14],
MSFA-IMEC with 16 and 25 filters [8], [9], and
MSFA-BTES with 16 filters [5], are nonoptimal (see
Table I, and II; Fig. 4 and Fig. 5).

2) An algorithm to obtain the best parameters for the
MSFA-OSP for any detector resolution (see Algorithm 1
and in Fig. 2). The proposed algorithm is highly com-
petitive in computational time compared to other coding
pattern design algorithms such as BN.

3) The proposed MSFA-OSP optimal coding patterns
reduce reconstruction artifacts even when using con-
ventional demosaicking algorithms (see Fig. 6, Fig. 7,
and Fig. 8). For instance, the distortions introduced by
using real spectral filter responses, such as in the IMEC
camera, are also reduced using the proposed MSFA-OSP
(see Table. II).

4) An adaptation to other state-of-the-art deep neural
network (RevSCI [15])–already used in compressive

spectral imaging applications–to the demosaick-
ing/tensor completion problem in MSFA, enabling
improved reconstructions for any MFSA pattern, also
highlighting the superiority of the proposed MSFA-OSP
designed patterns.

The remainder of this paper is organized as follows.
In Sec. II, we introduce the previous art in multispectral
demosaicking, snapshot compressive spectral imaging (CSI),
and Optimal Sphere Packing (OSP). In Sec. III, we present
the observation model of MSFA, the proposed SP approach
using OSP, and the theoretical guarantees of the optimality of
the proposed design. In Sec. IV, we provide simulations and
experimental results of MSFA coding patterns and state-of-the-
art demosaicking algorithms compared against our proposed
SP approach.

II. RELATED WORKS

A. Reconstruction Methods

As an extension to demosaicking for the Bayer CFA, gener-
alized demosaicking methods input the measured multispectral
mosaic to recover the underlying spectral datacube. There
are several demosaicking methods based on interpolation,
intensity, spectral differences, and neural networks. One of
the simplest demosaicking algorithms estimates the missing
pixels using a weighted average of neighboring pixels, such
as Weighted Bilinear (WB) interpolation [16], which was
developed together with the Brauers (BRA) MSFA coding
patterns. In a different approach, the scattered data inter-
polation method [17] uses a smoothing filter that exploits
the spatial correlation, where the filter size is related to the
smallest odd-size window that includes each channel at least
once in the raw image. Among the spectral-difference-based
methods, two techniques stand out. First, Spectral Difference
(SD), which uses WB, exploits the spectral correlation and
extends the approach to any arbitrary resolution with nonre-
dundant MSFAs [16]. Second, Iterative Spectral Difference
(ItSD) considers the correlation between two channels, which
is high when the central wavelengths of the channels are
close, improving over the SD method by updating the channel
difference at each iteration [18]. The Intensity Difference
(ID) algorithm further combines the spatial and spectral cor-
relations to estimate the missing values, interpolating the
differences between the measured raw data and the estimated
intensity values. A modification to ID has been proposed,
such as the Iterative Intensity Difference (ItID) algorithm,
which iteratively updates the intensity estimation using the
previously estimated channel. Another modification is the
Iterative Nearby Channel Difference (ItNCD) algorithm, which
proposes iterating the ID algorithm by updating the intensity
as an average over the spectrally closest channels rather than
all channels, as in ItID. Specifically, the algorithm estimates
the intensity difference for each channel using its previously
estimated level and those of the two closest channels, outper-
forming previous demosaicking algorithms. Currently, there
are also neural-network-based methods, such as the state-of-
the-art method in [15], although it was originally developed
for CSI problems. In contrast with CSI, the demosaicking
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problem in MSFA resembles a tensor completion problem
more than the deconvolution problem related to compressive
sensing. Therefore, we have also adapted [15] to our MSFA
demosaicking problem, henceforth referred to as tensor recon-
struction snapshot compressive imaging (TRevSCI).

B. Compressive Spectral Imaging

The MSFA has also been used in CSI to improve the
encoding capability of classical architectures, such as coded
aperture snapshot compressive imaging (CASSI). For instance,
Rueda et al. successfully replaced the binary CA with an
array of spectral filters entailing better encoding strategies
in the colored coded aperture snapshot compressive imaging
(C-CASSI) [19]. In 2015, Correa et al. introduced the snapshot
colored compressive spectral imager (SCCSI) [20], which
shears the spatio-spectral information using a prism. Then,
an array of filters encodes the light before the FPA. Later, the
spectral filter arrangement for CSI was optimized in [21], using
the concentration of measure such that the optimal design
satisfies the restricted isometry property (RIP). This approach
minimizes the number of snapshots and maximizes the image
quality; nevertheless, the approach still requires multiple shots
and leads to nonuniform coding patterns, introducing distor-
tions in the recovered datacubes. Another CA that satisfies
the RIP is the BN coding pattern, which reduces many of
the clusters of one-valued and zero-valued entries. Even so,
some clusters inside the CA still harm its performance, and
the algorithm that computes the coding patterns has a high
computational cost [12], [13], [14]. In [22], another approach
for colored CA tries to promote a more uniform sensing
by keeping as uniform as possible, the distribution of the
nonzero elements per column and row in the measurement
matrix, although the density of the sampling is not completely
uniform.

C. State-of-the-Art MSFAs

We briefly describe seven state-of-the-art MSFAs. First,
we have random (RND) coding patterns that are attained
through random permutations of the filters within every kernel,
or group of filters. Second, we use BN CA as another irregular
coding pattern [12]. Third, we have the BRA MSFA that
is used in combination with the WB algorithm to exploit
the inter-channel correlation to compute the spectral differ-
ences [16]. Fourth, we have a sequential (SEQ) MSFA design,
increasingly arranged row-by-row within a kernel. The fifth
MSFA design, uniform (UNIF), exploits spectral consistency
and spatial uniformity by enforcing that neighbor bands remain
the same in all the array, while simultaneously achieving a
regular sampling pattern for each filter [23]. Sixth, the IMEC-
MSFA extends the basic Fabry-Pérot filter structure into a
set of filters by varying the cavity length for each pixel-
level filter within an N × N filter cell. They are embedded
in a few off-the-shelf MSFA-based devices available on the
market [8]. Seventh, the BTES MSFA generates patterns based
on a binary tree, using a combination of decomposition and
subsampling for any number of bands [5]. The subsequent
subsection introduces the MSFA using SP.

D. Coded Aperture Optimization Using Sphere Packing

An outstanding problem in discrete geometry is SP [24],
being closely related to coding theory and error-correcting
codes [25] and with considerable applications in telecommu-
nications and information theory [26]. In Euclidean space,
SP consists of organizing the centers of equal size spheres
within a cubic container such that the spheres remain disjoint
or, at most, tangent between one another. Formally, Kepler’s
conjecture–recently demonstrated by Thomas Hales [27],
[28]–establishes that face-centered cubic (FCC) lattice pack-
ing is the densest possible packing of equal spheres, which
corresponds to η =

π
√

18
≈ 0.74 [10].

In the context of MSFA, the SP approach is equivalent to
assigning a sphere to every spectral filter within a discretized
spatio-spectral datacube that acts as the cubic container. Each
sphere center is located at the spatial and spectral position of
the corresponding spectral filter, considering that the spatial
resolution of the MSFA in one dimension is equal to the
number of distinctive filters within the MSFA to obtain a
cubic container. The challenge of the SP problem relies on
finding the optimal position of the sphere centers such that
the spheres have a maximum size, which is equivalent to
the spheres’ centers being as far apart as possible from each
other. A remarkable feature of the SP design is that congruent
packing spheres guarantee uniform spatio-spectral sampling
in the MSFA. Thus, solving for the SP problem leads to the
optimization of the MSFA, which is analogous to a CA design.
In 2022, a hardware modification to the rolling shutter (RS)
mechanism found in complementary metal-oxide semiconduc-
tor (CMOS) detectors was presented by shuffling the pixels of
the scanline, optimizing the position of the sampled pixels
within the space-time datacube using SP [11]. The improved
sampling scheme and novel reconstruction methods provided
an alternative and efficient approach to snapshot temporal
imaging. In this work, we adapt the design problem for the
spatio-spectral datacube, mathematically model the CA design
problem in MSFA as the SP problem that maximizes the
minimum distance between the positions of the filters within
the datacube. We call our design MSFA-OSP.

III. OPTIMIZATION STRATEGY

This section describes the continuous and discrete model,
and the optimization strategy for the MSFA-based snapshot
spectral imaging system.

A. Continuous Model

The encoded projections of the spectral component of the
scene are captured as follows. As f0(u, v,λ) is the spatio-
spectral source density, (u, v) are the indexes of spatial
coordinates, and λ is the spectral coordinate, the MSFA
transfer function is denoted as C(u, v,λ). The coding is
realized at the image plane creating the encoded datacube
f1(u, v,λ) = C(u, v,λ) f0(u, v,λ) that is integrated by the
FPA detector, as depicted in Fig. 1(a). The integrated image
along the spectral range sensitivity of the detector (8) can be
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Fig. 1. Sketch of (a) the continuous and (b) discrete observation model of
the MSFA.

written as

y(u, v) =

∫
8

C(u, v,λ) f0(u′, v′, λ)dλ. (1)

Then, the coding transfer function of MSFA can be
modelled as

C(u, v,λ) =

∑
m1,n1,o

Cm1,n1,orect
(

u
1c

− m1 −
1
2
,

v

1c
− n1 −

1
2
,

λ

1d
− o −

1
2

)
, (2)

where Cm1,n1,o ∈ [0, 1] denotes the filter operation in the
(m1, n1, o)th datacube voxel; m1 ∈ {0, . . . , M − 1}, n1 ∈

{0, . . . , N − 1}, o ∈ {1, . . . , O} index the coordinates of an
M×N ×O datacube, where M and N are the spatial resolution
and O is the number of bands, rect(·) is the rectangular
function, while 1c, and 1d represent the pixel sizes of the
CA and the FPA detector, respectively. Thus, the spatial and
spectral resolution of the resolvable scene depends on the pitch
size of the pixelated filters (1c), the number of filters and the
pixel pitch of FPA (1d).

Assuming that ideal optical elements are used and that
each voxel of the spectral scene is denoted as Xm1,n1,o =∫ ∫ ∫

9m1,n1,o
f0(u, v, o)dudvdo = ωm1,n1,o f0(um1 , vn1 , o),

where 9m1,n1,o denotes the (m1, n1, o)th voxel boundaries
and ωm1,n1,o the voxel mass center weight, then the measure-
ment (m1, n1)

th of the proposed system is given in discrete
form by

Ym1,n1 =

∑
o

Xm1,n1,oCm1,n1,o, (3)

being m1 ∈ {0, . . . , M − 1}, n1 ∈ {0, . . . , N − 1} index the
pixels in columns and rows on the detector, respectively.

B. Matrix Model

The acquisition of the spectral mosaic image projection of
L spectral bands is

Y =

O∑
o=1

Xo ⊙ Co + �, (4)

where Xo ∈ RM×N is the oth spectral band of the datacube
with M × N pixels, Co ∈ {0, 1}

M×N is the binary CA and
denotes the positions of the multispectral filters at the oth band,
⊙ is the Hadamard product, and � ∈ RM×N is the Gaussian
noise. Figure 1(b) depicts an example of the discrete model,
where X denotes the multispectral datacube, C is the CA, and
Y is the measurement.

C. Sphere Packing Background

This section introduces some of the basics concepts about
SP. Overall, the SP problem is related to packing equal-
sized spheres within a cubic container trying to minimize
the void volume [24]. In general, SP can be mathematically
defined by equivalent periodic structures or lattices [29].
An SP P is periodic if there is a lattice 3 such that P is
invariant under translation by every element of 3. A lattice
in Rn is a discrete set of orthogonal vectors that can tile the
n-dimensional Euclidean space. To compute the density of a
lattice packing, it is convenient to view the lattice as a tiling of
space with parallelotopes, which is the n−dimensional version
of parallelograms. Lets define a basis U = [u1, . . . , un] for
lattice 3, therefore the parallelotope

3 =

n∑
i=1

hi ui |hi ∈ Z, (5)

is named the fundamental cell of 3 with respect to its basis,
and it is also called the generator matrix. Thus, a lattice
SP places spheres in the vertices of such a tiling, which
is equivalent to having one sphere for each copy of the
fundamental cell. Then, when the packing uses spheres of
radius r and has a fundamental cell F , then its density is
the ratio

Vol(Sn
r )

Vol(F)
, (6)

where the two terms of the ratio are straightforward to compute
if we are given r and F . The volume of the fundamental cell
is Vol(F) = Vol(Rn/3) =

√
det(Q), where Vol(Rn/3) is the

volume of the quotient torus, in that case we avoid specifying
the basis. The determinant of the matrix is det(·), and the
term Q = UT U corresponds to the Gram matrix. The volume
of an n-dimensional sphere of radius r in Rn is given by
Vol(Sn

r ) =
πn/2

(n/2)!
rn , where (n/2)! means 0(n/2+1) when n is

odd; note that 0 is a generalization of the factorial function.
Thus, we can explicitly compute the volume of any lattice
packing. For instance, the generator matrix for the best packing
in 3D-SP is the FCC lattice

U3 =

1 1 0
1 0 1
0 1 1

 ,
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where the Gram matrix is given by:

Q3 =

2 1 1
1 2 1
1 1 2

 .

Thus, the resulting FCC lattice density is

Vol(S3
√

2
2

)

Vol(R3/U3)
=

4π(
√

2
2 )3

3
√

det(Q3)
=

π
√

18
, (7)

where r =

√
2

2 . Moreover, the density of a periodic packing is
simple to compute if the packing is composed of V translates
of a lattice 3 ∈ Rn , whose sphere radius is r , as follows

V Vol(Sn
r )

Vol(Rn/3)
, (8)

then, extending the approach to V 3D-spheres contained in a
cubic volume (L + 1)3,–whose side is L + 1–fixes the density
to π

√
18

. Therefore, by letting r and U to vary, we obtain that

V Vol(S3
r )

(L + 1)3Vol(R3/U)
=

4V πr3

3(L + 1)3
√

det(Q)
=

π
√

18
. (9)

Despite being optimal, the FCC lattice U3 may not always
serve as a feasible solution given that the lattices might
be subject to implementation restrictions. Therefore, in the
next subsection we elucidate a novel method to find new
implementable 3D lattices U with optimal radius r that fulfill
the MSFA design constraints.

D. Multispectral Filter Array by Optimal Sphere Packing

The proposed 3D-SP approach to design the MSFA-OSP
is based on packing equal spheres in a cubic container [30].
However, the grid restriction imposed by the use of discrete
imaging detectors makes unfeasible to implement the optimal
FCC lattices as a solution to design the MSFAs. Hence,
we develop a novel procedure to design implementable MSFA-
OSP patterns.

The majority of other MSFA designs use a square kernel
of L nonoverlapping filters. Nevertheless, to account for the
interaction between the filters beyond a single kernel in the
design of the MSFA-OSP with L distinctive filters, we con-
sider an expanded kernel having V = L ×L filters, or spheres.
This leads to a discretized datacube of L×L×L voxels, where
each of the V spheres centers are constrained to one of the
L3 discrete grid positions within the datacube.

From a similar application with spatio-temporal dat-
acubes [11], we realized that we can arrive at optimal solutions
to this class of constrained SP design problems by solving a
related problem: the 3DN 2 Queens Problem [31]–which is
equivalent to finding the position of N 2 Queens within the
N 3 slots of a 3D chess board without threatening one to
another. We must emphasize that in our approach, we solve
for a relaxed version of the 3DN 2 Queens Problem by
solely imposing strict uniformity in columns and rows, while
allowing more degrees of freedom to the diagonals. Thus,
the design of our MSFA-OSP can benefit from the following

solution for the placement of the spheres within a kernel B as
follows

B = ((a ⊙ I + b ⊙ J) mod L) + 1, (10)

being L is the number of spectral filters, I = gT
⊗q such that

I ∈ NL×L , g is a vector of all ones such as g ∈ {1}
L , and q =

[1, . . . , L]
T such as q ∈ NL , ⊙ denotes the Hadamard product,

⊗ represents the Kronecker product, J = IT , 1 ∈ NL×L ,
s, t ∈ {1, . . . , L}. Matrix B ∈ NL×L can be reorganized as
pk1 = [s, t, Bs,t ] such that pk1 ∈ N3 represents the centers of
the V = L2 spheres; this reorganization of pixels is exploited
in Algorithm 1 to obtain the optimal parameters a ∈ N and
b ∈ N. Thus, the distance between a set of V spheres is
given by

d∗(V ) = max
(

min
1≤k1<k2≤V

Dk1 ,k2

)
, (11)

where k1, k2 ∈ {1, . . . , V }, such that V = L2, Dk1,k2 = ∥pk1 −

pk2∥
2
2 is all pairwise distance matrix, thereby pk1 and pk2 are

the centers of the k1
th and k2

th spheres, respectively (see [11]).
The positions of the MSFA-OSP are given by

E = A ⊗ B, (12)

being A is a matrix of all ones such that A ∈ {1}
α×β , where

α = ⌊
M
L ⌋, and β = ⌊

N
L ⌋, ⊗ denotes the Kronecker product,

and B is computed using Eq. (10). The resulting positions of
the MSFA can be expressed in a binary CA form as follows:

Cm1,n1,l =

{
1 if l = Em1,n1

0 if l ̸= Em1,n1 ,
(13)

where m1 ∈ {0, . . . , M − 1}, n1 ∈ {0, . . . , N − 1} index the
spatial coordinates, l ∈ {1, . . . , L} index the spectral filter
coordinates, L being the number of different filters of the
MSFA.

E. Sphere Packing: Theoretical Upper Bound

In 2005, the proof of Kepler’s conjecture proposed by
Hales was accepted [27], [28]. The following statement is the
resulting Theorem, which asserts that:

Theorem 1: No packing of congruent balls in Euclidean
three space has a density greater than that of the FCC lattice
packing.

This SP density is π/
√

18 ≈ 0.74. Leveraging theorem 1
and Eq. (9), besides knowing the volume of the V spheres,
we infer the theoretical upper bound SP density for the optimal
MSFA as

ρ∗(V ) = 2 3

√
(
√

V + 1)3

4V
√

2
, (14)

being the OSP density is η =
π

√
18

=
4V πr3

3(
√

V +1)3 ≈ 0.74,
note that for computing the upper bound, it is assumed that
V = M N according to Theorem 1, however, to compute
MSFA, we use V = L2. Fig. 2 depicts the theoretical upper
bound of the SP density. In detail, the blue line, ρ∗

[V ],
represents the theoretical upper bound for the SP density
computed using Eq. (14). The red line corresponds to the SP
density ρc[V ] using continuous optimization [32], without the
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Fig. 2. SP density comparison for different dimensions; (blue line) theoretical
upper bound where the cubic container has size (M+1)3, and the total number
of spheres is V = M N ; (red line) best known optimal sphere packing without
the MSFA restriction; (green line) OSP density with MSFA restriction.

MSFA constraints. Finally, the green line corresponds to the
SP density ρi [V ] with the MSFA constraint of using integer
optimization.

F. MSFA Analysis: Sphere’s Diameter and Packing Density

The eight MSFAs coding patterns compared in this
subsection are RND, BN CAs [12], BRA [16], SEQ,
UNIF [23], MSFA-IMEC [8], MSFA-BTES [5], and the
proposed MSFA-OSP. These MSFAs were described in
subsection II-C; an example of the eight MSFAs are depicted
in Fig. 3, where the spatial resolution corresponds to 16 × 16,
and the number of filters is L = 16. Due to the limited space
in this paper, we have provided the spatial distribution of the
CA and more kernels with different of filters for our OSP in
the Appendix A of the Supplementary Material. In addition,
the improved spatio-spectral sampling is illustrated in Fig. 4,
which compares the sphere’s diameter d and the SP density ρ

of 256 regular spheres using eight different MSFAs. The lower
sphere’s diameter is obtained with RND corresponding to 1,
and the SP density is 0.03. Moreover, the sphere’s diameter
of the BN, BRA, SEQ, UNIF, and IMEC coding patterns
is 1.41, and the corresponding SP density is 0.08, higher
than the RND. In contrast, the sphere’s diameter of BTES
is 1.73. MSFA-OSP has the highest sphere’s diameter of 2.45.
It is clear that state-of-the-art MSFAs have a nonoptimized
sphere’s diameter, and the proposed SP approach promotes
uniform spatio-spectral sampling in the MSFA. Moreover, the
SP density of the RND is 0.03; for five state-of-the-art MSFAs
is 0.08, and the BTES SP density is 0.14. All densities of state-
of-the-art are lower than the SP density designed OSP coding
patterns, which is 0.4.

Additionally, Fig. 5 shows the SP comparison between
the traditional 5 × 5 IMEC coding patterns with 25 filters
against MSFA-OSP. We include the corresponding MSFAs

in the Appendix A of the Supplementary Material. Note that
the number of spheres is 625. The nonoptimal IMEC coding
patterns have a sphere’s diameter of 1.41 and a SP density
of 0.05. In contrast, MSFA-OSP has the largest sphere’s
diameter of 3, and a corresponding SP density of 0.5. Note
that the higher the SP density is, the better the uniformity of
the sampling pattern, which improves the recovery of multi-
spectral images with state-of-the-art demosaicking algorithms.
In detail, demosaicking algorithms (see subsection II-A) pro-
voke color distortions such as the zipper effect and false colors
when nonoptimal state-of-the-art coding patterns are used.
In contrast, our proposed optimal coding patterns avoid color
distortions due to the optimized distance between filters and
improved SP density, achieving better image reconstruction
quality, as will be shown in Sec. IV in Fig. 6 and Fig. 7(e).

G. Parameters’ Selection Algorithm

Note that putting different pairs of values to a ∈ N and
b ∈ N in Eq. (10) produces different MSFA B. Thus, our goal
is to find the optimal values by conducting a smart search
parameter space. The intuition that makes our algorithm faster
than a brute force algorithm is the reduction of parameter
pairs given symmetries found in the search space. Thus,
algorithm 1, computes the optimal parameters by iteratively
keeping the a and b, pairs that yield spheres with the largest
diameter and thus, the best SP density. In detail, the input of
the algorithm is the number of filters in the MSFA denoted
by L , while the outputs are the parameters a and b that lead
to the MSFA-OSP coding pattern. In stage 2 the constant K
denotes the size of the search space of the possible solutions
to Eq. (10). Line 3 assigns the number of spheres V to the
MSFA kernel’s size L2. Lines 4 and 5 of Alg. 1 shows the
initial values of a and b that span from 1 as the minimal value
until K as the maximal value such that i, j ∈ {1, . . . , K } being
K = ⌊

L
2 ⌋. Different MSFA-OSP options that are plausible

solutions to Eq. (10) are computed in line 6 by evaluating
Eq. (10), with i and j entries at each iteration. Stage 8
promotes uniformity between the number of filters. If there
is uniformity in B, that means that the number of filters per
column and row is the same, then all pairwise distances are
computed, otherwise candidate B is ignored. In line 12, all
the spheres’ centers are stored in matrix P ∈ NV ×3. Then,
in line 15, all the spheres’ centers P are used to compute
the pairwise distance matrix D ∈ RV ×V , which stores the
minimum distance of all the spheres ignoring the self-distance.
Finally, in step 17, positions a and b correspond to the location
of the maximum value of W ∈ RK×K . Note that solving the
max-min problem in Eq. (11) implies computing steps 15 and
17 of Algorithm 1. The MSFA-OSP is computed with the
parameters a and b solving Eq. (10) for the L spectral bands.
In terms of computational complexity, Algorithm 1 generates
a MSFA in an order of O( 1

8 L4z +
2
8 L2).

IV. DEMOSAICKING RESULTS

A. Dataset Preparation and Evaluation Parameters

To verify MSFA-based sensor demosaicking, we use the
CAVE dataset [33] to test the performance of MSFA-OSP
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Fig. 3. Comparison between MSFAs with a spatial resolution of 16 × 16, and spectral resolution of 16. (a) RND, (b) BN, (c) BRA, (d) SEQ, (e) UNIF,
(f) IMEC, (g) BTES, (h) OSP.

Fig. 4. SP density comparison of MSFAs coding patterns with 16 filters and no dominant filter. The first row depicts the MSFAs (a) RND, (b) BN CAs [12],
(c) BRA [16], and (d) SEQ. The second row shows the MSFAs (e) UNIF, (f) IMEC [8], (g) BTES [5], and the proposed (h) MSFA-OSP computed using
Eq. (12). State-of-the-art MSFAs experiments have corresponding sphere’s diameter lower than the sphere’s diameter of the OSP approach. The lower sphere’s
diameter is 1, with the SP density of 0.03 RND. Five state-of-the-art MSFAs have the same sphere’s diameter and, therefore, the same SP density, corresponding
to 1.41 and 0.08, respectively. The coding pattern BTES has sphere’s diameter of 1.73 and a SP density of 0.14; the MSFA-OSP sphere’s diameter is 2.45 and
reaches a SP density of 0.4.

against state-of-the-art MSFAs. The CAVE dataset consists
of 32 scenes, with a spatial resolution of 512 × 512 and
31 spectral-bands, where the bandwidth is 10 nm between

400 nm and 700 nm. The dataset is resized to 256 × 256,
either sub-selecting 16 interleaved spectral bands or sub-sets
of sequential 25 bands, as needed for the different variations



DIAZ et al.: MULTISPECTRAL FILTER ARRAY DESIGN BY OPTIMAL SPHERE PACKING 3641

Fig. 5. SP density comparison using IMEC and OSP coding patterns. Two MSFA are compared (a) IMEC and (b) MSFA-OSP, both patterns have 25 filters
with no dominant ones. The SP on the left depicts IMEC with kernel 5×5 with L = 25 [8], and the SP on the right shows the proposed MSFA-OSP computed
using Eq. (12) with kernel 25 × 25. The corresponding IMEC sphere’s diameter is lower than the diameter of the MSFA-OSP approach. The IMEC sphere’s
diameter is 1.41, and the SP density is 0.05; the sphere’s diameter of MSFA-OSP is 3 and reaches a SP density of 0.5.

Algorithm 1 Selection of Parameters a and b

of the MSFA. Eight demosaicking algorithms are compared
using the eight MSFAs coding patterns already introduced
in Section II-C. Moreover, three quantitative metrics are
used to assess the performance of the demosaicking algo-
rithms. In order to measure the spatial fidelity, we use the

Peak-Signal-to-Noise Ratio (PSNR) and the Structural Similar-
ity Index (SSIM) [34], where high values of PSNR and SSIM
stand for better spatial fidelity. We also use Spectral Angle
Mapper (SAM) [35] to evaluate spectral similarity, where a
lower SAM metric denotes better spectral fidelity.
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Fig. 6. Zipper effect and color distortion comparison between three MSFAs. The chart scene of Tokyotech [36] has a spatial resolution of 736 × 736 and
16 spectral bands, and the reconstruction algorithm is ItNCD, where (a) is the groundtruth (b) is IMEC, (c) is BTES, and (d) our proposed OSP approach.
Four squares show zoomed versions of the scene; note the significant zipper effect and color artifacts in state-of-the-art patterns.

B. Comparison Between State-of-the-Art MSFAs

We assess the following seven state-of-the-art MSFAs;
RND, BN CAs [12], BRA [16], SEQ, UNIF [23], IMEC [8],
BTES [5] against our proposed MSFA-OSP. In particular,
the MSFAs have a spatial resolution of 256 × 256 and the
number of spectral filters are L = 16 or L = 25. In our
evaluation, we use ideal dichroic filters and real filters with
the spectral response taken from the IMEC [8], [9] camera,
which is a unique off-the-self MSFA-based system available
on the market. For additional information about the simulation
experiments with real filters, see subsection IV-H. In addition,
the designed MSFA-OSP coding patterns are computed using
Eq. 12. The optimal a and b are selected using Algorithm 1,
in which the corresponding values are a = 7 and b = 4 for
16 filters and a = 8 and b = 3 for 25 filters. The computation
time of the MSFA-OSP coding patterns for the number of
filters L = 16 is 0.08 seconds, and for the number of filters,
L = 25 is 0.37 seconds. In contrast, BN may take several
minutes to compute the coding patterns for a similar number
of filters.

C. Neural Network Demosaicking Setup

The deep neural network that reconstructs the spectral dat-
acube is a modification of the snapshot compressive imaging
reconstruction called RevSCI [15]. We introduce the TRevSCI,
which performs tensor completion using the grayscale multi-
spectral mosaic Y computed with Eq. (4) for every specific
CA Cl . To ensure a fair comparison, we train eight different
versions of the TRevSCI neural net using each one of the
corresponding MSFA. An important difference between the
original RevSCI and our TRevSCI is the loss function; we

change the mean squared error (MSE) with the mean absolute
error (MAE). Furthermore, for the training, we used four
datasets: TokyoTech [36], Manchester [37], [38], Harvard [39],
and ICVL [40]. These datasets contain 350 spectral dat-
acubes that, through spectral and spatial data augmentation,
are transformed into new 10530 datacubes, where 80% are
used for training and 20% for validation. Then, we used the
32 datacubes from the Cave dataset [33] for testing. The
neural network in our configuration is an autoencoder with
two stages, comprising a set of 3D and 2D convolutional
layers. Each convolutional layer is followed by a leaky ReLU
activation layer, which has been shown to perform well
in many snapshot computational imaging applications [11],
[15], [41]. All experiments are run on the PyTorch framework
with 2 NVIDIA RTX 3090 GPUs. The Adam optimizer [42]
is used to minimize the loss function with a learning rate of
2 × 10−4. It takes approximately a day and a half to train
the entire network. For each experiment with every CA, the
network was retrained using the same dataset with a specific
MSFA.

D. Artifacts Reduction Analysis

To observe the performance of our novel approach in
dealing with artifacts such as false color and the typical zipper
effect, we test the state-of-the-art MSFAs IMEC and BTES
against our OSP approach using the benchmarking chart scene
of the Tokyotech [36] dataset (736×736 pixels and 16 spectral
bands). In particular, Fig. 7(a) depicts the groundtruth of the
chart scene, and Fig. 7(b-d) show the reconstructions using
IMEC, BTES and OSP, respectively. To better observe the
zones with potential artifacts, we offer four zoomed versions
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Fig. 7. Image quality reconstruction comparison using spatial fidelity. MSFA-OSP and MSFA-BTES are compared with three scenes: thread spools, glass
tiles, and paints. The first column denotes (a) the original datacube, and subsequent columns depict reconstructions using four demosaicking methods (b) WB,
(c) ItID, (d) ItNCD, and (e) TRevSCI. In the three scenes, the WB provokes a blurring in the reconstruction; ItID and ItNCD show line pattern artifacts.
In contrast, TRevSCI recovers the details with high spatial fidelity and MSFA-OSP outperforms MSFA-BTES in terms of PSNR.
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TABLE I
PERFORMANCE OF THE PROPOSED MSFA-OSP ON THE CAVE DATASET AGAINST SEVEN DIFFERENT MSFAS CODING

PATTERNS, AND 8 DEMOSAICKING ALGORITHMS, WHERE N = 256, L = 16

of the scene highlighted with yellow, blue, red and green
squares. The red squares of IMEC and BTES clearly show the
appearance of the zipper effect, while our OSP approach show
none. Moreover, squares blue, green and yellow depict false
colorartifacts present in IMEC and BTES, while our approach
is able to better handle this often common problem in MSFA
demosaicking.

E. Comparison of Demosaicking Algorithms and
State-of-the-Art MSFA

The simulation results using the CAVE [33] dataset for
L = 16 spectral filters are depicted in Table I, showing
quantitative average and standard deviation results over all
32 CAVE datacubes using spatial similarity and spectral
fidelity. MSFA-OSP is compared against seven MSFAs coding
patterns using eight state-of-the-art demosaicking algorithms,
including TRevSCI. The best results are marked in bold. The
best traditional demosaicking algorithm corresponds to ItNCD;
nevertheless, it provokes line artifacts in the reconstruction
(Fig. 7(d)). In contrast, TRevSCI outperforms conventional
demosaicking algorithms in spatial resolution, spectral fidelity,
and visual quality. Subsections IV-F and IV-G analyze the
spatial reconstruction and spectral fidelity with examples.
We include additional simulations results using different num-
bers of filters in the Appendix B of the Supplementary
Material.

F. Spatial Fidelity Comparison

As the best performing MSFAs, Figure 7 compares the
MSFA-BTES against our MSFA-OSP design in terms of
image reconstruction quality using the PSNR metric. The
first column in Fig. 7(a) depicts the RGB groundtruth of

the thread spools, glass tiles, and paints scenes. From the
second to the fifth column, the RGB spatial reconstruction is
depicted using four of the most relevant tested demosaicking
algorithms in terms of performance, that is, WB, ItID, ItNCD,
and TRevSCI. According to the performance, the algorithms
are sorted in ascending order from left to right. Note that our
method outperforms MSFA-BTES in image quality at 2.58 dB,
2.83 dB, and 2.2 dB using the TRevSCI method. In the case of
the reconstruction of the paints scene using the BTES coding
pattern (in Fig. 7 rows 5th and 6th), there is a zipper effect in
the white text. In the case of the thread spools and glass tiles
datacubes (in Fig. 7 rows 1st to 4th), using TRevSCI and both
MSFAs, the spatial structure is preserved. The difference in
results is highlighted using the SAM metric in Fig. 8.

G. Spectral Similarity Comparison

Figure 8 compares the spectral fidelity using the SAM
metric of the reconstructed datacubes using four state-of-the-
art demosaicking algorithms. The test uses the best-performing
two coding patterns, MSFA-BTES and MSFA-OSP. The first
column in Fig. 8(a) shows the RGB groundtruth of the thread
spools, glass tiles, and paints scenes. The spectral similarity is
depicted for the different demosaicking algorithms, WB, ItID,
ItNCD, and TRevSCI, in Fig. 8(b), (c), (d), and (e), respec-
tively. The WB algorithm obtains blurred reconstructions
increasing the SAM metric. ItNCD and ItID are comparable
in terms of spectral similarity. The lowest spectral fidelity
is attained using the TRevSCI algorithm, which outperforms
the WB, ItID, and ItNCD demosaicking methods. In the
three scenes, MSFA-OSP shows better spectral similarity than
MSFA-BTES.
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Fig. 8. Spectral fidelity comparison through the SAM metric of MSFA-BTES and MSFA-OSP using three scenes: thread spools, glass tiles, and paints. The
first column shows the RGB original datacube. Moreover, the following columns show the spectral similarity using four demosaicking algorithms, (b) WB,
(c) ItID, (d) ItNCD, and (e) TRevSCI.
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Fig. 9. Comparison of spatial fidelity between MSFA-IMEC and MSFA-OSP
using real filters. For the experiment, the dichroic filters are replaced by the
spectral response of the IMEC camera, and the reconstruction algorithm is
TRevSCI. The first column in Fig. 9(a) shows the RGB groundtruth of three
scenes thread spools, glass tiles, and paints. The second column in Fig. 9(b)
and third column in Fig. 9(c) depict two different filter numbers, L = 16 and
L = 25.

H. Results Using Real Filters

In this section, we only compare MSFA-IMEC against
MSFA-OSP. The ideal dichroic filters are replaced in both
arrangements with the corresponding IMEC spectral filter
responses. The TRevSCI neural network and MSFA with
real filters are used to reconstruct the datacube. The real
filters use the spectral response of the IMEC camera with
16 and 25 filters [8], [9]. Table II shows the corresponding

Fig. 10. Comparison of spectral similarity between MSFA-IMEC and
MSFA-OSP using real filters means that the dichroic filters are changed for
the spectral response of the IMEC camera, and the reconstruction algorithm
is TRevSCI. The first column of Fig. 10(a) depicts the groundtruth of the
thread spools, glass tiles, and paints of three scenes. The second Fig. 10(b),
and third Fig. 10(c) columns show the spectral similarity of IMEC and OSP
with 16 and 25 filters, respectively.

results, where we note the superior performance of the MSFA-
OSP design for both numbers of filters. The advantage of
our approach is that these results are obtained with a single
snapshot compared to other approaches that even require
several shots to attain a similar quality [9].

Moreover, an RGB visual comparison of spatial similarity is
shown in Fig. 9, using MSFA-IMEC and MSFA-OSP coding
patterns with real filters. In the experiment, three scenes are
used. The first column in Fig. 9(a) shows an RGB version of
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TABLE II
PERFORMANCE OF MSFA-IMEC AGAINST THE PROPOSED MSFA-OSP

ON THE CAVE DATASET FOR TREVSCI NEURAL NETWORK, WHERE
N = 256, AND NUMBER OF FILTERS 16, AND 25. BOTH CODING

PATTERNS USE IMEC SPECTRAL FILTER RESPONSE

the original images for the scenes thread spools, glass tiles, and
paints. The second column in Fig. 9(b) and the third column in
Fig. 9(c) depict the RGB reconstruction using 16 and 25 filters,
respectively. The odd rows correspond to MSFA-IMEC, and
the even rows correspond to MSFA-OSP. Note that PSNR is
always lower for the IMEC coding pattern than for the MSFA-
OSP with either number of filters.

Additional results are depicted in Fig. 10, where the spectral
similarity between conventional MSFA-IMEC is compared
against the proposed SP coding patterns using real filters.
Fig. 10(a) (first column) depicts an RGB version of the original
image. The second column in Fig. 10(b) and third column in
Fig. 10(c) compare the spectral fidelity using 16 and 25 filters.
Note that the SAM metric of the odd rows for MSFA-IMEC is
comparable with MSFA-OSP for 16 filters and is higher when
the number of filters is 25, which shows a better performance
of our proposed approach.

I. Discussion

The experiments prove the capability of the MSFA-OSP to
optimize the entries of MSFAs and reduce color artifacts, false
color, and the zipper effect caused by the nonuniform sensing
provided by the state-of-the-art MSFAs. In particular, BN CA
is an optimized coding pattern such that the entries show clus-
ter reduction in comparison with RND coding patterns. These
patterns are used in CSI because they satisfy RIP; however,
their spatial and spectral distribution are not optimal in terms
of SP due to the irregular distribution of the sampling entries.
Moreover, TRevSCI improved the reconstruction quality and
leveraged the benefits of convolutional neural networks to
boost spatial and spectral fidelity. It preserves fine details of the
spectral bands by exploiting the spatial-spectral correlations to
learn the structure of scenes that contrast with the interpolation
and iterative demosaicking methods that cause significant
distortions. A significant limitation of the proposed method
is the necessity of retraining for specific MSFAs. Future work
will include strategies to generalize MSFAs to avoid retraining
for new MSFAs or exploit its scalability when the pattern is
regular and thus repetitive. In addition, increasing the GPU
memory will increase the number of reconstructed spectral
bands.

V. CONCLUSION

We proposed a novel multispectral filter array design
methodology for snapshot spectral imaging called

Multispectral Filter Array by Optimal Sphere Packing
(MSFA-OSP). The proposed approach exploits SP in 3D
Euclidean space to optimally design the spatio-spectral
coordinates of filters in an MSFA. The proposed SP approach
extends the idea of optimal packing to optimal coded
apertures design, generalizing the design of the MSFA for
improved results. Simulation demonstrates that the MSFA-
OSP outperforms in up to 2 dB seven state-of-the-art MSFAs;
for instance, BN CAs and MSFA-BTES. In particular,
our design is scalable to higher spectral dimensions via
Algorithm 1, which calculates the optimal coding patterns
for any filter number. Additional advantages of the optimal
filter distribution are reducing artifacts in the reconstructed
spectral datacubes, such as false colors and the typical zipper
effect often found when using demosaicking algorithms.
Simulations with spectral responses from real filters found in
implemented Multispectral Filter Array (MSFA) prove that
the proposed design outperforms the MSFA-IMEC coding
patterns for 16 and 25 spectral filters. We believe that the
improved performance achieved by the proposed Multispectral
Filter Array by Optimal Sphere Packing (MSFA-OSP) has a
correlation to the better SP density achieved in contrast with
the MSFA-IMEC arrangement. In conclusion, the proposed
SP optimization approach to designing a Multispectral
Filter Array (MSFA) leads to regular and optimal sampling
patterns that, at the end, allow the Multispectral Filter Array
by Optimal Sphere Packing (MSFA-OSP) to retrieve the
underlying spectral datacubes with better quality and fidelity
no matter the reconstruction algorithm to be used, and even
if the implemented filters are far from ideal.

The optimization using SP constitutes a general mathemati-
cal framework to optimize the spatial position of spectral filters
in different areas, such as CSI, tomography and compressive
videos. In CSI, we can further promote a regular distribution
of colored filters in C-CASSI [21]. MSFA-OSP could also
be exploited in compressive spectral X-ray imaging (CSXI)
for optimal uniform illumination using K-edge CA [43].
Furthermore, the SP framework may be extended to CACTI
to sample video frames using regular coding patterns [44]. For
higher dimensions of the plenoctic function, we may consider
studying the E8 lattice [45], the Leech lattice [46], and the best
known packing for Euclidean dimension, although the optimal
SP is still only known for 2, 3, 8 and 24 dimensions [24].
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